USOORE41751FE
(19) United States

12y Reissued Patent (10) Patent Number: US RE41,751 E
Heishi et al. 45) Date of Reissued Patent: Sep. 21, 2010
(54) INSTRUCTION CONVERTING APPARATUS 4,611,281 A * 9/1986 Sukoetal. ...ccovvvvenene.... 714/39
USING PARAILLEL EXECUTION CODE 4,785,393 A * 11/1988 Chuetal. 712/221
4,858,105 A * 8/1989 Kuriyamaetal. 712/235
(75) Inventors: Taketo Heishi, Osaka (JP); Tetsuya gﬂgggﬂzgg i i jﬁ }gg; ;ﬁn‘fierste;lal* -------------- 712/219

_ . . 408, arita et al.
gla';al;a(’fg ngugfﬁl ¥§E;mag1§a§l’o) 5448746 A * 9/1995 Eickemevyeretal. 712/210
YO0 LT, janayama, Hyos 5452461 A * 9/1995 Umekitaetal. 717/149
(JP); Kensuke Odani, Kyoto (JP) 5.488,710 A * 1/1996 Sato etal. .oooovvever.... 711/125

5,901,301 A 5/1999 Matsuo et al.

(73) Assignee: Panasonic Corporation, Osaka (IP)
FOREIGN PATENT DOCUMENTS

(21) Appl. No.: 10/720,030

JP 03-053325 3/1991
(22) Filed: Nov. 24, 2003 P 03-147021 6/1991
JP 05-289870 11/1993
JP 09-026878 1/1997

Related U.S. Patent Documents

Reissue of: * cited by examiner
(64) Patent No.: 6,324,639
[ssued: Nov. 27, 2001 Primary Examiner—Eddie P Chan
Appl. No.: 09/280,777 Assistant Examiner—William B Partridge
Filed: Mar. 29, 1999 (74) Attorney, Agent, or Firm—McDermott Will & Emery
(30) Foreign Application Priority Data L
(57) ABSTRACT
Mar. 30, 1998 (JP) o, 10-083368
APL. 8, 1998 (JP) ovoiveieiereeiecieirie e 10095647 A processor can decode short instructions with a word
(51) Int.Cl. length equal to one unit field and long instructions with a
GOGF 0/30 (2006.01) word length equal to two unait fields. An opcode of each kind
of mstruction 1s arranged into the first unit field assigned to
(52) US.CL oo 712/210; 712/212: 712/213 the mstruction. The number of instructions to be executed by
(58) TField of Classification Search j ’712 210 the processor in parallel 1s s. When the ratio of short to long

instructions 1s s-1:1, the s-1 short instructions are assigned to
the first unit field to the s-1* unit field in the parallel execu-
tion code, and the long instruction is assigned to the s unit

712/213
See application file for complete search history.

(56) References Cited field to the (s+k-1)" unit field in the same parallel execution
code.
U.S. PATENT DOCUMENTS
3,955,180 A * 5/1976 Hirtlecooeviniiiiinnnn..n. 703/26 50 Claims, 29 Drawing Sheets
IABUS IDBUS NSTRUCTION SUPPLYING
P32 yo4 /ISSUING UNIT
L 20

INSTRUCTION REGISTER
| DT NN RS .

NSTRUCToNl__ Vv ¥ \DECODING] 30

| 1[ISSUING 33K 34 35
i i
INSTRUCTIONY JINSTRUCTIONY { INSTRUCTION

31 INSTRUCTION DECODER
| e

SECUTION conRoL it EXECUTING UNIT
(R3BUS 32
‘ [3BUS .3

484 (2 Y S
R1BUS 32 A{[l\
L1 BUS JIE 1

s ML {1,

REGISTER

¥32 32
OABUS ODBUS

U.S. Patent Sep. 21, 2010 Sheet 1 of 29 US RE41,751 E

BACKGROUND ART
FIG. 1A
LONG INSTRUCTION SHORT INSTRUCTION

FIG. 1B

GNIT §

PARALLEL

 EOUNDARY

“UNIT 19 | UNIT20 | UNIT21 [
FIG. 1C

UNIT | UNIT 2 UNIT 3 JNIT 4 UNIT 5 UNIT 6

LONG INSTRUCTION | LONG INSTRUCTION |LONG INSTRUCTIONE

UNIT7 UNIT8 | UNIT9 | UNITI0 UNIT I
LONG INSTRUCTION [5HoRT NsTRICTI0N| LONG INSTRUCTION [

UNIT12 UNITI13 | UNIT14 UNITIS | UNIT 16
LONG INSTRUCTION | LONG INSTRUCTION [SHORT INSTRUCTIONE

UNIT 18 UNIT19 | UNIT20 UNIT 21

o LONG INSTRUCTION | LONG INSTRUCTION F

UNIT22 UNIT 23
LONG INSTRUCTION {SHORT INSTRUCTION{SHORT BSTRUCTINZ

UNIT26 |UNIT27 | UNIT28 UNIT29
SHORT INSTRUCTION S HORT ISTRECTION LONG INSTRUCTION

UNIT 30 |UNIT 3] UNIT 32 | UNIT 33

SHORT INSTRUCTION] LONG INSTRUCTTON [ORT ISTICTONE

US RE41,751 E

Sheet 2 of 29

Sep. 21, 2010

U.S. Patent

LIV AN10dDAOVH

U.S. Patent Sep. 21, 2010 Sheet 3 of 29 US RE41,751 E

FIG.3A BACKGROUND ART

“oni | sz | owts]

UNIT QUEUE 50

INSTRUCTION
REGISTER

RST
INSTRUCTIONY /INSTRUCTIO
DECODER DECODER

INSTRUCTION
DECODER

INSTRUCTION
CONTROL UNIT

FIG.3B BACKGROUND ART

. UNIT1 { UNIT2 : UNIT3
SHORT INSTRUCTION | SHORT ISTRUCTION

|
|
!
|
i
'
!
!
|

i i

LONG INSTRUCTION ; SHORT INSTRUCTION

U.S. Patent Sep. 21, 2010 Sheet 4 of 29 US RE41,751 E

FI1G. 4
IABUS IDBUS INSTRUCTION SUPPLYING
32 |64 /ISSUING UNIT

TSRS
INSTRUCTION INSTRUCTION
FETCH UNIT BUFFER

INSTRUCTION REGISTER |23
-ttt

33/ EOOND
lNS’I‘RUCl‘lON INSTRUCFION lemucnou
DECODER DECODER DECODER

INSTRUCTION DECODER
T

INSTRUCTION

[SSUING

CONTROL
$

l—-- 40
EXECUTION CONTROL UNIT 1 Il EXECUTING UNIT
R3 BUS

L3 BUS A\
R2 BUS
) BUS
R1 BUS .32 Al
L1BUS 32 ALI{] .

48

a3 AT |,
REGISTER| e
IT FILE
RO— R3l
D1V A ll

D22SA (I .32 | . _AY
D3,8A2 1| 32 || IA

W i
OPERAND ACCESS UNIT

—]
32 32
OA BUS OD BUS

U.S. Patent Sep. 21, 2010 Sheet 5 of 29 US RE41,751 E

FI1G. S5A

SUPPLYING OF INSTRUCTIONS FROM THE INSTRUCTION
FETCH UNIT TO THE INSTRUCTION BUFFER

T
UNIT 10 UNITI2

N

NN

.

-

r

UNIT 11 | UNIT I2

RN

o

FIG. 5B

SUPPLYING OF INSTRUCTIONS FROM THE INSTRUCTION
BUFFER TO THE INSTRUCTION REGISTER

UNIT1 | UNIT2 H UNIT3 | UNIT

2
o

L 3 3 9
l

g
~J
g
o0

UNITY9 | UNITI0 UNIT 11

e

ALY

=
to

(N 4\

FIG. 5C

ISSUING OF INSTRUCTIONS FROM THE INSTRUCTION

REGISTER TO THE INSTRUCTION DECODER
(IN UNITS OF PARALLEL EXECUTION CODES)

UNIT1 | UNIT2 P
UNIT3 | UNIT 4 UNIT 6

AN,

/
¢

-
=
3
~

%

AN

UNITS9 | UNITIO
UNIT 11 | UNIT 12

ANt

U.S. Patent Sep. 21, 2010 Sheet 6 of 29 US RE41,751 E

PARALLEL EXECUTION BOUNDARY INFORMATION {10

FORMAT INFORMATION f11
18 109 54 0

FIG. 6A | fo| Opt | Rd

18 109 54 O

FIG.6B | [o|] opt | Rd [imms

18 1312 0
FIG. 6C | Jo| Op2| dsp13
21€ v b
FIG.6D {[1f opt [Rd| dsp21
393736 3231 20 0
FIG.6E |[uopy Ra [~ imm32
39 3130 20 O

FIG.6F ([ool | sl

US RE41,751 E

Sheet 7 of 29

Sep. 21, 2010

U.S. Patent

JTdISSOdI
NOILNOAXA/ANSS]
SNOANV.LTIONIS

— E— — T
O C) owauw

I'Illl.l.'lll'.l-'li-ll-i-'ll-l..1-"""'.' A A e oy ey ds I a el d s ekl A A e AT R e e e u T

d3dLNOodXH

ATTSNOINV.LINAILS
SNOLLOMTY.LSNI FHIH.L

LNISOO0IANV.LINAIS
SNOLLO1YLSNI OML

lllll._l_l_.l.lll.llll_l._.l.l.__.l.l_....l.l-."".l.l-lll-'l-l'l'l'.'-'-l'l'.I.._.I.l_,.l__l-_l.l.l..l'l.l....l..l-'l-'I-..I.lllllr-l.l'.‘--'-"ll

A4LNOdXH
NOLLOTILSNI ANO

NOLLOMALSNI LI9-Th (Q) NNALLVd

[oomsiuer] () N¥aLLYS

<P LINN—> <—¢ LINN—> <—T LINO—> <—I LINn—>
SZA0D NOILMOAXH TITIVYVd HL 40d SNYELLYd / g

US RE41,751 E

Sheet 8 of 29

Sep. 21, 2010

U.S. Patent

' CC) Y3449 NOLLOMNY.LSNI -!!

JALSIOTI NOLLONALSNI
£ec CAXARE § X/

aﬁzam é <E§_
c7 NOLLDNALSNI NOLLONYESNI| § NOLLONYLSNE

14 X4

J ¥A1SIO9
NOLLD1LLSNI

el ST W
941149 V YALING X
NOLLOOUISNI| \ortoaisnt [[

| o [[w] [ov

ll-'llll-l"llllll"-l'I"-'lll‘l"llll'

8 DIH

U.S. Patent Sep. 21, 2010 Sheet 9 of 29 US RE41,751 E

2l FIG. 9D 21
INSTRUCTION FELICH UNILE=""°

FIG. 9A

INSTRUCTION EE L H UNILy == ""

;— l 711
I! RUCTION
UFFB A

NS'IRUCI'[ON

:*=—_1:-ﬁ==. BUFFER B

----mrﬂ'1“i‘--l
lllln-ﬂ—_- H.n_—-lﬂ-l

MUY l.A!) 4 ‘MU t‘rﬂ
W7 444t 444 WL

N 7 e ¢ F AR \ 7 A \

(INSTRUCTION FETCH ORITY - -~ -

"_"_- 221

Vv .

lllll

'
FIG 9C gZoiscaromount 5, FIG. 9F

__

221

ﬂ.!ml‘ G O mﬁr-mmﬁmmmﬁm
H ! N UCTION

rt— R\ 1 cp%
lm 22

UNIT 4 m UNIT 5
INSTRUCTION
_ BUFFER B
wnmu l ll“llﬂ"

D{fﬁt UCTION

r.li“-ﬂlﬁ_—_iﬂit_l
l-'-i

lll l[i
42 ‘4‘5 ' ;

/ ZREEE—V { SIS § 7 AU, § ¢
e % ¥ W

r

JUN R,

iFk-

/."J’./?

5%

F'I.
Y r S 7

S X A4/ Y ARSHA
NSTRUCTION

U.S. Patent Sep. 21, 2010 Sheet 10 of 29 US RE41,751 E

U
R o peromomr - (RspETOR OO

kD __ mﬂ__

« R « T = DY
L"I"uIﬂ----- eron ——— fucron

— A 110 :
lﬁmm =3

Im_['IEEI'

INSTRUCTION INSTRUCTION
BUFFER B

BUFFER B

MUA MUAX MUAX MUAX MUX_
| 244t el | 224d Wil 22

N 7 AN \ F IR ¥ 7 SRR wmn f“‘l r_-1 r
AR A AVRERRTE. AN

——nm mm

s -ppeeseekivebuApTent 5 FepeasskisielennliED WENEEE 4

FIG. 10B 2 FIG. IOE 21
umuwdaaw.luull "eeT INSTRUCTION FEICH UNLLIE™""
mao G G, & ot 1 1
21 --l“” 21
W/ﬂ IRETRUCTION — niquN
3UFFER A frm——— -
| _— m”%m‘ * ' TN

.—_—_“-r_———-—-

a » » v oSl ey | s SRR

{ ' miul)
44 hr | 224 224

¥ F ARl | 7 \ F A 7

Y XY A8 UNI mﬂ
\ ’ 'Lm A\l L

MUX

4 2248

7/’ ﬁﬁ I;z.ufllﬂm
TOCTION

RUCTION

A
l'!m
NSTRUCTION
.. BUFFERB
r-—_-ll—ll

Iill-____.——-l__lﬂ—_-'-lt
lili_.ﬂ..#lﬂll

I-ll-l

W}Z ﬂ'ﬂyA 1.’3' P3| UNITS

DN RE :

US RE41,751 E

Sheet 11 of 29

Sep. 21, 2010

U.S. Patent

1Y LIN[] JOYLNOO

NOLLNOAXA HH.L

mn s W ugy 4 S W A mn =k mh Sy g e - Y g B ows - A W agy E e -— o e ulr o as owy me R o W v gy wr v B oy e gy a Ay }

s ah sk g am W ek AR Y Ep e R o T W

OL

0080 BA0AC
NOLLOHISNI { | \NOLLONALSNG vt ¥9000AQ
QHL ANODE NOLLONHISNI
A A ANODAS HH1 40 OV 1
“ NOLLYd40-ON OL

ll

) = gy A gy W e S, AR e En e Ny T W ul, - e e i ek W ap OB - e e v o g W B = g e S W Ey gy g T R,

JH1,40 OV
NOLLY¥3dO-ON OL

IEEEEE (1Ol

4N3N0 JINN

NOLLONYLSNI3G-1Z
- [(®) NYELLVd

US RE41,751 E

b6ty Gt
(o Vs |\ o
.t\\. ; \ ‘.\ mek T b€ AFAODAd
\\\\v \.\\.\ NOLLONY.LSNI

43

Sheet 12 of 29

143 mm ANODHS JdH.L 40 OV
NOLLVYddO-ON Ol
¢ ¥900080
zo_._u:%-%
HHLAO0 DV U D /) qoﬁ.m%
NOLLY¥340-ON 8 u TS
............... NOILONALSNI

(AX/ R $ X4

X €ET "
TR B o o

(¥1LSTON J YALSIDHY d 39.LSIDIY v L1809
NOLLOMISNI ~ NOLLDMMISNI ~ NOLLOMYISNI NOLLOMYLSNI

SHISIDAY
NOLLONYLINI £2 Z1 "OIJ

Sep. 21, 2010

U.S. Patent

NOLLONY.LSNI ¥19-Cv

US RE41,751 E

bt XV Addedid]
%

MRl ANDAS NOILDNYLSNI
& _ /4 \\‘\.\ﬁ\k ANODIS FH.L 40 OV
NOLLVIAd0O-ON OL

Sheet 13 of 29

YET €ET [N
0 U770 i
A YISO R LARYRAN R ERAYH SR v 33LSION
NOLLOMYELSNI NOLLOMTYISNI NOLLONMALSNI . NOLLOMYLSNI

Y1810y :
NOLLOMYLSNI €7 ¢l DI

Sep. 21, 2010

U.S. Patent

NOLLONALSNIIZ NOLLONALSNI Q1T

US RE41,751 E

w\\ gl A\\
4 \1\.43

’ \\.ix\ . Z%W%%%W%vm
g s \\\\v i ANODFS FHL 40 OV
: R N ow_“.@mmmo ON OL
P 1€

€62 AN I ¥
77777 U770 Ll ool
A YA1SION DNLISION G¥AUSION Y YALSION
NOLLOWLISNI ; NOLIOMMISNI NOLIONMLSNI NOLLDNYLSNI

¥A1SIOFY
NOIIDJNAISNI €7 VI DI

U.S. Patent

US RE41,751 E

Sheet 15 of 29

Sep. 21, 2010

U.S. Patent

JLLS[DHY
NOLLOMTYISNI £2

S

07770 L

(d ¥1ISIOTY
NOLLY I ISN]

NOLLONYLSNI 11q-¢

 /

/ /
.;_&ﬂﬂ\

(..lcia

9.

FA0A0
NOLLO{IALSNI
GNOJIS

t

J 43151074

d mm._.m_cmm

NOLLONYLSNI M19-1¢

- | (P)NYILLVd

4300040
OLLONYLSN
LSY

ve d4dODHd
NOLLO{Td LSNI

ANODdS HH.L 40 DV'1A
ZOF%&0.0Z Ol

v mm,_.&cmm

NOLIOMAISNI NOLLONULSNI NOLLONWLSNI

¢1 DId

US RE41,751 E

Sheet 16 of 29

Sep. 21, 2010

U.S. Patent

NOLLONALSNING-1Z NOLLOMYLSNI 19-Z¢

- __+ |e)Nyd1Lvd

L EOTINY
waooda |\ e
NOLLDTALSNS %ﬁﬂ@ﬂ
(1K34,J30

o X

v€ 49d008d
. NOLLDTY.LSNI
GE bE GNODAES HHI 40 DV
" “ NOLLV¥HdO-ON OL
NOLLDAULSN]
QYHL
THLA0 OV 1

($3ISIDT
NOLLO(14ISNI

AR b
NOLLOT4LSNI £

VET €€

| YLIND ||} | £LIND [ir

NOLLY¥34OONOL

e e S N e W Sk i T WD A ey R g O

ct o IET

z
C.LIND PO | TN {ID

J Y4JSIDAY d 4415103y v ¥4.LS109Y
NOLLONYISNI NOLIDNYLSNT NOLLDNYLSNI

91 OI4

US RE41,751 E

Sheet 17 of 29

Sep. 21, 2010

U.S. Patent

14 X4

v LIND

NO

yLSIDAd
NOLLONYLSNI £

3
¥ LINI
(43LS1D3Y J J1LSIDIY g 4415103 v 44151044

NOLLONYLSNI HQ-Ty

GE - PE

X7 (AXS

_ELIND D

R
ouif X

2

NOLLONYLSNI H4-¢v

e U A ule Wy G Ny ot ol A A A A B W BB A E

(I4LSNI NOLLOMALSNT ~ NOLIDNMISNI NOLINYISNI

bt 44d0J03d
NOLLOIY.LSNI

aANODdS dHL 40 DV'L]

NOLLVIHJ0O-ON O.L

L1 DId

US RE41,751 E

Sheet 18 of 29

Sep. 21, 2010

U.S. Patent

NOILO(JILSNI NOLLO{TYLSNI NOLLONALSNI
q-1¢ 1q-17 na-17

UL 1(®Ny3Lvd

¥Q00A0 ¥H0003
E NOUDHLN QEDEE
ot ANODIS JH.L 40 OV

...‘mmeOUmE
NOLLOMILSNI
.................................. NOLLVHd0-ON OLL

nlh E WL e e S O gy W vy B S o e o e I N iy ol 5 B B oy b ol T we go o B 0 A

G WRO00Ad ™ “
NOLIMIISNI _ .
QU

FHL40 OV
NOILYN3dO-ONOL

WY gy e W S S oy

454

(¥31SIOTY J 41)SIOT

4 YIS0 ¥ ¥3SED3Y
NOLLOMYISNT , NOLIONMISNI NOLLDNYISNI NOLLONALSNIL
dALSIDAY

NOLLDMYLSNI £7 SI DIH

US RE41,751 E

Sheet 19 of 29

Sep. 21, 2010

U.S. Patent

NOLLON¥.LSNI
NOLLONLSNI 14-Z¥ N9-17 NOLLONYLSNING-12

pe 40040

NOLLOMNY.LSNI

ANOOFS dH.L 40 DV
Cf ¥9Q03a "
NOLLONALSNT ¢ .

(AIHL
1H1 40 DY M
NOILVH¥Hd0-ONOL

i
ks 4 S e W Sgh WS W Sl e e B g e ol A i oop) B B W up o alle

 €ET 7€T T/

Z NN |49 | ELNN (I | ZLINN J0d | T.LIND

{ ¥31SID3Y J JLLSIDHY LREAN LY LR LARY A
NOLLOMYLSNI NOLONYISNI NORLOAWISNI NOLLOMALSNI

L] -~

NOIRL 61 ‘DL

AT LINO LS Y1

US RE41,751 E

LYINIOA
LIg-17 4a00
NOLLNOIXH
THTIVIVd
Q LVINJOd
= LIFg-Zy 3d00
~ NOLLNOAXH
= TATIVEVd
e
99

1q0 31907¢C 11914
a9 LINN QYIHL ,a71314 LINM ANOJHS, A'THIH LINM LS¥1d
| LYINIO

| 119-¢£9 3000
JIER IR R R R R Rpe=ae
TAT1IVdvd

1190 11q0¢ 1qiy 1Hqz9

Sep. 21, 2010

L —— LYINIOA

_ Lig-¥8 4A0D
NOLLNDIX3A
THTIVIVd

nq0 11902 nqry 1qz9 naeg
0¢ D4

U.S. Patent

U.S. Patent Sep. 21, 2010 Sheet 21 of 29 US RE41,751 E

FIG. 21

150

110

\ COMPILER '
UPSTREAM PART
ASSEMBLER CODE 4111

GENERATING UNIT

INSTRUCTION 112
SCHEDULING UNIT 120

DEPENDENCY
ANALYZING UNIT l]

INSTRUCTION

REARRANGING
UNIT

FARALLEL EXECUTION 122
BOUNDARY APPENDING UNIT
OBJECT CODE
g GENERATING UNIT l
_~obj
160 114
123

ADDRESS
RESOLVING
UNIT

U.S. Patent Sep. 21, 2010 Sheet 22 of 29 US RE41,751 E

FIG. 22A FIG. 22B

INSTRUCTION I:ld(meml1),R0 -
INSTRUCTION 2:add 1.R0 Id(merm 1), R(Z',

INSTRUCTION 3:st RO,(mem?2) !
INSTRUCTION 4:mov R1 RO Wdl RO/
INSTRUCTION §5:mov R2,R3 I
INSTRUCTION 6:add R3,R0
INSTRUCTION 7:st RO,(mem3) (\g---*" ‘

st RO, (mem 2)
FIG. 22C

D—>2)—>C

—G
PARALLEL PARALLEL ~ PARALLEL
EXECUTION] EXECUTION2 EXECUTION?

S L PARLE AR

ARALLEL
EXECUTION| EXECUTION? EXECUTION3

PARMLLEL © PARALLEL PARALLEL
EXECUTION | EXGCUTION? - EXBCUTION

U.S. Patent Sep. 21, 2010 Sheet 23 of 29 US RE41,751 E

FIG. 23A
IN STRUCTION REARRANGING UNIT
i1 Y
LOOP1

 PEATES DK ALL Sl

NODES THAT HAVE NOT

BEEN REARRANGED

“r 82

CANDIDATE GROUP FORMED
FROM ALL NODES THAT CAN BE
ARRANGED INTO THE PARALLEL
EXECUTION CODE i

OQP 2 S3
REPEATED FOR ALL

NODES IN GROUP

S4

MOST SUITABLE NODE
EXTRACTED FROM THE
CANDIDATE GROUP

S6

IS THERE
, SUFFICIENT

PACE IN THE PARALLEL™ NO
EXECUTION CODE i FOR
THE INSERTION OF THE
MOST SUITABLE

BE ARRANGED INTO THE
PARALLEL EXECUTION

S7

NODE THAT HAS THE MOST
SUITABLE NODE AS A
PREDECESSOR AND HAS
AN OUTPUT OR REVERSE
DEPENDENCY WITH THE
MOST SUITABLE NODE
SELECTED AS
ARRANGEMENT CANDIDATE

NOES TO BE ARRANGED INTO
PARALLEL EXECUTION CODE |
DETERMINED, PARALLEL
EXECUTION BOUNDARY ADDED

S9

CEND

US RE41,751 E

Sheet 24 of 29

Sep. 21, 2010

U.S. Patent

QIDONVIYV ATTVNOISIAOYd

NOLL)MLISNT (3SS9003d
611

F1HISSOd INTWHON

[1VId SN :Em
S_mc

(ONOT-LY h

200 %%%

S
T z {1y
Y ONOT €N

— amoo.

10 JJHNIN dHL M %

GEONVIAY A
A

IIAGH

SOA §

L NOLLONYL
d JHL
JOHS-LYOHS-LIOHS YO ONOT-LYOHS-LYOHS)SHA %o& 0 _N.F__. LA
ATV o@ Hi Emzm
%om NOSTY .Q:mo JHL
d ATSAOENY LUAI
[N FTHS504 H §

de¢ O

ONISSHO0Yd INFWIOAN INFNFOVIEY

US RE41,751 E

Sheet 25 of 29

Sep. 21, 2010

U.S. Patent

NOLLDNAISNI QA TOSHYNQ OLNI
NALIRIM INFINTOVTISIA 1G-S

tA v,

OLLONYLSNI AYOM-ONOT AIANYJXH
JHL V Y414V 3O TA0498 JH L4HSNI
AYVANNOEG NOILNDIXA TATIVAVd

OA

zOEU:,E.&% ONISSHIAAY
dHL ANV (1) NOLLONAILSNI

JBISNVIL JHL NI LAY
T4.LIISNI AAVANANOSE
NOLLNDFXH THTTVIVd

$9
A CA IA

ALLYTND TV NOLLOMYLISNI

(HOL Y SNJ3LLYc
JHL 40 ANO A4SLLYS

8A
A0 NOLLNDAIXA '"ATIViVd
_ Foas diononoT oxl | uoNOIOTAISNI NOLYNLLSAA
YHLSIOHN SS:NNAAY OL NOLLO(YRLSNI 40 HONYYY OL @JOW&&ZP&O
oRISSTI G T NOLLIN 6A™ ~NOBAVdX2 Sy O N OIS
G TR . e
. . NOLLONYLSNI GIATOSTINN

OLNI SSTNAAY NV SYEISNVIL LVHL
NOLLONYLSNI ¥LISNV AL V (1) HLIA

AV Y NOLLONYLSNI A TOSTANI

ONIATOSHY SSFUAJY

SASSHYAAyV
1G-79 AANDISSY N334 HAVH
LYHL S3000 1031490 JHL WO

3103130 STOGWAS J3ATOSTAUNI
ONIANTONI NOLLONALSNI TV

pz DI VA 0A [LAVIS

INFWFOV1dS1A 14-17 JZIS QAOM [I0TA
-ONOT 0L GISVAUONI NOLLOTJ.LSNI
AAATOSTANN 40 FZIS NOLLONELINI

LA

US RE41,751 E

Sheet 26 of 29

Sep. 21, 2010

U.S. Patent

ey aow [} 9u ‘0 sow || (b 0¥ IS | € LINA NOLLNOAXH
| cuca pee || ou'1y ppe |71INNNOLLNOAXH

0y 'Sy Aouw 19 “1ZEYSIL8X) Aow I LIN} NOLLNODAXH
JOVINI NOLLODAXH

d9¢C DId

S.Lig 891°3ZIS 3A0D
o o P oo 0w o |

 ALD 04 = Joof ed'Td peeojrjod TN Ppe jop
2. 0¥ ‘sy Aow o} 1Y ‘IZEYSIL8XD Aow [Ip
h

L
S.LIY I¢C SLI9 7p
[1J NOLLYIWJOANI LYINAO:A 4d0D F19V.LNOdXH

o:zoﬁgohuz_ .
AYVANNOL NOILNDIXT T TIVIVd V9C DId

¢ — LA
90IS

0d — 9
COIS

0¥ — (PAWIN
b01S

d + td — £
tOIS

d+ 0d —0d
OIS

¢d — 0d
[0IS

12£¥59L8%X0 — 1

U.S. Patent Sep. 21, 2010 Sheet 27 of 29 US RE41,751 E

FI1G. 27A
INSTRUCTION 1 mov 0x0100, RO
INSTRUCTION 2 st RO, (SP)
INSTRUCTION 3 mov R1,R2
INSTRUCTION 4 mov R3,R4
INSTRUCTION S add R2, R4
FIG. 278

1) mov 0x0100, RO mov R], R2 mov R3, R4

st RO, (SP) (5) add R2, R4
FIG. 27C
mov 0x0100, RO
mov 0x0100, RO mov R1, RO
mov 0x0100, RO
FIG. 27D
mov R1, RO | mov R3, R4 mov 0x0100, RO .
add R2, R4 F
FI1G. 27E

mov R1, RO { mov R3, R4 Imor
orGOIARILATTERPARNA. st RO, (SP add R2, R4 [

64bit

U.S. Patent Sep. 21, 2010 Sheet 28 of 29 US RE41,751 E

INSTRUCTION 6 1d (mem 1), RO
INSTRUCTION 7 st RO, (SP)
INSTRUCTION8 mov R1,R2
INSTRUCTION 9 mov R3, R4
INSTRUCTION 10 add R2, R4

FIG. 28B
ld (mem 1), RO mov R1, R2 mov R3, R4
t RO, (SP add R2, R4
SRS, (55) Qadd Rz R
INSTRUCTION
DECODER
FIG. 28C
Id (mem 1), RO| mov R1, RO | movR3, R4 ¢

SLRO. (SP) | add R2, R4

YWah

FIG. 28D

mov mem 1, R31 4 1d R31), R0
movR1.RO | movR3, R4 W stRO, (SP)

add R2,R4 F

———-——-—-—————-—-—-—-—-——-—-—-——-——-————-———w———

64bit

;
4

U.S. Patent Sep. 21, 2010 Sheet 29 of 29 US RE41,751 E

EXECUTABLE CODE

FIG. 29A ___ 2BITS

etlu0x8765 T SETE O 73

73

—r et LS L. —— -E—

mm- mov R3 R7T

CODE SIZE:384 BITS
FIG. 29B EXECUTION IMAGE
. nop

EXECUTION UNIT 1 (seth: 0x8765, R1 RS, RU

EXECUTION UNIT 2 [setlo 0x4321.R1§ _nop J§ nop
EXECUTIONUNIT3 [addRI,R0O J§ addR2,R3 | nop
EXECUTION UNIT4 [stR0O,(R4) J movRO,R6 § movR3 R/ |

EXECUTABLE

PARALLEL EXECUTION
CODE __32BITS BOUNDARY INFORMATION -

FIG. 30A {[scti0:8763,RII[_mov RS, R0 [i[sedoOxd32L RIf— ¢
0 addRLRO_JI sddRZ,R3]I stRO,(R) _
0_movRO.R6 [l movR3,R7 }*79

CODE SIZE:256 BITS

73

FI1G. 30B EXECUTION IMAGE

EXECUTION UNIT 1 [sethi 0x8765, R1

EXECUTION UNIT 2 | etlo setlo 0x4321, R1
EXECUTION UNIT 3| addRLRO

adc R2 R3

EXECUTABLE 4o gt PARALLEL EXECUTION

BOUNDARY INFORMATION
FIG. 31A [O[mov 037654320 R1{If mov R5,RO_J0] addR1, RO }~80

addR2,R3 0] stRO,(R4)]0o{ mov RO, R6
T movR3,R7 }-82

CODE SIZE:280 BITS
FIG. 31B EXECUTION IMAGE

EXECUTION UNIT 1 [mov 087614321, R1 | _movR5 RO
EXECUTION UNIT2(addRI,RO J addRZ RJ
EXECUTION UNIT 3 [_stRO.(R4) | movRO.R6 J movRI,R/

US RE41,751 E

1

INSTRUCTION CONVERTING APPARATUS
USING PARALLEL EXECUTION CODE

Matter enclosed in heavy brackets [] appears in the
original patent but forms no part of this reissue specifica-
tion; matter printed in italics indicates the additions
made by reissue.

BACKGROUND OF THE INVENTION

1. Field of the Invention

The present invention relates to an instruction conversion
apparatus, a processor, a storage medium storing parallel
execution codes to which a plurality of instructions have
been assigned, and a computer-readable storage medium
storing an 1instruction conversion program that generates
such parallel execution codes. In particular, the mmvention
relates to a technique for decreasing the number of execution
cycles and improving code elliciency by using parallel pro-
cessing.

2. Description of the Background Art

In recent years, parallel processing methods have been
widely used in the development of microprocessors. Parallel
processing refers to the execution of a plurality of mnstruc-
tions 1 each machine cycle. Examples of classic parallel
processing techniques are superscalar methods and VLIW
(Very Long Instruction Word) methods.

In superscalar methods, specialized circuitry in the pro-
cessor dynamically analyzes which instructions can be
executed in parallel and then has these mstructions executed
in parallel. These methods have an advantage 1n that super-
scalar processors can be made compatible with serial pro-
cessing methods. This means that object code that has been
generated by a compiler for a serial processor can be
executed 1n its original state by a superscalar processor. A
disadvantage of superscalar techniques 1s that specialized
hardware needs to be provided in the processor to dynami-
cally analyze the parallelism of instructions, which leads to
an increase 1 hardware costs. Another disadvantage 1s that
the provision of specialized hardware makes 1t difficult to
raise the operation clock frequency.

In VLIW methods, a plurality of instructions that can be
executed 1n parallel are arranged 1nto an executable code of a
fixed length, with the instructions i1n the same executable
code being executed in parallel. For VLIW methods, an
“executable code” 1s a unit of data that 1s fetched from
memory in one cycle or 1s decoded and executed 1n one
cycle.

For VLIW methods, there 1s no need during execution for
the processor to analyze which instructions can be executed
in parallel. This means that little hardware 1s required, and
that raising the operation clock frequency 1s easy. However,
the use of fixed-length instructions leads to the problems
described below.

In VLIW executable codes, there 1s a significant variation
in the number of bits required to define different kinds of
istructions. As examples, 1structions that deal with a long
constant, such as an address or an immediate, require a large
number of bits, while mstructions that perform calculations
using registers may be defined using fewer bits. As stated
above, VLIW deal with executable codes of a fixed length,
so that NOP codes need to be mnserted into mstructions that
only require a low number of bits. This increases code size.

To solve this problem, a technique that fetches a fixed
amount of code from memory in each cycle but decodes and
executes a variable amount of code has been proposed 1n

10

15

20

25

30

35

40

45

50

55

60

65

2

recent years. Hereafter, this technique will be referred to as
the “fixed-supply/variable-execution method™.

FIG. 1A shows the instruction supply unit used 1n the
fixed-supply/variable-execution method. Since there 1s
variation i1n the number of bits needed to define different
istructions, two different formats are used. Instructions that
require a large number of bits use a first format composed of
two units, umts 1 and 2, while instructions that only require
few bits use a second format composed of one unit, unit3.
Here, nstructions that have a length of one unit are called
“short mstructions”, while mstructions that have a length of
two units are called “long 1nstructions”.

While there are both short and long instructions, instruc-
tions are supplied three units at a time, with no attention
being paid to the differences 1n types.

FIG. 1B shows the units (hereafter called “packets™) for
fetching 1instructions from memory 1n each cycle in this
fixed-supply/variable-execution method. FIG. 1C,
meanwhile, shows the minimum units (hereafter called
“execution units”) for decoding and execution by this pro-
CESSOT.

During execution, all instructions in an area in FIG. 1B
demarcated by parallel processing boundaries are executed
in parallel in one cycle. This means that 1 each cycle
istructions are executed in parallel as far as the instruction
that 1s set the next parallel processing boundary shown in
FIG. 1B using shading. Instructions that have been supplied
but are not executed are accumulated 1n an instruction buifer
and are executed 1n a following cycle.

In FIG. 1B, the parallel processing boundary 1s set at
unit6, so that all units from unitl to unit6é are set as one
execution unit. Of these units, unitl~unit2, vnit3~unitd, and
unmtS~unité each compose a long instruction, so that these
three long 1nstructions are executed 1n parallel.

The next parallel processing boundary 1n FIG. 1B 1s set at
unitll, so that all units from unit7 to unitll are executed in
one execution unit. Of these umts, unit7~unit8 compose a
long instruction, unit9 composes a short instruction, and
unitl0~unitll compose a long instruction. These three
instructions are executed 1n parallel.

In this method, mstructions are supplied using a fixed-
length packet, and a suitable number of units 1s 1ssued 1n
cach cycle based on information that 1s found through static
analysis. Using this method, there 1s absolutely no need to
insert the no operation instructions (NOP codes) that are
required 1n conventional VLIW methods with fixed length
instructions. As a result, code size can be reduced.

The following describes the hardware construction of a
processor for this fixed-supply/variable-execution method.

FIG. 2 1s a block diagram showing the construction of the
instruction register and periphery i a processor that 1s
capable of executing three instructions in parallel. The bro-
ken lines 1n FIG. 2 show the control flows. The unit queue in
FIG. 2 1s a sequence of units. These units are transferred to
the 1nstruction registers in the order 1n which they were sup-
plied from the instruction memory (or similar).

In this construction, the instruction register A 52a and the
instruction register B 52b form one patir, as do the istruction
register C 52c~the mstruction register D 52d and the mnstruc-
tion register E 52e~the imstruction register F 3521, Instruc-
tions are always arranged so as to start from one of the
instruction register A 52a, the instruction register C 32c, and
the mstruction register E 52¢. Only when an 1nstruction 1s
formed of two linked units 1s part of the instruction sent to
the other mstruction register in a pair. As a result, when the

US RE41,751 E

3

unit transierred to the instruction register 52a 1s a complete
mstruction 1n 1tself, no unit 1s transferred to the instruction

register B 52b.

The main characteristic of the above processor 1s that par-
allel processing can be performed for any combination of
short and long instructions.

When three long instructions are to be executed in
parallel, the three long mstructions will be composed of
three pairs unitl~unit2, unit3~unit4, and unitS~unité in the
unit queue 50. The present processor stores the first long
instruction 1n the pair of the instruction register A
52a~nstruction register B 52b, the second long 1nstruction
in the pair of the instruction register C S2c~1nstruction regis-
ter D 52d, and the third long instruction 1n the pair of the
instruction register E 52e¢~instruction register F 321. After
being stored 1n this way, the three long instructions are
executed by the first mstruction decoder 53a~third nstruc-
tion decoder 53c.

When the three instructions to be executed 1n parallel are
the long instruction composed of unitl~unit2, the short
instruction composed of unit3, and the long instruction com-
posed of unit5~unmt6, the present processor stores the first
instruction 1n the pair of the instruction register A
52a~1nstruction register B 52b, the second instruction in the
instruction register C 32¢, and the third instruction in the
pair of the instruction register E 52e~instruction register F
521. Nothing 1s stored 1n the instruction register D 52d. After
being stored 1n this way, the three instructions are executed

by the first instruction decoder 33a~third mstruction decoder
d3c.

When unitl~unit2 and umit3~unitd4 in the unit queue 50
compose two long 1nstructions and unitS composes one short
instruction, the present processor stores the first instruction
in the pair of the instruction register A S2a~1nstruction regis-
ter B 52b, the second instruction in the pair of the 1nstruction
register C S2c~instruction register D 352d, and the third
instruction 1n the instruction register E 52¢. Nothing 1s
stored 1n the 1nstruction register F 521. After being stored 1n
this way, the three instructions are executed by the first
instruction decoder 53a~third 1nstruction decoder 53c.

As should be clear from the above description, there 1s no
universal definition of the instruction register to which each
unit 1s the unit queue 1s to be transterred. There 1s also no
universal definition of the units in the unit queue that are to
be transierred to each instruction register. For this reason,
the selectors 51a~51d are provided to determine the destina-
tions of units transferred from the unit queue. These selec-
tors 51a~51d are controlled 1n the following way. First, con-
trol 1s performed to determine the output destination of
selectors 51a and 51b, and the units to be transferred to the
istruction registers C 52c~instruction register D 32d are
determined. Once the units to be transiferred have been
determined, information regarding the length of the mstruc-
tion 1n the unit transferred to the instruction register C S2c¢ 1s
examined and control 1s performed as shown by the broken

lines 1n FIG. 2 to determine the output destinations of the
selectors 51c and 51d.

While the above processor can decode instructions
regardless of the combination of short and long 1nstructions
and regardless of how the opcodes are located in the unaits,
the bit width of the mput ports for the first-third 1nstruction
decoders 53a~53c 1s two units, which increases the overall
hardware scale. Putting this another way, the processor 1s
deficient 1n having an overly large hardware scale. The pro-
cessor mcludes selectors that switch the output destinations
of the instructions aiter referring to immformation regarding

5

10

15

20

25

30

35

40

45

50

55

60

65

4

the lengths of the instructions in the units that are transterred
to the mstruction registers, so that the hardware construction
becomes increasingly complex as the number of 1nstruction
to be executed 1n parallel increases.

One conventional method for reducing hardware scale 1s
that described for the GMICRO/400 processor 1n the article
The Approach to Multiple Instruction Execution in the
GMICRO/400 Processor given in PROCEEDINGS, The
Eighth TRON Project Symposium (International) 1991.

FIG. 3A 1s a block diagram showing the construction of
the 1nstruction register and periphery for the instruction 1ssu-
ing control method used by the GMICRO/400 processor. In
FIG. 3A, the broken lines show the control flows. The con-
stant operands 54a~54b are indicated by the output of the
first 1nstruction decoder 53i~the third instruction decoder
53k. Each instruction decoder decodes an mputted instruc-
tion and outputs signals to the execution control unit to con-
trol the execution of the 1nstruction, as well as outputting the
constant operands 1indicated 1n the instruction.

The 1nstruction 1ssuing control method of the GMICRO/
400 processor decodes the combination unitl~unit2, and
umit2 and unit3 separately. After the decoding of the first
instruction decoder 531 has clarified whether the first instruc-
tion 1S a one-unit 1nstruction or a two-unit instruction, the
selector 51g 1s controlled so that the decoding result of only
one of the second instruction decoder 337 and the third
instruction decoder 53k 1s selected and used. As a result, the
processor can execute both instructions 1n either the short
instruction-short instruction combination or the short
instruction-long instruction combination of FIG. 3B 1n par-

allel.

As shown in FIG. 3A, the GMICRO/400 decreases the
number of 1structions that can be executed in parallel from
three to two, so that only two decoders are provided”. The
second 1instruction decoder 537 and the third instruction
decoder 53k also have mput ports that are only one unit

wide, so that hardware reductions can be made.

“Transistor’s note: Apparent mistake in the original Japanese. Three decoders
are present.

The above processor has a different problem, however, 1n
that despite being equipped with three decoders, only two
istructions can be executed in parallel, representing a
marked decrease in parallelism when compared with the
hardware shown 1n FIG. 2. The second of the two instruc-
tions that can be processed 1n parallel 1s also limited to one
unit, giving rise to the further restriction of short mstruction-
long struction combinations also be prohibited.

SUMMARY OF THE INVENTION

It 1s a primary object of the present invention to provide a
processor that does not need a large hardware scale and can
execute a maximum of s instructions in parallel despite
being equipped with only s decoders. The invention also
aims to provide an instruction conversion apparatus, a
recording medium storing parallel execution codes to which
a plurality of instructions have been assigned, and a
computer-readable recording medium storing an instruction
conversion program that generates such parallel execution
codes.

—

This primary object can be achieved by an instruction
conversion apparatus that includes an assigning unit for suc-
cessively assigning instructions 1n an mstruction sequence to
parallel execution codes and a control unit for controlling the
assigning unit so that a combination of a plurality of 1struc-
tions that have already been assigned to a parallel execution
code and an instruction that the assigning unit 1s about to

US RE41,751 E

S

assign to the parallel execution code satisty predetermined
limitations of a target processor.

With the above 1nstruction conversion apparatus, a plural-
ity of instructions are assigned to a parallel execution code 1n
keeping with the predetermined limitations of the processor.
Accordingly, the bit width and circuit constructions of the
plurality of decoders that are including 1n the decoding unit
ol the processor can be simplified.

Here, when mstructions to be assigned to a parallel execu-
tion code include a long instruction whose word length 1s
equal to at least two but no more than k unit fields, the
assigning unit may assign one of an opcode and an operand
of the long instruction to a u” (where u is any integer such

that 1=u=s) unit field between the 1°” unit field and the s”
unit field, and only an operand of the long instruction to unit

fields from a (u+1)” unit field to a (u+k—-1)" unit field.

With the stated construction, when up to s instructions are
arranged 1nto a parallel execution code, the s or fewer
opcodes mncluded 1n the s or fewer 1nstructions are arranged
without fail into the start of the unit fields between the 1%
unit field and the s” unit field. Since the s opcodes are
arranged at the start of unit fields, parallel execution of all of
the opcodes included 1n an executable code will be possible
with only s decoders.

Here, the instruction conversion apparatus may also
include a grouping unit for forming an nstruction group of a
plurality of instructions that do not exhibit a dependency
relation (hereafter “data dependency relation”), a data
dependency relation being a relation between an instruction
defining a resource and an instruction referring to the same
resource; and a first detecting unit for detecting, when a 1**
to an s” unit field in a parallel execution code have been
assigned at least one 1nstruction by the assigning means and
an instruction (hereaiter “short instruction™) with a shorter
word length than a long instruction 1s left in the instruction
group, a long instruction assigned to unit fields between the
157 unit field and the s unit field, wherein the control unit
may include a first control subunit for controlling the assign-
ing unit to rearrange instructions that have already been
assigned to the parallel execution code so that the detected
long instruction is assigned to unit fields between the s unit
field and the (s+k—1)" unit field and the short instruction

remaining in the mstruction group is assigned to a unit field
between the 1*° unit field and the (s—1)” unit field.

With the stated construction, all of the opcodes included
in a parallel execution code can be executed in parallel even
when the 1** to s unit fields in a parallel execution code are

occupied by a plurality of instructions and a short instruction
1s left.

Here, the instruction group may include instructions that
exhibit an anti-dependence and instructions that exhibit an
output dependence, an anti-dependence being a relation
between an instruction that refers to a resource and an
instruction that thereafter defines the resource, and an output
dependence being a relation between an instruction that
defines a resource and another instruction that defines the
resource, the control unit may include a search unit for
searching for a combination pattern, composed of a plurality
of 1nstructions in the mstruction group, that 1s unatfected by
an anti-dependence and an output dependence, and the con-
trol unit may control the assigning unit to rearrange the plu-
rality of istructions in accordance with the combination
pattern found by the search unit, to assign the long nstruc-
tion found by the detecting means to unit fields from the s™
unit field to the (s+k-1)” unit field, and to assign a short
instruction left i the mstruction group to a unit field
between the 1°” unit field and the (s—1)” unit field.

10

15

20

25

30

35

40

45

50

55

60

65

6

When there 1s an instruction in an anti- or an output
dependence with one of the instructions in the nstruction
group, such instruction may be assigned to a parallel execu-
tion code to increase the number of instructions executed in
parallel. When doing so, the assigning of instructions 1n an
order that affects the dependency 1s prevented beforehand.

Here, the instruction conversion apparatus may also
include: an address resolving unit for assigning a real
address to a parallel execution code; and a second detecting
means for detecting, when a real address has been assigned
to a parallel execution code, an 1nstruction including the real
address than cannot be expressed by an original word length
of the 1nstruction, a flag setting unit setting the boundary flag
at a unit field located one of before and after unit fields to
which the mstruction detected by the second detecting unit
has been assigned.

With the stated construction, processing following the
assignment of 1nstructions to parallel execution codes con-
verts the parallel execution codes 1nto object codes and
assign real addresses. When the word length of any of the
instructions needs to be increased, appropriate changes are
made to the parallel execution codes 1n the converted object
code state. As a result, there 1s no need to reassign the plural-
ity of mstructions to the parallel execution codes or to recon-
vert such parallel execution codes to object codes.
Accordingly, such processing can be performed without
reducing the efficiency of program development.

BRIEF DESCRIPTION OF THE DRAWINGS

These and other objects, advantages and features of the
invention will become apparent from the following descrip-
tion thereof taken in conjunction with the accompanying
drawings which illustrate a specific embodiment of the
invention. In the drawings:

FIG. 1A shows a format composed of two units,
unmitl~unit2, for mstructions that require a large number of
bits, and a format composed of one unit, unit3, for other
instructions;

FIG. 1B shows the unit (packet) of data that 1s fetched
from memory 1n one cycle i1n the fixed-supply/variable-

execution method;

FIG. 1C 1s a block diagram showing the smallest units that
are decoded and executed by a processor;

FIG. 2 1s a block diagram showing the construction of the
instruction register and periphery in a processor that can
execute three instructions 1n parallel;

FIG. 3A 1s a block diagram showing the construction of

the instruction register and periphery when the instruction
1ssuing control method used by the GMICRO/400 1s used;

FIG. 3B shows the combinations of instructions that can
be executed 1n parallel by the hardware shown 1 FIG. 3A;

FIG. 4 1s a block diagram showing the hardware construc-
tion of the processor of the first embodiment,

FIG. SA shows the amounts of data used when the instruc-

tion fetch unit 21 fetches instructions into the instruction
bufter 22;

FIG. 5B shows the amounts of data used when the instruc-
tion builer 22 outputs units to the mstruction register 23;

FIG. 5C shows how the instruction register 23 1ssues units
to the decoding unmit 30;

FIGS. 6 A—6F show the instruction formats used by the
present processor;

FIG. 7 shows the combinations of instructions that can be
decoded by the decoding unit 30;

US RE41,751 E

7

FIG. 8 shows the detailed construction of the instruction
buffer 22;:

FIGS. 9A-9F show supplying of packets from the mnstruc-
tion fetch unit 21 to the instruction butifer 22 and the output-
ting of units to the mstruction register 23;

FIGS. 10A—10E show the supplying of packets from the
instruction fetch unit 21 to the mstruction buifer 22 and the
outputting of units to the mstruction register 23, though
some ol the units are not 1ssued by the istruction register
23;

FIG. 11 1s a block diagram showing the construction of
the periphery of the instruction register 23;

FI1G. 12 shows the control content of the instruction 1ssu-
ing control unit 31, and the first instruction decoder 33~third
instruction decoder 35 when the instruction pattern A shown
in FIG. 7 1s outputted to the first instruction decoder
33~third mstruction decoder 35;

FI1G. 13 shows the control content of the 1nstruction 1ssu-
ing control unit 31, and the first mstruction decoder 33~third
instruction decoder 35 when the instruction pattern B shown
in F1G. 7 1s outputted to the first instruction decoder 33—third
instruction decoder 35.

FI1G. 14 shows the control content of the instruction 1ssu-
ing control unit 31, and the first mstruction decoder 33~third
instruction decoder 35 when the instruction pattern C shown
in FI1G. 7 1s outputted to the first instruction decoder 33—third
instruction decoder 35;

FI1G. 15 shows the control content of the 1nstruction 1ssu-
ing control unit 31, and the first mstruction decoder 33~third
instruction decoder 35 when the 1nstruction pattern D shown
in FIG. 7 1s outputted to the first instruction decoder
33~third 1nstruction decoder 35;

FIG. 16 shows the control content of the instruction 1ssu-
ing control unit 31, and the first instruction decoder 33—third
instruction decoder 35 when the instruction pattern E shown
in FIG. 7 1s outputted to the first instruction decoder
33~third mstruction decoder 35;

FI1G. 17 shows the control content of the instruction 1ssu-
ing control unit 31, and the first instruction decoder 33—third
instruction decoder 35 when the instruction pattern F shown
in FIG. 7 1s outputted to the first instruction decoder
33~third instruction decoder 35;

FIG. 18 shows the control content of the 1nstruction 1ssu-
ing control umt 31, and the first instruction decoder 33—third
instruction decoder 35 when the 1nstruction pattern G shown
in FI1G. 7 1s outputted to the first instruction decoder 33—third
istruction decoder 35:;

FI1G. 19 shows the control content of the instruction 1ssu-
ing control unit 31, and the first instruction decoder 33—third
instruction decoder 35 when the 1nstruction pattern H shown
in FIG. 7 1s outputted to the first instruction decoder
33~third mstruction decoder 35;

FI1G. 20 shows the format of parallel execution codes;

FIG. 21 1s a block diagram showing the construction of
the 1nstruction conversion apparatus of the present embodi-
ment and the related data;

FIGS. 22A~22F show examples of assembler codes and a
dependency graph;

FIG. 23A 1s a flowchart showing the processing of the
instruction rearranging unit 121;

FIG. 23B 1s a flowchart showing the processing that
judges whether arrangement 1s possible;

FIG. 24 1s a flowchart showing the processing of the
address resolving unit 123 provided inside the linking unit
114;

10

15

20

25

30

35

40

45

50

55

60

65

8

FIG. 25 1s a flowchart showing an example of a process
that handles a 32-bit constant;

FIG. 26A and FIG. 26B respectively show an example of
the executable codes to a program that has the present pro-
cessor execute the processing shown i FIG. 25 and an
execution 1mage;

FIG. 27 A shows example assembler codes;

FIG. 27B shows an example dependency graph that corre-
sponds to FIG. 27A;

FIG. 27C shows the content of the parallel execution
codes;

FIGS. 27D, E show the codes after the addition of parallel
execution boundaries:

FIG. 28A shows example assembler codes;

FIG. 28B shows an example dependency graph that corre-
sponds to FIG. 28A;

FIG. 28C shows the content of the parallel execution
codes;

FIG. 28D shows the codes after the addition of parallel
execution boundaries;

FIGS. 29A~29B respectively show an example of the
executable codes 1n a program that has a conventional VLIW
processor with a fixed instruction length of 32 bits execute
the processing shown 1n FIG. 25 and an execution image;

FIGS. 30A~30B respectively show an example of the
executable codes 1n a program that has a conventional pro-
cessor that executes 32-bit instructions including parallel
execution boundary information execute the processing
shown 1n FIG. 25 and an execution image; and

FIGS. 31A-31B respectively show an example of the
executable codes 1n a program that has a conventional pro-
cessor that executes 40-bit instruction including parallel
execution boundary information execute the processing
shown 1n FIG. 25 and an execution image.

DESCRIPTION OF THE PREFERRED
EMBODIMENTS

The following describes a processor that 1s an embodi-
ment of the present invention, with reference to the accom-
panying drawings.

Hardware Construction of the Processor

FIG. 4 1s a block diagram showing the hardware construc-
tion of the processor of the first embodiment.

This processor executes a maximum of three instructions
in parallel 1n one cycle. The hardware of this processor can
be roughly divided into an mstruction supplying/issuing unit
20, a decoding unit 30, and an executing unit 40.

The instruction supplying/issuing umt 20 supplies sets of
instructions that 1t receives from an external memory (not
illustrated) to the decoding unit 30. This instruction
supplying/issuing unit 20 includes an struction fetch unit
21, an mstruction builer 22, and an struction register 23.

The instruction fetch unit 21 fetches instruction units
(hereafter “units”) from the external memory (not
illustrated) via a 32-bit 1A bus (instruction address) and a
64-bit ID (instruction data) bus and stores the fetched unaits
in an 1nternal instruction cache. The instruction fetch unit 21
also supplies addresses outputted by the PC unit 42 to the
instruction builfer 22.

FIG. 5A shows the amounts of data used when the mstruc-
tion fetch unit 21 fetches instructions into the instruction
buifer 22. As shown 1n FIG. 5A, fetching 1s performed in
64-bit length blocks (hereafter called “packets”) including
three units. The total length of three units 1s 63 bits, so that
one bit 1n the 64 bits 1s left unused.

US RE41,751 E

9

The 1nstruction buifer 22 has two 64-bit butlers in a two-
stage construction, and accumulates the packets supplied by
the instruction fetch unit 21. The nstruction builer 22 out-
puts four of the units stored 1n the two accumulated packets
to the 1nstruction register 23. FIG. 5B shows the amounts of
data used when the nstruction buffer 22 outputs units to the
instruction register 23. In FIG. 5B, the top level shows that
the instruction buifer 22 outputs the first four units unitl,
unit2, unit3, and unit4 to the instruction register 23 out of the
units unitl~unité that were supplied to three-unit packets in
FIG. 5A. The second level shows that the instruction buifer
22 outputs the next four units unitd, unité, unit7, and unit8 to
the mstruction register 23 out of the units unit4~unit9 that
were supplied 1n three-unit packets in FIG. SA.

The 1instruction register 23 1s composed of four 21-bit
registers and stored the four units that are transferred from
the 1nstruction buffer 22. The instruction register 23 issues
up to four of these umts to the decoding unit 30. FIG. 5C
shows how the instruction register 23 1ssues units to the
decoding unit 30. The top level 1n FIG. 5C shows that the
instruction register 23 {first 1ssues unitl and unit2 to the
decoding unit 30, while the second level shows that the
instruction register 23 next 1ssues unit3—unité to the decod
ing unit 30. The third level shows that the mstruction register
23 then only 1ssues unit7, the fourth level shows that the
instruction register 23 1ssues unit8~unitl0 and the fifth level
shows that the instruction register 23 issues unit 11~unitl2.
As shown 1 FIG. 5C, the istruction register 23 1ssues
between one and four units, out of the four units transierred
from the 1struction butfer 22, to the decoding unit 30.

The shaded parts of FIGS. 5A and 3B show the bound-
aries (parallel execution boundaries) when units are output-
ted from the instruction register 23 to the decoding unit 30.
As can be seen from these parallel execution boundaries, the
supplying of units from the instruction fetch unit 21 to the
instruction butler 22 and the transferring of units from the
instruction butler 22 to the instruction register 23 are both
performed with no relation to the output units used for out-
putting from the instruction register 23 to the decoding unit
30.

The 1nstruction 1ssuing control unit 31 refers to the paral-
lel execution boundary information and format information
in the units stored 1n the four registers of the instruction
register 23 and performs control so that two units are treated
as one instruction when necessary. The istruction i1ssuing
control unit 31 also performs control so that the 1ssuing of
units 1s not performed beyond a parallel execution boundary.

The following first explains the construction of the
instructions stored 1n the mnstruction register 23 and the stor-
age position of the parallel execution boundary information
110 and the format information 111.

FIGS. 6 A~6F show the instruction formats used by the
present processor. Each instruction of the present processor
1s composed of a minimum of 21 bits, with there being both
one-unit instructions that are 21-bit instructions and two-unit
instructions that are 42-bit mstructions. The length of each
kind of instruction 1s decided by the format information 111
that 1s one bit long. When the format information 111 1s <07,
one unit forms an instruction by itself, while when the for-
mat information 111 1s “1”, that unit and the following unit
together form one 42-bit 1nstruction.

The MSB (most significant bit) in each instruction 1s the
parallel execution boundary information 110. This parallel
execution boundary information 110 shows whether a paral-
lel execution boundary 1s present between the present
instruction and the following instruction. When the parallel
execution boundary mformation 110 1s “17, a parallel execu-

5

10

15

20

25

30

35

40

45

50

55

60

65

10

tion boundary 1s present between this instruction and the
following instruction, while when the parallel execution
boundary information 110 1s “0”, no parallel execution
boundary 1s present between this mstruction and the follow-
ing instruction. If the first to fourth units 1ssued by the
instruction register 23 are divided using the parallel execu-
tion boundary information 110 and the format information
f11, these four units can be decoded as instructions in one of
the patterns A—H shown in FIG. 7. However, due to the
hardware construction of the decoding unit 30, the instruc-
tions of the patterns 1 and J shown in FIG. 7 cannot be
executed 1n parallel. This means that 1f a 21-bit instruction 1s
called a short instruction and a 42-bit instruction a long
instruction, the following combinations of instructions can-
not be executed.

short-long-long
long-short-short
long-short-long
long-long-short
long-long-long

Also note that the mstructions in the patterns A~H shown
in FIG. 7 do not need to be simultaneously executed. When
istructions cannot be timely supplied parallel execution
codes may be divided into two or more parts that are sepa-
rately executed. When doing so, the parallel-executable
instructions are processed so that instructions that are closer
to the MSB are executed 1n a first cycle and instructions that
are closer to the LSB (least significant bit) are executed 1n a
following cycle.

The operation of this instruction 1ssuing control unit 31 1s
shown 1n more detail 1n other drawings.

The instruction decoder 32 includes a first instruction
decoder 33, a second instruction decoder 34, and a third
instruction decoder 35 which each have an input port that 1s
21 bits wide. These decoders fundamentally decode one
21-bit instruction 1n one cycle, and send control signals to
the executing unit 40. These decoders also transter the con-
stant operands that are located 1n each 1nstruction to the data
bus 48 of the executing unit 40.

Aside from the format information 111 and the parallel
execution boundary information 110, FIGS. 6 A—6F also
show the operation that are indicated by various kinds of
instructions. FIGS. 6 A—6C show the formats of 21-bait
instructions, while FIGS. 6D—-6F show the formats of 42-bit
instructions.

In these formats, transfer instructions and arithmetic
instructions that handle long constants such as 32-bit
constants, and branch instructions that indicate a large dis-
placement are defined as 42-bit instructions. Most other
kinds of mstructions are defined as 21-bit mstructions.

These mstructions are such that 19 bits may be used in a
21-bit instruction and 40 bits may be used 1n a 42-bit instruc-
tion. In detail, the format in FIG. 6A 1ncludes an opcode
“Opl” that shows the type of operation, an “Rs” field that
shows the register number of the register used as the source
operand, and an “R” field that shows the register number of
the register used as the destination operand.

The format in FIG. 6B includes an opcode “Opl” that
shows the type of operation, an “imm5” field that shows a
S-bit immediate used as the source operand, and an “Rd”
field that shows the register number of the register used as
the destination operand.

The format in FIG. 6C includes an opcode “Op2” that
shows the type of operation, and a “disp13” field that shows
a 13-bit immediate used as the source operand.

US RE41,751 E

11

The “1imm3” field indicates a 5-bit constant that 1s used as
an operand. The “disp13” field indicates a 13-bit displace-
ment.

Each of the mnstructions shown 1 FIGS. 6 A-6C may be
inputted into one of the first mnstruction decoder 33~third
instruction decoder 35. The opcode and any register num-
bers 1 an instruction are decoded by the first instruction
decoder 33~third instruction decoder 35 which send control
signals showing the decoding results to the executing unit
40. On the other hand, immediates and displacements are
outputted by the first mstruction decoder 33~third instruc-
tion decoder 35 to the third instruction decoder 35 1n their
original form.

The following explains the formats of 42-bit instructions.

The format in FIG. 6D includes an opcode “Opl™ that
shows the type of operation, a “disp21” field that shows a
21-bit displacement used as the source operand, and an “Rd”
ficld that shows the register number of the register used as
the destination operand.

The format 1n FIG. 6E includes an opcode “Op3™ that
shows the type of operation, an “1mm32” field that shows a
32-bit immediate used as the source operand, and an “Rd”
field that shows the register number of the register used as
the destination operand.

The format in FIG. 6F includes an opcode “Opl” that
shows the type of operation, and a “disp31” field that shows
a 31-bit displacement used as the source operand.

Since each of the first instruction decoder 33 to third
instruction decoder 35 only have a 21-bit input port, none of
these decoders 1s able to receive an 1input of an entire 42-bit
instruction. Accordingly, the first instruction decoder
33~third instruction decoder 35 only recerves as mput of a
part of a 42-bit instruction shown 1n FIGS. 6D to 6F as the
207 to 397 bits, which is to say, only the first unit. The
second unit in such an istruction 1s not inputted into any of
the first instruction decoder 33~third instruction decoder 35
and 1s instead inputted directly into the executing unit 40
without passing the first instruction decoder 33~third
instruction decoder 35.

The second unit may skip the first instruction decoder
33~third unit decoder 35 for the following reason. As can be
seen from the instruction formats shown in FIGS. 6E and 6F,
the second of the two units that form a 42-bit 1nstruction
only includes part of a constant operand. This means that the
second unit 1s an 1nstruction format that does not include an
opcode, so that the second unit does not need to be mnputted
into the first instruction decoder 33~third instruction
decoder 35. Accordingly, such input can be skipped.

The constant operand of a 42-bit 1nstruction 1s therefore
composed by linking a constant 1n the unit that 1s outputted
by an instruction decoder with a constant that skips the first
instruction decoder 33~third instruction decoder 35 and 1is
directly transterred in the executing unit 40.

The executing unit 40 1s a circuit for executing a maxi-
mum of three units 1n parallel, based on the control signals
received from the decoding unit 30. This executing unit 40
includes an execution control unit 41, a PC unit 42, a register
file 43, a first calculating unit 44, a second calculating unit
45, a third calculating unit 46, an operand access unit 47, and
data buses 48 and 49.

The execution of mstructions 1s such that units (hereafter
“execution units”) between parallel execution boundaries
are executed 1n parallel 1n one cycle. This means that in each
cycle, mstructions are executed as far as the first instruction
whose parallel execution boundary mformation 110 1s “17.
Instructions that have been supplied but which are not
executed are accumulated 1n the nstruction buifer and are
executed 1n a later cycle.

10

15

20

25

30

35

40

45

50

55

60

65

12

The execution control unit 41 1s a general name for the
control circuitry and wiring that controls the components
42~49 1n the executing unit 40 according to the decoding
results of the decoding unit 30. This execution control umit
41 1includes circuits for timing control, execution
permission/prohibition control status management, and
interrupt control.

The PC (program counter) unit 42 outputs an address 1n
the external memory at which a next instruction to be
decoded and executed 1s located to the mstruction fetch unit
21 of the instruction supplying/issuing unit 20.

The register file 43 1s composed of thirty-two 32-bit regis-
ters numbered register RO0~R31. The values stored in these
registers are transferred to the first calculating unit 44, the
second calculating unit 45, and the third calculating unit 46
via the data bus 48, based on the decoding results of the first
instruction decoder 33, the second instruction decoder 34,
and the third mstruction decoder 35. The calculating units
perform calculations on the register data or simply allow the
values to pass, betore outputting values to the register file 43
or the operand access unit 47 via the data bus 49.

The first calculating unit 44, the second calculating unit
45, and the third calculating unit 46 each include an ALU
(arithmetic logic unit) and multiplier that perform calcula-
tions on two pieces of 32-bit data, as well as a barrel shifter
that performs shift operations. These calculating unaits
execute calculations under the control of the execution con-
trol unit 41.

The operand access unit 47 transfers operands between
the register file 43 and the external memory. When, for
example, an instruction has “ld” (load) as its opcode, one
word (32 bits) of data located 1n the external memory 1s
loaded into an indicated register 1n the register file 43 via the
operand access unit 47. When an 1nstruction has “st” (store)
as 1ts opcode, the stored value of an 1indicated register 1n the
register file 43 1s stored into the register file 43.

As shown 1n FIG. 4, the PC unit 42, the register file 43, the

first calculating unit 44, the second calculating umit 45, the
third calculating umt 46, and the operand access unit 47 are
all connected to the data bus 48 (L1 bus, R1 bus, L.2 bus, R2
bus, L3 bus, and R3 bus) and the data bus 49 (D1 bus, D2
bus, and D3 bus). Note that the L1 bus and R1 bus are
respectively connected to the two iput ports of the first
calculating unit 44, the L2 bus and R2 bus are respectively
connected to the two 1nput ports of the second calculating
unmit 45, and the L3 bus and R3 bus are respectively con-
nected to the two mnput ports of the third calculating unit 46.
The D1 bus, D2 bus, and D3 bus are respectively connected
to the outputs of the first calculating unit 44, the second
calculating unit 45, and the third calculating unit 46.

With this architecture, instructions are supplied 1n packets
of a fixed length, and a suitable number of units for the
degree of parallelism 1s 1ssued based on statically obtained
information. This method does not require any no operation
(NOP) 1nstructions that are 1ssued in conventional VLIW
methods with fixed-length instructions, so that the overall
code si1ze 1s reduced.

According to the value of the format information 111, two
units may be executed as one instruction or one unit may be
executed as one instruction. As a result, a long instruction
format 1s only used for certain instructions that require a
large number of bits, with other instructions being defined
using a short instruction format. This achieves a further
reduction in code size.

Detailed Construction of the Instruction Builer

The following describes the instruction buffer 22 in detail.

FIG. 8 shows the detailed construction of the instruction

butter 22.

US RE41,751 E

13

The instruction buffer 22 1s composed of two 63-bit
buffers, the instruction buffer A221 and the instruction
bufter B222, that each store three units. The instruction
buifer A221 1s composed of three 21-bit buffers A0, Al, and
A2 that each store one umt. In the same way, the 1nstruction

builfer B222 1s composed of three 21-bit buifers B0, B1, and
B2 that each store one unit.

The struction buifer 22 i1s supplied with 64-bit packets
by the mnstruction fetch unit 21. However, the MSB of the
packet 1s not used as information. When a packet is recerved,
the 63 valid bits 1n the packet are stored into one of the
instruction buifer A221 and the mstruction buifer B222 with
no crossover between the two. The units stored in the
instruction buffer 22 are stored in the order in which they
were supplied, with the mstruction buil

er control unit 223
managing the status of the istruction butler 22, such as this
supplying order and whether either instruction buifer stores
valid data.

The mstruction butler control unit 223 assigns a predeter-

mined transter order to the six units stored in the instruction
bufter A221 and the instruction buffer B222, and controls

the selectors 224a, 224b, 224c, and 224d so as to transier
units to the mstruction registers A231~D234 in accordance
with this order. This transfer order 1s determined based on

the order 1n which packets are transferred from the mnstruc-
tion fetch unit 21 to the instruction buil

er 22 and the posi-
tions of the various units within these packets.

In detail, the packets stored 1n the instruction buffers A221
and B222 are given a transier order in accordance with the
order 1n which they were supplied from the instruction
supplying/issuing unit 20.

The three units 1 each packet are given a transfer order
that treats the units as a first unit, a second unit, and a third
unit, starting from the unit closest to the MSB. In order
starting from the first unit to be recerved, unmits are trans-
ferred from the instruction builers A221 and B222 to the
instruction registers A231~D234. By assigning this transfer
order to units, a waiting queue 1s formed using the six units
in the instruction buffers A221 and B222. This waiting
queue 1s hereatter called the “unit queue™.

In this unit queue composed of six units, the first four
units are transferred to the istruction registers A231-D234
as shown 1n FIG. 5B. After this transier, the four units may
be 1ssued from the instruction registers A231-1234 to the
first instruction decoder 33~the third instruction decoder 35,
as shown 1n FIG. 5C. Here, up to four units may be 1ssued, so
that there are cases when units that have not been 1ssued
remain 1n the instruction registers A231-D234. In such
cases, the instruction buffer control unit 223 invalidates the
units i the mstruction registers A231-1J234 that have been
issued to the first instruction decoder 33~third 1nstruction
decoder 335 and validates the remaining units. The validated
units are then moved upward 1n the unit queue.

When a branch occurs, 1f the branch destination 1s a unit
that 1s stored 1n the unit queue, the branch destination unit
and following units 1n the unit queue are validated. Unaits
positioned before the branch destination unit in the unit
queue are mnvalidated.

This mvalidating and moving up of units in the unit queue
1s performed based on information showing which units 1n
the mstruction register 23 were not 1ssued to the first instruc-
tion decoder 33~third instruction decoder 35 and on infor-
mation showing which units 1n the instruction buifers A221
and B222 should be validated. Of these, the former informa-
tion 1s recerved from the instruction fetch unit 21, while the
latter information 1s recerved as feedback from the struc-
tion 1ssuing control unit 31 of the decoding unit 30.

10

15

20

25

30

35

40

45

50

55

60

65

14

The following explains the control of butfer states by the
instruction buffer control unit 223 with reference to FIGS.
9A-9F and FIGS. 10-10F. FIGS. 9A-9F show the supplying
of packets from the i1nstruction fetch unit 21 to the struc-
tion builer 22 and the outputting of units to the mstruction
register 23. In the same way, FIGS. 10A—10F show the sup-
plying of packets from the instruction fetch umt 21 to the
instruction buifer 22 and the outputting of units to the
istruction register 23, though i FIGS. 10A-10F some of
the units are not 1ssued by the 1nstruction register 23.

FIG. 9A corresponds to when the instruction buffer 22 1s
empty and a branch i1s performed to the second unit in a
packet (unit2). In this case, the packet (composed of unitl,
unmit2, and unit3) including this umt2 1s supplied from the
instruction fetch unit 21, as shown in FIG. 9B, and 1s stored
in the 1nstruction builer A221.

Since the unit at the start of this packet 1s mvalid, the
instruction buffer control unit 223 performs control as
shown 1n FIG. 9C so that the state of the instruction buffer 22
1s that only the buffers A1 and A2 are valid.

I1 1n the next cycle, none of the units transferred from the
instruction buifer 22 to the mnstruction register 23 1s 1ssued
and a valid 64-bit packet composed of unit4, unit5, and unité
1s supplied from the instruction fetch unit 21, the packet 1s
transierred to the mstruction butfer B222, so that the state of
the nstruction bufler 22 changes so that butlfers Al, A2, B0,
B1, and B2 are all valid.

In the next cycle, there 1s no space 1n the 1nstruction butfer
22, as shown 1n FIG. 9D, so that no supplied packet is
received from the instruction fetch umt 21. Unit2 in buffer
al, unit3 in bufter A2, unit4 in bufter B0, and unit5 in buffer
B1 are transferred in order to the instruction register 23.

In this way, the supplying of a packet from the instruction
fetch umt 21 1s only performed when there 1s a 63-bit space
in the mstruction butfer 22. Packets are managed in the order
in which they were supplied, so that 1n each cycle, the four
units that were supplied first are transferred from the mnstruc-
tion butier 22 to the 1nstruction register 23.

When unit2~unit3 have been 1ssued by the mstruction reg-
1ster 23, all of unitl~unit5 are invalided as shown in FI1G. 9E,
resultmg in the instruction buffer A221 becoming empty. As
shown 1n FIG. 9F, this results in unit7~unit9 being supplied
to the instruction buffer A221, so that unité~unit9 will be
stored 1n the instruction buffer 221 A and 1nstruction buffer
222B. In FIG. 10A, these units are transferred to the instruc-
tion register 23. Of these units, unité~unit8 are i1ssued by the
instruction register 23 to the first instruction decoder 33 and
second mnstruction decoder 34, so that only unit9 remains 1n

the struction register 23. As a result, all of the units 1n the
instruction bufter 222B are invalidated, as shown in FIG.

10B, and all units aside from unit9 in the instruction butfer

221A are invalidated. This imnvalidation clears the 1nstruction
bufter 222B so that unitl0~unitl2 are supplied to the
instruction buffer 222B as shown in FIG. 10C. After this,
four units starting from unit9 (unit9~umtl2) are transferred
from the 1nstruction buifer 221 A and instruction butier 222B
to the 1nstruction register 23. Of these transferred units, unit9
and unit10 are 1ssued, while unitl1 and unitl2 remain 1n the
instruction register 23. As a result, the instruction builer con-
trol unit 223 validates only unitl1 and unitl2 and invalidates
the other units. In the next transfer, three units starting from
unitll (unitl1~unitl3) are transierred to the 1nstruction reg-
ister 23.
Periphery of the Instruction Register 23 and Operation of the
Instruction Issuing Control Umit 31

The following describes the construction of the periphery
of the instruction register 23 and the detailed operation of the

instruction 1ssuing control unit 31.

US RE41,751 E

15

FIG. 11 1s a block diagram showing the construction of
the periphery of the instruction register 23. In FIG. 11,
arrows drawn using broken lines indicate control signals.

The 1instruction register 23 1s composed of four 21-bit
registers, the mstruction registers A231~D234. For ease of
understanding this mstruction register 23 1s shown as setting
a sequence of units supplied by the instruction buifer 22 as a
unit queue.

As shown 1n FIG. 11, the position 1n the 1nstruction regis-
ter 23 to which a unit 1s transferred 1s unequivocally deter-
mined by its position in the unit queue. This means, for
example, that the first unit 1n the queue will be transterred to
the instruction register A231 and the second unit will be
transierred to the mstruction register B232.

The first instruction decoder 33~third 1nstruction decoder
35 each recetve an mput of a 21-bit umt, decode 1it, and
output control signals relating to the operation of the mstruc-
tion composed by this umt to the execution control unit 41,
as well as outputting any constant operands located in the
unit.

The first instruction decoder 33~third 1nstruction decoder
35 also recerve an mput of a 1-bit no-operation flag as a
control signal. When this flag 1s set at *“1” for a decoder, the
decoder outputs a no operation instruction. This means that
by setting the no-operation flag, the decoder of an 1nstruction
by an mstruction decoder can be invalidated.

The 1nstruction 1ssuing control unit 31 refers to the paral-
lel execution boundary information 110 and the format infor-
mation 111 of the units stored in the instruction register A231
and the imstruction register B232, and judges which 1s the
final unit that should be outputted from the mnstruction regis-
ter 23 1n this cycle. Based on this information, the instruction
1ssuing control unit 31 outputs control signals (no-operation
instruction flags) that show whether the decoding by the
second 1nstruction decoder 34 and third instruction decoder
35 should be 1invalidated. The instruction 1ssuing control unit
31 then transmits information showing how many units were
not 1ssued and so remain 1n the 1mstruction register 23 to the
instruction butler control unit 223 1n the mstruction buifer
22,

As can be seen from FIG. 11, the units that can be decoded
as 1nstructions are only the umts stored in the instruction
register A231, the mstruction register B232, and the instruc-
tion register C233. The information 1n these units 1s
examined, and decoding 1s mvalidated for units that corre-
spond to the second unit 1n a 42-bit mstruction and units that
are not 1ssued. A unit that corresponds to the second unitin a
42-bit instruction 1s directly outputted as part of the constant
operand of the instruction that 1s composed by the preceding
unit.

In order to output these control signals, the instruction
issuing control unit 31 1s mternally equipped with the OR
circuit 351 and the OR circuit 352, as shown 1n FIG. 11.

The OR circuit 351 invalidates the decoding by the second
instruction decoder 34 1if the parallel execution boundary
information 110 of the unit stored in the nstruction register
A231 1s “1” or 1f the format information 111 of that unit 1s
“17.

The OR circuit 352 invalidates the decoding by the third
istruction decoder 35 if the parallel execution boundary
information 111 of the unit stored in the mstruction register
B232 1s “1” or if the format information 111 of that unit is
“17.

The following explains the operation of the instruction
issuing control unit 31~third instruction decoder 35 when
decoding the instruction patterns A~H shown 1n FIG. 7, with

reterence to FIGS. 12~19.

5

10

15

20

25

30

35

40

45

50

55

60

65

16

FIG. 12 shows the control content of the 1nstruction 1ssu-
ing control unit 31, and the first instruction decoder 33~third
instruction decoder 35 when the instruction pattern A shown
in FIG. 7 1s outputted to the first instruction decoder
33~third instruction decoder 35. In this figure, the parallel
execution boundary information 110-format information 111
of the unit (unit’) stored in the instruction register A231 is
“10”. In this case, unitl forms a 21-bit 1instruction, so that
decoding of unit2 and unit3 as instructions 1s nvalidated.
This means that the mstruction 1ssuing control unit 31 sets
the no-operation flags respectively outputted to the second
instruction decoder 34 and the third instruction decoder 35 at
“17.

FIG. 13 shows the control content of the 1nstruction 1ssu-
ing control unit 31, and the first instruction decoder 33~third
instruction decoder 35 when the instruction pattern B shown
in FIG. 7 1s outputted to the first instruction decoder
33~third instruction decoder 35. In this figure, the parallel
execution boundary iformation 110-format information 111
of the unit (unitl) stored in the nstruction register A231 1s
“01”. In this case, unitl and unit2 stored in the instruction
register B232 together form a 42-bit imstruction, so that unit2
1s not decoded as an 1nstruction. This means that the mstruc-
tion 1ssuing control unit 31 sets the no-operation tlags
respectively outputted to the second instruction decoder 34
and the third instruction decoder 35 at “1”.

FIG. 14 shows the control content of the 1nstruction 1ssu-
ing control unit 31, and the first instruction decoder 33~third
instruction decoder 35 when the instruction pattern C shown
in FIG. 7 1s outputted to the first instruction decoder
33~third instruction decoder 35. In this figure, the parallel
execution boundary information 110-format information 111
of the unitl stored in the 1nstruction register A231 1s “00”,
and the parallel execution boundary information 110-format
information 111 of the unit (unit2) stored in the instruction
register B232 1s “10”. Since the format information 111 for
both units 1s “0”, only units up to umt2 are 1ssued in this
cycle, so that the decoding of unit3 as an instruction 1s mnvali-
dated. This means that the instruction 1ssuing control unit 31
sets the no-operation flag outputted to the third istruction
decoder 35 at “17.

FIG. 15 shows the control content of the 1nstruction 1ssu-
ing control unit 31, and the first instruction decoder 33~third
instruction decoder 35 when the 1nstruction pattern D shown
in FIG. 7 1s outputted to the first instruction decoder
33~third instruction decoder 35. In this figure, the parallel
execution boundary information 110-format information 111
of the unitl stored in the 1nstruction register A231 1s “00”,
the parallel execution boundary information 110-format
information 111 of the unit2 stored in the nstruction register
B232 1s “01”, and the parallel execution boundary informa-
tion 110-format information 111 of unit3 stored in the
instruction register C233 1s “10”. In this case, unitl stored 1n
the 1nstruction register A231 forms a separate 21-bit instruc-
tion. Meanwhile, unit2 stored in the instruction register
B232 and unit3 stored in the instruction register C233
together form a 42-bit 1nstruction, so that the decoding of
unit3 as an instruction 1s invalidated. This means that the
instruction 1ssuing control unit 31 sets the no-operation flag
outputted to the third instruction decoder 35 at “17.

FIG. 16 shows the control content of the instruction 1ssu-
ing control unit 31, and the first mnstruction decoder 33~third
instruction decoder 35 when the 1nstruction pattern E shown
in FIG. 7 1s outputted to the first instruction decoder
33~third struction decoder 35. In this figure, the parallel
execution boundary information 110-format information 111
of unitl stored in the mnstruction register A231 1s “017, the

US RE41,751 E

17

parallel execution boundary information 110-format infor-
mation 111 of the unit2 stored in the instruction register
B232 1s “00”, and the parallel execution boundary informa-
tion 110-format information {11 of unit3 stored in the
instruction register C233 1s “10”. Since the format informa-
tion 11 of umtl 1s “1”, unmitl and unit2 in the instruction
register B232 together form a 42-bit mnstruction. On the
other hand, unit3 forms a separate 21-bit instruction and so
needs to be decoded. In this case, the instruction 1ssuing
control unit 31 sets only the no-operation flag outputted to
the second 1nstruction decoder 34 at 1.

FI1G. 17 shows the control content of the instruction 1ssu-
ing control unit 31, and the first instruction decoder 33~third
instruction decoder 35 when the istruction pattern F shown
in FIG. 7 1s outputted to the first instruction decoder
33~third instruction decoder 35. In this figure, the parallel
execution boundary information 110-format information 111
of unitl stored in the mnstruction register A231 1s “017, the
parallel execution boundary information 110-format infor-
mation 111 of the unit2 stored in the instruction register
B232 1s “00”, the parallel execution boundary information
110-format information 111 of unit3 stored in the 1nstruction
register C233 1s “01”, and the parallel execution boundary
information 110-format information 111 of unitd stored in
the mnstruction register D234 1s “10”. Since the format infor-
mation {11 of unitl 1s “1”°, unitl and unit2 in the instruction
register B232 together form a 42-bit instruction. The format
information 111 of unit3 1s also “01” so that unit3 and unit4
in the mstruction register D234 together form another 42-bit
instruction. In this case, the mstruction 1ssuing control unit
31 sets only the no-operation tlag outputted to the second
instruction decoder 34 at “1”.

FI1G. 18 shows the control content of the instruction 1ssu-
ing control unit 31, and the first mstruction decoder 33~third
instruction decoder 35 when the 1nstruction pattern G shown
in FIG. 7 1s outputted to the first instruction decoder
33~third struction decoder 35. In this figure, the parallel
execution boundary information 110-format information 111
of unitl stored in the mnstruction register A231 1s 007, the
parallel execution boundary information 110-format infor-
mation 111 of unit2 stored in the instruction register B232 1s
“00”, the parallel execution boundary information 110-
format information 111 of unit3 stored in the instruction reg-
ister C233 15 “10”. Since the format information 111 of unitl
1s “0”, unitl stored in the mstruction register A231 forms a
separate 21-bit instruction. In the same way, the format
information {11 of unit2 1s “0”, so that unit2 stored in the
instruction register B232 forms a separate 21-bit instruction.
Also, the format information {11 of unit3 1s ““0”, so that unit3
stored 1n the instruction register C233 forms a separate
21-bit instruction. These three 21-bit instructions are
decoded 1n parallel by the first instruction decoder 33~third
instruction decoder 35.

FI1G. 19 shows the control content of the 1nstruction 1ssu-
ing control unit 31, and the first instruction decoder 33~third
instruction decoder 35 when the 1nstruction pattern H shown
in FIG. 7 1s outputted to the first instruction decoder
33~third 1nstruction decoder 35. In this figure, the parallel
execution boundary information 110-format information 111
of unitl stored in the mnstruction register A231 1s “00”, the
parallel execution boundary information 110-format infor-
mation 111 of unit2 stored 1n the mstruction register B232 1s
“00”, the parallel execution boundary information 110-
format information 111 of unit3 stored 1n the mstruction reg-
ister C233 1s “01”, and the parallel execution boundary
information 110-format information 111 of unitd stored in
the mnstruction register D234 1s “10”. Since the format infor-

10

15

20

25

30

35

40

45

50

55

60

65

18

mation 111 of umitl 1s “0”, unitl stored in the instruction
register A231 forms a separate 21-bit mnstruction. In the
same way, the format information 111 of unit2 1s “0”, so that
unmt2 stored 1n the mstruction register B232 forms a separate
2 1-b1t 1instruction. On the other hand, the format information
111 of unit3 1s “17, so that together with unit4 1n the mstruc-
tion register D234, unit3 stored in the instruction register
C233 forms a 42-bit instruction. These two 21-bit instruc-
tions and single 42-bit mnstruction are decoded in parallel by
the first instruction decoder 33~third instruction decoder 35.

As described above, the processor of the present embodi-
ment can decode up to four units 1n a sequence of units as
instructions. This means that the patterns A—H shown 1n
FIG. 7 can be 1ssued, meaning that a maximum of four units
can be 1ssued at once. However, out of the possible patterns
composed of four units, the patterns I-J 1n FIG. 7 have the
opcode of the third instruction located 1n the mstruction reg-
1ster 234D, so that these instructions cannot be decoded.
However, out of the patterns that include one 42-bit
instruction, even the pattern H in FIG. 7 can be executed 1n
parallel. This means that even 1f a processor only has three
decoders with 21-bit input ports, three imstructions including
one long instruction can still be executed in parallel.

Second Embodiment

In the processor of the first embodiment, instructions are
supplied using packets that are outputted to the istruction
buffer 22 and instructions are executed using “execution
umts” that are outputted from the instruction register 23.
This second embodiment relates to an instruction conversion
apparatus that generates a sequence of packets that are suited
to the processor described in the first embodiment. This
instruction conversion apparatus generates codes that corre-
spond to the “execution units” described i1n the first
embodiment, and then converts these codes 1nto the object
codes that correspond to the packets. These codes that corre-
spond to “execution units” are called “parallel execution
codes” 1n this second embodiment.

FIG. 20 shows the format of parallel execution codes. In
FIG. 20, the possible sizes of the parallel execution codes are
21 bits, 42 bits, 63 bits, and 84 bits. Here, 84-bit parallel
execution codes can be used to assign the combinations of
short and long instructions shown as patterns F, H, I and J 1n
FIG. 7, and 63-bit parallel execution codes can be used to
assign the combination of short and long instructions shown
as patterns D, E, and G 1 FIG. 7. In the same way, 42-bit
parallel execution codes can be used to assign the combina-
tions of short and long nstructions shown as patterns B and
C 1n FIG. 7, and a 21-bit parallel execution code can be used
to assign one short instruction, as shown by pattern A 1 FIG.
7. These parallel execution codes include internal fields (unit
fields) that are each 21-bits 1n size. One 21-bit unit described
in the first embodiment can be assigned to each of these unit
fields. The unit fields 1n parallel execution code are assigned
numbers starting from the MSB, and so are respectively
called the first, the second, the third, and the fourth unit
fields. Of these unit fields, the first to third unit fields can be
decoded 1n order by the first istruction decoder 33~third
instruction decoder 35.

When the pattern D 1n FIG. 7 1s assigned, a short instruc-
tion 1s assigned to the first unit field of 63-bit parallel execu-
tion code and a long instruction 1s assigned to the second and
third unit fields 1n the 63-bit parallel execution code. When
the pattern E 1 FIG. 7 1s assigned, a long instruction 1s
assigned to the first and second unit field of 63-bit parallel
execution code and a short istruction 1s assigned to the third
unit field 1n the 63-bit execution code. When the pattern H in
FIG. 7 1s assigned, two short instructions are assigned to the

US RE41,751 E

19

first and second umnit fields of 84-bit parallel execution code
and a long 1nstruction 1s assigned to the third and fourth unit
ficlds 1n the 84-bit parallel execution code.

Note that when two or more instructions are assigned to a
parallel execution code, there are cases where parallel execu-
tion 1s not possible. As one example, when the supplying of
instructions from the instruction supplying/issuing unit 20 of
the processor in the first embodiment cannot keep up with
the decoding of mnstructions by the decoding unit 30, the two
or more 1nstructions assigned to the same parallel execution
code will be executed 1n two or more cycles. This means that
only an instruction positioned 1n the first unit field of the
parallel execution code 1s executed 1n a first cycle, with the
instruction positioned 1n the second unit field of the parallel
execution code being executed in the next cycle.
Accordingly, the instruction conversion apparatus has to
assign short and long 1nstructions to unit fields 1n a way that
proper execution will be properly performed even 11 the plu-
rality of instructions 1n a set of parallel execution code are
executed 1in two or more cycles.

The setting of the lengths of sets of parallel execution
code at 21, 42, 63, or 84 bits can be made by the nstruction
conversion apparatus setting the parallel execution bound-
aries shown 1n the first embodiment 1n the parallel execution
codes. Parallel execution codes that can have one of four
lengths are serially arranged, and are then divided into 63-bit
lengths. In this way, the packet sequence shown in the first
embodiment 1s obtained as a sequence of object codes.

The parallel execution codes generated 1n this way must
satisty the two conditions given below.

The first condition 1s that the plurality of instructions
included 1n a parallel execution code do not violate the
restrictions of the processor regarding the available comput-
Ing resources.

The second condition 1s that the nstructions are assigned
within the parallel execution code 1n accordance with the
restrictions on parallel execution by the processor.

The restrictions regarding the instructions that can be
arranged between the parallel execution boundaries are as
follows.

(1) The total number of instructions 1n a parallel execution
code does not exceed three.

(2) The total number of resources 1n the processor used by
the instructions 1n a parallel execution code does not

exceed three ALUs, 1 LD/ST unit and a branch unit.

(3) The combination of instruction sizes 1n a parallel
execution code 1s one of the patterns A~H shown 1n
FIG. 7.

Construction of the Instruction Conversion Apparatus

The following describes the instruction conversion appa-
ratus of the present embodiment, with reference to the draw-
ings. This instruction conversion apparatus 1s of a format
that 1s conventionally used in the art, which 1s to say, a
recording medium storing executable software for a com-
piler and linker that have the equivalent functions of an
instruction conversion apparatus. Such recording media are
generally distributed and sold as sotftware packages. A user
can purchase and 1install such a software package into a
general-purpose computer that can thereafter function as an
instruction conversion apparatus simply by processing
according to the installed software. Since this 1s the common
method for implementing an instruction conversion
apparatus, the software for achieving an instruction conver-
sion apparatus 1s more important than the hardware
resources, such as the processor and memory, of the general-
purpose computer on which the software 1s run. Software
that has such a complicated processing content 1s generally

5

10

15

20

25

30

35

40

45

50

55

60

65

20

composed of a number of subroutines and work areas, so
that each of these subroutines and work areas should be
considered a separate construction element. However, 1t 1s
common for such subroutines and work areas to be arranged
into a library by a conventional operating system, compiler,
or linker, and such components will not be explained here.
Accordingly, the following explanation will focus on the
functions of the subroutines and work areas that are required
to achieve the functions of an instruction conversion appara-
tus.

FIG. 21 1s a block diagram showing the construction of
the mstruction conversion apparatus of the present embodi-
ment and the related data.

The construction of the present instruction conversion
apparatus can be broadly divided into the following two
groups. The first group generates object codes 160 from
source codes 150 that are written 1 a high-level language,
comprises the compiler upstream part 110, the assembler
code generating unit 111, the instruction scheduling unit
112, and the object code generating unit 113, and corre-
sponds to a conventional compiler. The second group links a
plurality of object codes 160 and generates the final execut-
able codes 70, comprises the linking unit 114, and corre-
sponds to a conventional linker.

Compiler Upstream Part 110

The compiler upstream part 110 reads the source program
150 that 1s stored as a file. This source program 150 1s writ-
ten 1n a high-level language, so that the compiler upstream
part 110 performs a syntactic and semantic analysis on the
source program 150 and generates internal representation
codes and an internal representation program composed of a
plurality of internal representation codes. The compiler
upstream part 110 also optimizes this internal representation
program as necessary to reduce the code size and/or execu-
tion time of the executable codes that are finally generated.
Assembler Code Generating Unit 111

The assembler code generating unit 111 generates assem-
bler codes from the internal representation codes that have
been generated and optimized by the compiler upstream part
110 and by doing so generates an assembler program com-
posed of a plurality of assembler codes.

The processing of the compiler upstream part 110 and
assembler code generating unit 111 does not relate to the gist
of the present imnvention and may be achieved through the
processing performed by a conventional instruction conver-
sion apparatus. Accordingly, such processing will not be
described 1n this specification. When assembler codes are
generated, 1t 1s assumed that it 1s possible to judge whether
the assembler codes correspond to long instructions or short
instructions. Note that assembler codes that include a dis-
placement as an operand are provisionally assumed to short
instructions at this stage.

Instruction Scheduling Unit 112

The instruction scheduling unit 112 analyzes dependen-
cies between instructions in the assembler codes generated
by the assembler code generating unit 111, performs 1nstruc-
tion scheduling (reordering of instructions), and adds paral-
lel execution boundaries, assigning assembler codes that can
be executed 1n parallel to a same parallel execution code.
When doing so, the mstruction scheduling unit 112 also con-
siders the case where 1nstructions assigned to a same parallel
execution code are executed separately i two cycles, and
assigns 1nstruction to unit fields so as to ensure that there
will be no breakdown 1n the dependencies even if the
instructions are executed in different cycles. To perform
such assigning, the mstruction scheduling unit 112 includes
a dependency analyzing unit 120, an 1nstruction rearranging

US RE41,751 E

21

unit 121, and a parallel execution boundary appending unit
122. To simplify the explanation, the mstruction scheduling
unit 112 1s assumed here to process the assembler codes 1n
basic block units.

The dependency analyzing unit 120 analyzes the depen-
dencies between instructions 1n a basic block and produces a
dependency graph. In this specification, there are the follow-

ing three types of dependencies between instructions:

data dependence—dependency between an 1nstruction
that defines a resource and an 1nstruction that refers to
the same resource;

anti-dependence—dependency between an instruction
that refers to a resource and an instruction that defines
the same resource; and

output dependence—dependency between an instruction
that defines a resource and another instruction that
defines the same resource.

Rearranging the original order of instructions so that
instructions that exhibit any of the above types of dependen-
cies are interchanged will atfect the meaning of the program.
Accordingly, such dependencies need to be maintained
when rearranging the instructions.

The dependency analyzing unit 120 refers to the result of
its analysis, generates a node for each instruction that is
included 1n a basic block, and generates edges (arrows) join-
ing pairs ol imstructions that exhibit a dependency. As one
example, FIG. 22B shows a dependency graph that corre-
sponds to the assembler codes shown 1n FIG. 22A. In FIG.
22 A, instructionl “ld (mem1),R0” and instruction2 *“add
1,R0” have a data dependency regarding register RO. In the
same way, 1mstruction2 “add 1, RO” and instruction3 “st RO,
(mem2)” have a data dependency regarding register RO.

Instruction3 “st RO,(mem?2)” and instructiond4d “mov
R1,R0” have an anti-dependence regarding register RO.

In the same way, instructiond “mov R1,R0” and 1nstruc-
tion6 “add R3,R0” have a data dependency regarding regis-
ter RO, instruction5 “mov R2,R3” and instruction6 “add
R3,R0” have a data dependency regarding register R3, and
istructioné “add R3,R0” and istruction7 st RO,(mem3)”
have a data dependency regarding register RO.

Instructions that exhibit a data dependency are joined in
FIG. 22B by solid lines, while instructions that exhibit an
anti-dependence or an output dependence are joined by bro-
ken lines. In FIG. 22B, mnstruction4 “mov R1,R0”, instruc-
tiond “mov R2,R3”, and instruction6 “add R3,R0” are joined
in a Y shape, with instructiond “mov R1,R0” being further
joined by a broken line to mnstruction3 “st RO,(mem?2)”. In
this dependency graph, the arrows are interpreted as the out-
put order that should be respected when 1ssuing nstructions
from the 1nstruction registers A231-D234 to the instruction
decoders 33~35.

A dependency graph may be generated according to a
conventional method, such as that disclosed 1n the paper
Instruction Scheduling in the TOBEY compiler (R. J.
Blainey, IBMIJ.RES.DEVELOP. Vol 38 No. 5 September
1994).

The instruction rearranging unit 121 refers to the depen-
dency graph generated by the dependency analyzing unit
120 and rearranges the instructions 1n a basic block, assign-
ing one or more 1nstructions to each parallel execution code.
This rearranging by the instruction rearranging umt 121 is
analogous to a game where branches are cut off a tree. FIGS.
22A~22F show the procedure of this branch-cutting game.
In the game, the dependency graph generated by the depen-
dency analyzing unit 120 1s considered to be a tree whose
branches are combinations of nodes and edges. Nodes that
are indicated by an edge but do not themselves 1indicate any

10

15

20

25

30

35

40

45

50

55

60

65

22

other edges (nodes 1, 5, and 8 in FI1G. 22C) are considered to
be the end branches.

In FIG. 22D, the player selects node 1 out of the end
branches and cuts off this node. Once node 1 has been
removed, node 2 becomes an end branch, so that the player
next selects and cuts off one node out of the end branches
nodes 2, 5, and 8. In FIG. 22E, the player selects node 8 out
of the end branches and cuts off this node.

The player continues to cut off branches as described
above, with the nodes 1n the cut-oif branches being arranged
into a parallel execution code 1n the order 1n which the nodes
are cut off. An arrangement of parallel execution codes that
respects the dependencies 1n the program i1s obtained when
all of the branches have been cut off the tree. The lower the
number of parallel execution codes, the higher the score of
the player (which 1s to say, the better the parallel execution
codes). This completes the description of the branch-cutting
game as an analogy to the procedure for rearranging nodes.

The instruction rearranging unit 121 performs this rear-
ranging in accordance with the procedure in the flowchart
shown 1n FIG. 23A. In this explanation, the expression
“arranging’ refers to the processing that assigns up to three
instructions 1n the four unit fields 1n a parallel execution
code. An arrangement of istructions whose assignment to a
parallel execution code may be changed i1s called a provi-
sional arrangement, while an arrangement that will not be
changed 1s called a definite arrangement.

The expression “arrangement candidate” refers to a node
that corresponds to an end branch in the branch-cutting
game described above, which can be a node that has no
predecessors or a node whose predecessors have all been
provisionally arranged. The nodes 1n the dependency graph
that are currently arrangement candidates change as the pro-
cess arranging instructions into parallel execution codes
Progresses.

The following explanation describes each step i1n the
arrangement process. In step S0, the mstruction rearranging
unmit 121 sets the variable 1 st “1”. This variable 1 indicates
one of the parallel execution codes included 1n the object
program that will be generated by the processing hereaftter.
In this example, each parallel execution code has an mitial
length of 84 bits. The following step, step S1, forms a loop
process (loopl) together with step S10. As a result, the pro-
cessing 1n steps S2~S9 1s repeated for each node in the
dependency graph generated by the dependency analyzing
unit 120.

In step S2, the mstruction rearranging unit 121 extracts all
nodes that are assignment candidates for a present parallel
execution code from the dependency graph and forms an
arrangement candidate group of such nodes. In the first itera-
tion of loopl, nodes that have no predecessors are selected to
form the arrangement candidate group.

Step S3~S8 include loop statements (loop2) forming a
loop that determines which nodes 1in the arrangement candi-
date group formed in step S2 should be assigned to a same
parallel execution code. This loop process can end due to
any of two circumstances. The first circumstance 1s when all
of the arrangement candidates in the arrangement candidate
group have been arranged into a parallel execution code so
that no assignment candidates remain. This corresponds in
the branch-cutting game to a case where there are few end
branches (which 1s to say, there are few arrangement
candidates). There are cases where no assignment candi-
dates remain after only one or two iterations of loop2. In
such cases, loop2 ends due to this first circumstance.

The second circumstance 1s where the four unit fields 1n
the present parallel execution code have been filled with

US RE41,751 E

23

arrangement candidates, so that there 1s no more room 1n the
parallel execution code. In this second circumstance, some
of the arrangement candidates 1n the arrangement candidate
group cannot be arranged into the parallel execution code
and so are left behind.

In step S9, the nodes that are to be arranged 1nto the paral-
lel execution code are determined, regardless of which of the
two circumstances resulted in the exit from loop2. In detail,
the instructions that correspond to the nodes 1n the arrange-
ment candidate group are extracted from the original instruc-
tion sequence and parallel execution boundaries are added
by the parallel execution boundary appending unit 122
shown 1n FIG. 21. When only one short mstruction 1s deter-
mined as being arranged into the parallel execution code, 1n
step S9 a parallel execution boundary 1s set for this short
instruction. By doing so, the parallel execution code 1s set as
having a data length of 21 bits. When one long instruction 1s
determined as being arranged into the parallel execution
code, 1n step S9 a parallel execution boundary 1s set for this
long nstruction. By doing so, the parallel execution code 1s
set as having a data length of 42 bits. In the same way, when
a combination of one short and one long instruction 1s deter-
mined as being arranged 1nto the parallel execution code, in
step S9 a parallel execution boundary 1s set for the long
instruction in the combination. By doing so, the parallel
execution code 1s set as having a data length of 63 bats.

When a short-short-long instruction combination 1s deter-
mined as being arranged 1nto the parallel execution code, 1n
step S9 a parallel execution boundary 1s set for the long
instruction in the combination. By doing so, the parallel
execution code 1s set as having a data length of 84 bits.

In step S1, variable 1s incremented by “1” so as to make 1t
indicate the next parallel execution code into which nstruc-
tions are to be arranged. The processing then returns to step
S10.

When the processing moves to step S2 in a second or later
iteration of loopl, the provisional arrangement of one of the
instructions will be been completed. As a result, a node that
has the provisionally arranged 1nstruction as a predecessor
can herealfter be selected as part of the arrangement candi-
date group.

When loop2 ends due to the second circumstance, the
nodes that were not arranged and so were left behind are also
selected as arrangement candidates. This shows that the
nodes 1n the dependency graph that are selected as arrange-
ment candidates change according to which nodes have been
provisionally arranged 1nto a parallel execution code and to
which nodes could not be provisionally arranged into the
parallel execution code and so were left behind.

In loop2, the instruction rearranging unit 121 performs the
processing described below (steps S4-S7) for each arrange-
ment candidate 1n the arrangement candidate group.

Step S4 corresponds to the player of the branch-cutting
game selecting an end branch to cut. In step S4, the node that
1s considered to be the most suitable for arranging at the
present time 1s taken from the arrangement candidate group.
The mnstruction rearranging unit 121 selects this most suit-
able node by heuristically selecting an instruction whose
arrangement 1s believed to cause the greatest reduction 1n
execution time for all instructions i1n the basic block. Here, a
node situated at an end of the branch in the dependency
graph with the longest total execution time 1s selected. When
more than one node (instruction) satisiy this criterion, the
instruction that comes first in the original instruction
sequence 1s selected.

In step S5, the instruction rearranging unit 121 judges
whether the most suitable node can be arranged into the

10

15

20

25

30

35

40

45

50

55

60

65

24

present parallel execution code, according to the procedure
shown 1n FIG. 23B. When this 1s not possible 1n steps S4~S7
will be performed for a different assignment candidate in the
assignment candidate group.

When 1t 1s possible to arrange the most suitable node 1nto
the parallel execution code, the processes moves from step
S5 to step S6, the istruction rearranging unit 121 judges
whether there 1s sulflicient space 1n the 84-bit parallel execu-
tion code to arrange the present arrangement candidate.

If not, the processing leaves loop2 and returns to step S9.
If so, the judgement “Yes” 1s made 1n step S6 and the pro-
cessing advances to step S7.

As a general rule, the processing in steps S4-Sé6 1s
repeated and the instructions are progressively assigned to
parallel execution codes. It should be noted here that even 1t
there 1s still space in a parallel execution code for the
arrangement ol another instruction, there will still be cases
where no mstruction will be arranged due to there being no
more arrangement candidates. When there 1s only one
assignment candidate, processing of all the assignment can-
didates will be completed by a single 1teration of loop2, so
that the processing will then return to step S9. However, i
nodes could somehow be added as assignment candidates
when the number of assignment candidates 1s low, further
iterations of loop2 would be possible. Nodes that have an
anti-dependence or an output dependence with the most suit-
able node are nodes that were not selected as arrangement
candidates 1n step S2 but which may be later added as
assignment candidates. Such nodes cannot be executed
before the most suitable node, but can be executed in the
same cycle as the most suitable node. As a result, when the
judgement “Yes” 1s given 1n the flowchart in FIG. 23A, the
processing moves to step S7 and nodes that have only the
most suitable node that 1s presently being arranged as a pre-
decessor and have an anti- or an output dependence with the
most suitable node are added to the arrangement candidate
group as arrangement candidates. After this, the processing
moves to step S8 so that the processing 1n steps S4-S7 1s
performed for the newly added arrangement candidates.

The following describes method used 1n FIG. 5 to judge
whether arrangement 1s possible, with reference to the flow-
chart shown 1n FIG. 23B.

In step Ul, the instruction rearranging unit 121 checks
whether the instructions included in the present parallel
execution code satisty the restrictions set by the number of
calculating resources. In detail, the instruction rearranging
unit 121 judges whether the processor will be able to simul-
taneously process the instruction being judged 1n addition to
the instructions that have already been provisionally
arranged 1nto the parallel execution code. I not possible, the
instruction rearranging unit 121 judges that the present
instruction cannot be arranged into the parallel execution
code.

Next, in step U2, the instruction rearranging unit 121
judges whether the number of instructions that have already
been provisionally arranged into the present parallel execu-
tion code 1s less than the number of decoders 1n the proces-
sor minus one. If so, the instruction rearranging unit 121
judges that the present instruction can be arranged into the
parallel execution code and the processing advances to step
U9. In this example, the number of decoders provided 1n the
processor of the first embodiment 1s three, so that the judge-
ment 1n step U2 1s satisfied if O or 1 istructions have been
provisionally arranged. When this 1s the case, the mstruction
presently being analyzed (also referred to as the “processed
instruction™) will definitely fit into the parallel execution
code regardless of whether it 1s a short or long instruction, so
that the processing proceeds to step U9.

US RE41,751 E

25

When the number of instructions that have already been
provisionally arranged into the present parallel execution
code 1s not less than the number of decoders in the processor
minus one, the judgement “No” 1s given 1n step U2 and the

processing proceeds to step U3. In step U3, the number of 5

instructions that have already been provisionally arranged 1s
two, so that a judgement 1s performed to see whether both
instructions are short instructions. Here, when two short
instructions have already been arranged into the parallel
execution code 1, the processed instruction will definitely it
into the parallel execution code 1 regardless of whether i1t 1s a
short istruction or a long instruction. This 1s because the
target processor 1s capable of executing both short-short-
short and short-short-long instruction combinations.
Consequently, the processing advances to step U9.

In step U9, the processed instruction 1s provisionally
arranged 1nto the parallel execution code. When no 1nstruc-
tions have yet been arranged 1nto the parallel execution code
1, the processed mstruction 1s arranged 1nto the first unit field
in the parallel execution code. When 1nstructions have been
arranged into the first—third unit fields of the parallel execu-
tion code 1, the processed instruction 1s arranged 1nto the first
open unit field 1n the parallel execution code 1. In detail,
when an instruction has already been arranged into the first
unit field, the processed instruction 1s arranged 1nto the sec-
ond unit field. Conversely, when one or two 1instructions
have already been arranged into the first and second unit
fields, the processed instruction 1s arranged into the third
unit field.

When the judgement in step U3 1s negative, the processing
advances to step U4. In step U4, the mstruction rearranging
unit 121 judges whether the instructions arranged into the
first~third umt fields 1n the parallel execution code 1 are a
short-long instruction combination or a long-short instruc-
tion combination. Here, 1f the provisionally arranged
instructions are a long-long combination, it will not be pos-
sible for a further instruction to be executed 1n parallel, so
that the arrangement of the processed 1nstruction 1s judged to
be impossible. Conversely, when the provisionally arranged
instructions are one of the two combinations given above,
the processing advances to step US.

In step US, the instruction rearranging unit 121 judges
whether the processed instruction that 1t 1s trying to arrange
1s a short 1nstruction. If the processed 1nstruction 1s a long
instruction, arrangement of this instruction will produce a
long-short-long or short-long-long instruction combination
in the parallel execution code 1, neither of which can be
executed by the target processor. Consequently, the mstruc-
tion rearranging unit 121 judges that arrangement 1s 1mpos-
sible.

On finding that the processed instruction 1n step US 1s a
short mstruction, the istruction rearranging umt 121 uses
the dependency graph to analyze any dependencies between
the processed mstruction and instructions in the program
that have already been provisionally arranged. Here, depen-
dencies between the arrangement candidates are analyzed
because arrangement candidates may have been added in
step S7 1n FIG. 23 A. In detail, 11 the processed instruction 1s
a node that was added 1n step S7, there 1s a possibility that
this processed instruction will have an anti-dependence or
output dependence with one or more of the provisionally
arranged instructions. In the example shown 1 FIG. 22B, a
broken-line edge 1s present between instruction3 “st RO,
(mem2)” and instructiond “mov R1,R0”, showing that an
anti-dependence exists between these instructions. In this
dependency graph, there will be no problems if 1nstruction3
“st RO,(mem2)”—instructiond “mov R2,R3” are assigned to

10

15

20

25

30

35

40

45

50

55

60

65

26

the unit fields of the parallel execution code 1 1n the order
instruction3 “st RO,(mem2)”-1nstructiond “mov R2,R3”’-
instructiond “mov R1,R0”. This 1s because even it the cir-
cumstances of the target processor dictate that instruction3
“st RO,(mem?2)” 1s executed 1n a different cycle to instruc-
tions “mov R2,R3” and instruction4 “mov R1,R0”, instruc-
tion3 “st RO,(mem2)” will be executed first, with nstruc-
tiond “mov R2,R3” and instructiond “mov R1,R0” being
executed later. Consequently, the anti-dependence between
the mnstructions 1s properly maintained.

IT 1nstruction3 “st RO,(mem?2)”~1nstructiond “mov
R2,R3” are assigned to the unit fields of the parallel execu-
tion code 1 1n the order instructiond4 “mov R1,R0” 1nstruc-
tiond “mov R2,R3”-instruction3 *“st RO,(mem?2), however,
there 1s the risk that the anti-dependent will be broken. This
1s because the circumstances of the target processor may
dictate that instruction4 “mov R1,R0” 1s executed 1n a difter-
ent cycle to instructiond “mov R2,R3” and instruction3 “st
RO,(mem2)”. If so, instructiond “mov R1,R0” will be
executed first, with instructionS “mov R2,R3” and instruc-
tion3 “st RO,(mem2)” being executed later. This results in
the anti-dependence being broken. In thus way, when two
arrangement candidates that exhibit dependency are
arranged 1nto the same parallel execution code, there is the
risk of an anti-dependence being broken, so that the analysis
of dependencies 1n step U6 1s required.

In step U7, the instruction rearranging unit 121 refers to
the results of the analysis performed 1n step U6 and judges
whether 1t 1s possible to rearrange the instructions that have
been provisionally arranged and the processed nstruction to
produce a short-short-long instruction arrangement. When
there 1s no anti-dependence or output dependence 1n the pro-
gram between the processed instruction and the provision-
ally arranged instructions, these instructions may be rear-
ranged to produce a short-short-long instruction
arrangement, so that the instruction rearranging unit 121
rearranges the istructions in thus way. Conversely, when
there 1s anti-dependence or output dependence 1n the pro-
gram between the processed instruction and the provision-
ally arranged instructions, a short-short-long arrangement
where the anti- or output dependence 1s not broken 1is
selected. If the anti- or output dependence 1s broken regard-
less of how the short instructions are arranged, arrangement
of the processed 1nstruction 1n the present parallel execution
code 1s judged to be impossible. If there 1s an arrangement
where the dependency is not broken, the mstruction are rear-
ranged 1n accordance with such arrangement.

Step U8 1s performed 11 the judgement 1n step S7 1s affir-
mative. The instruction rearranging unit 121 arranges the
processed 1nstruction and rearranges the provisionally
arranged 1nstructions into the alignment that satisfies the cri-
teria judged 1n step U7.

Object Code Generating Unit 113

The following explanation returns to FIG. 21 to describe
the components of the instruction conversion apparatus. The
object code generating unit 113 divides the parallel execu-
tion codes, which have been assigned instructions and given
parallel execution boundaries by the instruction scheduling
umt 112, into packet units. The packet sequence that 1s made
up of the packets produced by this division are then stored in
a file as relocatable object codes and the resulting file 1s
outputted.

Linking Unit 114

The linking unit 114 links a plurality of relocatable object
codes that were generated in different compiling units to
produce one linked sequence, refers to symbol information
and calculates the final address of each label, and determines

US RE41,751 E

27

the size of each label. The symbol information referred to
here 1s information showing the actual address of the parallel
execution code to which each label in the object code 1s
assigned.

The linking unit 114 of the present mnvention differs from
a conventional linker by including an address resolving unit
123. The address resolving unit 123 resolves addresses 1n
object code that include unresolved addresses and can be
realized by software the executes the procedure shown in
FIG. 24.

FI1G. 24 1s a flowchart showing the procedure executed by
the address resolving unit 123 which forms part of the link-
ing unit 114.

In step VO, the address resolving unit 123 extracts all
instructions (hereafter called “unresolved mstructions™) that
include an unresolved label from the object codes that have
been assigned addresses. Step V10 15 a loop statement for
having the processing 1n step V1-step V9 repeated for each
instruction extracted 1n step V0. In step V1, the address
resolving unit 123 refers to the symbol information and cal-
culates a displacement to the branch or reference destination
from the address of the unresolved instruction. When the
address of the unresolved 1nstruction 1s close to the branch or
reference destination, a small value will be given as the
displacement, while the address of the unresolved instruc-
tion 1s far from the branch or reference destination, a large
value will be given as the displacement.

Once the displacement has been calculated, the process-
ing advances to step V2, where the address resolving unit
123 judges whether the displacement can be expressed by a
S-bit value. If so, the processing advances to step V3.

When the assembler codes are rearranged, instructions
that include displacements are regarded as short instructions
and are arranged 1nto parallel execution codes as such. When
the displacement can be expressed by a 5-bit value, the dis-
placement can be written into the operand of a short instruc-
tion without causing any problems. As a result, the deter-
mined displacement 1s written into the unresolved
instruction, thereby completing the processing of the present
unresolved instruction.

On the other hand, when the determined displacement
cannot be expressed by a 5-bit value, the displacement can-
not be written into the operand of a short nstruction. As a
result, the judgement “Yes™ 1s given 1n step V2 and the pro-
cessing proceeds to step V4. In step V4, the address resolv-
ing unit 123 judges whether the displacement cannot be
expressed by a 21-bit value. If not, the judgement “No” 1s
given and the processing advances to step V5. In other
words, the displacement can be written as an operand 11 the
unresolved nstruction 1s converted to a long instruction, so
that 1n step V3, the mstruction size of the unresolved nstruc-
tion 1s mcreased to make the unresolved instruction a long
instruction, and the displacement 1s written 1n the long
instruction as a 21-bit value. Note that there can be cases
where this extension of an unresolved instruction results in
the parallel execution code including the unresolved 1nstruc-
tion violating the restrictions governing the possible combi-
nations of mstructions 1n a parallel execution code, meaning
that simultaneous execution will no longer be possible for
the mnstruction 1n the parallel execution code. As a result,
once an unresolved 1nstruction has been extended to become
a long instruction, step V9 judges whether the parallel
execution code still satisfies one of the patterns in A~H
shown 1 FIG. 7. If this 1s not the case, the processing pro-
ceeds to step V6 where a parallel execution boundary 1is
inserted before or after the unresolved 1nstruction to ensure
that parallel execution will still be possible.

10

15

20

25

30

35

40

45

50

55

60

65

28

When the calculated displacement cannot be expressed by
a 21-bit value, the judgement “Yes™ 1s given 1n step V4 and
the processing proceeds to step V7. When the calculated
displacement exceeds 21 bits, the displacement cannot be
written even 1f the unresolved instruction i1s expanded to
become a long instruction. In this case, the unresolved
instruction 1s processed by replacing it with a long instruc-
tion (1) and a short istruction (2). The processing content of
these instructions 1s as follows.

Long istruction (1): transfer instruction that transfers an
address 1nto a register.

Short instruction (2) instruction that executes the same
processing as the unresolved instruction in addressing mode
using the register into which the address has been trans-
ferred.

The register that 1s used in addressing mode 1s specially
reserved for this division of instructions.

In step V7, there 1s a data dependency over the register
between the long instruction (1) and the short mstruction (2)
used to replace the unresolved instruction, meaning that
these instructions cannot be executed simultaneously.
Consequently, step V8 1nserts a parallel execution boundary
between the long instruction (1) and the short instruction (2).

As a result of the above processing, even 11 the determina-
tion of an unresolved address 1n the linking process results in
a change 1n the length of instructions, 1t 1s still guaranteed
that parallel execution codes which can be executed by the
target processor will be outputted.

As described above, when three instructions to be
executed 1n parallel are composed of two short and one long
instructions, the instruction conversion apparatus of the
present invention rearranges the instructions into a short-
short-long instruction pattern. Since both short instructions
and long instructions have their opcodes located 1n the first
instruction unit, the above instruction pattern has all opcodes
arranged 1n the first three mstruction units. In such case, the
decoders of the target processor can decode the first three
units in a parallel execution code and so have the processor
execute the maximum of three instructions 1n parallel.
Operation of the Processor

The following describes the operation of the processor of
the first embodiment when decoding and executing specific
instructions.

FIG. 25 1s a flowchart showing an example of a process
that handles a 32-bit constant.

In FIG. 25, the 32-bit constant “Ox87654321” 1s trans-
terred nto register R1 (step S100). The stored value of reg-
ister RS 1s transferred to register RO (step 101). The stored
value of register R0 1s added to the stored value of register
R1 (step S102). The stored value of register R3 1s added to
the stored value of register R2 (step S103). The stored value
of register R0 1s stored at the address 1n the memory shown
by the stored value of register R4 (step S104). The stored
value of register R0 1s transferred to register R6 (step S105).
Finally, the stored value of register R3 1s transferred to reg-
ister R7 (step S106).

FIG. 26 A shows an example of the executable codes 1n a
program that has the present processor execute the process-
ing shown in FIG. 25, and FIG. 26B shows an execution
image.

The program 1s composed of seven instructions. These
istructions are supplied 1n the three packets 70~72. The
processing in each instruction 1s expressed by the mnemon-
ics located 1n each field of the executable codes. As specific
examples, the mnemonic “mov” represents the transfer of a
constant or the stored value of a register into a register, the
mnemonic “add” represents the addition of a constant or the

US RE41,751 E

29

stored value of a register to the stored value of a register, and
the mnemonic “st” represents the transier of the stored value
ol a register into memory.

Note that constants are expressed 1in hexadecimal. Also,
the expression “Rn (n=0-31)" indicates one of the registers
in the register file 43. The parallel execution boundary infor-
mation 110 and the format information 111 are each
expressed as “17 or “0”.

The following describes the operation of the processor for
cach execution unit shown in FIG. 26B when processing
according to the flowchart shown 1n FIG. 25.

Execution Unit 1

Packet 70 1s supplied from the memory, and the units in
packet 70 are transferred to the instruction register 23 in
order. After this, the imnstruction 1ssuing control unit 31 refers
to the parallel execution boundary information 110 and for-
mat information 111 of each unit and controls the 1ssuing of
instructions. In detail, the format information 111 of the first
unit 1s “17, so that the instruction issuing control unit 31
links the first unit and second unit and treats them as one
instruction. The no operation instruction flag of the second
instruction decoder 34 1s set at “1”, and the decoding of the
second unit as an instruction 1s invalidated. The parallel
execution boundary information 110 of the first unit 1s “0”,
and the parallel execution boundary information 110 of the
third unit 1s “1”, so that the instruction 1ssuing control unit
31 1ssues the first~third units as two instructions. Since all of
the supplied units are 1ssued, no units are accumulated 1n the
instruction butfer 22.

The executing unit 40 transfers the constant
“Ox87654321” to register R1 and transiers the stored value
of register RS to register RO.

Execution Unit 2

Packet 71 1s supplied from memory, and the units 1n
packet 71 are transferred to the instruction register 23 in
order. The format information {11 of all three units 1s “0”, so
that each unit forms a 21-bit instruction. The parallel execu-
tion boundary information 110 of the first unit 1s “0”, and the
parallel execution boundary imformation 110 of the second
unit 1s “17, so that the instruction issuing control unit 31
1ssues the first and second units as two nstructions. The third
unit 1s not 1ssued and so 1s accumulated 1n the instruction
butfer 22.

The executing unit 40 adds the stored value of register R0
to the stored value of register R1 and stores the result in
register R0O. The executing unit 40 also adds the stored value
of register R3 to the stored value of register R2 and stores the
result 1n register R3.

Execution Unit 3

Packet 72 1s supplied from memory, and one unit accumu-
lated 1n the instruction butier 22 and the two units in packet
72 are transterred to the 1nstruction register 23 1n order. The
format information 111 of all three unaits 1s “0”, so that each
unit forms a 21-bit instruction. The parallel execution
boundary information 110 of the first unit and the second unit
1s “0”, and the parallel execution boundary information 110
of the third unit 1s *“17, so that the 1nstruction 1ssuing control
unit 31 issues all three units as three separate instructions. In
this case, all of the supplied units are 1ssued as 1nstructions.

The executing unit 40 transfers the stored value of register
RO to the address in the memory shown by the stored value
of register R4, transiers the stored value of register R0 to
register R6, and transiers the stored value of register R3 to
register R7.

As described above, the program that has the present pro-
cessor execute the processing shown i FIG. 25 1n three
execution units. The executable codes are composed of one

10

15

20

25

30

35

40

45

50

55

60

65

30

42-bit instruction and 6 21-bit instructions, so that the total
code s1ze 15 168 bits.

Supplementary Explanation for the Instruction Conversion
Apparatus of the Second Embodiment

First Specific Example of the Operation of the Instruction
Conversion Apparatus

The following describes the operation of the characteristic
components of the present instruction conversion apparatus,
with reference to specific instructions.

FIG. 27 A shows assembler codes that are generated by the
assembler code generating unit 111 when source codes are
inputted into the compiler upstream part 110. The instruction
scheduling unit 112 receives an input of the codes shown 1n
FIG. 25. The meaning of each istruction shown 1n FIG. 27A
1s as follows.

Instruction 1: the constant 0x1000 (*0x”” showing that the
value 1s 1n hexadecimal) 1s transferred to the register RO.

Instruction 2: the content of register R0 1s stored 1n the
memory address indicated by the stack pointer SP.

Instruction 3: the content of register R1 1s transferred to
register R2.

Instruction 4: the content of register R3 1s transferred to
register R4.

Instruction 5: the content of register R2 1s added to regis-
ter R4.

The following explain the operation of the instruction
scheduling unit 112 with reference to FIGS. 27B~27E. First,
the dependency analyzing unit 120 1s activated and the
dependency graph shown 1n FIG. 27B 1s generated from the
codes shown 1n FIG. 27A. Next, the instruction rearranging
unmit 121 1s activated. When loop2 composed of steps S3~S8
ends, the processing moves to step S9 where the instruction
rearranging unit 121 determines a group including one or
more nstructions as the arranged nodes. The unit for deter-
mining such groups 1s called a “cycle”.

First Cycle

First, the arrangement candidate group 1s selected (step
S2). At this point, the nodes with no predecessors are nodes
1, 3, and 4. Next, the most suitable node 1s selected (step S4).
In this example, node 1 1s selected. Next, 1t 1s judged
whether node 1 can be arranged (step S5). In this example,
arrangement of node 1 1s judged possible (steps Ul, U2), so
that node 1 1s provisionally arranged (step U9).

At this point, the parallel execution code 1s as shown on
the top level of FIG. 27C. Next, the arrangement state 1s
mudged (step S6). Since the parallel execution code at this
point 1s as shown on the top level of FIG. 27C, further
arrangement 1s judged as being possible. Since no new
arrangement candidates are generated (step S7), the process-
ing returns to the start of loop2 (step S8). Since there are still
nodes remaining in the arrangement candidate group, loop2
1s repeated (step S3). Next, the most suitable node 1s selected
(step S4). In this example, node 3 1s selected. Next, 1t 1s
judged whether node 3 can be arranged (step S5). In this
example, arrangement of node 3 1s judged possible (steps
Ul, U2), so that node 3 1s provisionally arranged (step U9).

At this point, the parallel execution code 1s as shown on
the second level of FIG. 27C. Next, the arrangement state 1s
mudged (step S6). Since the parallel execution code at this
point 1s as shown on the second level of FIG. 27C, further
arrangement 1s judged as being possible. Since no new
arrangement candidates are generated (step S7), the process-
ing returns to the start of loop2 (step S8). Since there are still
nodes remaining in the arrangement candidate group, loop2
1s repeated (step S3). Next, the most suitable node 1s selected
(step S4). In this example, only node 4 1s left, so this 1s
selected. Next, 1t 1s judged whether node 4 can be arranged

US RE41,751 E

31

(step S5). In this example, the present parallel execution
code 1s as shown on the second level of FIG. 27C, with two
instructions having been provisionally arranged 1n a long-
short pattern. As a result, the processing advances to step U5
via steps Ul~U4. The present processed instruction 1s a
short imstruction, so that the judgement “Yes™ 1s given 1n step
US and the processing advances to step U6.

In step U6, dependencies between the provisionally
arranged 1instruction (nodes 1 and 3) and the processed
instruction (node 4) are mvestigated. As can be understood
from the dependency graph, no dependency exists between
these 1nstructions, so that instructions 1, 3, and 4 may be
executed 1 any order. As a result, the judgement “Yes™ 1s
given 1n step U7, and the mstructions in the present parallel
execution code are rearranged into the order 3, 4, 1 1n step
U8. The arranged state 1s then examined (step S6). At this
point, the parallel execution code 1s as shown by the third
level i FIG. 27C, and since the number of provisionally
assigned instructions has reached three, the maximum num-
ber of mstructions that can be executed in parallel by the
processor of the first embodiment, assignment of further
instructions 1s judged to be impossible. Accordingly, loop2
ends and the processing moves to step S9. In step S9, the
instruction that have been provisionally arranged are con-
firmed as being arranged 1nto the present parallel execution
code. At this point, the processing of the first cycle 1s com-
plete. Since unassigned nodes remain, however, loop 1 1s
repeated (steps S10, S1).

Second Cycle

First, the arrangement candidate group 1s selected (step
S2). At this point, the nodes with no predecessors, nodes 2
and 5, are set as the selection candidates. The following
processing 1s the same as 1n the first cycle and so will not be
explained. This processing 1n the second cycle results 1n
these two nodes being arranged as arranged instructions.

Next, the mnstruction rearranging unit 121 inserts a parallel
execution boundary at the first 1nstruction of each cycle.
After these parallel execution boundaries have been inserted,
the codes are as shown 1n FIG. 27D.

After this, the object code generating unit 113 1s activated.
In the present example, the codes shown in FIG. 27D are
outputted as the object file.

Finally, the linking unit 114 i1s activated. Since address
resolution 1s not required for the codes shown 1n FIG. 27D,
the final executable codes are obtained via the same process-
ing as a conventional linker. An 1mage of the executable
codes 1s shown 1n FIG. 27E. The actual executable codes are
bit sequences that have been divided into 64-bit unaits.

FI1G. 28A shows assembler codes that are generated by the
assembler code generating unit 111 when source codes are
inputted into the compiler upstream part 110. The instruction
scheduling unit 112 recerves an mput of the codes shown 1n
FIG. 28A. The meaning of each imstruction shown 1 FIG.
28A 15 as follows.

Instruction 6: the content of the memory indicated by the
label “mem1” 1s loaded 1nto the register RO.

Instruction 7: the content of register R0 1s stored in the
memory address indicated by the stack pointer SP.

Instruction 8: the content of register R1 1s transferred to
register R2.

Instruction 9: the content of register R3 1s transferred to
register R4.

Instruction 10: the content of register R2 1s added to reg-
ister R4.

First, the dependency analyzing unit 120 1s activated and
the dependency graph shown 1n FIG. 28B 1s generated from
the code shown 1n FIG. 28A. Next, the instruction rearrang-

10

15

20

25

30

35

40

45

50

55

60

65

32

ing unit 121 and the parallel execution boundary appending
umt 122 are activated. The processing result for the instruc-
tion scheduling unit 112 1s transferred to the object code
generating unit 113 and the resulting code shown 1n FIG.
28C 1s outputted as the object file. This processing is the
same as 1n the first embodiment, so only the result 1s given.

Next, the linking unit 114 1s activated. The codes shown 1n
FIG. 28C include an unresolved address, so that the address
resolving unit 123 1n the linking unit 114 1s activated. First,
in step V1, the address resolving unit 123 determines the
address, so that the address “OxFO000” 1s determined as
“meml1”. Since “OxF000” 1s a value that exceeds 21 bits, the
judgement “Yes” 1s given in both step V2 and step V4, so
that the processing advances to step V7. In step V7, the
instruction “ld(mem1),R0” 1s divided in the instructions
“mov mem1,R31” and “Id (R31),R0”. In this example, reg-
ister R31 1s the register that 1s reserved for use when the
istruction conversion apparatus divides instructions. Here,
the reason the mnstruction “ld(mem1),R0” 1s divided 1s that
the only instructions of the processor that can handle a 32-bit
value are transfer instructions that transfer a value to a
register, with there being no load instruction that can directly
handle a 32-bit address. Next, 1n step V8, a parallel execu-
tion boundary is inserted between the instructions “mov
meml1,R31” and “Id (R31),R0”. This results in the final
executable codes being as shown 1n FIG. 28D.

Comparison with a Conventional Fixed-Length VLIW Pro-
CEeSSor

The following compares, for the processing shown in FIG.
25, the operation of the present processor to the operation of
a VLIW processor that uses fixed-length instructions as one
example of the conventional art.

For a sitmple VLIW processor that 1ssues a fixed number
of mstructions with a fixed 1nstruction length 1n each cycle,
the setting of instruction length at a suitable value for the
transier of a 32-bit constant to be indicated by one nstruc-
tion will result 1n an extremely large increase 1n overall code
s1ze. As a result, instruction length 1s set at 32 bits, and the
transier of a 32-bit constant 1s performed by dividing it 1nto
two transier istructions that each transfer 16 baits.

FIGS. 29A and 29B show an example of the executable
codes 1n a program executed by a VLIW processor that
executes 1instructions of a fixed length of 32 bits and an
execution 1image.

The program 1s composed of four packets 73~76. As 1n
FIG. 26A, the processing content of each field 1s shown
using mnemonics. Here, however, the mnemonic “seth1”
refers to the storing of a 16-bit constant 1n the upper 16 bits
of a register and the mnemonic “setlo” refers to the storing
of a 16-bit constant 1n the lower 16 bits of a register. The
mnemonic “NOP” refers to an instruction with no operation
content.

As can be seen from comparing the executable codes 1n
FIG. 29A with the execution image 1n FIG. 29B, all instruc-
tions supplied 1n one cycle are 1ssued 1n the same cycle under
VLIW methods. In other words, three 32-bit instructions are
1ssued 1n each cycle. When no instructions that can be
executed 1n parallel exist, NOP instructions must be inserted
in advance by software. Four NOP instructions are inserted
in the present example, making a total of twelve 32-bit
instructions and a total code size of 384 bits. This 1s much
larger than the code size of the code used by the processor of
the first embodiment.

Since the transier of a 32-bit constant into a register 1s
divided into two 1nstructions, a new dependency 1s created,
so that the number of execution units 1n increased to four. No
matter how the instructions are rearranged, this number can-

US RE41,751 E

33

not be reduced. As a result, one more execution cycle 1s
required than when the same processing 1s performed by the
processor of the first embodiment.

Comparison With a Conventional Processor Where Parallel
Execution Boundary Information 1s Present in Fixed-Length
Instructions

The following compares, for the processing shown in FIG.
235, the operation of the present processor to the operation of
a processor with fixed-length instructions including infor-
mation showing whether there 1s a parallel execution bound-
ary as another example of the conventional art.

This conventional art will be explained with reference to a
model that executes 32-bit instructions and a model that
executes 40-bit mstructions. Like the VLIW method shown
in FIG. 29, the model that executes 32-bit instructions per-
forms the transier of a 32-bit constant using two 1nstructions.
However, the model that executes 40-bit instructions can
perform operations including the transfer of a 32-bit value
into a register using only one instruction.

FIGS. 30A and 30B show an example of the executable
codes and an execution 1image for a program executed by a
processor that executes instructions which have a fixed
length of 32 bits and include parallel execution boundary
information.

The program 1s composed of eight instructions that are
supplied as the three packets 77-79. The processing in each
instruction 1s shown by the mnemonics that have been
placed into each field of the executable codes. As in the
VLIW method with 32-bit instructions that was shown in
FIG. 29, the transier of a 32-bit constant into a register 1s
performed 1n 16-bit units by two instructions.

As can be seen from FIGS. 30A and 30B, the transter of a
32-bit constant 1nto a register 1s performed 1n 16-bit units by
two 1nstructions, which, as with the VLIW method of FIG.
29, generates a new dependency. This means that one more
execution cycle 1s required than when the processor of the
first embodiment 1s used.

Since no NOP instructions need to be inserted, the code
s1ze 1s equal to that of the VLIW method shown 1n FIG. 29
minus the code size attributable to the NOP 1nstructions.
This means that eight 32-bit 1nstructions are used, making
the total code size 256 bits. However, this 1s still larger that
the code size of the code used by the processor of the first
embodiment.

The following compares the processor of the first embodi-

ment to a model that uses 1nstructions of a fixed length of 40
bits.

FIGS. 31A and 31B show an example of the executable
codes and an execution 1image for a program executed by a
processor that executes instructions which have a fixed
length of 40 bits and include parallel execution boundary
information.

The program 1s composed of seven instructions that are
supplied as the three packets 80~82. The processing in each
instruction 1s shown by the mnemonics that have been
placed into each field of the executable codes. Here, the
transier of a 32-bit constant into a register can be performed
by one 1nstruction.

As can be seen from FIGS. 31A and 31B, the transter of a
32-bit constant 1into a register 1s performed by one 1nstruc-
tion. This means that a total of three execution cycles are
required, which 1s the same as when the processor of the first
embodiment 1s used.

While this conventional art uses the same number of
instructions as the processor of the first embodiment, the
conventional processor has an instruction length of 40 bits
which 1s used for all instructions. The processor of the first

5

10

15

20

25

30

35

40

45

50

55

60

65

34

embodiment has 1nstructions that do not require a large num-
ber of bits defined as 21-bit instructions. The program for the
conventional processor 1s composed of seven 40-bit
instructions, giving a total code size of 280 bits. This 1s
larger than the code used by the processor of the first
embodiment.

The processor of the present embodiment has been above
by way of embodiments, although the processor should not
be construed as being limited to these embodiments. Several
example modifications are given below.

(1) The above embodiments use a premise that scheduling
1s performed statically, although this 1s not a limitation
for the present invention. In other words, the present
invention can also be adopted by a processor that
dynamically schedules 1nstructions, such as a supersca-
lar processor. When doing so, parallel execution bound-
ary information 1s not provided in the instructions, and
the decoder 1s provided with a parallel execution inves-
tigating apparatus for dynamically investigating
whether instructions can be executed in parallel. The
control 1n the above embodiments that was performed
by the mnstruction 1ssuing control unit referring to the
parallel execution boundary information can be per-
formed by referring to the output of the parallel execu-
tion 1nvestigating apparatus. Such a construction
reduces the amount of hardware used by a processor
executing variable length instructions, thereby main-
taining the etlect of the present invention.

(2) The above embodiments describe the case where a
maximum of three instructions are executed
simultaneously, although the present invention 1s not
limited to this number. As one example, a construction
where two structions are simultaneously 1ssued may
be used. When doing so, suitable changes only need to
be made to the construction of the decoding unit and
periphery of the mstruction register, and to the calcula-
tors 1in the executing unit.

(3) As can be seen from the instruction formats given in
FIGS. 6 A~6F, the above embodiments handle instruc-
tions that are composed of one or two units. However,
this 1s not a restriction for the present invention, so that
instruction formats where three or more units are linked
to form one instruction may also be defined. As one
example, when 1nstructions are composed of up to four
instruction units, two bits can be used as the format
information of each instruction.

(4) As can be seen from the instruction formats given in
FIGS. 6 A~6F, the above embodiments handle 1nstruc-
tions that are composed of one or two units. However,
instructions composed of a single unit do not need to be
used. As an alternative example, one 1nstruction may be
composed of two or three unmits. In such case, only the
wiring between the mstruction register, the instruction
decoder, and the constant operand needs to be changed.

(5) As can be seen from the instruction formats given in
FIGS. 6 A~6F, the instructions described 1n the above
embodiments include information showing whether
there 1s a parallel execution boundary. This information
may not be provided, however. In such case, nstruc-
tions only include format information, and a NOP
instruction 1s inserted whenever no istruction that can-
not be executed in parallel 1s present. In such an
arrangement, the major effect of the present ivention,
namely, the ability to indicate instructions using an
istruction format of only the necessary length 1s still
achieved.

US RE41,751 E

35

(6) As can be seen from the instruction formats shown 1n
FIGS. 6 A~6F, the above embodiments describe a case
where only part of a constant operand can be positioned
in the second of the two units used to compose a 42-bit
instruction, although an opcode may alternatively be
positioned into this unit. As a result, the construction
shown 1 FIG. 5 may be changed so that the unit that
was directly outputted as part of the constant operand
may be mputted into the istruction decoder, and the
input bit width of the instruction decoder may be
increased.

(7) In the above embodiments, the instruction buifer was
described as having the construction shown in FIG. 8,
although the present invention 1s not restricted to this
construction or to this buffer size. As one example, one
instruction buffer with a simple queue structure may be
used.

(8) Software that achieves the functioning of the instruc-
tion conversion apparatus described in the second
embodiment may be distributed having been stored on a
recording medium such as a floppy disk, a hard disk, a
CD-ROM, an MO (Magnetic-Optical) disc, or a DVD
(Digital Versatile Disc).

The executable program generated by the mstruction con-
version apparatus of the above embodiments of the present
invention may be distributed having been recorded onto a
floppy disk, a hard disk, a CD-ROM, an MO disc, a DVD, or
a semiconductor memory.

Although the present invention has been fully described
by way of examples with reference to accompanying
drawings, 1t 1s to be noted that various changes and modifi-
cations will be apparent to those skilled 1n the art. Therefore,
unless such changes and modifications depart from the scope
of the present invention, they should be construed as being
included therein.

What 1s claimed 1s:

1. An nstruction conversion apparatus that converts an
istruction sequence nto parallel execution codes that are
executable by a target processor, the target processor having
predetermined limitations regarding combinations of
instructions capable of being executed in parallel,

the instruction conversion apparatus comprising:

assigning means for successively assigning instructions
in the instruction sequence to parallel execution
codes; and

control means for controlling the assigning means so
that a combination of a plurality of 1nstructions that
have already been assigned to a parallel execution
code and an instruction that the assigning means 1s
about to assign to the parallel execution code satisiy
the predetermined limitations of the target processor;

wherein the target processor includes (1) a fetch means
for successively fetching parallel execution codes
that each include a plurality of unit fields from out-
side the target processor, (2) s+k—1 (where s,k are
integers no smaller than 2) registers for storing
s+k—1 unit fields included in at least two parallel
execution codes that have been fetched by the fetch
means, (3) decoding means, including s decoders
that correspond to 1°* to s” registers in the s+k-1
registers, the decoders decoding at least one opcode
stored in any of the 1% to s™ registers, and (4) opera-
tion executing means, connected to the s+k—-1 regis-
ters for executing operations 1n accordance with a
decoding result of the s decoders,

the assigning means assigning, when instructions to be
assigned to a parallel execution code include a long

10

15

20

25

30

35

40

45

50

55

60

65

36

instruction whose word length 1s equal to at least two
but no more than k unit fields, one of an opcode and
an operand of the long instruction to a u” (where u is
any integer such that 1<u<s) unit field between the
1°” unit field and the s unit field, and only an oper-
and of the long 1nstruction to unit fields from a (u+1)
” unit field to (u+k—1)" unit field.
2. The instruction conversion apparatus of claim 1, further
comprising;
grouping means for forming an instruction group of a plu-
rality of imstructions that do not exhibit a dependency
relation (hereafter “data dependency relation™), a data
dependency relation being a relation between an
instruction defining a resource and an 1nstruction refer-
ring to the same resource; and

first detecting means for detecting, when a 1 to an s” unit
field 1n a parallel execution code have been assigned at
least one 1nstruction by the assigning means and an
instruction (hereafter “short instruction™) with a shorter
word length than a long 1nstruction is left 1n the mnstruc-

tion group, a long instruction assigned to unit fields
between the 1°* unit field and the s unit field,

wherein the control means includes a first control unit for
controlling the assigning means to rearrange instruc-
tions that have already been assigned to the parallel
execution code so that the detected long instruction 1s
assigned to unit fields between the s unit field and the
(s+k—1)" unit field and the short instruction remaining
in the instruction group i1s assigned to a umit field
between the 1 unit field and the (s—1)” unit field.

3. The mstruction conversion apparatus of claim 2,

wherein the instruction group includes instructions that
exhibit an anti-dependence and instructions that exhibit
an output dependence, an anti-dependence being a rela-
tion between an mstruction that refers to a resource and
an 1nstruction that thereafter defines the resource, and
an output dependence being a relation between an
instruction that defines a resource and another instruc-
tion that defines the resource,

the control means 1including a search unit for searching for
a combination pattern, composed of a plurality of
instructions in the struction group, that 1s unaffected
by an anti-dependence and an output dependence, and

the first control unit controlling the assigning means to
rearrange the plurality of instructions 1n accordance
with the combination pattern found by the search unait,
to assign the long instruction found by the detecting
means to unit fields from the s” unit field to the (s+k-
1)” unit field, and to assign a short instruction left in the
instruction group to a unit field between the 1% unit
field and the (s—1)" unit field.
4. The instruction conversion apparatus of claim 3, turther
comprising:
flag setting means for setting a parallel execution bound-
ary tlag at each boundary that marks a position at which
the predetermined limitations of the target processor
dictate that parallel execution is not possible.
5. The instruction conversion apparatus of claim 4, further
comprising;
address resolving means for assigning a real address to a
parallel execution code; and

second detecting means for detecting, when a real address
has been assigned to a parallel execution code, an
instruction including the real address that 1s not capable
of being expressed by an original word length of the
instruction,

US RE41,751 E

37

the flag setting means setting the boundary tlag at a unit
field located one of betfore and after unit fields to which
the mstruction detected by the second detecting means
has been assigned.

6. The instruction conversion apparatus of claim 3, further

comprising:

replacing means for replacing an istruction detected by
the second detecting means with a transfer instruction
that transfers an address to a register and an addressing
instruction that performs the same processing as the
replaced instruction using the register,

the assigning means assigning the two instructions substi-
tuted by the replacing means to a plurality of unit fields,
and

the flag setting means setting a boundary flag at one of the
plurality of unit fields to which the two substituted
instructions have been assigned to show a parallel
execution boundary.

7. A processor, comprising:

fetch means for successively fetching parallel execution
codes that include a plurality of unit fields from outside
the processor;

a register set for storing a combination of a plurality of
istructions included 1n at least two parallel execution
codes that have been fetched by the fetch means;

decoding means for decoding, when the combination of
istructions stored in the register set satisfies predeter-
mined restrictions, the instructions 1n the combination
in parallel; and

operation execution means for executing a plurality of
operations 1n parallel 1n accordance with a decoding
result of the decoding means;

s+k—1 (where s,k are integers no smaller than 2) registers
for storing s+k—1 unit fields included 1n at least two
parallel execution codes that have been fetched by the
fetch means,

the decoding means 1including a decoders that correspond
to 1°"to s™ registers in the s+k-1 registers and decode at
least one opcode stored in any of the 1°” to s registers,
and

the operation executing means being connected to the
s+k—1 registers and executing operations 1n accordance
with a decoding result of the s decoders.

8. The processor of claim 7,

wherein a long instruction whose word length 1s equal to
at least two but no more than k unit fields 1s stored 1n
any of the s+k—1 registers with a first of the at least two
but no more than k umit fields storing an opcode of the
long struction,

the decoding means including:

a decoding control umt which, when an opcode of a
long instruction in stored in a u” (l1<u<s) unit field
between the 1°7 unit field the s unit field, has the u™
decoder decode the opcode stored in the u” register
and a value stored between the u” register and the
(u+k-1)" register outputted to the operation execu-
tion means as an operand of the long 1nstruction.

9. The processor of claim 7,

wherein the first unit field that stores the opcode of the
long instruction has a format flat set at ON to show that
the unit field forms part of a long nstruction,

the decoding control umt detecting a register that stores a
unit field whose format flag is set at ON as the u”
register, and

the decoding control umt having the uth decoder decode
an operand stored in the u™ register and having a stored

10

15

20

25

30

35

40

45

50

55

60

65

38

value between the u™ register and the (u+k—1)" register
outputted to the operation execution means as an oper-
and of the long instruction.

10. The processor of claim 7,

wherein the decoding control unit performs control to
invalidate a decoding operation of every decoder from
the (u+1)” decoder onwards when a value stored

between the (u+1)” register and the (u+k—1)" register
1s outputted to the operation execution means as an
operand of a long instruction.

11. A recording medium storing executable code for a
processor, the processor including (1) a fetch means for suc-
cessively fetching parallel execution codes that each include
a plurality of unit fields from outside the target processor, (2)
s+k—1 (where s,k are integers no smaller than 2) registers for
storing s+k—1 unit fields included 1n at least two parallel
execution codes that have been fetched by the fetch means,
(3) decoding means, including a decoders that correspond to
1°" to s™ registers in the s+k—1 registers, the decoders decod-
ing at least one opcode stored in any of the 1** to s™ registers,
and (4) operation executing means, connected to the s+k-1
registers for executing operations in accordance with a
decoding result of the s decoders,

the executable code stored on the recording medium being

arranged such that at least one of an opcode and an

operand of a long istruction having a word length of at

least two but no more than k umit fields 1s arranged into

a u” (where u is any integer such that 1=u=s) into to a

u” (where u is any integer such that 1 =u=s) unit field

between the 1 unit field and the s unit field, and only

an operand of the long instruction i1s arranged in unit

fields from a (u+1)” unit field to a (u+k—1)" unit field.

12. A computer-readable recording medium storing an

instruction conversion program that converts an instruction

sequence 1nto parallel execution codes that are executable by

a target processor, the target processor having predetermined

limitations regarding combinations of instructions that can
be executed 1n parallel,

the 1nstruction conversion program comprising:

an assigning step for successively assigning instruc-
tions 1n the mstruction sequence to parallel execution
codes; and

a control step for controlling the assigning step so that a
combination of a plurality of instructions that have
already been assigned to a parallel execution code
and an 1nstruction that the assigning step 1s about to
assign to the parallel execution code satisty the pre-
determined limitations of the target processor;

wherein the target processor includes (1) a fetch means
for successively fetching parallel execution codes
that each include a plurality of unit fields from out-
side the target processor, (2) s+k—1 (where s.k are
integers no smaller than 2) registers for storing
s+k—1 unit fields included in at least two parallel
execution codes that have been fetched by the fetch
means, (3) decoding means, mcluding a decoders
that correspond to 1% to s” registers in the s+k-1
registers, the decoders decoding at least one opcode
stored in any of the 1*” to s registers, and (4) opera-
tion executing means, connected to the s+k-1 regis-
ters for executing operations 1n accordance with a
decoding result of the s decoders,

the assigning step assigning, when instructions to be
assigned to a parallel execution code include a long
instruction whose word length 1s equal to at least two
but no more than k unit fields, at least one of an
opcode and an operand of the long instruction to a u”

US RE41,751 E

39

(where u 1s any integer such that 1<u<s) unit field
between the 1°7 unit field the s” unit field, and only
an operand of the long mnstruction to unit fields from
a (u+1)” unit field to a (u+k-1)"” unit field.

13. The computer-readable recording medium of claim

12,

wherein the instruction conversion program further com-
prises:

a grouping step for forming an instruction group of a
plurality of mnstructions that do not exhibit a depen-
dency relation (hereafter “data dependency
relation”), a data dependency relation being a rela-
tion between an 1nstruction defining a resource and
an 1nstruction referring to the same resource; and

a first detecting step for detecting, when a 1** to an s”
unit field 1mn a parallel execution code have been
assigned at least one instruction by the assigning step
and an instruction (hereafter “short instruction™)
with a shorter word length than a long instruction 1s
left 1in the 1instruction group, a long instruction
assigned to unit fields between the 1°° unit field and
the s” unit field,

wherein the control step includes a first control substep
for controlling the assigning step to rearrange
instructions that have already been assigned to the
parallel execution code so that the detected long
instruction is assigned to unit fields between the s”
unit field and the (s+k—1)" unit field and the short
instruction remaining in the istruction group 1s
assigned to a unit field between the 1°° unit field and

the (s—1)” unit field.
14. The computer-readable recording medium of claim

13,

wherein the instruction group includes instructions that
exhibit an anti-dependence and istructions that exhibit
an output dependence, an anti-dependence being a rela-
tion between an mstruction that refers to a resource and
an instruction that thereafter defines the resource, and
an output dependence being a relation between an
instruction that defines a resource and another nstruc-
tion that defines the resource,

the control step including a search substep for searching
for a combination pattern, composed of a plurality of
instructions in the instruction group, that 1s unatiected
by an anti-dependence and an output dependence, and

the first control substep controlling the assigning step to
rearrange the plurality of instructions 1 accordance
with the combination pattern found by the search
substep, to assign the long instruction found by the
detecting step to unit fields from the s” unit field to the
(s+k-1) unit field, and to assign a short instruction left
in the instruction group to a unit field between the 1%

unit field and the (s-1)” unit field.
15. The computer-readable recording medium of claim

14,

wherein the instruction conversion program further com-

Prises:

a flag setting step for setting a parallel execution bound-
ary flag at each boundary that marks a position at
which the predetermined limitations of the target
processor dictate that parallel execution 1s not pos-
sible.

16. The computer-readable recording medium of claim
15,

wherein the instruction conversion program further com-
Prises:

10

15

20

25

30

35

40

45

50

55

60

65

40

an address resolving step for assigning a real address to
a parallel execution code; and

a second detecting step for detecting, when a real
address has been assigned to a parallel execution
code, an nstruction including the real address that
cannot be expressed by an original word length of the
instruction,

the tlag setting step setting the boundary tlag at a umit

field located one of before and after unit fields to
which the instruction detected by the second detect-
ing step has been assigned.

17. The computer-readable recording medium of claim
16,

wherein the mstruction conversion program further com-

Prises:

a replacing step for replacing an instruction detected by
the second detecting step with a transfer instruction
that transiers an address to a register and an address-

ing instruction that performs the same processing as
the replaced 1instruction using the register,

the assigning step assigning the two instructions substi-

tuted by the replacing step to a plurality of unit fields,
and

the tlag setting step setting a boundary flag at one of the

plurality of unit fields to which the two substituted
instructions have been assigned to show a parallel
execution boundary.

18. An instruction conversion apparatus that converts an
istruction sequence into parallel execution codes that are
executable by a target processor, the target processor having
predetermined limitations regarding combinations of
instructions capable of being executed 1n parallel,

the 1nstruction conversion apparatus comprising:

an assigning unit for successively assigning instruc-
tions 1n the mnstruction sequence to parallel execution
codes; and

a control umt for controlling the assigning unit so that a
combination of a plurality of instructions that have
already been assigned to a parallel execution code
and an 1nstruction that the assigning unit 1s about to
assign to the parallel execution code satisty the pre-
determined limitations of the target processor;

wherein the target processor includes (1) a fetch unit for
successively fetching parallel execution codes that
cach include a plurality of umt fields from outside
the target processor, (2) s+k—1 (where s,k are inte-
gers no smaller than 2) registers for storing s+k—1
unit fields included 1n at least two parallel execution
codes that have been fetched by the fetch unit, (3) a
decoding unit, including a decoders that correspond
to 1° to s™ registers in the s+k—-1 registers, the decod-
ers decoding at least one opcode stored 1n any of the
1°” to s registers, and (4) an operation executing
unit, connected to the s+k-1 registers for executing
operations 1n accordance with a decoding result of
the s decoders,

the assigning unit assigning, when instructions to be
assigned to a parallel execution code include a long
instruction whose word length 1s equal to at least two
but no more than k unit fields, one of an opcode and
an operand of the long instruction to a u” (where u is
any integer such that 1<u<s) unit field between the
157 unit field and the s” unit field, and only an oper-
and of the long 1nstruction to unit fields from a (u+1)
” unit field to a (u+k-1)" unit field.

19. The 1nstruction conversion apparatus of claim 18, fur-
ther comprising:

US RE41,751 E

41

a grouping unit for forming an instruction group of a plu-
rality of instructions that do not exhibit a dependency
relation (hereafter “data dependency relation™), a data
dependency relation being a relation between an
instruction defining a resource and an 1nstruction refer-
ring to the same resource; and

a first detecting unit for detecting, when a 1** to an s unit
field 1n a parallel execution code have been assigned at
least one instruction by the assigning unit and an
istruction (hereafter “short instruction™) with a shorter
word length than a long 1nstruction is left 1n the mnstruc-
tion group, a long instruction assigned to unit fields
between the 1% unit field and the s” unit field,

wherein the control unit includes a first control unit for
controlling the assigning unit to rearrange instructions
that have already been assigned to the parallel execu-
tion code so that the detected long instruction 1is
assigned to unit fields between the s” unit field and the
(s+k—1)" unit field and the short instruction remaining
in the instruction group i1s assigned to a unit field
between the 1°* unit field and the (s—1)" unit field.

20. The mstruction conversion apparatus of claim 19,

wherein the instruction group includes instructions that
exhibit an anti-dependence and mstructions that exhibit
an output dependence, an anti-dependence being a rela-
tion between an instruction that refers to a resource and
an instruction that thereafter defines the resource, and
an output dependence being a relation between an
instruction that defines a resource and another instruc-
tion that defines the resource,

the control unit including a search unit for searching for a
combination pattern, composed of a plurality of
instructions in the instruction group, that 1s unaffected
by an anti-dependence and an output dependence, and

the first control unit controlling the assigning unit to rear-
range the plurality of instructions 1n accordance with
the combination pattern found by the search unit, to
assign the long instruction found by the detecting unit
to unit fields from the s unit field to the (s+k—1)" unit
field, and to assign a short instruction lett 1n the instruc-
tion group to a unit field between the 1°° unit field and
the (s—1)” unit field.

21. The 1nstruction conversion apparatus of claim 20, fur-

ther comprising:

a flag setting unit for setting a parallel execution boundary
flag at each boundary that marks a position at which the
predetermined limitations of the target processor dic-
tate that parallel execution 1s not possible.

22. The 1nstruction conversion apparatus of claim 21, fur-

ther comprising:

an address resolving unit for assigning a real address to a
parallel execution code; and

a second detecting unit for detecting, when a real address
has been assigned to a parallel execution code, an
instruction including the real address that 1s not capable
of being expressed by an original word length of the
instruction,

the flag setting unit setting the boundary flag at a unit field
located one of before and after unit fields to which the
istruction detected by the second detecting unit has
been assigned.

23. The 1nstruction conversion apparatus of claim 22, fur-

ther comprising;:

a replacing unit for replacing an instruction detected by
the second detecting unit with a transfer instruction that

10

15

20

25

30

35

40

45

50

55

60

65

42

transfers an address to a register and an addressing
instruction that performs the same processing as the
replaced 1nstruction using the register,

the assigning unit assigning the two instructions substi-
tuted by the replacing unit to a plurality of unit fields,
and

the flag setting unit setting a boundary tlag at one of the
plurality of unit fields to which the two substituted
instructions have been assigned to show a parallel
execution boundary.

24. A processor, comprising:

a fetch unit for successively fetching parallel execution
codes that include a plurality of unit fields from outside
the processor;

a register set for storing a combination of a plurality of

istructions included 1n at least two parallel execution
codes that have been fetched by the fetch unait;

a decoding unit for decoding, when the combination of
istructions stored in the register set satisfies predeter-
mined restrictions, the instructions in the combination
in parallel; and

an operation execution unit for executing a plurality of
operations 1n parallel in accordance with a decoding
result of the decoding unat;

s+k—1 (where s.k are integers no smaller than 2) registers
for storing s+k—1 unit fields included 1n at least two

parallel execution codes that have been fetched by the
fetch unut,

the decoding unit including a decoders that correspond to
157 to s registers in the s+k—1 registers and decode at
least one opcode stored in any of the 1% to s” registers,
and

the operation executing unit being connected to the s+k-1
registers and executing operations in accordance with a
decoding result of the s decoders.

25. The processor of claim 24,

wherein a long instruction whose word length 1s equal to
at least two but no more than k unit fields 1s stored 1n
any of the s+k—1 registers with a first of the at least two
but no more than k unit fields storing an opcode of the
long instruction,

the decoding unit including:

a decoding control unit which, when an opcode of a
long instruction in stored in a u” (1<u<s) unit field
between the 1°7 unit field the s unit field, has the u”
decoder decode the opcode stored in the u” register
and a value stored between the u” register and the
(u+k-1)" register outputted to the operation execu-
tion unit as an operand of the long mstruction.

26. The processor of claim 24

wherein the decoding control umt performs control to
invalidate a decoding operation of every decoder from
the (u+1)” decoder onwards when a value stored
between the (u+1)” register and the (u+k-1)" register
1s outputted to the operation execution unit as an oper-
and of a long istruction.

27. A recording medium storing executable code for a
processor, the processor including (1) a fetch unit for succes-
stvely fetching parallel execution codes that each include a
plurality of unit fields from outside the target processor, (2)
s+k—1 (where s,k are integers no smaller than 2) registers for
storing s+k-1 unit fields included 1n at least two parallel
execution codes that have been fetched by the fetch unit, (3)
a decoding unit, including a decoders that correspond to 1%
to s” registers in the s+k—1 registers, the decoders decoding

US RE41,751 E

43

at least one opcode stored in any of the 1% to s” registers,
and (4) an operation executing unit, connected to the s+k-1
registers for executing operations in accordance with a
decoding result of the s decoders,

the executable code stored on the recording medium being 5
arranged such that at least one of an opcode and an
operand of a long nstruction having a word length of at

least two but no more than k unit fields 1s arranged into

to a u” (where u is any integer such that 1<u<s) unit
field between the 1°* unit field and the s” unit field and
the s” unit field, and only an operand of the long
instruction is arranged in unit fields from a (u+1)™ unit
field to a (u+k—1)" unit field.

28. A computer-readable recording medium storing an
istruction conversion program that converts an instruction 15
sequence 1nto parallel execution codes that are executable by
a target processor, the target processor having predetermined
limitations regarding combinations of istructions that can
be executed 1n parallel,

the instruction conversion program comprising: 20
an assigning step for successively assigning instruc-
tions 1n the mstruction sequence to parallel execution
codes; and
a control step for controlling the assigning step so that a
combination of a plurality of instructions that have >3
already been assigned to a parallel execution code
and an instruction that the assigning step 1s about to
assign to the parallel execution code satisty the pre-
determined limitations of the target processor;
wherein the target processor includes (1) a fetch unit for 30
successively fetching parallel execution codes that
cach include a plurality of umt fields from outside
the target processor, (2) s+k-1 (where s.k are inte-
gers no smaller than 2) registers for storing s+k-1
unit fields included 1n at least two parallel execution 35
codes that have been fetched by the fetch unit, (3) a
decoding unit, including s decoders that correspond
to 1% to s registers in the s+k—-1 registers, the decod-
ers decoding at least one opcode stored 1n any of the
15" to s registers, and (4) an operation executing 4¢
unit, connected to the s+k-1 registers for executing
operations 1 accordance with a decoding result of
the s decoders,
the assigning step assigning, when instructions to be
assigned to a parallel execution code include a long 45
instruction whose word length 1s equal to at least two
but no more than k unit fields, at least one of an
opcode and an operand of the long instruction to a u”
(where u 1s any integer such that 1<u<s) unit field
between the 1°” unit field the s” unit field, and only s0
an operand of the long mnstruction to unit fields from
a (u+1)” unit field to a (u+k—-1)" unit field.
29. The computer-readable recording medium of claim
28,
wherein the instruction conversion program further com- 55
prises:
a grouping step for forming an instruction group of a
plurality of instructions that do not exhibit a depen-
dency relation (hereafter “data dependency

tion between an 1nstruction defining a resource and
an 1nstruction referring to the same resource; and

a first detecting step for detecting, when a 1°* and an s
unit field 1in a parallel execution code have been
assigned at least one 1nstruction by the assigning step 65
and an instruction (hereafter “short instruction™)
with a shorter word length than a long instruction 1s

th

44

left 1n the instruction group, a long instruction
assigned to unit fields between the 1°° unit field and
the s unit field.

wherein the control step includes a first control substep
for controlling the assigning step to rearrange
instructions that have already been assigned to the
parallel execution code so that the detected 1011%
instruction is assigned to unit fields between the s’
unit field and the (s+k—1)" unit field and the short
instruction remaining i1n the nstruction group 1is

assigned to a unit field between the 1° unit field and
the (s—1)” unit field.

30. The computer-readable recording medium of claim

wherein the instruction group includes instructions that

exhibit an anti-dependence and instructions that exhibit
an output dependence, an anti-dependence being a rela-
tion between an instruction that refers to a resource and
an 1nstruction that thereafter defines the resource, and
an output dependence being a relation between an
instruction that defines a resource and another instruc-
tion that defines the resource,

the control step including a search substep for searching

for a combination pattern, composed of a plurality of
instructions in the mstruction group, that 1s unatiected
by an anti-dependence and an output dependence, and

the first control substep controlling the assigning step to

rearrange the plurality of instructions in accordance
with the combination pattern found by the search
substep, to assign the long instruction found by the
detecting step to unit fields from the s” unit field to the
(s+k—1)" unit field, and to assign a short instruction left

in the instruction group to a unit field between the 1*
unit field and the (s—1)" unit field.

31. The computer-readable recording medium of claim

wherein the instruction conversion program further com-

prises:

a flag setting step or setting a parallel execution bound-
ary flag at each boundary that marks a position at
which the predetermined limitations of the target
processor dictate that parallel execution 1s not pos-

sible.

32. The computer-readable recording medium of claim

wherein the 1nstruction conversion program further com-

prises:

an address resolving step for assigning a real address to
a parallel execution code; and

a second detecting step for detecting, when a real
address has been assigned to a parallel execution
code, an nstruction including the real address that
cannot be expressed by an original word length of the
instruction,

the flag setting step setting the boundary flat at a umit
field located one of before and after unit fields to
which the mstruction detected by the second detect-
ing step has been assigned.

33. The computer-readable recording medium of claim

relation™), a data dependency relation being a rela- 60 32,
wherein the mstruction conversion program further com-

prises:

a replacing step for replacing an instruction detected by
the second detecting step with a transfer instruction
that transfers an address to a register and an address-
ing instruction that performs the same processing as
the replaced instruction using the register,

US RE41,751 E

45

the assigning step assigning the two instructions substi-
tuted by the replacing step to a plurality of unit fields,
and

the flag setting step setting a boundary flag at one of the
plurality of unit fields to which the two substituted °
instructions have been assigned to show a parallel
execution boundary.

34. A processor comprising:

an execution unit which executes up to N number of 0

instructions having a variable bit length in parallel, N
being an integer which is at least two, wherein the
maximum bit length of an instruction that is executed in
parallel is M bits, M being an integer,;

an instruction supplying/issuing unit which fetches an 15
instruction sequence in a unit of a first bit length of
code and outputs the instruction sequence in a unit of a
second bit length of code;

a decoding unit which decodes the instruction sequence in
a unit of a variable bit length of code which is at least a
part of the second bit length of code outputted by the
instruction supplying/issuing unit, and outputting a
decoding vesult to the execution unit; and

20

an instruction bus formed between the instruction 35
supplving/issuing unit and the decoding unit, wherein
the total bit width of the instruction bus is shorter than
M*N bits,

wherein the decoding unit decodes a plurality of instruc-
tions executed in parallel, and all of the instructions

decoded in parallel at the same cycle pass through the
instruction bus.

35. The processor of claim 34,

30

wherein the instruction sequence is converted by a certain 5
Instruction conversion apparatus.
36. The processor of claim 33,

wherein the instruction sequence is written in a high-level
language before being converted by the instruction

conversion apparatus. 40
37. The processor of claim 34,

whevrein the first bit length is shorter than the second bit
length.

38. The processor of claim 34, 4
wherein at least a part of the instructions have a special

bit which instructs the processor to execute a plurality
of instructions in parallel.
39. The processor of claim 34,

wherein the decoding unit comprises. 50
an instruction issuing control unit which identifies
instruction boundaries executed in parallel.
40. The processor of claim 34,

wherein the instruction supplying/issuing unit comprises:
a fetch unit for successively fetching the instruction 55
sequence; and

a plurality of instruction buffers for temporally storing
Instructions.

46

41. A processor comprising:

an instruction fetching unit that fetches instructions, each
instruction having a variable bit length, wherein the
maximum bit length of an instruction that is executed in
parallel is M bits, M being an integer;

a decoding unit that decodes a plurality of instructions
executed in parallel;

an execution unit that executes up to N number of decoded
instructions from the decoding unit in parallel, N being
an integer which is at least two; and

an instruction bus formed between the instruction fetching
unit and the decoding unit, wherein the total bit width
of the instruction bus is shorter than M*N bits,

wherein the total bit length of the decoded instructions
that are executed in parallel is variable which is not
related to the bit length of the fetched instructions, and
all of the instructions decoded in parallel at the same
cvcle pass through the instruction bus.

42. The processor of claim 41,

wherein the instruction are converted by a certain instruc-
lion conversion apparatus.
43. The processor of claim 42,

wherein the instructions ave written in a high-level lan-
guage before being converted by the instruction conver-
sion apparatus.,

44. The processor of claim 41,

wherein the instruction fetching unit fetches an instruction
sequence in a unit of a first bit length of code and out-
puts the instruction sequence in a unit of a second bit
length of code, the first bit length being shorter than the
second bit length.

45. The processor of claim 41,

wherein at least a part of the instructions have a special
bit which instructs the target processor to execute a
plurality of instructions in parallel.

46. The processor of claim 41,

wherein the decoding unit comprises.
an instruction issuing contrvol unit which identifies
instruction boundaries executed in parallel.
47. The processor of claim 41, further comprising:

a plurality of operation execution units capable of exectut-
ing a plurality of instructions in parvallel in accovdance
with a decoding result of the decoding unit.

48. The processor of claim 41,

wherein the instruction fetching unit comprises:
a fetch unit for successively fetching the instruction
sequence; and
a plurality of instruction buffers for temporally storing
Iinstructions.
49. The processor of claim 34,

wherein the decoding result directly controls the execution
unit.
50. The processor of claim 41,

wherein the decoding result directly controls the execution
unit.

	Front Page
	Drawings
	Specification
	Claims

