USOORE41706E

(19) United States

12y Reissued Patent
Glass et al.

US RE41,706 E
Sep. 14, 2010

(10) Patent Number:
45) Date of Reissued Patent:

(54) MOVING OBJECTS IN A DISTRIBUTED 5,778,227 A 7/1998 Jordan
COMPUTING ENVIRONMENT 5,781,633 A 7/1998 Tribble et al.
5,787,175 A 7/1998 Carter
(76) Inventors: Graham W. Glass, 2293 Washington St., 2,793,965 A 8/1998 Vanderbilt et al.
Apt. 3, San Francisco, CA (US) 94445; 5,812,781 A 971998 TFahlman et al.
Chris K. Wensel, 346 Coronado Ave. 2,812,795 A O/1998 - Shalib et al.
; ’ 5,822,585 A 10/1998 Noble et al.
Half Moon Bay, CA (US) 94019 5848419 A 12/1998 Hapner et al.
5,862,325 A 1/1999 Reed et al.
(21) Appl. No.: 11/331,418 5,867,665 A 2/1999 Butman et al.
5,881,230 A 3/1999 Christensen et al.
(22) Filed: Jan. 13, 2006 5,897,634 A 4/1999 Attaluri et al.
5,903,725 A 5/1999 Colyer
Related U.S. Patent Documents 5,928.335 A 7/1999 Morita
Reissue of* 5,956,737 A 9/1999 King et al.
(64) Patent No.: 6,678,743 5,983,233 A 11/1999 Potonniee
Tssued: Jan. 13, 2004 5,987,506 A 11/1999 Carter et al.
Appl. No.: 09/451,495 5,999,988 A 12/1999 Pelegri-Llopart et al.
Filed: Nov. 30, 1999 (Continued)
(51) Int.CL
COGF 0/44 (2006.01) FOREIGN PATENT DOCUMENTS
GO6Il 9/54 (2006.01) EP 0727739 A1 8/1996
GB 2326255 12/1998
(52) US.CL ..., 719/317;°719/316; 719/313;
700/201: 709/20 OTHER PUBLICATIONS
(58) Field of Classification Search 719/316, Glen McCluskey, “Using Java Reflection,” Jan. 1998, 6
719/317, 328, 330; 709/201 pages. ™
See application file for complete search history. _
(Continued)
(56) References Cited Primary Examiner—I11 B Zhen
U.S. PATENT DOCUMENTS (57) ABSTRACT
gzgﬁjgg i g;ggj %zi};e;flét n A methfjd for‘moving 0bject§ in a di.st.ributed comipu‘Fing
5.396.630 A 2/1995 Banda of al system 1s provided that comprises receving a move indica-
5.432.924 A 711995 ’Souza et al tion (224) at a mobility facet object (206) that 1s aggregated
5481,721 A 1/1996 Serlet et al. with a primary facet object (204) through an aggregate
5,511,197 A 4/1996 Hill et al. object (202) located at a current host address and port num-
5,577,251 A 11/1996 Hamulton et al. ber (222). A new aggregate object (246) with the new ver-
5,603,031 A 2/1997 White et al. sion (242) of the primary facet object (204) as a new primary
5,019,710° A 41997 Travis et al. facet object (248) and the new version (236) of the mobaility
0,034,010 A 5/1997 Ciscon et al. facet object (206) as a new mobility facet object (250) are
2,053,101 A 81997 O Farrell et al. created at a new host address and port number (234)
5,724,503 A 3/1998 Klemman et al. P '
5,737,607 A 4/1998 Hamulton et al.
5,745,703 A 4/1998 Cejtin et al. 100 Claims, 14 Drawing Sheets

LOCKED

US RE41,706 E
Page 2

U.S. PATENT DOCUMENTS

OTHER PUBLICATIONS

6,006,018 A 12/1999 Burnett et al. Matthew Izatt and Patrick Chan, “Ajents: Toward an Envi-

6,012,067 A 1/2000 Sarkar ronment for Parallel, Distributed and Mobile Java Applica-

6,012,081 A 1/2000 Dorn et al. tions”, Jun. 1999, pp. 1-10.%

6,016,393 A 1/2000 White et al. Richard Hayton, Mike Bursell, Douglas Donaldson, Andrew

6,026415 A 2/2000 Garst et al. Herbert, “Mobile Java Objects,” 1998.

6,032,190 A 2/2000 Bremer et al. Richard Hayton and ANSA Team, “FlexiNet Architecture,”

6,041,166 A 3/2000 Hart et al. Feb. 1999, p. 171-178.

6,044,400 A 3/2000 Lim et al. “Life Cycle Service Specification™, CORBA Object Services

6,061,740 A 5/2000 Ferguson et al. Specification, Chp. 6, OMG, c9r.omg.org/docs/formal/

6,085,030 A 7/2000 Whitehead et al. 97-02—11.pdf,, (Feb. 11, 1997),pp. 6-1 through 6-62.

6,085,086 A 7/2000 La Porta et al. Bowers, “Some Principles for the Encapsulation of The

6,092,196 A 7/2000 Reiche Behavior of Aggregate Objects™, IEEE, (1993),6/1-6/4.

6,134,591 A 10/2000 Nickles Orfali, et al., “The Essentia1 Distributed Objects Survival

6,138,235 A 10/2000 Lipkin et al. Guide”, Chapter 4, Published by John Wiley & Suns, Inc.,

6,138,251 A 10/2000 Murphy et al. (1996),67-90.

6,141,759 A 10/2000 Braddy “The Component Object Model (DRAFT) Specification”,

6,151,639 A 11/2000 Tucker et al. Microsoft Corporation, Mar. 6, 1995),1-4, 39-46.

6,157,960 A 12/2000 Kaminsky et al. McKie, S. “Software Agents: Application Intelligence Goes

6,178,505 Bl 1/2001 Schneider et al. Undercover”, DBMS, (Apr. 1995),8.

6,182,153 Bl 1/2001 Hollberg et al. Brando, Thom “Comparing COBRA and DCE”, (Mar.

6,182,154 Bl 1/2001 Campagnoni et al. 1996).

6,182,155 BI ~ 1/2001 Cheng et al. Roy, Mark et al., “Interworking COM with COBRA”, (May

6,195,794 Bl 2/2001 Buxton 1996).

6,205,491 Bl 3/2001 Callsen et al. Roy, Mark et al., “IChoosing between COBRA and

6,212,574 Bl 4/2001 O’Rourke et al. DCOM?”, (Oct. 1996).

6,230,160 Bl 572001 Chan et al. Cappelo, Robert “Overview of RMI Architecture (Computer

0,237,135 Bj“ >/ 200j“ Timbol Science Online Course Notes)”, University of California

0,253,255 Bl 6/2001 Mason et al. Santa Barbara Department of Computer Science, CS.UCS-

6,253,256 Bl 6/2001 Wollrath et al. “ P oM "

6.260.078 Bl 79001 Fowlow b.edu/—cappello/2901/lectures/rmi/architecture/s1d001 .htm,

6,269,373 Bl 7/2001 Sato et al. (Sep. 7, 1998). o

6.282.580 Bl 8/2001 Chang HQF;;OMG-”’S Internet Inter—ORG Protocol, A Briet dis-

6,304,918 Bl 10/2001 Fraley et al. cription, printed from omg.org,(1994).

6,321,275 Bl 11/2001 McQuistan et al. McManis, Chuck “Take an in—depthlook at the java retlec-

6,324,543 Bl * 11/2001 Cohenetal. 707/200 tion API”, retrieved from JavaWorld.com, (Sep. 1997),1-10.

6,338,089 Bl 1/2002 Quinlan Petrie, C. 1., “Agent—based Engineering, the Web, and Intel-

6,343,332 Bl 1/2002 Ueda ligence”, IEEE Expert, (Dec. 1996),12.

6,345,382 B1 ~ 2/2002 Hughes Wayner, P. “Free Agents”, BYTE, (Mar. 1995),7.

6,347,341 Bl 2/2002 Glassen et al. Wescom, et al., “The object/agent approach: A computing

6,547,542 Bl 2/2002 Marcos et al. model for the future”, Object Magazine, (Mar.—Apr. 1995),

6,356,930 B2 3/2002 Garg 31-33

0,374,508 Bl 42002 Kempf et al. Henderson, Sellers et al., “What 1s This Thing Called Aggre-

6,385,661 Bl 5/2002 Guthrie et al. . s

| . gation?”, IEEE, (Jun. 1999),236-2350.

6,405,246 Bl 6/2002 Hutchison i . . .

6.415315 Bl 719007 Glass Hayton, Richard et al., “Mobile Java Objects”, (1998).

6.434,595 Bl * 82002 Suzukietal. 700/202 Hayton, Richard etal., “FlexiNet Architecture”, (Feb. 1999).

6,438,616 Bl 8/2002 Callsen et al. 71-178.

6,442,620 Bl {/7002 Thatte et al. Bieszczad, A. “Towards Plug—and-Play Networks wilh

6,446,084 Bl 9/2002 Shaylor et al. Mobile Code”, SCE 1echnical Report, (Mar. 1997),17.

6,453,333 Bl 9/2002 Glynias et al. Henry, E. et al., “Fine—Grained Mobility 1n the Emerald Sys-

6,496,871 B1 * 12/2002 Jagannathan et al. 719/317 tem”, ACM, (Feb. 1998),22.

6,513,157 Bl 1/2003 Glass “SOMobijects Developer’s Toolkit Programmer’s Guide”,

6,549,955 B2 4/2003 Guthrie et al. vol. I: SOM and DSOM, (Dec. 1996),275-276.

6,567,861 Bl 5/2003 Kasichainula et al. Moons, H. et al., “Object Migration In a Heterogeneous

6,001,018 BI7/2003 " Logan World—A Multi-Dimensional Affair”, IEEE, (1993),62-72.

6,629,128 Bl 9/2003 Glass iy . .

6701382 Bl 3/2004 Quirt Improveg Process for Ylsual Development of Client/Server

6.714.976 Bl 19004 Wilson ef al. Programs”, IBM Technical Disclosure Bulletin, vol. 41(1),

6.851.118 BL 2/2005 Ismael et al. XP-000772108,(Jan. 1998),281-283.

6.931.455 Bl /7005 Glass “Passing Proxies as Parameters to Methods and Return Val-

6.947.965 B2 9/2005 Glass ues from Methods”, IBM Technical Disclosure Bulletin, vol.

6,951,021 Bl 9/2005 Bodwell et al. 41(1), XP-000772037,(Jan. 1998),89-92.

6,993,774 Bl 1/2006 Glass “Distribution Object Activation and Communication Proto-

7,347,342 B2 3/2008 Grandy cols”, IBM Technical Disclosure Bulletin, US, IBM Corp.
2001/0003824 Al 6/2001 Schnier New York, vol. 37(7), (Jul. 1, 1994),539-542.

US RE41,706 E
Page 3

“Java RMI Tutorial”, Revision 1.3, JDK 1.1 FCS, Sun
Microsystems, (Feb. 10, 1997),1-14.

Spruit, Sandor “Retlections on Java, Beans, and Relational
databases”, retrieved from JavaWorld.com, (Sep. 1997),1-8.

“Java Core Retlection, API and Specification”, JavaSoft,
(Jan. 1997),40-47.

Glen, McCluskey “Using Java Retlection”, article retrieved
from java.sun.com website., (Jan. 1998).

“PCT/US99/24510”, International Search Report for Appl.
No. PCT/US99/24510,(Apr. 19, 2000).4.

Robert, Gray et al., “Mobile agents tor mobile computing”,

lechnical Report PCS—TR96-2835, Dept. of Computer Sci-
ence, Dartmouth College,(May 1996).

Hoi, Markus “Just-in—Time Stub Generation”, Proceedings
of the Joint Modular Languages Conference (JMLC) 97,

Linz, Austria,(Mar. 19-21, 1997),197-206.

Johansen, Dag et al., “An Introduction to the TACOMA Dis-
tributed System Version 1.07, Technical Report 95-23,
Department of Computer Science, University of Troms, Nor-
way, (Jun. 1995).

Bent, Thomsen et al., “Mobile Agents”, External Report
ECRC-92-21, European Computer—Industry Research Cen-
ter, (1993).

“The Component Object Model Specification™, Microsoft
Corporation and Digital Equipment Corporation, Chapters
1 and 2 (printed on Oct. 26, 2005 {from
daimi.au.dk*—datpete/COT/COM SPEC/html/com__
spec.html),(Oct. 24, 1995),54.

“Final Office Action”, U.S. Appl. No. 11/158,734, (Aug. 20,
2009), 18 pages.

“Non Final Offce Action”, U.S. Appl. No. 11/158,734, (Feb.
19, 2010), 21 pages.

“Non Final Action”, U.S. Appl. No. 11/858,878, (Mar. 29,
2010), 30 pages.

* cited by examiner

U.S. Patent Sep. 14, 2010 Sheet 1 of 14 US RE41,706 E

FIG. T

12 APPLICATION
PROGRAM

30~ FACET CONTROL
MODULL

\ AGGREGATE

34 :

A G ey Coen sy ez)

3271 PRIMARY FACET :
|

|

PRIMARY FIRST SECOND
INTERFACE INTERFACE INTERFACE

18 16 22 20 26 24
PRIMARY FACET FACET
FACET OBJECT OBJECT 1} OBJECT 2

\mm;mm'
28

U.S. Patent Sep. 14, 2010 Sheet 2 of 14 US RE41,706 E

b 36 |
! |

32/: PRIMARY FACET @ o
|
|

----------------- ol G O WR NN WP ey) T AN T

PRIMARY 47 ~/ PROXY 51~/ PROXY
INTERFACE INTERFACE INTERFACE 42
16 46 50
18 PRIMARY FACET QBJECT 1 FACET OBJECT 2
08JECT PROXY PROXY

44 0BJECT 1 O8JECT 2 48

FACET CONTROL WODULE

70~ FACET CREATOR OBJECT ADDER 72
(newfocels) (locets.of)
CLASS /INTERFACE ' FIG. 3
T DELETER
/ OBJECT DELE 74

(locets.gel)

r

(focets.of)

U.S. Patent Sep. 14, 2010 Sheet 3 of 14 US RE41,706 E

L
FIG. 4
109~ | APPLICATION PROGRAM REQUESTS THAT 108
AN AGGREGATE OBJECT BE CREATED

TO PRIMARY FACET

LINK PRIMARY FACET TO
NEW AGGREGATE OBJECT

Coo) 110

104 CREATE NEW AGGREGATE OBJECT

CREATE NEW FACET FOR PRIMARY

106 | OBJECT IDENTIFIED AS PRIMARY FACET

APPLICATION PROGRAM REQUESTS
AN OBJECT THAT EITHER EXTENDS A
REQUESTED CLASS OR IMPLEMENTS
A REQUESTED INTERFACE

120

122

FIG. 5

124 SET NEXT FACET TO AGGREGATE
OBJECT'S PRIMARY FACET

126

DOES RETURN A REFERENCE TO THE
NEXT FACET'S FACET IDENTIFIED BY NEXT FACET

OBJECT EITHER EXTEND

THE REQUESTED CLASS OR
IMPLEMENT THE DESIRED
INTERFACE?

YES
APPLICATION PROGRAM ACCESSES

THE OBJECT SATISFYING ITS
REQUEST THROUGH THE
RETURNED FACET

125
128

NO 134

RETURN A NULL REFERENCE
]
30 s
SET NEXT FACET TO THE C END)
| AGGREGATE OBJECT'S NEXT FACET [M132

AGGREGATE OBJECT HAVL
MORE :'ACETS

U.S. Patent Sep. 14, 2010 Sheet 4 of 14 US RE41,706 E

FIG. 6 -
START ~

APPLICATION PROGRAM REQUESTS AN
OBJECT THAT EXTENDS A REQUESTED CLASS

192

FOLLOW METHOD OF FIG. S

194 UNTIL AN OBJECT IS FOUND OR
A NULL REFERENCE IS RETURNED

156

WAS
A NULL REFERENCESNG 158
RETURNED?

RETURN A REFERENCE TO THE
YES FACET IDENTIFIED BY NEXT FACET

CREATE AN INSTANCE OF THE
160 REQUESTED CLASS

" CREATE A NEW FACET FOR THE
162 INSTANCE OF THE REQUESTED CLASS

164 LINK INSTANCE TO NEW FACET
166— LINK NEW FACET TO AGGREGATE OBJECT
168 RETURN A REFERENCE TO NEW FACET

END

US RE41,706 E

Sheet 5 of 14

Sep. 14, 2010

U.S. Patent

000S-ZAX

000¢-F1H

(000G-ZAX)
OL 3AOR
TR/

07 3

N3Y343y
WVa01

US RE41,706 E

Sheet 6 of 14

Sep. 14, 2010

U.S. Patent

1244
000G-2AX \
133r80
ALIIBON

9¢¢

133780
ALI'TIBON
AY/

8l¢

on\e.\

i O1d

00 S

g 902
- 123r80
Anigonit 1l |

ENENERE
I 301

430704 3ONIH343Y

193080
3I¥I389V
80¢

¥3010H 3ONIYI4N

AA/

JONIHILTY
V0T

01

N.ﬂm.uo

¥3IOTOH 3ONIYATY

WNISINO Q3ND0?

133M40
ASVRIYd

\EHEERLY
N0

1474

0c¢

US RE41,706 E

Sheet 7 of 14

Sep. 14, 2010

U.S. Patent

14 YA

80“.“NLI|LIIIII'

13380
ALNISON

9¢¢

8¢C
IAON ONV
37IVIY3S

ARIN |

1A

90¢ _ ¥0C
123180

103780
ALIIE0N

AE}EER
V01

\ELEERL]

3
3¢ 0

71z

NIQIOH 3ON3Y343 430I0H 30N3¥333Y

8i¢ 193180 bie
IV
TN
o | @2
00z’ 02z

Y3010H JON3¥343Y

0ic

US RE41,706 E

Sheet 8 of 14

Sep. 14, 2010

U.S. Patent

1414 A1

123160
ALIIEON

~1 193r80
ALI'IBON |

9¢e — JONIN3I{IY|

N " w0

Y3TI0H 3ON3Y343Y

8le

133180
3IvI3¥0V

p4

US RE41,706 E

Sheet 9 of 14

Sep. 14, 2010

U.S. Patent

.ll\.“\.\.\

_IIII,
-

/ - | =~ .vnN/. .., NNN

3ONIY3INY
VO

N3Y¥143
VIO

g7 33

Y3010H 3IONIS3Y

¥4

812
AN
/J7 -7 ¥31S193Y

JONIYI3 3 == JONJIiY

- (o, e D

022 022
Y3010H 3INIYIIN 430104 3ONIYII3Y

/ _ X
vve CYANIN | ol 00C

US RE41,706 E

Sheet 10 of 14

Sep. 14, 2010

U.S. Patent

000G:ZAX
0SZ

1444

43010H 3ON3YIIN

YA

103180
ALITIBON |

JON3Y343Y
V30

123780
| RIVAE) 99
JINIY3IN
VO

MIO0H JINIMIS

JONIH343Y

L 20)

ALV 000¢-28V

43010H 3ONIY143Y

AN
O
0¢¢

1N455320NS

NIQIOH JONIY3S

| . |

A4 OId

JONIN33Y 310N3Y

43010H JONIY34dy

1 AT

US RE41,706 E

Sheet 11 of 14

Sep. 14, 2010

U.S. Patent

A

000

¢-I8Y

SSUAAV 3ION3Y

Ad30T0H JON3N343y

1 SS3¥OQV 310N3Y

4I0I0H JONTYIIN

¢0t

¢0¢

US RE41,706 E

Sheet 12 of 14

Sep. 14, 2010

U.S. Patent

144

000S:ZAX N\ 0002:28V

Bl¢

A/

¥0C

900
133780
ALITIGON

o JONNIN
900 0

43010H JON3Y333Y

¥

JAN1vd30
-34d

14 ¥4

0¢C

US RE41,706 E

Sheet 13 of 14

Sep. 14, 2010

U.S. Patent

000G-ZAX

133180
ALT1IBON
9¢¢

6 14

o1z

NJ¥143y
W0

A

US RE41,706 E

Sheet 14 of 14

Sep. 14, 2010

U.S. Patent

JANL¥Vd30

WIS/Q10 0

JONNIIN
™01

43070H JONIY3I4Y

4315193y

3ONIHI43Y
W01

N34
W07

a7 32

Y3016H 3NN Y300H 3NN

4Z4 D6 Old Ol 002

US RE41,706 E

1

MOVING OBJECTS IN A DISTRIBUTED
COMPUTING ENVIRONMENT

Matter enclosed in heavy brackets [] appears in the
original patent but forms no part of this reissue specifica-
tion; matter printed in italics indicates the additions
made by reissue.

TECHNICAL FIELD OF THE INVENTION

The present mnvention relates 1n general to object-oriented
technologies and more particularly to a method for moving,
objects 1n a distributed computing environment.

BACKGROUND OF THE INVENTION

In object onented programming, real world objects are
modeled by software objects that have encapsulated therein
special procedures and data elements. In object-onented
programming terminology, procedures are referred to as
methods. To avoid having to redefine the same methods and
data members for each and every occurrence of an object,
object-oriented programming provides the concept of
classes. An inherent structure of one or more levels of
increasingly more specialized classes 1s created to provide
templates that define the methods and variables to be
included 1n the objects of each class. The classes at the lower
levels of the inheritance structure inherit the behavior,
methods, and variables of the classes above. Classes above a
certain class 1n an inheritance structure are referred to as
parent classes setting up a parent-child relationship.
Therefore, an object belonging to a class 1s a member of that
class, and contains the special behavior defined by the class.
In this manner, each object 1s an instance of a defined class
or template and the need to redefine the methods and data
members for each occurrence of the object 1s eliminated.

One example of an object-oriented programming lan-
guage 1s Java, developed by Sun Microsystems. To define a
class 1n Java, the programmer creates a .java file containing
the source code to define the class. The .java file 1s compiled
to create a .class file containing the executable code to define
the class. Instances of the class file are instantiated to create

an object containing data and methods defined by the .class
file.

Object-oriented programming 1s a method of program-
ming that abstracts a computer program into manageable
sections. The key to object-oriented programming is the con-
cept of encapsulation. Encapsulation 1s a method by which
the subroutines, or methods, that manipulate data are com-
bined with the declaration and storage of that data. This
encapsulation prevents the data from arbitrarily being
accessed by other programs’ subroutines, or objects. When
an object 1s invoked, the associated data 1s available and can
be manipulated by any of the methods that are defined within
an object to act upon the data.

The basic component of encapsulation is a class. A class 1s
an abstraction for a set of objects that share the same struc-
ture and behavior. An object 1s a single instance of a class
that retains the structure and behavior of the class. Objects
also contain methods that are the processes by which an
object 1s structed to perform some procedure or manipula-
tion of data that i1t controls. Classes may also be character-
1zed by their interface which defines the elements necessary
for proper communication between objects.

Often, a programmer needs to add functionality to an
existing class of objects but either does not want to change
the existing .class file or does not have access to the source
code and, therefore, does not have the ability to alter the

10

15

20

25

30

35

40

45

50

55

60

65

2

source code. In addition, the programmer may not want to
alter the functionality of the existing .class file since a .class
file may be used in more than one application program.
Therefore, 1t 1s desirable to add functionality to an existing
class of objects during the execution of an application pro-
gram without altering the associated source code.

Distributed computing allows an object on one computer
system to seamlessly communicate with and manipulate an
object contained 1n a second computer system when the two
computer systems are connected by a computer network.
The second computer system may also be referred to as
another address space. Client/server systems are an example
of this type of distributed computing system. Sophisticated
distributed computing systems have removed the communi-
cations burden from the computer programs, or objects in an
object oriented programming environment, and placed 1t 1n a
mid-level operating system that manages communications
across a computer network to facilitate a client’s access to
and manipulation of data contained on a server system. The
server system could be a computer 1n a different address
space and remote to a user on a client system.

In distributed processing environments, objects in differ-
ent address spaces may exchange a large number of mes-
sages. Using traditional distributed processing communica-
tions techniques may lead to slow response time and
increased network traffic. Moving a first object to the same
address space as a second object makes communications
between the two objects local and, therefore, reduces net-
work traflic. Local messages are often at least one thousand
times faster than remote messages sent through the distrib-
uted computing system.

SUMMARY OF THE INVENTION

From the foregoing, it may be appreciated that a need has
arisen for a method for moving objects 1n a distributed com-
puting environment. In accordance with the present
invention, an improved method for moving objects 1n a dis-
tributed computing environment i1s provided that substan-
tially eliminate or reduce disadvantages and problems asso-
ciated with conventional methods for moving objects 1n a
distributed computing environment.

According to an embodiment of the present invention,
there 1s provided a method for moving objects 1n a distrib-
uted computing system that includes receiving a move indi-
cation at a mobility object. The mobility object 1s aggregated
with the primary object through an aggregate object located
at a current host address and port number. The move 1ndica-
tion 1nstructs the mobility object to move the primary object
to a new host address and port number. The aggregate object
has the primary object as a primary facet object and the
mobility object [has] as a facet object.

The method then creates a serialized version of the mobil-
ity object in response to the move indication. The method
then sends the serialized version of the mobility object to the
new host address and port number and creates a new version
of the mobility object at the new host address and port num-
ber from the serialized version of the mobility object. The
method then creates a serialized version of the primary
object 1n response to a serialize and move message recerved
from the new version of the mobility object. The method
then sends the serialized version of the primary object to the
new host address and port number and creates a new version
of the primary object at the new host address and port num-
ber from the serialized version of the primary object. The
method then creates a new aggregate object with the new
version of the primary object as a new primary facet object

US RE41,706 E

3

and the new version of the mobility object as a new facet
object at the new host address and port number.

The present mvention provides various technical advan-
tages over conventional methods for moving objects in a
distributed computing environment. For example, one tech-
nical advantage 1s providing a method for objects that
exchange a large number of messages to move to a common
computer to reduce the amount of time needed for commu-
nications and to conserve system resources. Other technical
advantages may be readily apparent to one skilled 1n the art
from the following figures, description, and claims.

BRIEF DESCRIPTION OF THE DRAWINGS

For a more complete understanding of the present inven-
tion and the advantages thereol, reference 1s now made to the
following description taken 1n conjunction with the accom-
panying drawings, wherein like reference numbers represent
like parts, 1n which:

FIG. 1 1llustrates a block diagram of an application pro-
gram utilizing aggregate objects;

FIG. 2 illustrates a block diagram of the application pro-

gram utilizing aggregate objects where facet objects are dis-
tributed 1n different processing environments;

FI1G. 3 illustrates a block diagram of a facet control mod-
ule used within the application program;

FI1G. 4 illustrates a flow diagram illustrating creation of
aggregate objects;

FI1G. 5 1llustrates a flow diagram illustrating a method of
locating an object that extends a requested class or imple-
ments a requested interface;

FIG. 6 illustrates a flow diagram 1illustrating a method for
adding a class to an aggregate object;

FIGS. 7TA-TF 1llustrate an exemplary process for moving,
an object from one host address and port number to another
host address and port number within a computer network;

FIGS. 8 A—8B illustrate an exemplary process for forward-
ing messages by a reference holder; and

FIGS. 9A-9C illustrate various move notifications that
may occur while moving the object from one host address
and port number to another host address and port number

within the computer network.

DETAILED DESCRIPTION OF THE INVENTION

Dynamic Aggregation ol Objects

Referring to FIG. 1, an application program using
dynamically aggregated objects 1s generally indicated at 10.
An application program 12 may access one or more aggre-
gate objects 14 through a facet control module 30. Aggregate
object 14 1includes a set of facets 32 that may contain one or
more facets such as a primary facet 34, a first facet 36, and a
second facet 38. One or more facet objects 28 are linked to
the set of facets 32 1n a one to one correspondence. A pri-
mary facet object 16 having a primary interface 18 1s linked
to primary facet 34, a first facet object 20 having a first
interface 22 1s linked to first facet 36, and a second facet
object 24 having a second interface 26 is linked to second

facet 38.

Aggregate object 14 1s an aggregation of one or more facet
objects 28 within an object-oriented environment. Aggregate
object 14 and the associated facet objects 28 function as a
single logical object within the object-oriented environment.
A change to one of the facet objects 28 creates a logical
change 1n the other facet objects 28 and aggregate object 14.

10

15

20

25

30

35

40

45

50

55

60

65

4

For example, 11 one of the facet objects 28 moves to a differ-
ent processing environment, or address space, the aggregate
object 14 to which the particular facet object 28 1s linked and
any other associated facet objects 28 will move as a single
logical object to the new, processing environment, or address
space. Primary facet objects 16, first facet object 20, and
second facet object 24 represent a group of one or more facet
objects 28.

Each aggregate object 14 communicates directly with 1ts
associated set of facets 32. Each facet within a set of facets
32 1s linked to a particular facet object 28. Each facet in the
set of facets 32 contains basic information related to its asso-
ciated facet object 28 to facilitate use of the aggregate object
14 within application program 12. The mformation con-
tained 1n each facet in the set of facets 32 for its associated
facet object 28 includes the class of the facet object 28 and
any interfaces implemented by the facet object 28. In one
embodiment, each facet 1n set of facets 32 1s a proxy object
created from the associated facet object 28. The proxy object
1s created by using Java Reflection to determine a particular
facet object’s 28 name, class, and interfaces. This informa-
tion 1s then packaged into a facet 1n set of facets 32. The
particular facet 1n set of facets 32 1s an object that includes
the name, class, and interfaces for the associated facet object
28. An mterface 1n an object oriented environment defines
the format and information needed to communicate with a
particular object. An interface may be referred to as the pub-
lic view of the object.

During application program development, the software
developer may utilize aggregate objects 14 to extend the
functionality of existing objects without modifying source
code. The software developer extends functionality of an
existing object by placing 1t in an aggregate object 14 as the
primary facet object 16 and aggregating additional objects
within aggregate object 14 as facet objects 28. Within appli-
cation program 12, a particular object may be the primary
facet object 16 of only one aggregate object 14. Each aggre-
gate object 14 1n application program 12 will have a unique
primary facet object 16. In one embodiment, a software
developer desires to extend the functionality of a specified
object to add additional functions such as mobility within a
distributed processing environment or the ability to function
as an agent within a distributed processing environment.
Another example of adding functionality to an existing
object would be adding repair history to a car object or add-
ing a bonus plan to an employee object.

The software developer dynamically creates an aggregate
object 14 with the specified object as the associated primary
facet object 16. The term “dynamically” 1s used here to refer
to using program statements during execution of application
program 12 to create aggregate object 14. The soltware
developer then dynamically adds first facet object 20 and
second facet object 24 to aggregate object 14. First facet
object 20 and second aggregate object 24 provide additional
functionality for primary facet object 16. Any method of any
facet object 28 may atlect all facet objects 28 within aggre-
gate object 14. Therefore, invoking a method on first facet
object 20 will etfect a change 1n primary facet object 16.

Application program 12 may create and utilize one or
more aggregate objects 14. Each aggregate object 14 has one
or more associated facet objects 28. Facet objects 28 may be
added and deleted as application program 12 progresses
depending upon processing requirements. To access a par-
ticular facet object 28, application program 12 may request
access to the particular facet object 28 that extends the func-
tionality of a primary facet object 16 by requesting a class or
interface using commands that mvoke facet control module

US RE41,706 E

S

30. Facet control module 30 then scans the set of facets 32
associated with the aggregate object 14 1dentified 1n the facet
control system command until locating the particular facet
object 28 that has a class that equals or extends the requested
class or implements the requested interface. Facet control
module 30 returns a reference to the first facet in the set of
facets 32 that has a class that equals or extends the requested
class or implements the requested interface. Application pro-
gram 12 can then invoke the particular facet object 28 by
using the returned reference to the facet 1n the set of facets

32. In another embodiment, facet control system 30 may
return a list of all facets within the set of facets 32 with

associated facet objects 28 that have a class that equal or
extend the requested class or implement the requested 1nter-
face. Application program 12 carn then determine which
facet object 28 1n the returned reference list to imvoke.

If no facet object 28 exists that has a class that equals or
extends the requested class or implements the requested
interface, a not-found condition 1s returned to application
program 12 as a null reference. Application program 12 can
then determine whether a new aggregate object 14 should be
created, whether an object should be added to an existing
aggregate object 14 as an additional facet object 28, or
whether appropriate error handling procedures should be
performed.

Referring to FIG. 2, a system with an application program
12 using dynamically aggregated objects 1mn a distributed
processing environment 1s generally indicated at 40. The
structure and operation of system 40 1s the same as system
10 except that facet objects 28 may exist within different
address spaces 1n a distributed processing environment and

be accessed by aggregate object 14 using proxies.

In system 40, application program 12, facet control mod-
ule 30, aggregate object 14, set of facets 32 and primary
facet object 16 all exist within a first environment 42. First
facet object 20 exists within a second environment 44. Com-
munications between aggregate object 14 and first facet
object 20 are facilitated by using an appropriate distributed
processing system such as an object request broker. In one
embodiment, a {irst facet object proxy 46 resides in {first
environment 42 and 1s logically coupled to first facet object
20 1n second environment 44. First facet object proxy 46
may be a conventional proxy object created from first facet

object 20. First facet object proxy 46 has an interface 47
modeled on first interface 22. Interface 47 has a format and
needed information similar to first interface 22. Second facet
object 24 resides 1n a third environment 48. Communica-
tions between aggregate object 14 and second facet object 24
are facilitated by using an appropriate distributed processing
system such as an object recognition broker. In one
embodiment, a second facet object proxy 350 resides 1n first
environment 42 and provides communications between
aggregate object 14 and second facet object 24. Second facet
object proxy 50 may be a conventional proxy object created
from second facet object 24. Second facet object proxy 50
has an interface modeled on second interface 26. Interface
51 has a format and needed information similar to second
interface 26.

Referring to FIG. 3, a facet control module 1s generally
indicated at 30. Facet control module 30 provides dynamic
aggregation of existing objects for application program 12.
Facet control module 30 consists of several modules includ-
ing a facet creator 70, an object adder 72, an object deleter
74, and a class/interface finder 76. The functionality of facet

control module 30 will be discussed with reference to the
flow diagrams of FIGS. 4, 5 and 6.

Referring to FIG. 4, a flow diagram 1llustrating a method
tor dynamically aggregating objects 1s generally indicated at

5

10

15

20

25

30

35

40

45

50

55

60

65

6

100. The method commences at step 102 where application
program 12 requests that an aggregate object 14 be created
with a specified primary object. The method proceeds to step
104 where facet control module 30 receives the request and
forwards 1t to facet creator 70 to create an aggregate object
14 with a primary facet object 16 of the specified object
named 1n the create aggregate object request. A particular
object may be the primary facet object 16 of only one aggre-
gate object 14. The method proceeds to step 106 where a
new facet 32 for the specified primary facet object 16 1s
created as primary facet 34. The method proceeds to step
108 where the specified primary facet object 16 1s identified
and linked to primary facet 34. The method proceeds to step
110 where primary facet 34 1s linked to the new aggregate
object 14.

In one embodiment, the following syntax may be used to
create an aggregate object 14:

Facets myFacets=new Facets (myPrimary);
where myPrimary identifies an existing object which will
become primary facet object 16 within the newly created
aggregate object 14 identified as myFacets. Facet control
module 30 creates an aggregate object 14 i1dentified as
myFacets. Next, facet control module 30 creates a primary
facet 34 1dentified as primaryFacet. Primary facet 34 1s
linked to aggregate object 14. Next, facet control module 30
creates a primary facet object 16 identified as myPrimary.
Primary facet object 16 1s linked to primary facet 34. Facet
control module 30 creates primary facet 34 such that primary
facet 34 contains the class of primary facet object 16 and the
interfaces implemented by primary facet object 16.

Referring to FIG. 5, a flow diagram illustrating a method
for locating an object that extends a requested class or imple-
ments a requested interface within an aggregate object 14 1s
generally indicated at 120. The method proceeds to step 122
where application program 12 requests that facet control
module 30 locate a facet object 28 that has a class that equals
or extends a requested class or implements a requested inter-
face. Upon recerving this type of request, facet control mod-
ule 30 forwards the request to class/interface finder 76. In
one embodiment, the following syntax may be used to
request access to a facet object 28 that has a class that equals
or extends the requested class or implements the requested
interface:

myfacets.get (“class name™);
where myfacets.get 1dentifies the aggregate object 14
(myfacets) and the operation (get) for class/interface finder
76. The class name 1n the above example may also 1dentily a
requested interface name. The method proceeds to step 124
where a facet reference 1s set to aggregate object’s 14 pri-
mary facet, primary facet 34. Primary facet 34 should be the
first facet 1n the set of facets 32.

The method proceeds to decisional step 125 where class/
interface finder 76 determines 1f the facet referenced by
facet-reference has a class that equals the requested class,
has a class that extends the requested class, or implements
the requested interface. If the facet in the set of facets 32
identified by the facet-reference meets one of the above tests,
the Yes branch of decisional step 125 proceeds to step 126
where class/interface finder 76 returns a reference to the
facet 1n the set of facets 32 identified by the facet-reference.
The method proceeds to step 128 where application program
12 uses the returned reference to 1dentily the facet object 28
through the reference to a facet in the set of facets 32. Appli-
cation program 12 then invokes the facet object 28. After
step 128, the method terminates.

Returning to decisional step 125, 1f the facet 1n the set of
facets 32 1dentified by the facet-reference does not meet one

US RE41,706 E

7

of the atorementioned tests, the No branch of decisional step
125 proceeds to decisional step 130 where class/interface
finder 76 determines whether aggregate object 14 has more
facets within its associated set of facets 32. If the set of facets
32 includes more facets, the Yes branch of decisional step
130 proceeds to step 132 where the facet-reference 1s set to
the next facet, first facet 36 in this example, 1 the set of
facets 32 associated with aggregate object 14. The method
returns to decisional step 125 to process the next facet iden-
tified by the facet-reference.

Returming to decisional step 130, i the set of facets 32
associated with aggregate object 14 does not include more
facets, the No branch of decisional step 130 proceeds to step
134 where a null reference 1s returned. Application program
12 would then perform appropriate error processing upon
receipt of the null reference. After step 134, the method ter-
minates.

Referring to FIG. 6, a flow diagram 1llustrating a method
for adding objects to an aggregate object 14 1s generally
indicated at 150. The method commences at step 152 where
application program 12 requests a facet object 28 that has a
class that equals or extends a requested class. In one
embodiment, the following syntax may be used to add
objects to a aggregate object 14 as facet objects 28:

myFacets.of (*class name”™);
where the desired aggregate object 14 1s identified
(myFacets) and the desired operation 1s also i1dentified (.of).
“Class name” refers to an existing .class file. When adding
facet objects to aggregate object 14, class names should be
used so that an instance of the class may be generated and
added to aggregate object 14 as a facet object 28.

The method proceeds to step 154 where the method of
FIG. 5 1dentified in steps 122-126 and 130-134 1s performed
until a facet within the set of facets 32 associated with aggre-
gate object 14 1s found that has a class that equals or extends
the requested class or a null reference 1s returned.

The method proceeds to decisional step 156 where a
determination 1s made regarding whether a null reference
was returned. If a null reference was not returned, the No
branch of decisional step 156 proceeds to step 158 where the
reference recerved from step 126 1n the method of FIG. 5 1s
returned. If a null reference 1s not recerved, the requested
class has already been added to the set of facets 32 1n aggre-
gate object 14 and processing may continue. After step 158
the method terminates.

Returming to decisional step 156, 11 a null reference 1s
received, the Yes branch of decisional step 156 proceeds to
step 160 where object adder 72 creates an instance of the
requested class. The method proceeds to step 162 where
object adder 72 creates a new facet for the mstance of the
requested class. Object adder 72 creates the new facet by
adding the requested class and the interfaces implemented
by that class to the new facet. The new facet 1s an object that
summarizes available information regarding the associated
facet object that 1n this example 1s the created instance of the
requested class. The new facet becomes a member of the set
of facets 32 associated with the aggregate object 14.

The method proceeds to step 164 where object adder 72
links the instance of the requested class created 1n step 160
to the new facet created 1n step 162. The method proceeds to
step 166 where object adder 72 links the new facet created 1n
step 162 to the aggregate object 14. The method proceeds to
step 168 where a reference to the new facet created 1n step
162 1s returned. After step 168, the method terminates.

In one embodiment, the facets.of command that 1s used to
add objects to an existing aggregate object 14 may be used
by software developers when they have determined that a

10

15

20

25

30

35

40

45

50

55

60

65

8

requested class should be part of aggregate object 14 but
they are not sure that the requested class has been added to
facet objects 28 that are associated with aggregate object 14.
By using this type of command, the software developer
requests a facet object 28 that has a class that equals or
extends a requested class and 1s guaranteed that a reference
to a facet object 28 will be returned.

In addition to the above-referenced sample commands,
one embodiment of the present mvention includes the fol-
lowing command to determine the primary facet object 16 of
aggregate object 14:

myFacets.getPrimary ();
where the desired aggregate object 14 1s 1dentified as myFac-
cts and the desired operation 1s 1dentified as getPrimary. The
sample command returns a reference to primary facet object
16.

Another sample command from one embodiment of the
present invention includes the following command to deter-
mine the members of set of facets 32 associated with aggre-
gate object 14;

myFacets.getFacets ();
where the desired aggregate object 14 1s 1dentified as myfac-
cts and the desired operation 1s 1dentified as getfacets. The
sample command returns a list of each facet object 28 asso-
ciated with aggregate object 14.

Object deleter 74 of facet control module 30 provides a
software developer with the ability to delete a specified
object from facet objects 28. The software developer 1denti-
fies the particular facet object 28 to be removed from aggre-
gate object 14 and instructs facet control module 30 to
remove the specified facet object from aggregate object 14.
Object deleter 74 physically deletes the associated facet 1n
set of facets 32 and removes the link between the specified
facet object and aggregate object 14. If the specified facet
object has no remainming references, an operating system of
the object oriented environment may remove the specified
facet object from the object oniented environment during a
garbage collection procedure.

Movement

An object may be made mobile within a distributed pro-
cessing environment by defimng the object as a primary
facet object 16 linked to an aggregate object 14 and aggre-
gating a mobility object as a second facet object 24 as previ-
ously described. To move an object from one address space
to another address space, a mobility method 1s 1nvoked
within aggregate object 14. As previously described, aggre-
gate object 14 then locates the facet without one or more
facet objects 28 that provides the requested method. The
mobility method may be mvoked directly on the mobility
facet object. In that case, the mobility facet object informs
the aggregate object that the mobility method has been
invoked. In another embodiment, the functionality of mobil-
ity 1s built into the object. To cause that object to move from
one address space to another address space, a mobility
method 1s mvoked on the object.

Referring to FIGS. 7A-7F, the process ol moving an
object from one address space to another address space
within a distributed computing system 1s depicted. The loca-
tion of an object may be generally defined as
“host:portnumber/alias”. For example, the location of an
object may be “dallas:8000/storel”, where “dallas” defines
the host address, “8000” defines the port number, and
“storel” defines an alias for the object. The host may be
referred to by host name or an IP address. An object may be
an agent which 1s defined as a specialized object that pos-
sesses the characteristic of autonomy. Autonomy 1s the abil-

US RE41,706 E

9

ity to program an agent with one or more goals that 1t will
attempt to satisiy, even when 1t has moved nto a network on
other platforms and has lost all contact with 1ts creator.
Agents also have the additional abilities of movement, per-
sistence and event generation.

FIGS. 7TA-TF utilize a modified illustration of the struc-
ture of the aggregate object depicted 1n FIG. 1. Aggregate
object 202, primary facet object 204, and mobility facet
object 206 cach have a local reference and a reference
holder. The reference holder and local reference are together
equivalent to a member of set of facets 32. Aggregate object
202 has a local reference 208 and a reference holder 210.
Retference holder 210 1s linked to local reference 208 and
receives and routes messages to aggregate object 202
through local reference 208. Local retference 208 contains an
address 1dentitying the physical location of aggregate object
202. Similarly, primary facet object 204 has a local reference
212 and a reference holder 214. Mobility facet object 206
has a local reference 216 and a reference holder 218. Aggre-
gate object 202 1s linked to both reference holder 214 for
primary facet object 204 and to reference holder 218 for
mobility facet object 206. A primary object proxy 220 1s
linked to primary facet object 204 through reference holder
214. Any message received by primary object proxy 220 i1s
torwarded to reference holder 214 that further forwards the
message to primary object 204. Aggregate object 202, pri-
mary facet object 204, mobility facet object 206, and their
associated local references and reference holders may be
generally referred to as an aggregate group 200.

The movement process begins 1n FIG. 7A where mobility
facet object 206 located at a current host address and port
number 222 recerves a move indication 224. Move indica-
tion 224 may be received from a requesting object 226
located at an originating host address and port number 228.
Requesting object 226 may be any object or application 1n
the distributed computing system and may exist i any
address space including an address space on the current host
for aggregate group 200. Aggregate group 200 may also be
an agent that carries its own move indication 224.

In response to move indication 224, the move operation
continues 1n FIG. 7B where mobility facet object 206
accesses a lock object 230 1n order to block all incoming
messages to aggregate group 200 while aggregate group 200
1s moving to a new host address and port number. Mobility
facet object 206 creates a serialized version 232 of itself at
current host address and port number 222. The serialized
version 232 1s then sent to a desired new host address and
port number 234. The serialized version may be created by
mobility facet object 206 sending a message containing
itsell as a parameter. A new version 236 of mobility facet
object 206 1s created at new host address and port number
234 from the serialized version 232.

The move operation continues 1n FIG. 7C where the new
version 236 of mobility facet object 206 creates a serialize
and move message 238 and sends it to aggregate group 200
at current host address and port number 222. The senialize
and move message 238 informs aggregate group 200 that the
initial phase of moving was successiul and that the other
serializable parts of aggregate group 200 should be serial-
1zed and sent to new host address and port number 234.

The move operation continues at FIG. 7D where the
aggregate group 200 recerves the serialize and move mes-
sage 238. Aggregate group 200 forwards the serialize and
move message 238 to primary facet object 204. Primary
facet object 204 creates a serialized version 240 of 1itself at
current host address and port number 222. The serialized

10

15

20

25

30

35

40

45

50

55

60

65

10

version 240 1s then sent to the new host address and port
number 234. A new version 242 of primary facet object 204
1s created at new host address and port number 234 from the
serialized version 240.

The move operation continues at FIG. 7E where a new
aggregate group 244 1s generated as previously described
with a new aggregate object 246, new version 242 of primary
facet object 204 as a new primary facet object 248 and new
version 236 of mobility facet object 206 as a new mobility
facet object 250. New aggregate group 244 and new aggre-
gate object 246 register at new host address and port number
234 along with new version 236 of mobaility facet object 206
and new version 242 of primary facet object 204.

-

The move operation continues at FIG. 7F where new
aggregate group 244 sends a successiul message 2352 to
aggregate group 200 at current host address and port number
222. Aggregate group 200, aggregate object 202, primary
facet object 204, and mobility facet object 206 deregister
from current host address and port number 222. In addition,
aggregate object 202 severs its links to mobaility facet object
206 and primary facet object 204. Aggregate object 202 and
mobility facet object 206 are garbage collected by the sys-
tem. In addition, all references to primary facet object 204
are removed such that 1t 1s garbage collected by the system.
Local reference 212 of primary facet object 204 1s updated
with new host address and port number 234 and becomes
remote reference 254. Reference holder 214 remains a refer-
ence holder at current host address and port number 222 for
new version 242 of primary facet object 204 at new host
address and port number 234. Reference holder 214 1s
coupled to remote reference 254 that contains the address of
the physical location of new version 242 of primary facet
object 204. Reference holder 214 1s used to forward mes-
sages destined for primary facet object 204 to new host
address and port number 234.

Messages that were blocked by lock object 230 are
released and forwarded as necessary to new host address and

port number 234 as discussed 1n detail with relation to FIGS.
8A and 8B.

Forwarding

Retferring to FIGS. 8 A-8B, the process of forwarding
messages for a moved object 1s illustrated. The forwarding
operation begins at FIG. 8 A where message MSG1 from an
object 306 at a first host address and port number 308 and
message MSG2 from an object 310 at a second host address
and port number 312 require processing by an object 314.
Object 314 has moved to a new host address and port num-
ber 316. Object 314 may be an aggregate group such as new
aggregate group 244. Messages MSG1 and MSG2 may be
messages that were previously sent but were blocked as a
result of move indication 224 or may be messages sent from
out of date objects at host address and port numbers not
knowing that object 314 has moved to new host address and
port number 316. A reference holder 302 and a remote
address 304 occupy an old host address and port number 318
previously occupied by object 314. In this example, old host
address and port number 318 and first host address and port
number 308 exist in the same address space identified by the
host address. Thus communications between object 306 and
reference holder 302 are local.

The forwarding operation continues at F1IG. 8B where ret-
erence holder 302, having the new host address and port
number 316 for object 314 stored 1n remote reference 304,
reroutes message MSG1 to object 314 at new host address
and port number 316. Messages, such as message MSG,

US RE41,706 E

11

that are local with respect to reference holder 302 may be
directly forwarded to the new location for an object refer-
enced 1n the message since the message travels through only
one host address on 1ts way to a destination host address.

Reference holder 302 receives message MSG and deter-
mines that it 1s a remote message. In one embodiment, a
remote message 1s determined by comparing the host
address of the object originating the message with the host
address of the reference holder 302. After determining that
message MSG2 1s a remote message, reference holder 302
throws an “object moved” exception to object 310. Object
310 catches the “object moved” exception and resends mes-
sage MSG2 to new host address and port number 316 1denti-
fied 1n the “object moved” exception. All future messages
from object 310 are sent directly to object 314 at new host
address and port number 316. By using the “object moved”
exception, messages destined for a target object do not pass
through an intermediate host address thereby making com-
munications between objects more efficient.

Callbacks

Referring to FIGS. 9A-9C, various callback notifications
that may occur during the movement of an object from cur-
rent host address and port number 222 to new address and
port number 234 are 1llustrated. Callback notifications may
be sent provided that primary facet object 204 requests call-
back notification. In one embodiment, primary facet object
204 implements a specified Java interface to request callback
notifications. However, any suitable method of requesting
callback notifications may be used such as setting a callback
notification flag.

FIG. 9A illustrates a pre-departure notification for pri-
mary facet object 204 at current host address and port num-
ber 222. Upon receipt ol move notification 224, a pre-
departure notification may be generated for primary facet
object 204 to determine 1f primary facet object 204 1s avail-
able to be moved. If primary facet object 204 determines that
it 1s not available to be moved, primary facet object 204 may
throw a mobility exception causing the move to abort. The
mobility exception may be thrown for any reason as deter-
mined by primary facet object 204 such as processing
required to be completed at current host address and port
number 222 has not been completed.

FI1G. 9B 1illustrates a pre-arrival notification for new ver-
sion 242 of primary facet object 204 at new host address and
port number 234. The pre-arrival notification occurs 1imme-
diately after new version 242 of primary facet object 204 1s
created from serialized version 240 at new host address and
port number 234. The pre-arrival notification may be used by
new version 242 of primary facet object 204 to determine 11
new version 242 was successiully created. If the new version
242 was not successiully created or any other suitable error
condition exists within new version 242 of primary facet
object 204, new version 242 may throw a mobility exception
causing the move to abort.

FI1G. 9C 1llustrates post-movement callback notifications.
After new aggregate group 244 registers at new host address
and port number 234, a post-arrival callback notification
may be sent to new version 242 of primary facet object 204
at new host address and port number 234. At this point, new
aggregate group 244 1s the active object and the move cannot
be aborted. Thus, the move 1s deemed successtul. This call-
back notification allows new aggregate group 244 to perform
specific post-move processing that 1s not provided by the
system.

After new aggregate group 244 registers at new host
address and port number 234 but prior to aggregate group

10

15

20

25

30

35

40

45

50

55

60

65

12

200 disconnecting 1ts component parts, a post-departure
callback notification may be sent to primary facet object
204. At this point, the component parts of aggregate group
200 are considered stale since a new active aggregate group
244 exists at new host address and port number 234. The
post-departure callback notification allows aggregate group
200 to perform internal final processing before its compo-
nent parts are delinked and garbage collected and prior to
unblocking any messages at current host address and port

number 222.

Thus, 1t 1s apparent that there has been provided 1n accor-
dance with the present invention, a method for moving
objects 1n a distributed computing environment that satisfies
the advantages set forth above. Although the present inven-
tion and 1ts advantages have been described in detail, 1t
should be understood that various changes, substitutions,
and alterations may be readily apparent to those skilled 1n
the art and may be made herein without departing from the
spirit and the scope of the present invention as defined by the
following claims.

What 1s claimed 1s:

1. A method for moving objects 1n a distributed comput-
Ing system, comprising:

recerving a move indication at a mobility object aggre-
gated with a primary object through an aggregate object
located at a current host address and port number, the
primary object being unique to the aggregate object, the
mobility object providing a mobility functionality fo
the primary object, the move indication nstructing the
mobility object to move the primary object to a new
host address and port number, the aggregate object hav-
ing the primary object as a primary facet object and the
mobility object as a facet object;

creating a serialized version of the mobility object 1n
response to the move indication;

sending the serialized version of the mobility object to the
new host address and port number;

creating a new version ol the mobility object at the new
host address and port number from the serialized ver-
sion of the mobility object;

creating a serialized version of the primary object 1n
response to a serialize and move message from the new
version of the mobility object;

sending the serialized version of the primary object to the
new host address and port number;

creating a new version ol the primary object at the new
host address and port number from the sernalized ver-
sion of the primary object;

creating a new aggregate object with the new version of
the primary object as a new primary facet object and the
new version of the mobility object as a new facet object

at the new host address and port number.
2. The method of claim 1, further comprising;

locking the aggregate object at the current host address
and port number 1n response to the move indication;
and

unlocking the aggregate object at the current host address
and port number 1n response to creating the new aggre-
gate object at the new host address and port number.

3. The method of claim 1, further [comprising:] compris-
ing retaining an old version of the aggregate object, the pri-
mary object, and the mobility object at the current host
address and port number.

4. The method of claim 1, further [comprising:] compris-
ing aggregating the mobility object at the current host

US RE41,706 E

13

address and port number with the primary object at the cur-
rent host address and port number, the mobaility object linked
to an aggregate object at the current host address and port
number, the primary object linked to the aggregate object at
the current host address and port number.

5. The method of claim 1, further comprising instructing
the primary object to move to the new host address and port

number by invoking a method on the mobility object at the
current host address and port number for moving the primary
object to the new host address and port number.

6. The method of claim 1, further comprising:

informing the primary object at the current host address
and port number that the primary object 1s about to be
moved 1n response to the move indication;

performing pre-departure processing by the primary
object at the current host address and port number;

determining whether the object 1s available to move;

vetoing the move in response to determining that the
object 1s not available to move; and

aflirming the move in response to determining that the
object 1s available to move.
7. The method of claim 1, further comprising;

completing messages currently being processed by the
primary object at the current host address and port

number; and

suspending new messages arriving at the primary object at

the current host address and port number.

8. The method of claim 7, further [comprising:] compris-
ing Torwarding suspended messages to the new host address
and port number for processing.

9. The method of claim 1, further comprising;

storing the new host address and port number in a refer-
ence holder at the current host address and port num-
ber; and

forwarding messages received at the current host address
and port number for the primary object to the new ver-
sion of the primary object at the new host address and
port number.

10. The method of claim 1, further [comprising:] compris-
ing registering the new aggregate object and the new version
of the primary object at the new host address and port num-
ber.

11. The method of claim 1, further comprising:

deregistering the aggregate object and the primary object
at the current host address and port number; and

garbage collecting the aggregate object and the primary
object at the current host address and port number.
12. The method of claim 1, further comprising:

sending a message from a proxy to the primary object at
the current host address and port number;

throwing an exception back to the proxy indicating that
the primary object has moved to the new host address
and port number; and

resending the message from the proxy to the new version
of the primary object at the new host address and port
number 1n response to the exception.

13. The method of claim 1, further comprising:

sending a message from a proxy to the primary object at
the current host address and port number; and

forwarding the message from the current host address and
port number to the new version of the primary object at
the new host address and port number.

14. The method of claim 1, further comprising:

evaluating the sending of the serialized version of the pri-
mary object and creating of the new version of the pri-

10

15

20

25

30

35

40

45

50

55

60

65

14

mary object by querying the new version of the primary
object to determine 11 the sending and creating was suc-
cessful; and

aborting the method for moving objects 1n response to an

unsuccessiul sending and creating.

15. The method of claim 1, further [comprising:] compris-
ing sending a serialize and move message from the new
version of the mobility object at the new host address and
port number to the primary object at the current host address
and port number, the serialize and move message including
an indication that the new version of the mobility object has
been established at the new host address and port number.

16. The method of claim 1, turther comprising:

locking the aggregate object at the current host address
and port number 1n response to the move 1indication;

sending a successiul move message from the new aggre-
gate object at the new host address and port number to
the aggregate object at the current host address and port
number:;

unlocking the aggregate object at the current host address
and port number;

deregistering the aggregate object and the primary object
at the current host address and port number 1n response
to the successiul move message;

storing the new host address and port number in a refer-
ence holder at the current host address and port number,
the reference holder used for forwarding messages
recerved for the primary object at the current host
address and port number.

17. The method of claim 1, further comprising:

informing the new version of the primary object at the
new host address and port number that movement of the
aggregate object at the current host address and port
number has started;

performing pre-arrival processing by the new version of
the primary object at the new host address and port
number;

determining whether the new version of the primary
object at the new host address and port number autho-
rizes completion of the method for moving objects; and

aborting the method for moving objects 1n response to a
negative authorization from the new version of the pri-
mary object at the new host address and port number.

18. The method of claim 11, further comprising:

informing the new aggregate object at the new host
address and port number that the aggregate object at the
current host address and port number has been deregis-
tered;

performing post-arrival processing by the aggregate
object at the current host address and port number.
19. The method of claim 1, further comprising:

informing the aggregate object at the current host address
and port number that creation of the new aggregate
object at the new host address and port number has
completed;

performing post-departure processing by the aggregate
object at the current host address and port number.

20. A method for moving objects in a distributed comput-

Ing system, cComprising:

dvnamically aggregating a mobility object with a primary
object to create an aggregate object located at a cur-
vent host location, the primary object being unigue to
the aggregate object and the mobility object providing a
mobility functionality for the primary object, and the

US RE41,706 E

15

aggregate object including the primary object as a pri-
mary facet object and the mobility object as a facet
object;

receiving a move indication at the mobility object, the
move indication instructing the mobility object to move >
the primary object to a new host location;

sending a new version of the mobility object to the new
host location in vesponse to the move indication,; and

sending a new version of the primary object to the new
host location in rvesponse to a move message from the
new version of the mobility object;

10

wherein a new aggregate object is created at the new host
location, the new aggregate object having the new ver-
sion of the primary object associated with the new ver-
sion of the mobility object.

21. The method of claim 20, further comprising:

serializing the new version of the mobility object prior to
sending;

15

wherein the new version of the mobility object is created 70
at the new host location from the serialized version of
the mobility object; and

serializing the new version of the primary object prior to

sending;

wherein the new version of the primary object is created 25

at the new host location from the serialized version of
the primary object.

22. The method of claim 20, wherein the new aggregate
object at the new host location comprises the new version of
the primary object as a new primary facet object and the new 30
version of the mobility object as a new facet object.

23. The method of claim 20, wherein the curvent host loca-
tion is characterized by a curvent host address and port
number, and the new host location is characterized by a new
host addvess and port number. 35

24. The method of claim 20, further comprising:

locking the aggregate object at the current host location in
response to the move indication; and

unlocking the aggregate object at the current host location
in vesponse to creating the new aggregate object at the
new host location.

25. The method of claim 20, further comprising retaining
an old version of the aggregate object, the primary object,
and the mobility object at the curvent host location.

26. The method of claim 20, further comprising instruct-
ing the primary object to move to the new host location by
invoking a method on the mobility object at the current host
location for moving the primary object to the new host loca-

tion.
27. The method of claim 20, further comprising. S0

informing the primary object at the current host location
that the primary object is about to be moved in
response to the move indication;

40

45

performing pre-departure processing by the primary
object at the current host location;

determining whether the primary object is available to
move;

55

vetoing the move in vesponse to determining that the pri-
mary object is not available to move; and 60

affirming the move in vesponse to determining that the
primary object is available to move.

28. The method of claim 20, further comprising:

completing messages curvently being processed by the
primary object at the current host location; and 63

suspending new messages arviving at the primary object
at the current host location.

16

29. The method of claim 28, further comprising forward-
ing suspended messages to the new host location for pro-
cessing.

30. The method of claim 20, further comprising.

storing the new host location in a reference holder at the
current host location; and

forwarding messages veceived at the curvent host location

Jor the primary object to the new version of the primary
object at the new host location.

31. The method of claim 20, wherein the new aggregate

object and the new version of the primary object are regis-

teved at the new host location.
32. The method of claim 20, further comprising:

deregistering the aggregate object and the primary object
at the current host location; and

garbage collecting the aggregate object and the primary
object at the current host location.

33. The method of claim 20, further comprising:

sending a message from a proxy to the primary object at
the current host location;

sending an exception back to the proxy indicating that the
primary object has moved to the new host location; and

resending the message from the proxy to the new version
of the primary object at the new host location in

response to the exception.
34. The method of claim 20, further comprising:

sending a message from a proxy to the primary object at
the current host location; and

forwarding the message from the current host location to
the new version of the primary object at the new host

location.
35. The method of claim 20, further comprising.

evaluating the sending of the new version of the primary
object by querying the new version of the primary
object to determine if the sending was successful; and

aborting the method for moving objects in response to an
unsuccessful sending.

36. The method of claim 20, further comprising rveceiving
a move message from the new version of the mobility object
at the new host location at the primary object at the curvent
host location, the move message including an indication that
the new version of the mobility object has been established
at the new host location.

37. The method of claim 20, further comprising:

locking the aggregate object at the current host location in
response to the move indication;

receiving a successful move message from the new aggre-
gate object at the new host location at the aggregate
object at the curvent host location;

unlocking the aggregate object at the current host loca-
tion;
deregistering the aggregate object and the primary object

at the curvent host location in response to the successful
move message,; and

storing the new host location in a rveference holder at the
current host location, the veference holder used for for-
warding messages veceived for the primary object at

the current host location.
38. The method of claim 20, further comprising:

informing the new version of the primary object at the new
host location that movement of the aggregate object at
the current host location has started;

wherein pre-arrvival processing is performed by the new
version of the primary object at the new host location,

US RE41,706 E

17

determining whether the new version of the primary

object at the new host location authorizes completion of

the method for moving objects; and

aborting the method for moving objects in response to a
negative aquthorization from the new version of the pri-
mary object at the new host location.

39. The method of claim 32, further comprising:

informing the new aggregate object at the new host loca-
tion that the aggregate object at the current host loca-
tion has been deregistered; and

performing post-arrival processing by the aggregate
object at the current host location.

40. The method of claim 20, further comprising.

informing the aggregate object at the curvent host loca-
tion that creation of the new aggregate object at the new
host location has completed; and

performing post-departure processing by the aggregate

object at the current location.

41. One or more computer-readable storage media com-
prising computer-executable instructions that, when
executed, direct a computer to move an object in a distrib-
uted computing environment, the computer-executable
instructions configured to.

dynamically aggregate a mobility object with a primary
object to create an aggregate object located at a cur-
vent host location, the primary object being unigue to
the aggregate object and the mobility object providing a
mobility functionality for the primary object, and the
aggregate object including the primary object as a pvi-
mary facet object and the mobility object as a facet
object;

receive a move indication at the mobility object, the move
indication instructing the mobility object to move the
primary object to a new host location;

send a new version of the mobility object to the new host
location in rvesponse to the move indication;

send a new version of the primary object to the new loca-
tion in response to a move message from the new ver-
sion of the mobility object; and
create a new aggregate object at the new host location, the
new aggregate object having the new version of the
primary object associated with the new version of the
mobility object.
42. One or more computer-readable storage media as
recited in claim 41, further comprising computer-executable
instructions configured to.

serialize the new version of the mobility object prior to
sending;

create the new version of the mobility object at the new
host location from the serialized version of the mobility
object;

serialize the new version of the primary object prior to
sending; and

create the new version of the primary object at the new
host location from the serialized version of the primary
object.

43. One or more computer-readable storage media as
recited in claim 41, wherein the current host location is
characterized by a currvent host address and port number,
and the new host location is characterized by a new host
address and port number.

44. One or more computer-readable storage media as
recited in claim 41, further comprising computer-executable
instructions configured to.

lock the aggregate object at the curvent host location in
response to the move indication; and

10

15

20

25

30

35

40

45

50

55

60

65

18

unlock the aggregate object at the curvent host location in
response to creating the new aggregate object at the
new host location.

45. One or more computer-readable storage media as
recited in claim 41, further comprising computer-executable
instructions configured to vetain an old version of the aggre-
gate object, the primary object, and the mobility object at the
current host location.

46. One or more computer-readable storage media as
recited in claim 41, further comprising computer-executable
instructions configuved to instruct the primary object to
move to the new host location by invoking a method on the
mobility object at the current host location for moving the
primary object to the new host location.

47. One or more computer-readable storage media as
recited in claim 41, further comprising computer-executable
instructions configured to:

inform the primary object at the curvent host location that
the primary object is about to be moved in response to
the move indication;

perform pre-departurve processing by the primary object
at the current host location;

determine whether the primary object is available to
move;

veto the move in response to determining that the primary
object is not available to move; and

computer veadable program code configured to affirm the
move in rvesponse to determining that the primary
object is available to move.
48. One or more computer-readable storage media as
recited in claim 41, further comprising computer-executable
instructions configured to.

complete messages currently being processed by the pri-
mary object at the current host location; and

suspend new messages arriving at the primary object at

the current host location.

49. One or more computer-readable storage media as
recited in claim 41, further comprising computer-executable
instructions configured to forward suspended messages to
the new host location for processing.

50. One or more computer-readable storage media as
recited in claim 41, further comprising computer-executable
instructions configured to.

store the new host location in a rveference holder at the
current host location; and

Jorward messages veceived at the curvent host location for
the primary object to the new version of the primary
object at the new host location.

51. One or more computer-readable storage media as
recited in claim 41, further comprising computer-executable
instructions configurved to vegister the new aggregate object
and the new version of the primary object at the new host
location.

52. One or more computer-readable storage media as
recited in claim 41, further comprising computer-executable
instructions configured to:

dervegister the aggregate object and the primary object at
the current host location; and

garbage collect the aggregate object and the primary
object at the current host location.
53. One or more computer-readable storage media as
recited in claim 41, further comprising computer-executable
instructions configured to.

send a message from a proxy to the primary object at the
current host location;

US RE41,706 E

19

throw send an exception back to the proxy indicating that
the primary object has moved to the new host location;
and

resend the message from the proxy to the new version of

the primary object at the new host location in response
to the exception.
54. One or more computer-readable storage media as
recited in claim 41, further comprising computer-executable
instructions configured to.

send a message from a proxy to the primary object at the
current host location; and
Jorward the message from the current host location to the
new version of the primary object at the new host loca-
lion.
55. One or more computer-readable storage media as
recited in claim 41, further comprising computer-executable
instructions configured to.

evaluate the sending of the new version of the primary
object by querying the new version of the primary
object to determine if the sending was successful; and

abort the method for moving objects in vesponse to an

unsuccessful sending.

56. One or more computer-readable storage media as
recited in claim 41, further comprising computer-executable
instructions configured to send a move message from the new
version of the mobility object at the new host location to the
primary object at the current host location, the move mes-
sage including an indication that the new version of the
mobility object has been established at the new host loca-
tion.

57. One or more computer-readable storage media as
recited in claim 41, further comprising computer-executable
instructions configured to.

lock the aggregate object at the curvent host location in
response to the move indication;

send a successful move message from the new aggregate
object at the new host location to the aggregate object
at the current host location;

unlock the aggregate object at the current host location;

deregister the aggregate object and the primary object at
the current host location in rvesponse to the successful
move message,; and

storve the new host location in a reference holder at the
current host location, the veference holder used for for-
warding messages rveceived for the primary object at
the curvent host location.
58. One or more computer-readable storage media as
recited in claim 41, further comprising computer-executable
instructions configured to:

inform the new version of the primary object at the new
host location that movement of the aggregate object at
the current host location has started;

perform pre-arrival processing by the new version of the
primary object at the new host location;

determine whether the new version of the primary object
at the new host location authorizes completion of the
method for moving objects; and

abort the method for moving objects in vesponse to a
negative aquthorization from the new version of the pri-
mary object at the new host location.

59. One or more computer-readable storage media as

recited in claim 41, further comprising computer-executable
instructions configured to:

inform the new aggregate object at the new host location
that the aggregate object at the curvent host location
has been dervegistered; and

5

10

15

20

25

30

35

40

45

50

55

60

65

20

perform post-arrival processing by the aggregate object
at the current host location.
60. One or more computer-readable storage media as
recited in claim 41, further comprising computer-executable
instructions configured to:

inform the aggregate object at the current host location
that creation of the new aggregate object at the new

host location has completed; and

perform post-departure processing by the aggregate
object at the current location.

61. A method for moving objects in a distributed compuit-
Ing system, comprising:
dvnamically aggregating a mobility object with a primary
object to create an aggregate object located at a cur-
vent host location, the primary object being unique to
the aggregate object and the mobility object providing a
mobility functionality for the primary object;

receiving a move indication at the mobility object, the
move indication instructing the mobility object to move
the primary object to a new host location,

sending a new version of the mobility object to the new
host location in vesponse to the move indication; and

sending a new version of the primary object to the new
host location in vesponse to a move message from the

new version of the mobility object;

wherein a new aggregate object is crveated at the new host
location, the new aggregate object having the new ver-
sion of the primary object associated with the new ver-
sion of the mobility object, and the new aggregate
object including the new version of the primary object
as a new primary facet object and the new version of
the mobility object as a new facet object.

62. The method of claim 61, further comprising:

serializing the new version of the mobility object prior to
sending;

wherein the new version of the mobility object is created
at the new host location from the serialized version of
the mobility object; and

serializing the new version of the primary object prior to
sending;

wherein the new version of the primary object is created
at the new host location from the serialized version of

the primary object.
63. The method of claim 61, wherein the curvent host loca-
tion is characterized by a curvent host address and port
number, and the new host location is characterized by a new

host address and port number.
64. The method of claim 61, further comprising:

locking the aggregate object at the curvent host location in
response to the move indication; and

unlocking the aggregate object at the curvent host location
in vesponse to creating the new aggregate object at the
new host location.

65. The method of claim 61, further comprising retaining
an old version of the aggregate object, the primary object,
and the mobility object at the curvent host location.

66. The method of claim 61, further comprising instruct-
ing the primary object to move to the new host location by
invoking a method on the mobility object at the current host
location for moving the primary object to the new host loca-
tion.

67. The method of claim 61, further comprising.

informing the primary object at the current host location
that the primary object is about to be moved in
response to the move indication;

US RE41,706 E

21

performing pre-departure processing by the primary
object at the current host location;

determining whether the primary object is available to
move;

vetoing the move in vesponse to determining that the pri-
mary object is not available to move; and

affirming the move in vesponse to determining that the

primary object is available to move.
68. The method of claim 61, further comprising:

completing messages curvently being processed by the
primary object at the current host location; and

suspending new messages arviving at the primary object

at the curvent host location.

69. The method of claim 68, further comprising forward-
ing suspended messages to the new host location for pro-
cessing.

70. The method of claim 61, further comprising:

storing the new host location in a reference holder at the

current host location; and

Jorwarding messages received at the curvent host location
Jor the primary object to the new version of the primary
object at the new host location.
71. The method of claim 61, wherein the new aggregate
object and the new version of the primary object arve regis-
teved at the new host location.

72. The method of claim 61, further comprising:

dervegistering the aggregate object and the primary object
at the current host location; and

garbage collecting the aggregate object and the primary
object at the current host location.

73. The method of claim 61, further comprising:

sending a message from a proxy to the primary object at
the current host location;

sending an exception back to the proxy indicating that the
primary object has moved to the new host location; and

resending the message from the proxy to the new version
of the primary object at the new host location in
response to the exception.

74. The method of claim 61, further comprising:

sending a message from a proxy to the primary object at
the current host location; and

Jorwarding the message from the current host location to
the new version of the primary object at the new host
location.

75. The method of claim 61, further comprising.

evaluating the sending of the new version of the primary
object by querying the new version of the primary
object to determine if the sending was successful; and

aborting the method for moving objects in response to an
unsuccessful sending.

76. The method of claim 61, further comprising receiving
a move message from the new version of the mobility object
at the new host location at the primary object at the curvent
host location, the move message including an indication that
the new version of the mobility object has been established
at the new host location.

77. The method of claim 61, further comprising.

locking the aggregate object at the current host location in
response to the move indication;

receiving a successful move message from the new aggre-
gate object at the new host location at the aggregate
object at the current host location;

unlocking the aggregate object at the curvent host loca-
tion;

10

15

20

25

30

35

40

45

50

55

60

65

22

deregistering the aggregate object and the primary object
at the current host location in response to the successful
move message; and

storing the new host location in a rveference holder at the
current host location, the rveference holder used for for-
warding messages veceived for the primary object at
the current host location.

78. The method of claim 61, further comprising:

informing the new version of the primary object at the new
host location that movement of the aggregate object at
the current host location has started;

wherein pre-arrvival processing is performed by the new
version of the primary object at the new host location;
determining whether the new version of the primary

object at the new host location authorizes completion of
the method for moving objects; and

aborting the method for moving objects in rvesponse to a
negative aquthorization from the new version of the pri-
mary object at the new host location.

79. The method of claim 72, further comprising.

informing the new aggregate object at the new host loca-
tion that the aggregate object at the currvent host loca-
tion has been deregistered; and

performing post-arrival processing by the aggregate
object at the current host location.
80. The method of claim 61, further comprising.

informing the aggregate object at the curvent host loca-
tion that creation of the new aggregate object at the new
host location has completed; and

performing post-departure processing by the aggregate
object at the current location.
81. One or more computer-readable storage media com-

prising computer-executable instructions that, when

executed, direct a computer to move an object in a distrib-
uted computing environment, the computer-executable
instructions configured to.
dynamically aggregate a mobility object with a primary
object to create an aggregate object located at a cur-
rent host location, the primary object being unique to
the aggregate object and the mobility object providing a
mobility functionality for the primary object, the aggre-
gate object including the primary object as a primary
Jacet object and the mobility object as a facet object;

receive a move indication at the mobility object, the move
indication instructing the mobility object to move the
primary object to a new host location;

send a new version of the mobility object to the new host
location in vesponse to the move indication;

send a new version of the primary object to the new host
location in vesponse to a move message from the new
version of the mobility object; and

create a new aggregate object at the new host location, the
new aggregate object having the new version of the
primary object associated with the new version of the
mobility object, and the new aggregate object creates
the new version of the primary object as a new primary
Jacet object and creates the new version of the mobility
object as a new facet object.
82. One or more computer-readable storage media as
recited in claim 81, further comprising computer-executable
instructions configured to.

serialize the new version of the mobility object prior to
sending;

create the new version of the mobility object at the new
host location from the serialized version of the mobility
object;

US RE41,706 E

23

serialize the new version of the primary object prior to

sending; and

create the new version of the primary object at the new

host location from the serialized version of the primary
object.

83. One or more computer-readable storage media as
recited in claim 81, wherein the current host location is
characterized by a current host address and port number,
and the new host location is characterized by a new host
address and port number.

84. One or more computer-readable storage media as
recited in claim 81, further comprising computer-executable
instructions configured to:

lock the aggregate object at the current host location in
response to the move indication; and

unlock the aggregate object at the curvent host location in
response to creating the new aggregate object at the
new host location.

83. One or more computer-readable storage media as
recited in claim 81, further comprising computer-executable
instructions configured to rvetain an old version of the aggre-
gate object, the primary object, and the mobility object at the
current host location.

86. One or more computer-readable storage media as
recited in claim 81, further comprising computer-executable

instructions configured to instruct the primary object to
move to the new host location by invoking a method on the
mobility object at the current host location for moving the
primary object to the new host location.

87. One or more computer-readable storage media as
recited in claim 81, further comprising computer-executable
instructions configured to.

inform the primary object at the curvent host location that
the primary object is about to be moved in vesponse to
the move indication;

perform pre-departure processing by the primary object
at the current host location;

determine whether the primary object is available to
move;

veto the move in response to determining that the primary
object is not available to move; and

affirm the move in response to determining that the pri-
mary object is available to move.
88. One or more computer-readable storage media as
recited in claim 81, further comprising computer-executable
instructions configured to:

complete messages currvently being processed by the pri-
mary object at the current host location; and

suspend new messages arviving at the primary object at

the curvent host location.

89. One or more computer-readable storage media as
recited in claim 81, further comprising computer-executable
instructions configured to forward suspended messages to
the new host location for processing.

90. One or more computer-readable storage media as
recited in claim 81, further comprising computer-executable
instructions configured to.

stove the new host location in a reference holder at the
current host location; and

Jorward messages received at the curvent host location for
the primary object to the new version of the primary
object at the new host location.

91. One or more computer-readable storage media as
recited in claim 81, further comprising computer-executable
instructions configured to vegister the new aggregate object
and the new version of the primary object at the new host
location.

10

15

20

25

30

35

40

45

50

55

60

65

24

92. One or more computer-readable storage media as
recited in claim 81, further comprising computer-executable
instructions configured to:

deregister the aggregate object and the primary object at
the current host location; and

garbage collect the aggregate object and the primary
object at the current host location.
93. One or more computer-readable storage media as
recited in claim 81, further comprising computer-executable
instructions configured to.

send a message from a proxy to the primary object at the
current host location;

send an exception back to the proxy indicating that the
primary object has moved to the new host location; and

resend the message from the proxy to the new version of
the primary object at the new host location in response
to the exception.
94. One or more computer-readable storage media as
recited in claim 81, further comprising computer-executable
instructions configured to:

send a message from a proxy to the primary object at the
current host location; and

Jorward the message from the curvent host location to the
new version of the primary object at the new host loca-
tion.

95. One or more computer-readable storage media as

recited in claim 81, further comprising computer-executable
instructions configured to.

evaluate the sending of the new version of the primary
object by querying the new version of the primary
object to determine if the sending was successful; and

abort the method for moving objects in vesponse to an

unsuccessful sending.

96. One or more computer-readable storage media as
recited in claim 81, further comprising computer-executable
instructions configured to send a move message from the new
version of the mobility object at the new host location to the

primary object at the curvent host location, the move mes-

sage including an indication that the new version of the
mobility object has been established at the new host loca-
tion.

97. One or more computer-readable storage media as
recited in claim 81, further comprising computer-executable
instructions configured to:

lock the aggregate object at the current host location in
response to the move indication;

send a successful move message from the new aggregate
object at the new host location to the aggregate object
at the current host location;

unlock the aggregate object at the curvent host location;

deregister the aggregate object and the primary object at
the current host location in vesponse to the successful
move message,; and

store the new host location in a rveference holder at the
current host location, the veference holder used for for-
warding messages rveceived for the primary object at
the current host location.
98. One or more computer-readable storage media as
recited in claim 81, further comprising computer-executable
instructions configured to.

inform the new version of the primary object at the new
host location that movement of the aggregate object at
the current host location has started;

perform pre-arrival processing by the new version of the
primary object at the new host location;

US RE41,706 E

25

determine whether the new version of the primary object
at the new host location authorizes completion of the

method for moving objects; and

abort the method for moving objects in response to a
negative aquthorization from the new version of the pri-
mary object at the new host location.

99. One or more computer-readable storage media as

recited in claim 81, further comprising computer-executable
instructions configured to:

inform the new aggregate object at the new host location
that the aggregate object at the current host location

has been deregistered; and

5

10

26

perform post-arrival processing by the aggregate object
at the current host location.
100. One or more computer-readable storage media as
recited in claim 81, further comprising computer-executable
instructions configured to:

inform the aggregate object at the curvent host location
that creation of the new aggregate object at the new
host location has completed; and

perform post-departure processing by the aggregate
object at the current location.

UNITED STATES PATENT AND TRADEMARK OFFICE
CERTIFICATE OF CORRECTION

PATENT NO. : RE41,706 E Page 1 of 1
APPLICATION NO. : 11/331418

DATED . September 14, 2010

INVENTORC(S) : Graham W. Glass et al.

It is certified that error appears in the above-identified patent and that said Letters Patent is hereby corrected as shown below:

In column 17, line 37, m Claim 41, delete “new’ and insert -- new host --, therefor.

Signed and Sealed this
Eleventh Day of January, 2011

. F A - . - -
-- .-.- -. b . -- ‘. .--
. " i . 1 - PR . . - - -
. - . : - - N, AT -
!, . . - - e . A n . . u-
.L; . . e e . L F

_ A
- ' - -
" . N T .
. " - . [g
- dh . . \
: .
. .- A . .

David J. Kappos
Director of the United States Patent and Trademark Office

	Front Page
	Drawings
	Specification
	Claims
	Corrections/Annotated Pages

