USOORE41705E
(19) United States
a2 Relssued Patent (10) Patent Number: US RE41,705 E
Durand et al. 45) Date of Reissued Patent: Sep. 14, 2010
(54) DEVICE AND PROCESS FOR HANDLING 6,763,454 B2 * 7/2004 Wilsonetal. 713/1
THE EXECUTION OF A JOB IN A DATA
FOREIGN PATENT DOCUMENTS
PROCESSING SYSTEM
EP 0676699 10/1995
(75) Inventors: Daniel Lucien Durand, Bretonneux
(FR); Gerard Sitbon, Vitry (FR); OTHER PUBLICATIONS
Francois Urbain, Paris (FR) Carretero J., et al., “Performance Increase Mechanisms for
Parallel and Distributed File Systems”, Parallel Computing
(73) Assignee: Bull S.A., Louveciennes (FR) vol. 23, No. 4-5, Jun. 1, 1997, pp. 525-542 XP004073492.
(Continued)

(21) Appl. No.: 10/838,184
(22) Filed Mav 4. 2004 Primary Examiner—Lewis A Bullock, Ir.
1led: ay 4,

Assistant Examiner—Jenniter N To
(74) Attorney, Agent, or Firm—Miles & Stockbridge P.C.;

| Related U.S. Patent Documents Eric G. King
Reissue of:
(64) Patent No.: 6,338,080 (37) ABSTRACT
Issued: Jan. 8, 2002 , _ ,
Annl. No - 09/156.385 [The present invention relates to a process and a device for
ppl. No.:] ; . D .
307 handling the execution of a job 1n an open data processing
Filed: Sep. 18, 1998 , ,
system as a function of the resources. The process comprises
(30) Foreign Application Priority Data the steps of:
Sep. 3, 1997 (FR) woveeveereeeeeeeeeeeeeeeeeeeeeeseeress e 97 12145 determining system resources available in virtual
memory, real memory, temporary file space, and central
(51) Int.CL processing unit utilization time during a given interval;
GoOot 9/46 (2006-0;~) computing the amount of resources preallocated to other
Goot 15/16 (2006-0:~) requests and not yet used;
Goor 3/00 (2006'0;“) comparing the amount of resources required for the
GOOF 15/173 (2006.01) execution of a job for which the request has been pre-
sented to the current amount of resources available
(52) US.CL ... 718/104; 718/100; 710/56; minus the total amount of resources preallocated to
709/201; 709/226 other requests, 1n order to determine as a function of the
(58) Field of Classification Search 718/1, result of this comparison the start, the deference or the
718/100-108; 709/201, 226; 710/56 denial of the start of the job requested]

See application file for complete search history.

The present invention relates to a process and a device for
(56) References Cited handling the execution of a job in an open data processing
svstem as a function of the vesources. The process includes

U.S. PATENT DOCUMENTS determining the start, the deference and the denial of the

5367637 A 11/1994 Wei start of the job requested based on the comparison between
5:550:970 A {/1996 Cline et al. the requirved and the available vesources for the execution of
5,787,246 A * 7/1998 Lichtmanetal. 709/220 rkejob.

5,826,082 A * 10/1998 Bishopetal. 718/104

5,838,968 A * 11/1998 Culbert ...covvvvevvinnnnn... 718/104 14 Claims, 2 Drawing Sheets

US RE41,705 E
Page 2

OTHER PUBLICATTONS

Summarized Translation of Notice of Rejection dated May
18, 1999 Japanese Patent Application No. 275834/98.
Summarized Translation of Citation 1, laid open to the pub-
lic on Aug. 25, 1992, Japanese Patent Application No.
34922, filed Jan. 21, 1991.

Summarized Translation of Citation 2, laid open to the pub-
lic Dec. 2, 1992; Japanese Patent Application No. 3—148002,
filed May 23, 1991.

Summarized Translation of Citation 3; laid open to the pub-
lic on Sep. 18, 1990, Japanese Patent Application No.
1-57121, filed Mar. 8, 1989.

Summarized Translation of Citation 4, Japanese
Application No. 836398, filed Feb. 23, 1996.

Summarized Translation of Citation 5, Japanese
Application No. 61-215287, filed Sep. 11, 1986.

Summarized Translation of Citation C, Japanese
Application No. 442364, filed Jan. 31, 1992.

Summarized Translation of Citation B, Japanese
Application No. 62-158538, filed Jun. 25, 1987.

Summarized Translation of Citation A, Japanese
Application No. 60-196218, filed Sep. 5, 1983.

* cited by examiner

Patent

Patent

Patent

Patent

Patent

U.S. Patent Sep. 14, 2010 Sheet 1 of 2 US RE41,705 E

42

32

-;j‘g(uphicul;;s'_
l:.i_;' .) user':::.' ';";
. interface?..

31

RS AT S,
+4TLRM_ SHARED MEMORY:=:
PCTTy 5 e e ST Y

ﬁ:.'m 4 -l#-l-‘p?-r"..--rl-*-'}, ahg .

Resources ;

FIG, |

U.S. Patent Sep. 14, 2010 Sheet 2 of 2 US RE41,705 E

Resource used Available resource

FIG. 2

US RE41,705 E

1

DEVICE AND PROCESS FOR HANDLING
THE EXECUTION OF A JOB IN A DATA
PROCESSING SYSTEM

Matter enclosed in heavy brackets [] appears in the
original patent but forms no part of this reissue specifica-
tion; matter printed in italics indicates the additions

made by reissue.

FIELD OF THE INVENTION

The present 1nvention relates to a device and a process for
handling the execution of a job 1n a data processing system.

BACKGROUND OF THE INVENTION

It applies to the field of data processing operations 1n an
industrial environment and particularly to data processing
systems of the “open” type running, for example, on soft-
ware of the “UNIX” or “WINDOWS NT” type. The servers
that run on this type of software are called “open™ servers,
and are highly valued at the present time.

The drawback of these servers 1s that they were developed
for academic applications whose purposes were not the same
as those for industrial purposes. Thus, 1n a “UNIX" operat-
ing system, the jobs, or more precisely each of the processes
comprising the jobs are assigned an 1nitial priority, either by
the system or by the user who enters these jobs. In order for a
10b to be considered by the system to have a higher priority,
the user must explicitly assign 1t an 1nitial priority, or manu-
ally modify 1ts priority using an administrative command.
Thus, there 1s no control over or inter-correlation between
the priority levels assigned to one job or another.

Likewise, 1n a standard “UNIX" system, the processes can
start up without any limitation, even 1n heavily loaded
systems, without any attention to the number of resources
currently being used by the processes executed and without
any attention to the number of resources the new process
will require. This results 1n the following disadvantage a
group of processes 1s executed, the critical processes as well
as the non-critical processes, and the critical processes,
which must be completed at a time desired by the user, have
too few resources available to be completed at the desired
time. At the same time, non-critical processes are using too
many resources.

Another disadvantage 1n known systems 1s that in which
there are not enough temporary files available and
consequently, the write operations into the files fail.
Sometimes, the application controls this error condition,
sometimes 1t does not control it, and this can generate a false
indication due to the fact that incomplete files are generated
in one step of a job and processed in subsequent steps.
Another detrimental characteristic 1s that in which there 1s
not enough paging space and the system makes the arbitrary
decision to kill the most recent process without considering
its importance. This 1s unacceptable 1n an operating environ-
ment.

SUMMARY OF THE INVENTION

That 1s why the primary object of the invention 1s to pro-
pose a process for handling the execution of a job which
makes 1t possible to eliminate these drawbacks.

This object 1s achieved as a result of the fact that the
process for handling the execution of a job 1n an open data

processing system (for example of the “UNIX” type) as a
function of the resources 1s characterized 1n that 1t comprises

the following steps:

10

15

20

25

30

35

40

45

50

55

60

65

2

determiming the resources available in virtual memory,
real memory, temporary file space, central processing
unit utilization time during the last time nterval;

computing the amount of resources preallocated to other
requests and not yet used;

comparing the amount of resources required for the
execution of a job for which the request has been pre-
sented to the current amount of resources available
minus the total amount of resources preallocated to
other requests, 1n order to determine as a function of the
result of this comparison the start, the deference or the
denial of the start of the job requested.

According to another characteristic, the process includes a
step comprised of defining the amount of resources required
for the execution of a job by a specific command.

According to another characteristic, the process includes a
step comprised of activating or deactivating the mechanism
for determining whether there are enough system resources
available.

Another object of the invention 1s to propose a device for
handling the execution of a job.

In accordance with this object, the device for handling the
execution of a job 1n an open operating system 1s character-
1zed 1n that it comprises:

means for determining the resources available 1n virtual
memory, real memory, temporary file space, central
processing unit utilization time during a given time
interval;

means for computing the amount of resources preallo-
cated to other requests but not yet used;

means for comparing the amount of resources required for
the execution of a job for which the request has been
presented to the current amount of resources available
minus the total amount of resources preallocated to
other requests;

and means for controlling the start, the deference or the
denial of the start of the job requested as a function of
the result supplied by the comparing means.
According to another characteristic, the device comprises
a means for defining the amount of resources required for the
execution of a job by a specific command.
According to another characteristic, the device comprises
a means for activating or deactivating the mechanism for
determining whether there are enough system resources
available.

BRIEF DESCRIPTION OF THE DRAWINGS

Other characteristics and advantages of the present inven-
tion will emerge more clearly with the reading of the
description below, given in reference to the appended
drawings, in which:

FIG. 1 represents a schematic view of the data processing,
system and of the software means associated with the data

processing system for enabling the process according to the
invention to be implemented; and

FIG. 2 represents an exemplary situation in the manage-
ment of the resources according to the mvention.

DESCRIPTION OF THE PREFERRED
EMBODIMENTS

Prior to the description of an exemplary embodiment of
the mvention 1n UNIX, it 1s usetful to recall the following
definitions.

Heremaftter, the term “process™ or “job” designates any
execution of a program (and consequently, 1n particular, 1ts

US RE41,705 E

3

environment in the system) at a given instant, the program
itsell constituting an 1nert object stored on a disk 1n the form
ol an ordinary executable file.

In “UNIX” systems, the existence of two types of pro-
cesses 15 known:
the system processes, which are not attached to any
terminal, which are created at the system startup or at
dates set by the administrator of the system and which
are only iterrupted at the system shutdown. These
include the “SWAPPER,” a certain number of pro-
cesses known as “daemons,” such as for example the
process which ensures the correct usage of the printer

in “SPOOL,” or the process “CRON,” which makes 1t
possible to start jobs at a given date.

the user processes started by a particular user from a given
terminal at a given date. In particular, the fact that 1t 1s
housed 1n a terminal under a given 1dentification causes
the start of a process corresponding to the execution of
a file determined 1n advance for each user. This type of
process nearly always corresponds to the execution of a
command language interpreter (BOURNE shell or
C-shell). For information’s sake, let us also recall that
the utilization of standard services by a user is carried
out 1n a remote machine by means of commands which,
in order to function in the remote machine, require the
existence of specific processes known as “daemons.”

The structure of the “UNIX” system represented 1n FIG. 1
1s constituted by the hardware resources of a data processing
system 1, which communicates with a “UNIX" kernel 2 that
ensures the management of the memory and the low-level
input-outputs, and the chaining of various *““tasks™ (jobs).
Used around this kernel are one or more “shell”-type com-
mand language “interpreters,” a messaging system and util-
ity programs, which obviously include a C language com-
piler.

To meet the needs of multitask applications 1n an open
environment, two “ap1” program modules were developed
around these standard elements 1n “UNIX” systems, one of
which (JRS Job Reporting Service) provides reports on the
execution of the jobs started by a user, while the other
(LRM) makes 1t possible to display the proper execution or
the occurrence of failures and thus to detect the causes. This

first module will be called the “JRS” (Job Reporting
Service) and the other will be called the “LRM” (Local
Resource Management) module.

Added to this, for purposes of the mvention, 1s a local
resource management (LRM) daemon 3 which communi-

cates with the kernel 2 and with an application program
interface 34. This daemon 3 also communicates with an
LLRM configuration file 33 stored in the hard disk, and with
an associated graphical user interface (LRM gui) 32. The
application program interface 34 communicates with the
daemon 3 and with a shared memory 31. This shared
memory 1s also 1n communication with the graphical user
interface 32 and the daemon 3. For purposes of pre-
allocation, the system incorporates a “JRS” application pro-
gram 1interface 44 for reporting the execution of jobs (Job
Reporting Service). This application 44 communicates with
a catalog and which stores the job report (jor) 1n a distinct
file 5 of the hard disk. This application program interface 44,
if 1t has been activated and the job report files have been
stored, communicates with the local resource management
daemon 3 so as to allow the pre-allocation and dynamic
control of resources. The 1nterface 44 comprises the lines of
code that are necessary to allow the execution of the com-
mands available to the user through this interface. The com-
mands available through this interface 44 are the following:

10

15

20

25

30

35

40

45

50

55

60

65

4

a command “JRS” which makes it possible to send a com-
mand to the resource manager and to generate the
execution of a report file. This command, which
appears 1n Appendix 1, comprises a plurality of options
which make it possible to determine the number of
pages of virtual memory, the quantity of temporary file
space, the dimensions defined by the users, the
expected CPU time consumption, the maximum
clapsed time, the maximum CPU time, the maximum
temporary file space, the maximum number of pages of
virtual memory. This command appears 1n Appendix 1
of the specification with the meanings of these various
parameters,

a command “JRSjobstart” (int jobid; int gflag; struct
JRS_ resources *JRS__resources;) in which the param-
eter jobid 1s the job 1dentifier, and JRS-resources 1s the
structure describing the resources required for the job.
This can be 0 i1f the job does not require any pre-
allocation of resources. The “gflag” parameter, when it
1s not indicates that the job will wait for the availability
of the resources. This command verifies whether the
10b can start; 1f 1t cannot start, the system waits until the
resources are available, which 1s the case when “qtlag”
1s null. IT “gtlag” 1s not null, it causes an 1mmediate
return. If the job can start, a value 0 1s returned; 11 not,
when “qflag” 1s set, a value -1 1s returned. Moreover,
cach major event of a job 1s stored as 1t occurs in a
global file “logc™ of the catalog “jor”” This file can be
displayed by means of the command “jrs log file,”
which allows the display of the parameters p, t, d, c, €,
C, P, T defined below. In order to avoid having to
explicitly define the parameters for each job entry, the
application “JRS” 44 provides the capability to declare
resources 1n a script. Thus, when the developer of an
application has properly defined the resources needed

for his job, he can insert the latter into the script. The

j0b will be entered by the command “JRS” without any
other parameter. The syntax for these command lines 1s
the following:

#option-p “Number of pages of virtual memory”
#option-t “Amount of temporary file space”
#option-d “Function defined by the user”

#option-c “Expected CPU time”

#option-¢ “Maximum elapsed time”

#option-C “Limit of CPU time consumed”

#option-P “Maximum number of pages of virtual
memory”’

#option-1 “Maximum temporary file space”
In case of a contlict, the value specified at the entry of the
command 1s used as follows: 11 there 1s a line 1n the script
such as

#option-C 200
and 1f the script 1s entered with the following command line:

JRS-C 300 script,
then the value used for the CPU limit 1s 300.

With a system equipped in this way with the local
resource management module, the non-critical processes
should alter the continuation of the execution of the critical
processes as little as possible. Each type of process has a
specific importance. More or fewer resources should be allo-
cated to 1t as a function of this importance and as a function
of the load on the system. For this reason, the module
“LRM” makes it possible to sort the processes by dimension.
A dimension 1s a set of commonly executed processes which
have the same importance from the point of view of the local

US RE41,705 E

S

resource manager. By default, five dimensions are provided:
a first dimension “SYSTEM,” a second dimension
“BATCH,” a third dimension “MISC,” a fourth dimension
DB (data base) and a fifth dimension TP (transier protocol).
I1 the processes are started by the normal users directly 1n the
background, then they belong to the dimension “MISC.” IT
the processes are started via a script, entered into the job
management application without any declaration of explicit
dimensions, then they belong to the third dimension
“BATCH.” If the processes do not belong to any other
dimension, then they belong to the dimension “SYSTEM.”
The dimensions “DB” and “TP” are provided without any
definitions of processes and can be defined by the user. With
the exception of the dimension “SYSTEM,” it 1s possible for
cach dimension to have a relative weight, which 1s stored 1n a
file. This relative weight 1s used to manage the priority of the
processes comprising the dimension. The priority of all the
processes belonging to a dimension will vary accordingly.
The dimensions “SYSTEM” has no relative weight and the
priorities of the processes belonging to this dimension are
not modified by the local resource manager (LRM). The
processes controlled by the dimensions will always have
resources allocated to them as a function of theirr relative
weilght, even if the system 1s heavily loaded. At the moment
of the startup of the local resource manager, or when a
dimension 1s created without specitying a relative weight, by
default this dimension will have a weight of —1, which
means that 1t exists, but that 1t 1s not controlled. A dimension
can also be activated or deactivated. IT it 1s deactivated, the
j0bs entered that belong to 1t will not be started, but the jobs
in the process of being executed 1n this dimension will con-
tinue to be executed.

When a process results from a job execution command
“JRS,” 1t belongs to the dimension specified, 11 a dimension
has been specified 1n the command “JRS.” When the process
has an ancestor whose command name and user are associ-
ated with a dimension, the process belongs to this dimen-
sion. During the run time of a process, the relative weight
will be used to manage and modify the priority of the pro-
cesses comprising the dimension. A preallocated process
either 1s not started by jrs or does not comprise any preallo-
cation parameters.

As a result of the resource management application, the
user as well as the resource manager will know for each
resource at a grven time, how many resources are actually
being used and how many resources have been declared for
cach job. Thus, in the example represented 1n FIG. 2, u”
represents the resources used by the non-preallocated pro-
cesses. Ra represents the amount of the available resources
reserved for the administrative and system processes. Ul,
U2 represent the resources used by the jobs 1 and 2. D1 and
D2 represent the resources declared for the jobs 1 and 2. R1
represents the difference between D1 and Ul. R2 represents
the difference between D2 and U2. Af represents the
resources considered available by the resource manager. It a
10b 1s entered and declares an amount of necessary resources
D3, 1t will only start if Af 1s greater than D3. This clearly
shows the advantage of the prior allocation of resources 1n
allowing the start of a job only when the minimum amount
of necessary resources 1s available.

The mechanism for preallocating virtual memory and
temporary file space 1s implemented by a command “JRS,”
which also constitutes a process that contributes to the
proper operation of the system. When a job 1s entered, 1t can
request via the command JRS a certain amount of resources.
The resource manager then tries to ensure that there will be
enough resources for the job. The jobs can be entered with

5

10

15

20

25

30

35

40

45

50

55

60

65

6

options, a first of which 1s to supply a maximum elapsed
time and a second of which 1s the expected total central
processing unit time for the job. When a request for
resources 1s examined, the following values are considered:

the amount of resources requested “r’’;
the current amount of resources available “A’’;

the resources already preallocated to other requests, but
not yet used “R”;

an 1nitial amount of resources “Ra” declared at the start by

the user to the resource manager 1n order to aid 1n pre-

venting failures due to the uncontrolled allocation of
resources.

The current amount of resources “A” 1s a piece of infor-

mation obtained periodically and updated periodically by

the “daemon” LRM by verifying the system information

tables that have been stored. The value of the resources
already preallocated “R” 1s also determined by the daemon
“LRM,” which gathers the current utilizations of resources
by the jobs. “Ra” 1s a set value, supplied by the “daemon”
LRM as being one of these arguments.

The request will be fulfilled 1 r<A-(R+Ra). Upon each
request, the daemon performs this computation and tulfills
or does not fulfill the request as a function of the result of
this comparison. Once a request for resources corresponding
to a job start has been fulfilled, the job 1s executed, taking
into account the evolution of its priority.

The following appendices relate to the code parts that
make 1t possible to compute the total available virtual
memory and real memory. This computation is performed by

the following code part.
. . Computing Available and Total Virtual and Real

Memory.

/*get vmdata: Obtainment of Information on Available Real
and Virtual Memory */
get_ vmdata(vm)

struct vimdata *vm
{

char buff] 1024 ;
int bufsiz = 1024;
char wl1|20], w2|20], w3[20], w4[20];
while (1) {
int vl, v2;
if(!init__access_to_ commands__done) {
/*Initialization: Command vmstat 1s launched, and its output caught™*/
init__access_ to_ commands_ done = 1;
init_access_to_ commands();
fdvmcom = sag popen_ getline(*“vmstat 17, buff, &buisiz, 2);
}else {
int cr;
/* A new line issued by command vmstat 1s read™®/
cr =sag popen_ nextline(fdvmcom, bufl, &buisiz, 2);
if (cr <=0) {
fdvimcom = sag popen_ getline(*'vmstat 17, buff,
*buisiz, 2);

h
;

/*line 1s examined and information recovered™/
sscanf(buff, “*%s %s %s %s”, wl, w2, w3, wé);
if (!stremp(wl, “kthr’”) && !stremp(w2, “memory™))

continue;

if (Istremp(wl, “-----") && !stremp(w2, “-----------)
continue;

if (!stremp(wl, “r’”") && !stremp(w2, “b™))
continue;

sscanf(w3, “%d”, &vl);

sscanf(w4, “%d”, &v2);

vim->totrealmem = vmconstant.totrealmem:;
/*System Call psdanger returns Total Virtual Memory and Available
Virtual Memory */

vm->totvirtmem = psdanger (0) * 4;

US RE41,705 E

7

-continued

vim->avrealmem = v2 * 4;
vm->avvirtmem = psdanger (-1) * 4;
return (0);

y
h

The process also comprises a step for computing the total
and available temporary file space. This computing step 1s
carried out by the following code part.

Computing Available and Total Temporary File Space

updtmpspace (avtmpspace, tottmpspace)

int *avtmpspace;

int *tottmpspace;
1

int curnbtmpdev;

char *ptdevlist;

int 1;

struct statfs statfsbuf;

curnbtmpdev = enum__dev();
if (curnbtmpdev > nbtmpdev){
nbtmpdev = curnbtmpdev;
if (tmpdevlist)
(unsigned char *) free(tmpdevlist);
tmpdevlist = (char®) malloc(nbtmpdev *200);
tmpdevno = (1nt *) malloc(nbtmpdev *sizeof(int));
h
if (curnbtmpdev > 0) {
get_ dev(tmpdevlist, tmpdevno);
*avtmpspace — 0;
*tottmpspace = 0;
for (1 = 0, ptdevlist = tmpdevlist; 1 < curnbtmpdev;
i++, ptdevlist += 200) {
int cr;
/*System call ststfs provides information on the File System™/
cr = statis(ptdevlist, &statsbuf);
/*conversion mto Kb: multiply by 4%/
*avtmpspace +=4 * statfsbuf.f biree;
*tottmpspace += 4 * statisbuf.f blocks;

Next, the central processing unit usage that occurred dur-
ing the last time 1nterval 1s determined, and this determina-
tion 1s made by means of the following code.

/*sysinfo and vminfo are AIX Kermel tables™®/

/*The function™ get sysinfo_ and_vminifo reads these
tables from the Kernel Memory®/

get_ sysinfo_ andvminfo (&sysinfo, &vminfo);

tpgspgouts = (double) (vminfo.pgspgouts —

ovminfo.pgspgouts)/(double) Irmdinterval;

trunque = (double) (sysinfo.runque -

oysinfo.runque)/(double) Irmdinterval;

tswpque = (double) (sysinfo.swpque-

oysinfo.swpque)/(double) Irminterval;

tuser = (double) (sysinfo.cpu| CPU__USER])/(double)

[rmdinterval;

tsystem = (double) (sysinfo.cpu| CPU_KERNEL |-

oysinfo.cpu| CPU__ KERNEL])/(double) Irmdinterval;

tidle = (double) (sysinfo.cpu| CPU__IDLE|-

oysinfo.cpu| CPU__IDLE])/(double) Irmdinterval;

twait = (double) (sysinfo.cpu] CPU_WAIT}

oysinfo.cpu| CPU_ WAIT |)/(double) Irmdinterval;

tsum = tuser + tsystem + tidle + twait;

The process also comprises a step for determining the

spaces preallocated but not yet used by the jobs. This step 1s
carried out by the following code part.

10

15

20

25

30

35

40

45

50

55

60

65

8

Computing Prealloc space not used by jobs:

shmem->system.preallocvirtmem = 0;
shmem->system.prealloctmpspace = 0;
for (job = shmem->first jb_ started; job; job = job->next) {
if (job->requiredvirtmem && (job->requiredvirtmem >
job->currentvirtmem)) {
shmem->system.preallocvirtmem += (job->
requiredvirtmem - job->current virtmem);
h
if (job->requiredtmpspace && (job->required-
tmpspace > job->currentusedtmpspace))
shmem->system.prealloctmpspace += (job->
requiredtmpspace — job->currentusedtmpspace);
h
The evaluation is carried out according to the formula I <
(R + Ra) and 1s constituted by the following code part.
Checking Resources for a job:
LRMresourcescheck (LRMresources)
struct LRMresources * LRMresources;
{

struct timeval tv;
struct timezone tz;
struct systementry systeni;
gettimeoiday (&tv, &tz);
shmgetsystem(&system);
if (LRMresources->requiredtmpspace >
(system.avimpspace — system.prealloctmpspace -
system.reservedtmpspace))
return (0);
if (LRMresources->requiredvirtimem >
(system.avvirtmem — system.preallocvirtmem —
system.reservedvirtmem))
return (0);
if (LRMresources->expectedtermination) {
int remalns;
int tl;
double a, b;
remains-LRMresources->expectedtermination —
tv.tv__sec;
LRMresources->neededratecpu = 100.0 *
LRMresources->expectedcpu / remains;
/*‘
* test here with the current available cpu rate
/¥ 37
LRMdbgprinti(DBGALL, “Maximum Elapsed
time specified\n”);
LRMdbgprinti{DBGALL, “Remains: %d\n™,
remains);
LRMdbgprintfi(DBGALL, “Needed Rate of CPU: :|

35

36

%1\n”, LRMresources->neededratecpu);
LRMdbgprinti(DBGALL, “Extrapolated Available
Rate of CPU: %d'\n”, system.workingavcpu);
if (remains > 0 && LRMresources->neededratecpu <=
system.workingavepu) {
LRMdbgprinti{DBGALL, “Rate of CPU 1s good
enough'n”); return (1);
I else {
LRMdbgprinti{ DBGALL, “Rate of CPU 1s too
low'n™);
if (remains < 0 || LRMresources->neededratecpu >
100.0* system.nbprocessors) {
LRMdbgprinti{ DBGALL, “There will not
be enough free CPU to complete the job in time'\n’);
return (-1);
h

return (0);

38

h
I else

return (1);

In this code part, the portion 35 performs the evaluation of
the temporary space part and returns the value 0 11 enough
temporary space 1s available. Then, the process continues
with an evaluation of the virtual memory part performed by
the portion 36 which returns the value 0 1s enough virtual
memory space 1s available. Finally, the system performs an
evaluation of the available CPU resources using the code

US RE41,705 E

9

part 38. This evaluation 1s done after having determined the
remaining resources (REMAINS) and the necessary CPU
rate (NEEDED RATE CPU). If the available CPU rate 1s
enough, the system returns the value 1, which allows the
execution of the request, whereas 1n the case where the sys-
tem returns the value -1, the request for the execution of the
10b 1s deferred.

Thus, through the definition of the parameters necessary
to the execution of a job pre-entered 1nto the command JRS
by the user, the latter can, using the mechanism described
above, trigger the execution of a job 1n the system, when the
necessary resources for its proper execution are available.

Any modification within reach of one skilled in the art 1s
also part of the spirit of the invention. Thus, the process and
the device described can be easily used and applied with
another open system such as, for example, “WINDOWS
NT”.

While the preferred forms and embodiments of the mven-
tion have been 1llustrated and described, 1t will be apparent
to those of ordinary skill 1n the art that various changes and
modifications may be made without deviating from the
inventive concept and spirit of the invention as set forth
above, and 1t 1s intended by the appended claims to define all
such concepts which come within the full scope and true
spirit of this invention.

APPENDIX 1

NAME: jrs command
j1s - submits a command to the resource manager and
generates an execution report in a file SYNOPTIQUE
jrs[-p <Number of virtual memory pages|
-t <Amount of temporary file space]

-q]

-d <Dimension defined by user> |

-¢ <Expected CPU time consumption>

-e¢ <Maximum time elapsed |

-C >Maximum CPU time> |

-T «<Maximum temporary file space]

-P «<Maximum number of pages of virtual memory|
-r0] 1] 2| 3]

-v <environmentvariable»>= <value>|. ..

comand *args . . .|

What 1s claimed 1s:

1. A process for handling the execution of a job 1n an open
data processing system as a function of the resources, [char-
acterized in that it comprises the following steps:] compris-
Ing:

determining [the] resources available in virtual memory,

real memory, temporary file space, arnd central process-
ing unit utilization time during the last time 1nterval;

computing [the] an amount of resources preallocated to
other requests and not yet used;

comparing [the] an amount of resources required for [the]
execution of a job for which [the] a request has been
presented to the current amount of resources available
minus the total amount of resources preallocated to
other requests, in order to determine, as a function of
[the] a result of [this] #2e comparison, the start, the
[deference or] deferral and the denial of the start of the
10b requested.

2. The process according to claim 1, [characterized in that
it includes a step comprised of] further comprising defining
the amount of resources required for the execution of a job
by a specific command.

10

15

20

25

30

35

40

45

50

55

60

65

10

3. The process according to claim 1 [or 2], [characterized
in that it includes a step comprised of] further comprising
activating or deactivating [the] @ mechanism for determining
whether there are enough system resources available.

[4. The process according to claim 2, further comprising
activating or deactivating a mechanism for determining
whether there are enough system resources available.]

[5. The device according to claim 4, characterized in that
it comprises a means for defining the amount of resources
required for the execution of a job by a specific command.]

[6. The device according to claim 5, further comprising
means for defining the amount of resources required for the
execution of a job by a specific command.]

7. A device for handling the execution of a job in an open
data processing comprising:

means for determining rvesources available in virtual

memory, real memory, temporary file space, and cen-
tral processing unit utilization time during the last time
interval:

means for computing an amount of resources preallocated
to other requests and not vet used;

means for comparing an amount of resources vequired for
the execution of a job for which a rvequest has been
presented to the current amount of resources available,
minus the total amount of resources preallocated to
other requests,

and means for commanding, as a function of a vesult sup-
plied by the comparing means, the start, the deferral
and the denial of the start of the job requested.

8. The device according to claim 7, further comprising
means for defining the amount of vesources vequirved for the
execution of a job by a specific command.

9. The device according to claim 7, further comprising
means for activating or deactivating a mechanism for deter-
mining whether there arve enough system rvesources avail-
able.

10. The device of claim 7, wherein the means for compar-
ing is further configured to determine an amount of
resources required for the execution of a job for which a
request has been presented.

11. A process for handling the execution of a job in
response to requests in an open data processing system as a

function of system vesources, cOmprising:

determining resources available in virtual memory, real
memory, temporary file space, and central processing
unit utilization time during the last time interval;

determining an amount of resources required for execu-
tion of a job for which a request has been presented;

computing an amount of rvesources preallocated to other
requests and not yet used;

comparing the amount of resources vequired for execution
of a job for which a request has been presented to the
current amount of resources available minus the total
amount of resources preallocated to other vequests;
and

determining, as a function of the rvesult of this comparison,
the start, the deferval and the denial of the start of the
Job requested.

12. The process according to claim 11, further comprising
defining the amount of resources vequirved for the execution
of a job by a specific command.

13. The process according to claim 11, further comprising
activating orv deactivating a mechanism for determining
whether therve are enough system rvesources available.

14. The process according to claim 11, further comprising
activating orv deactivating a mechanism for determining
whether theve are enough system vesources available.

US RE41,705 E

11

15. A computer readable medium having software instruc-
tions embodied thereon, the software instructions, when
executed by a computer, cause the computer to perform a

series of functions comprising.
determining resources available in virtual memory, real

memory, temporary file space, and central processing
unit utilization time during the last time interval;

computing an amount of resources preallocated to other
requests and not yet used,

comparing an amount of resources required for execution
of a job for which a request has been presented to the
current amount of vesources available minus the total

amount of resources preallocated to other requests;
and

10

12

determining, as a function of a vesult of the comparison,

the start, the deferrval and the denial of the start of the
Job requested.

16. The computer veadable medium of claim 15, wherein
the series of functions further comprises defining the amount
of resources required for the execution of a job by a specific
command.

17. The computer readable medium of claim 15, wherein
the series of functions further comprises activating or deac-
tivating a mechanism for determining whether there are
enough system resources available.

	Front Page
	Drawings
	Specification
	Claims

