USOORE41703E
(19) United States
a2 Relssued Patent (10) Patent Number: US RE41,703 E
Pechanek et al. 45) Date of Reissued Patent: Sep. 14, 2010
(54) METHODS AND APPARATUS FOR 5,680,597 A * 10/1997 Kumaretal. ............... 712/226
EFFICIENT SYNCHRONOUS MIMD 5,930,508 A 7/1999  Faraboschi
OPERATIONS WITH IVLIW PE-TO-PE S963745 A * 101999 Collmseta 1213
963, ollinsetal. .................
COMMUNICATION 5,968,160 A 10/1999 Saito
(75) Inventors: Gerald George Pechanek, Cary, NC g’?gj’gg i ;gggg gﬂlﬂnsm
122, avenburg
(US); Thomas L. Drabenstott, Cary,
NC (US); Juan Guillermo Revilla, OTHER PUBLICATIONS
Austin, TX (US); David Strub
ustin, 124 (US); David Strube, Pechanek, GG., et al., M.EA.S.T: A Single Chip Highly Par-
Raleigh, NC (US); Grayson Morris, _ _
Eindhoven (NL) allel Image Processing Avchitexture, ILEE, vol. 3, pp. 69-72
(Oct. 23, 1993).
(73) Assignee: Altera Corp., San Jose, CA (US) Supplementary Furopean Search Report for FEuropean
Patent Application No. 98957630.1 dated Jun. 30, 2005.
(21) Appl. No.: 10/872,995 * cited by examiner
(22) Filed: Jun. 21, 2004 Primary Examiner—Eric Coleman
Related U.S. Patent Documents (74) Attorney, Agent, or Firm—Priest & Goldstein, PLLC
Reissue of: (57) ABSTRACT
(64) Patent No.: 6,446,191 _ _ _
Tssued: Sep. 3, 2002 A SIMD machine employing a plurality of parallel processor
Appl. No.: 09/677,732 (PEs) in which communications hazards are eliminated in an
Filed: Oct. 2, 2000 eificient manner. An indirect Very Long Instruction Word
istruction memory (VIM) 1s employed along with execute
U.S. Applications: and delimiter instructions. A masking mechanism may be
(63) Continuation of application No. 09/187,539, filed on Nov. 6, employed to control which PEs have their VIMs loaded.
1998, now Pat. No. 6,151,668. Further, a receive model of operation 1s preferably

(60) Provisional application No. 60/064,619, filed on Nov. 7, employed. In one aspect, each PE operates to control a

1997. switch that selects from which PE it receives. The present

(51) Int.Cl. invention addresses a better machine organization for execu-
GO6F 15/16 (2006.01) tion of parallel algorithms that reduces hardware cost and
complexity while maintaining the best characteristics of

(52) U.SeCLle oo, 712/24; 712/21  both SIMD and MIMD machines and minimizing communi-
(58) TField of Classification Search ... 712/22,  cation latency. This invention brings a level of MIMD com-

719/24.915. 213. 19 21. 15. 13. 20 putational autonomy to SIMD indirect Very Long Instruc-
’ j e T ety tion Word (1VLIW) processing elements while maintaining,
the single thread of control used 1n the SIMD machine orga-
(56) References Cited nization. Consequently, the term Synchronous-MIMD
(SMIMD) 1s used to describe the present approach.

See application file for complete search history.

U.S. PATENT DOCUMENTS

4,979,096 A 12/1990 Ueda 533 Claims, 18 Drawing Sheets
103 ————r - 03
............. ,
106 : STORE INIT 4 || stoee wr
~ .----.;;m-- |
104 SWITCH : 104
| PEO VIN “ i AL
T E | =
| A =
|~ T A
[ 1 iviIw coNTRoL ' . iVLIN CONTROL
EEN "
N e O | TR R
105 E | STORE WNIT | ] STORE UNIT {
1 0AD LT '. ™ .
104 L - s 104
PE2 VIN ! AL |
: AL =l-
|
| = |
e




US RE41,703 E

Sheet 1 of 18

Sep. 14, 2010

U.S. Patent

0HINOD MITA

HIA €3
b0l
901

Lol

hot

._
X

el N < 2 U S0 S < G~ S

E3d

41
901 E
H3110HINOD dS

ME T TEEEEgpt W W b

T0HINGD AITA!

) ==t 1 ] . ] G

bl
TEETEEEOEEEEE v o

T0HINQD MITAY

i)

{1

e b 73 1 ] e ] B
x
—
=
Y

| — |
g
| ]

4
T
[ |

| ]

)

)

[

[ ]

L ]
- —

£0l



U.S. Patent Sep. 14, 2010 Sheet 2 of 18 US RE41,703 E

FIG. 2

FETCHED
INSTRUCTION

¢0~J INSTRUCTION
REGISTER

READ DATA

¢b 1VLIW
REGISTER

10
INSTRUCTION

OECODE
UNITS



US RE41,703 E

Sheet 3 of 18

Sep. 14, 2010

U.S. Patent

EOE

SNOILNWLSNI
LIND DIV

NOTIVII3IJ3dS NOILINNS
NOI13NH1SNI
S

E 914



(SIIOWTAt[TO]A)
0JUl SUOL}aNJISuT juJysuf Ix3u peo

(0 < juJjsul} §t

US RE41,703 E

(Q=4) §T NSO —==[ ¥ JISSIONIA[10]A}
(H=4) }U VN —[ N J(SSIONIA? [ 10 )A)
{4 40 ¥=4) JU NIV —{ 0 JSIIMIA*[TOA)

" [dS T AT
- (0=P) }1 31QESIP —=-| NS ) (SIIONTA*[TO JA}
- (W=P) }1 3108S1P —e-{ VN J(SSONIA [TO JAI
5 (v=P) }1 J]QSIP —== [NV J(SIIONIA*[TO)A)
= (1-P) J1 3] qeSIP —= [T JISIIONTA* {10 A3
(S=P) J1 31QeS1P —e-[NS }{SHONIA*{TOJA)
|
5
s Jo[u]om[me o[ n [o] o Jas] s

mvimimsjojojo
=ﬂnn__nnﬁnnEEEEEEEEEEEEEEEEEEEEEI

00Y ~_ a1 AdTOOM OVOT - AT

vk 914

U.S. Patent



US RE41,703 E

Sheet S of 18

Sep. 14, 2010

U.S. Patent

[0=4} §1 NSQ —e[ VN ] {SIOMIA*{T0 JA)
(W=4) §1 VN —==| VN )(SSSONTA*[TO JA)
(V=4 JO =4} }1 N —e|4¥0 } (SIIOMIA[TO JA)

INGRV }=4

(G-3) $1 [NSO)ISIHONIA+[T0]A) 31n2ax] “{OWVIS)}=3 "SH40MIA [T0 A
(K=3) 41 [nvu](SSHONIA* (L0 JA) 21nJax]
(V=3} 41 [NV ]{SHORIA*[10 ]A) 31ndax]
(1=3) #1 [N J(SHOWIA* [TO JA} 31Nndax3
(S:3) 1 {NS]ISSHONIA*[T0JA) 31nJ3x]

s 01 £ 3 10 1 EY YR O O YN Y 2 )

ofsfelepp]sfsjefefsfo]nfajalnfa]a|nln]ae]efz]e]w]e]we]e]e]sw]e]e

—" ocy—— NLQON3

SCYSCMETA 1M - AX
gy 914



U.S. Patent Sep. 14, 2010 Sheet 6 of 18 US RE41,703 E

FIG. 4C
YOS InsTRuCTION FIELD CEFINITIONS

C AU T —

ALU INSTRUCTION SLOT (USED BY LV AND XV INSTRUCTION)

0 - 00 NOT DISABLE ALU SLOT (LVI.DO NOT EXECUTE ALU SLOT (XV)
1 » DISABLE ALU SLOT (LV); EXECUTE ALU SLOT (XV)

CONDITIONAL EXECUTION (T F)

00 = EXECUTE INSTRUCTION. DO NOT AFFECT ARITHMETIC CONDITION FLAGS

03 = EXECUTE INSTRUCTION IF FO - 1ITRUE). DO NOT AFFECT ARITHMETIC
CONDITION FLAGS

10 « EXECUTE INSTRUCTION IF FO - OIFALSE). DO NOT AFFECT ARITHMETIC
CONDITION FLAGS

11 « RESERVED

HLOW CONTROL OPERATION

0000 - LOOP, LOOP]

0001 - RET

0010 « CALL

0011 - JHP

0100 -

0101 - XV

0110 = RESERVED
Cirl0p 0111 = RESEAVED

1000 = RESERVED

1001 « RET]

1010 - TRAP

1011 « RESERVED

1100 « RESERVED

1101 - RESERVED

1110 « NOP

1111 = SVC

INTEGER DATA PACKING
000 = 4 BYTES (48

001 = ¢ HALFWORDS (2H)
010 = 1 WORD (iW)

011 - RESERVED

100 - B BYIES (66!

101 = 4 HALFWORDS (4H)
110 - 2 WORDS (W)

111 « 1 DOUBLEWORD {1D)

DSU INSTRUCTION SLOT (USED BY LV AND XV INSTRUCTION)
0 - DO NOT DISABLE DSU SLOT (LY); DO NOT EXECUTE DSU SLOT (XVi
1 - DISABLE DSU SLOT iLV); EXECUTE DSU SLOT (XV)

INSTRUCTION GROUP
00 - RESERVED

01 » FLOW CONTROL
10 - LOAD/STORE (LU/SU)
11 = ARITHMETIC/LOGICAL (ALU. WAY, OSU)




U.S. Patent Sep. 14, 2010 Sheet 7 of 18 US RE41,703 E

FIG. 4D "
440
INSTRUCTION FIELD OEFINITIONS (CONTINUEDH

INSTRUCTION COUNT - USED IN LV INSTRUCTION TO SPECIFY THE NUMBER OF
INSTRUCTIONS T0 LOAD
Oxxx = 0 INSTRUCTIONS TQ LOAD

1000 - § INSTRUCTION 70 LOAD
1001 - 2 INSTRUCTIONS TO LOAD
1010 = 3 INSTRUCTIONS TO LOAD
Instrnt 1011 » 4 INSTRUCTIONS 70 LOAD
1100 = 5 INSTRUCTIONS 70 LOAD

1101 - RESERVED
1110 « RESERVED

1111 - RESERVED

LU INSTRUCTION SLOT (USED BY LY AND XV INSTRUCTION)
0 = 00 NOT OISABLE LU SLOT LY); DO NOT EXECUTE LU SLOT (XV)
1 » DISABLE LU SLOT {LV], EXECUTE LU SLOT (XV]

MAU INSTRUCTION SLOT (USED BY LV AND XV INSTRUCTION)
{ |0 = DO NOT DISABLE MAU SLOT (LVI; DO NOT EXECUTE MAU SLOT (Xv)
1 = DISABLE MAU SLOT (LV), EXECUTE MAU SLOT (XV)

“. PIFE SELECT
{ =

SU INSTRUCTION SLOT (USED BY LV AND XV INSTRUCTION
0 00 NOT OISABLE SU SLOT (Lvi, 0O NOT EXECUTE SU SLOT XV

1 « DISABLE SU SLOT (LV), EXECUTE SU SLOT (XV)

UNIT AFFECTING FLAGS

00 - ALU

01 - MAU

10 - DU

11 = RESERVED

ARTTHMETIC EXECUTION UNIT
00 = ALU

01 = MAU

10 - DSV

{1 « RESERVED

VIH BASE REGISTER SELECT
Hi

YIH OFFSET - CONTAINS THE OFFSET FROM THE BASE VIM ADDRESS REGISTER
10 SELECT WHICH VIM TO LOAD (LV) OR EXECUTE (XV)
0-253 IS THE ARCHITECTED RANGE OF YLIW OFFSETS. PLEASE REFER TO YOUR

SPECIFIC CONFIGURATION FOR THE VALID ADDRESSABLE VIM.

YLIW EXTENSION - SPECIFIES IF THIS XV QVERRIDES THE LV UAF SETTING
0 - DO NOT OVERRIDE LV UAF SETTING
1 s OVERRIDE THE LV UAF SETTING WITH THE ONE SPECIFIED IN THE UAF

FIELD



U.S. Patent Sep. 14, 2010 Sheet 8 of 18 US RE41,703 E

A - ADp—— 450 FIG. 4E
ENCODING — 49

311301 29]28127126] 25]24[23] 22121) 2011911811716/ 15 14{13] 12| 11 [ 10] 9B 7161 5]4f{3[2]1]0

Group |S/P AlUopcode __ OPack
Wopcade  [Ate  [0fRe [0 |Re 0 -

SYNTAX/OPERATJON — 460

OPERANDS OPERATION
DOUBLEWORD

Rto] [Rte+—Rxo| [Ruesfyo] |Rye
D0 OPERATION OMLY IF T/F CONDITION IS SATISFIED IN FO | NONE
WORD

ADSIMM. W | RLReRy | RteRuhy | NONE_
[ TF).ADD.SIAM} .iW | R1.Rx.Ry | DO OPERATION ONLY IF T/F CONDITION IS SATISFIED IN FO | NONE
o o
D0 OPERATION ONLY IF T/F CONDITION IS SATISFIED IN FO | NONE
DUAL HALFWORDS

st 2| Ay | RHECRIRR o
[ TF).ADD.S[AM].2H | Rt.Rx,Ry | DO OPERATION OMLY IF T/F CONDITION IS SATISFIED IN FO | NONE

QUAD HALFWORDS

Rto.Hi<—Rxo.H1+Ryo.H)
ADD.SIAM)AH | Rie.fre Rye | gio e ke 10 NONE
fAite H)«Rxe H)+Rye HO

| TF).ADD. S| AM} .4H 0O OPERATION ONLY IF T/F CONDITION IS SATISFIED IN FO | NONE -

QUAD BYTES
FRTIE
B2«—Rx.B2+Ry.
ADD. S| AM) .48 m_Blt-Rx.BhR;.Bl
Rt.60«Rx.80:Ry.B0

[TF).ADD.S{AH].48 | RU.Ax.Ry | D0 CPERATION ONLY IF T/F CONDITION IS SATISFIED IN FO| NONE |

OCTAL BYTES
Ato.83+Rxo.B3+Ryo.03
Rto. B2«—Rxa.B2+Ryo .62
Hto.ﬂlhgu.gaiﬂyo.got
-
00.5MH1 88| Rte.fue.fye | Giogrc e ge
Ate. 82« Rxe.52+Rye.B2
Rte.B1«Rxe.B1+Rye.B1
Rte.80 «HAxe.80+Aye.B0

[TF).ADD.S{AM] .88 | Rte.Rxe,Rye | DO OPERATION OMLY IF T/F CONDITION IS SATISFIED IN FO | NONE |




US RE41,703 E

Sheet 9 of 18

Sep. 14, 2010

U.S. Patent

B4 BY’ 01 A1 "ed ppe; ééﬂl. (6
CH' Z4'BY A} B0 ppe) E Chb
04’ 01H A} T ed 310m) E_.&E A}1 ed" Adm) v IVEg RO W.. -
||l _
T oyoymred ey T [EN'TH'WY Myl oed Ada 3 bob
8y 64 0TH MJ1 "ed ppe) L
vY" L4’ BY AJT “ed"ppey

3
- I3
1 {v
R ]
| fwpeo; IE]
- Kywokw 1 gplupeor [
 xmev | puwpeof |7
R e [
i %lﬁ-ﬁln
(A 0 2hu + X7 v 20y o 27 % 21 Ay s 1hu  ghpeoy 2,
xyemu I amupesp 1T
R ) 03
. . _nsgn L qmopeep |
ety KM jhupesp 2
’ ' : o xysgaw  } jaupesy |1
-y
NV} LIN iNVW} 1IN (fi1}
19071 11 34LINHY JIVIWNIIV-A 1411 W




US RE41,703 E

Sheet 10 of 18

Sep. 14, 2010

U.S. Patent

Gy' Ve "01y A0 IS [3d°2%2 S’ 4 A pdByaxad
E3d"2%2 04’ BY A pd-Dyaxad
02V e A0 ]IS 134 2%2° 94" STy A pd-Dyoxad

JOU J3A0 ) 3JO]S '0S ) A » v puas

MUaJsoSpue o) adueape | 00 Njaqapd
14 OINI T 340IS L

I5) (NS0) 1IN
1IN 3801S

11313 VIV(

cdvy ‘914



US RE41,703 E

Sheet 11 of 18

Sep. 14, 2010

U.S. Patent

43

b!

SNOILINGLISNI }o1 SNOLIINHISNI
Nnsa VY
5

9

BYS 9%S 045
) _l--y!.-.. D W
_jeamm | o A3 || ._ ﬁl
I am— : ] —.—E I

3ES hES CES 0ES

BES
S

NOLLJNBISNI 034134

§ 914

££ —— T XMWCH]
(25— 13S0
25— FINWK
25— B
125~ 13V01
516~ 1334015
116 — 1IN
(P

CES

£0S




US RE41,703 E

Sheet 12 of 18

Sep. 14, 2010

U.S. Patent

st

- il Ty R e SEalisesseas

s A Sl G g SRl it TE MRS g W
et wis ot W e sellEEEENESSS. $  E
® e IH
¢
J
i

-

—

SNOT 1INY1SN] SNOI1JNHLSNI SNOI1JPHISNI
_b&_ LINN NV LIND MY

—|_.m_m

"2 04" 8 04’ By 01 .
JEEEE || 2 |

SNOTLMUISNI ﬂ SNOT1ONGLSN ﬂ

1INR (V01 LINN 3H01S

SNOT1JMW1SNI SNOT1INHISN]
1IN VM LIND N1V

SNOT1JNY1SN] SNOI 1JNY1SNI
LINN NV

SNOILJMYLSNI SNOI LONYISNI
LINA OV07 1IN 40JS

SNOLLINY ) SN] SNOTLIMHLISNI
LIND QVO1 1IN JHOLS

SNOI1NY1SN]

1NN NSG LIND NV

509 Bm./..l ‘0cd ‘evr 0Ty n'd 1S

9 ‘9T - *£3d°¢x2 ‘0 "4 A°pO-bydxey
£09—— "84 ‘BY "O1H Aj[ ed-ppej

jgg— -} P E L2 A 0°A[

§S 400V
RIA

|

I-N

4

2 9 6 ™y a0

I

0




US RE41,703 E

Sheet 13 0f 18

Sep. 14, 2010

U.S. Patent

NOIT1V3I4133dS NOI{INNS
NOI 12NHISNI

0te ....._N_R mm be cm It

mm / mmN |24

NOISN3IX3 NOILNJIX3 TWNOILIONOD [2-118
NOISN3IX3 3114 HIISI93Y B2-118
NOISN31X3 300040 OE-116

SNOI1d0 NOISN3IX3 NOI1VISNVYL

{ 9Id



US RE41,703 E

Sheet 14 of 18

Sep. 14, 2010

U.S. Patent

31NJ3x3
NSO

058

guB

9t8

S11g3y J 0

H04 H31SIIH

S118 3% 'J "0 QvO1

31M3X3

LINN 3401S

NOIIJNHISNT 0343134

c£q — CXMHCHI
128 — ¢3N50
G2g -~ CINW
£ - CMNY
128 ¢30V0D
g1 ¢IR0IS
118 C3AX
3 P}

[

/ 008

41

va 9Id



US RE41,703 E

Sheet 15 0f 18

Sep. 14, 2010

U.S. Patent

NOLLVII4IJ3dS NOILINNA
NOL1NH1SNI

GRREE L) [+

g x.
-

g s & »

<D



US RE41,703 E

Sheet 16 0of 18

Sep. 14, 2010

U.S. Patent

109IN0D ALA!

10YINDD AL AT

Sm.\\\

LIND QVO

LIND J0LS

llllllllll

¢ch

6 9Id

L
4 aeFesmEe sl pARD

0¢b

<
&

LIND QY01
1IN 3H0IS

116 TOHING) HILINS

mmn_ (INIS

LIND OVO

1INN 3HO1S

10HINOD AT TA!

T0HINOD AIMA!



US RE41,703 E

Sheet 17 of 18

Sep. 14, 2010

U.S. Patent

10HINOD RIA!

T04INOJ AL TA!

-~
"
S
\

LIND (V01

1IN 3HO1S

- 38

"

1IN VD

1INM 3H01S

1 J/ 11

o~

TN _7Z

=
—

0101

HING)
HILIAS H31SN1D
021 IVBINDD
MIS

e/

—
—
]

441}

&

1IN (V01

LINY 3H01S

1IN0 QVO1

1INQ 3HOIS

HITI0YINOD dS

10HINOD AITAT

10UINDD RITAT

of 914



US RE41,703 E

Sheet 18 0of 18

Sep. 14, 2010

U.S. Patent

1041NG) RITA!

TOHINOJ AITA!

WIA 13d

S
i
"\

£id

S

-
<

1IN0 QY01

1IN M01S

9¢iH
41

é
Ia

0cti
443!

IT "91d

10HING]
HILIAS

=)

¢3d

1IN (V01

1IN 01S

211!

04
nso
niy

1 INY QY01

LINN OIS

T04INOD MDA

106INDD AITAY



US RE41,703 E

1

METHODS AND APPARATUS FOR
EFFICIENT SYNCHRONOUS MIMD
OPERATIONS WITH IVLIW PE-TO-PE
COMMUNICATION

Matter enclosed in heavy brackets [ ] appears in the
original patent but forms no part of this reissue specifica-
tion; matter printed in italics indicates the additions
made by reissue.

RELATED APPLICATIONS

The present application 1s a continuation of Ser. No.
09/187,539, filed on Nov. 6, 1998, now U.S. Pat. No. 6,151,

663.

The present mvention claims the benefit of U.S. Provi-
sional Application Ser. No. 60/064,619 entitled “Methods

and Apparatus for Efficient Synchronous MIMD VLIW
Communication” and filed Nov. 7, 1997.

FIELD OF THE INVENTION

For any Single Instruction Multiple Data stream (SIMD)
machine with a given number of parallel processing
clements, there will exist algorithms which cannot make
cificient use of the available parallel processing elements, or
in other words, the available computing resources. Multiple
Instruction Multiple Data stream (MIMD) class machines
execute some of these algorithms with more efficiency but
require additional hardware to support a separate 1nstruction
stream on each processor and lose performance due to com-
munication latency with lightly coupled program implemen-
tations. The present invention addresses a better machine
organization for execution of these algorithms that reduces
hardware cost and complexity while maintaiming the best
characteristics of both SIMD and MIMD machines and
mimmizing communication latency. The present invention
provides a level of MIMD computational autonomy to
SIMD indirect Very Long Instruction Word (1VLIW) pro-
cessing elements while maintaiming the single thread of con-
trol used 1n the SIMD machine organization. Consequently,
the term Synchronous-MIMD (SMIMD) 1s used to describe

the 1invention.

BACKGROUND OF THE INVENTION

There are two primary parallel programming models, the
SIMD and the MIMD models. In the SIMD model, there 1s a
single program thread which controls multiple processing
clements (PEs) 1n a synchronous lock-step mode. Each PE
executes the same instruction but on different data. This 1s 1n
contrast to the MIMD model where multiple program
threads of control exist and any inter-processor operations
must contend with the latency that occurs when communi-
cating between the multiple processors due to requirements
to synchronize the independent program threads prior to
communicating. The problem with SIMD 1s that not all algo-
rithms can make efficient use of the available parallelism
ex1isting 1n the processor. The amount of parallelism inherent
in different algorithms varies leading to difficulties 1n effi-
ciently implementing a wide variety of algorithms on SIMD
machines. The problem with MIMD machines 1s the latency
of communications between multiple processors leading to
difficulties 1n efficiently synchronizing processors to cooper-
ate on the processing of an algorithm. Typically, MIMD
machines also incur a greater cost of implementation as
compared to SIMD machines since each MIMD PE must
have 1ts own 1nstruction sequencing mechanism which can
amount to a significant amount of hardware. MIMD

10

15

20

25

30

35

40

45

50

55

60

65

2

machines also have an inherently greater complexity of pro-
gramming control required to manage the independent paral-
lel processing elements. Consequently, levels of program-
ming complexity and communication latency occur in a
variety of contexts when parallel processing elements are
employed. It will be highly advantageous to efliciently
address such problems as discussed 1n greater detail below.

SUMMARY OF THE INVENTION

The present mvention 1s preferably used in conjunction
with the ManArray architecture various aspects of which are

described 1n greater detail 1n U.S. patent application Ser. No.
08/885,310 filed Jun. 30, 1997, now U.S. Pat. No. 6,023,753,

U.S. Ser. No. 08/949,122 filed Oct. 10, 1997, now U.S. Pat.
No. 6,167,502, U.S. Ser. No. 09/169,255 filed Oct. 9, 1998,
now U.S. Pat. No. 6,343,356, U.S. Ser. No. 09/169,256 filed
Oct. 9, 1998 now U.S. Pat. No. 6,167,501 and U.S. Ser. No.
09/169,072 filed Oct. 9, 1998, now U.S. Pat. No. 6,219,776,
Provisional Application Ser. No. 60/067,511 entitled
“Method and Apparatus for Dynamically Modifying Instruc-
tions 1 a Very Long Instruction Word Processor” filed Dec.
4, 1997, Provisional Application Ser. No. 60/068,021
entitled “Methods and Apparatus for Scalable Instruction Set
Architecture™ filed Dec. 18, 1997, Provisional Application
Ser. No. 60/071,248 entitled “Methods and Apparatus to
Dynamically Expand the Instruction Pipeline of a Very Long
Instruction Word Processor” filed Jan. 12, 1998, Provisional
Application Ser. No. 60/072,915 entitled “Methods and
Apparatus to Support Conditional Execution imn a VLIW-
Based Array Processor with Subword Execution” filed Jan.
28, 1998, Provisional Application Ser. No. 60/077,766
entitled “Register File Indexing Methods and Apparatus for
Providing Indirect Control of Register in a VLIW
Processor”, filed Mar. 12, 1998, Provisional Application Ser.
No. 60/092,130 entitled “Methods and Apparatus for
Instruction Addressing in Indirect VLIW Processors™ filed
on Jul. 9, 1998, Provisional Application Ser. No. 60/103,712
entitled “Efficient Complex Multiplexing and Fast Fourier
Transtorm (FFT) Implementation on the ManArray™ filed on
Oct. 9, 1998, and Provisional Application Ser. No. 60/106,
867 entitled “Methods and Apparatus for Improved Motion
Estimation for Video Encoding” filed on Nov. 3, 1998,
respectively, all of which are assigned to the assignee of the
present invention and incorporated herein 1n their entirety.

A ManArray processor suitable for use in conjunction
with ManArray indirect Very Long Instruction Words
(1IVLIWSs) 1n accordance with the present mnvention may be
implemented as an array processor that has a Sequence Pro-
cessor (SP) acting as an array controller for a scalable array
of Processing Flements (PEs) to provide an indirect Very
Long Instruction Word architecture. Indirect Very Long
Instruction Words (1IVLIWs) 1n accordance with the present
invention may be compared in an 1VLIW Instruction
Memory (VIM) by the SIMD array controller. Sequence
Processor or SP. Preferably, VIM exists 1n each Processing
Element or PE and contains a plurality of iVLIWs. After an
1VLIW 1s composed in VIM, another SP instruction, desig-
nated XV for “execute 1VLIW” 1n the preferred
embodiment, concurrently executes the 1VLIW at an 1denti-
cal VIM address 1n all PEs. If all PE VIMs contain the same
instructions, SIMD operation occurs. A one-to-one mapping

exists between the XV instruction and the single identical
1VLIW that exists 1n each PE.

To 1ncrease the efliciency of certain algorithms running on
the ManArray, 1t 1s possible to operate indirectly on VLIW
instructions stored 1n a VLIW memory with the indirect
execution mitiated by an execute VLIW (XV) instruction




US RE41,703 E

3

and with different VLIW 1nstructions stored in the multiple
PEs at the same VLIW memory address. When the SP
instruction causes this set of 1VLIWs to execute concur-
rently across all PEs, Synchronous MIMD or SMIMD

operation occurs. A one-to-many mapping exists between
the XV 1struction and the multiple different 1VLIWSs that
exist in each PE. No specialized synchronization mechanism
1s necessary since the multiple different 1VLIW executions

are 1nstigated synchronously by the single controlling point
SP with the 1ssuance of the XV instruction. Due to the use of
a Receive Model to govern communication between PEs and
a ManArray network, the communication latency character-
1stic common to MIMD operatlons 1s avoided as discussed
turther below. Additionally, since there 1s only one synchro-
nous locus of execution, additional MIMD hardware for
separate program flow i11 cach PE 1s not required. In this
way, the machine 1s organized to support SMIMD operations
at a reduced hardware cost while minimizing communica-

tion latency.

A ManArray indirect VLIW or 1VLIW 1s preferably

loaded under program control, although the alternatives of
direct memory access (DMA) loading of the 1VLIWs and
implementing a section of VIM address space with ROM
containing fixed 1VLIWs are not precluded. To maintain a

certain level of dynamic program flexibility, a portion of
VIM, 1i not all of the VIM, will typically be of the random

access type ol memory. To load the random access type of
VIM, a delimiter instruction, LV for Load 1VLIW, specifies

that a certain number of instructions that follow the delimiter
are to be loaded into the VIM rather than executed. For
SIMD operation, each PE gets the same instructions for each
VIM address. To set up for SMIMD operation 1t 1s necessary
to load different instructions at the same VIM address in

cach PE.

In the presently preferred embodiment, this 1s achieved by
a masking mechanism that functions such that the loading of
VIM only occurs on PEs that are masked ON. PEs that are
masked OFF do not execute the delimiter instruction and
therefore do not load the specified set of instructions that
follow the delimiter into the VIM. Alternatively, different
instructions could be loaded in parallel from the PE local
memory or the VIM could be the target of a DMA transfer.
Another alternative for loading different instructions into the
same VIM address 1s through the use of a second LV
instruction, L.V2, which has a second 32-bit control word
that follows the LV 1nstruction. The first and second control
words rearrange the bits between them so that a PE label can
be added. This second LV2 approach does not require the
PEs to be masked and may provide some advantages 1n dii-
ferent system implementations. By selectively loading dii-

ferent instructions into the same VIM address on different
PEs, the ManArray 1s set up for the SMIMD operation.

One problem encountered when implementing SMIMD
operation 1s in dealing with inter-processing element com-
munication. In SIMD mode, all PEs in the array are execut-
ing the same instruction. Typically, these SIMD PE-to-PE
communications instructions are thought of as assigning a
Send Model. That 1s to say, the SIMD Send Model commu-
nication instructions indicate in which direction or to which
target PE, each PE should send its data. When a communica-
tion 1nstruction such as SEND-WEST 1s encountered, each
PE sends data to the PE topologically defined as being its
western neighbor. The Send Model specifies both sender and
receiver PEs. In the SEND-WEST example, each PE sends
its data to 1ts West PE and receives data from 1ts East PE. In

SIMD mode, this 1s not a problem.

In SMIMD mode of operation, using a Send Model, 1t 1s

possible for multiple processing elements to all attempt to

5

10

15

20

25

30

35

40

45

50

55

60

65

4

send data to the same neighbor. This attempt presents a haz-
ardous situation because processing elements such as those
in the ManArray may be defined as having only one receive
port, capable of receiving from only one other processing
clement at a time. When each processing element 1s defined
as having one receipt port, such an attempted operation can-
not complete successiully and results 1n a communication

hazard.

To avoid the communication hazard described above, a
Receive Model 1s used for the communication between PEs.
Using the Receive Model, each processing element controls
a switch that selects from which processing element it
receives. It 1s 1mpossible for communication hazards to
occur because 1t 1s impossible for any two processing ele-
ments to contend for the same receive port. By definition,
cach PE controls 1ts own receive port and makes data avail-
able without target PE specification. For any meaningful
communication to occur between processing elements using
the Recerve Model, the PEs must be programmed to cooper-
ate 1n the receiving of the data that 1s made available. Using
Synchronous MIMD (SMIMD), this 1s guaranteed to occur
il the cooperating instructions all exist at the same 1VLIW
location. Without SMIMD, a complex mechanism would be
necessary to synchronize communications and use the

Receive Model.

A more complete understanding of the present invention,
as well as further features and advantages of the mvention
will be apparent from the following Detailed Description
and the accompanying drawings.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 illustrates various aspects of ManArray indirect
VLIW 1nstruction memory 1n accordance with the present
invention;

FI1G. 2 illustrates a basic 1IVLIW Data Path;

FIG. 3 illustrates a five slot 1VLIW with an expanded view
of the ALU slot;

FIG. 4A shows an LV Load/Modily VLIW 1nstruction;
FIG. 4B shows an XV Execute VLIW Instruction;

FI1G. 4C shows instruction field definitions;
FI1G. 4D shows further instruction field definitions;
FI1G. 4E shows an ADD Instruction;

FIGS. 4F1 and 4F2 1illustrate slot storage for three Syn-
chronous MIMD 1VLIWs 1n a 2x2 ManArray configuration;

FIG. 5 illustrates an 1VLIW load and fetch pipeline 1n
accordance with the present invention;

FIG. 6 illustrates aspects of SIMD 1VLIW Array process-
ng;
FIG. 7 1llustrates an iVLIW translation extension;

FIG. 8A illustrates an 1iVLIW translation extension load
and fetch pipeline;

FIG. 8B illustrates an alternative format for VIM 1VLIW
shortage;

FIG. 9 1llustrates a send model cluster switch control and
an exemplary hazard for SMIMD communications using the
send model;

FIG. 10 1llustrates a send model with a centralized cluster
switch control; and

FIG. 11 illustrates a receive model cluster switch control
used to avoid communications hazards in the SMIMD mode

of operation.

DETAILED DESCRIPTION

One set of presently preferred indirect Very Long Instruc-
tion Word (1IVLIW) control instructions for use 1n conjunc-




US RE41,703 E

S

tion with the present invention 1s described 1n detail below.
FIG. 1 depicts a system for the execution of the 1IVLIWs at
Address “1”, where the 1IVLIW 1s 1indicated by the vertical set
of boxes SLAMD 105 1n each VIM representing a S=Store,
L=Load, A=Arithmetic Logic Unit (ALU), M=Multiply
Accumulate Unit (MAU), and D=Data Select Unit (DSU) set
ol instructions, in a 2x2 ManArray 100 of PEs 104,

PEO-PE3. In FIG. 1, the 2x2 ManArray 100

turther includes
a sequence processor (SP) controller 102 which dispatches
32-bit mstructions to the array PEs over a single 32-bit bus.
One type of 32-bit instructions 1s an execute 1VLIW (XV)
instruction which contains a VIM address offset value that 1s
used 1n conjunction with a VIM base address to generate a
pointer to the 1IVLIW which 1s desired to be executed. The
PEs 104 are interconnected by a cluster switch 107.

The SP 102 and each PE 104 1n the ManArray architecture
as adapted for use 1n accordance with the present invention
contains a quantity of 1VLIW memory (VIM) 106 as shown
in FIG. 1. Each VIM 106 contains storage space to hold
multiple VLIW 1nstruction Addresses 103, and each Address
1s capable of storing up to eight simplex instructions. Pres-
ently preferred implementations allow each 1IVLIW instruc-
tion to contain up to five simplex instructions: one associated
with each of the Store Unit 108, Load Unit 110, Arithmetic
Logic Unit 112 (ALU), Multiply-Accumulate Unit 114
(MAU), and Data-Select Unit 116 (DSU) 116. For example,
an 1VLIW 1struction at VIM address “1” 105 contains the
five mstructions SLAMD.

FIG. 2 shows a basic 1VLIW data path arrangement 200
by which a fetched instruction 1s stored in an Instruction
Register 20 which 1s connected to the VIM Load and Store
Control function 22. The VIM Load and Store Control func-
tion provides the interface signals to VIM 24. The VIM 24
corresponds to VIM 106, with each VIM 106 of FIG. 1 hav-
ing associated registers and controls, such as those shown 1n
FIG. 2. The output of the VIM 24 1s pipelined to the iVLIW
register 26. F1G. 3 1llustrates a Five Slot 1VLIW VIM 300
with N entries, 0, 1, . . . N-1. Each VIM 300 addressed
location includes storage space for Store, Load, ALU, MAU
and DSU 1nstructions 301-305. An expanded ALU slot view
303' shows a 32-bit storage space with bit-31 “d” high-
lighted. The use of the instruction bits 1n VIM storage will be
discussed 1n greater detail below.

1VLIW 1nstructions can be loaded into an array of PE
VIMs collectively, or, by using special imstructions to mask a
PE or PEs, each PE VIM can be loaded individually. The
1VLIW 1nstructions in VIM are accessed for execution
through the Execute VLIW (XV) instruction, which, when
executed as a single instruction, causes the simultaneous
execution of the simplex instructions located at the VIM
memory address. An XV instruction can cause the simulta-
neous execution of:
1. all of the simplex instructions located in an individual
SP’s or PE’s VIM address, or
2. all instructions located 1n all PEs at the same relative VIM
address, or
3. all mnstructions located at a subset or group of all PEs at
the same relative VIM address.
Only two control instructions are necessary to load/
modity 1IVLIW memories, and to execute 1VLIW 1nstruc-
tions. They are:

1. Load/Modity VLIW Memory Address (LV) illustrated 1n
FIG. 4A, and
2. Execute VLIW (XV) illustrated in FIG. 4B.
The LV istruction 400 shown in FIG. 4A 1s for 32 bit
encoding as shown 1n encoding block 410 and has the pres-
ently preferred syntax/operation shown 1n syntax/operation

10

15

20

25

30

35

40

45

50

55

60

65

6

block 420 as described turther below. The LV instruction
400 1s used to load and/or disable 1ndividual 1nstruction slots
of the specified SP or PE VLIW Memory (VIM). The VIM
address 1s computed as the sum of a base VIM address regis-
ter Vb (V0 or V1) plus an unsigned 8-bit offset VIMOFFS
shown 1n bits 0—7, the block of bits 411, of encoding block
410 1n FIG. 4A. The VIM address must be in the valid range
for the hardware configuration otherwise the operation of
this invention 1n undefined.

Any combination of individual instruction slots may be

disabled via the disable slot parameter ‘d={SLAMD}’,
where S=Store Umt (SU), L=Load Unit (LU), A=Arithmetic
Logic Unit (ALU), M=Multiply-Accumulate Unit (MAU)
and D=Data Select Unit (DSU). A blank ‘D="parameter does
not disable any slots. Specified slots are disabled prior to any
instructions that are loaded.
The number of 1nstructions to load are specified utilizing
an InstrCnt parameter. For the present implementation, valid
values are 0-5. The next InstrCnt instructions following LV
are loaded into the specified VIM. The Unit Affecting Flags
(UAF) parameter ‘F=[AMD] selects which arithmetic
istruction slot (A=ALU, M=MAU, D=DSU) 1s allowed to
set condition tlags for the specified VIM when it 1s executed.
A blank ‘F=" selects the ALU 1nstruction slot. During pro-
cessing of the LV 1nstruction no arithmetic flags are atfiected
and the number of cycles 1s one plus the number of instruc-
tions loaded.

The XV 1struction 425 shown in FIG. 4B 1s also for 32
bit encoding as shown i encoding block 430 and has the
presently preferred syntax/operation shown in syntax/
operation block 435 as described further below. The XV
instruction 425 1s used to execute individual instruction slots
of the specified SP or PE VLIW Memory (VIM). The VIM
address 1s computed as the sum of a base VIM address regis-
ter Vb (V0 or V1) plus an unsigned 8-bit offset VIMOFFS
shown 1n bits 0—7, the block of bits 431, of encoding blocks
430 of FIG. 4B. The VIM address must be in the valid range
for the hardware configuration otherwise the operation of
this 1nstruction 1s undefined.

Any combination of individual instruction slots may be
executed via the execute slot parameter ‘E={SLAMD}’,
where S=Store Unit (SU), L=Load Unit (LU), A=Arithmetic
Logic Unit (ALU), M=Multiply-Accumulate Unit (MAU),
D=Data Select Unit (DSU). A blank ‘E="parameter does not
execute any slots. The Unit Affecting Flags (UAF) parameter
‘F={AMDN}’ overrides the UAF specified for the VLIW
when 1t was loaded via the LV instruction. The override
selects which arithmetic instruction slot (A=ALU, M=MAU,
D=DSU) or none (N=NONE) 1s allowed to set condition
flags for this execution of the VLIW. The override does not
alfect the UAF setting specified by the LV instruction. A
blank ‘F=" selects the UAF specified when the VLIW was
loaded.

Condition flags are set by the individual simplex instruc-
tion 1n the slot specified by the setting of the ‘F= parameter
from the original LV 1nstruction or as overridden by an ‘F=
| AMD | parameter in the XV instruction. Condition flags are
not affected when ‘F=N’. Operation occurs 1n one cycle.
Pipeline considerations must be taken into account based
upon the imndividual simplex instructions 1n each of the slots

that are executed. Descriptions of individual fields in these
1VLIW 1nstructions are shown in FIGS. 4C and 4D. FIGS.
4C and 4D show Instruction Field Definitions 440 tabulated
by Name 442, number of bits 444 and description values
446. F1GS. 4E and 4F illustrate a presently preferred ADD
instruction and slot storage for three synchronous MIMD

1VLIWSs 1n a 2x2 ManArray configuration, respectively.




US RE41,703 E

7

The ADD instruction 450 shown 1n FIG. 4E 1s again for 32
bit encoding as shown in encoding block 455 and has the
presently preferred syntax/operation shown in syntax/
operation block 460 as described further below. ADD
instruction 4350 1s used to store the sum of source registers R
and R, 1n target register R,. Arithmetic scalar flags are
alfected on least significant operation where N=MSB of
resulting sum, Z=1 11 result 1s zero, and 1s otherwise 0, V=1
if an overflow occurs, and 1s otherwise 0, and C=1 11 a carry
occurs, and 1s otherwise 0. The v bit 1s meaningiul for signed
operations, and the C bit 1s meaningtul for unsigned opera-
tions. The number of cycles is one.
Individual, Group, and “Synchronous MIMD” PE 1VLIW
Operations

The LV and XV 1structions may be used to load, modity,
disable, or execute 1IVLIW 1nstructions 1n individual PEs or
PE groups defined by the programmer. To do this, individual
PEs are enabled or disabled by an instruction which modifies
a Control Register located in each PE which, among other
things, enables or disables each PE. To load and operate an
individual PE or a group of PEs, the control registers are
modified to enable individual PE(s), and to disable all others.

Normal 1VLIW 1nstructions will then operate only on PEs
that are enabled.

Referring to FIG. 5, aspects of the iVLIW load and fetch
pipeline are described 1n connection with an 1VLIW system
500. Among 1ts other aspects. FIG. § shows a selection
mechanism for allowing selection of instructions out of VIM
memory. A fetched mstruction 1s loaded 1nto a first mnstruc-
tion register (IR1) 510. Register 510 corresponds generally
with 1nstruction register 20 of FIG. 2. The output of IR1 1s
pre-decoded 1n predecoder or precode function 512 early in
the pipeline cycle prior to loading the second instruction
register (IR2) 514. When the imstructions 1n IR1 1s a Load
1VLIW mstruction (LV) with a non-zero instruction count,
the pre-decoder 512 generates an LVel control signal 515,
which 1s used to set up the LV operation cycle, and the VIM
address 511 1s calculated by use of the specified Vb register
502 address by an adder 504 to an offset value included 1n
the LV mstruction via path 503. The resulting VIM address
511 1s stored 1n register 506 and passed through multiplexer

508 to address the VIM 516. VIM 516 corresponds generally
to VIM 106 of FIG. 1. Register 506 1s required to hold the
VIM address 507 during the LV operations. The VIM
address 511 and LV control state allow the loading of the
instructions received after the LV instruction into the VIM
516. At the end of the cycle 1n which the LV was received,
the disable bits 10—17, shown in FIG. 4A, are loaded 1nto the
d-bits register 518 for use when loading instructions into the
VIM 516. Upon receipt of the next mnstruction 1 IR1 510,
which 1s to be loaded 1nto VIM 516, the appropriate control

signal 1s generated depending upon the instruction type,
Storecl 518, Loadcl 521, ALUcl 523, MAUc1 525, or
DSUc1 527. The pre-decode function 512 1s preferably pro-
vided based upon a simple decoding of the Group bits (bits
30 and 31) which define the 1nstruction type shown 1n FIGS.
4A, B and E and the Unait field bits (bits 27 and 28 which
specily the execution unit type) shown 1 FIGS. 4D and 4E.
By using this pre-decode step, the instruction in IR1 510 can
be loaded 1mnto VIM 3516 1n the proper functional unit posi-
tion. For example, for the ADD instruction of FIG. 4E,
included 1n the LV list of instructions, when this 1instruction
1s received mnto IR1 3510 1t can be determined by the pre-
decode function 512 that this instruction should be loaded
into the AL U 1nstruction slot 520 in VIM 516. In addition,
the appropriate d-bit 531 for that functional slot position 1s
loaded 1nto bit-31 of that slot. The loaded d-bit comprises
one of the group code bit positions from the original imstruc-

tion.

10

15

20

25

30

35

40

45

50

55

60

65

8

Upon receipt of an XV 1nstruction 1n IR1 510, the VIM
address 511 1s calculated by use of the specified Vb register
502 added by adder 504 to the offset value included 1n the
XV mstruction via path 503. The resulting VIM Address 507
1s passed through multiplexer 508 to address the VIM. The
1IVLIW at the specified address 1s read out of the VIM 516
and passes through the multiplexers 530, 532, 534, 536, and
538, to the IR2 registers 514. As an alternative to minimize
the read VIM access timing critical path, the output of VIM
516 can be latched into a register whose output i1s passed
through a multiplexer prior to the decode state logic.

For execution of the XV instruction, the IRZMUX1 con-
trol signal 333 in conjunction with the pre-decode XVcl
control signal 517 causes all the IR2 multiplexers, 530, 532,
534, 536, and 338, to select the VIM output paths, 541, 543,
545, 547, and 549. At this point, the five individual decode
and execution stages of the pipeline, 540, 542, 544, 546, and
548, are completed in synchrony providing the 1VLIW par-
allel execution performance. To allow a single 32-bit imstruc-
tion to execute by 1itself in the PE or SP, the bypass VIM path
533 1s shown. For example, when a simplex ADD instruction
1s recerved mto IR1 510 for parallel array execution, the
pre-decode function 512 generates the IRZMUX1 533 con-
trol signal, which 1n conjunction with the instruction type
pre-decode signal, 523 1n the case of an ADD, and lack of an
XV 517 or LV 515 active control signal, causes the ALU
multiplexer 534 to select the bypass path 535.

Since a ManArray can be configured with a varying num-
ber of PEs, FIG. 6 shows an exemplary SIMD 1VLIW usage
of an 1IVLIW system such as the system 500 shown in FIG. 5.
In FIG. 6, there are J+1 PEs as indicated by the PE number-
ing PEO to PE1. A portion of LV code 1s shown 1n FIG. 6
indicating that three instructions are to be loaded at VIM
address 27 with the Load Unit and MAU instruction slots
being disabled. This loading operation 1s determined from
the LV 1nstruction 601 based upon the syntax shown 1n FIG.
4A. Assuming all PEs are masked on, then the indicated
three 1nstructions 603, 605, and 607, will be loaded at VIM
address 27 1n each of the J+1 PEs 1n the array. The result of
this loading 1s indicated in FIG. 6 by showing the instruc-
tions stored 1n their appropriate execution slot 1in the VIMs,
istruction 603 in the AL U slot, instruction 605 1n the DSU
slot, and instruction 607 1n the Store Unit slot.

It 1s noted, that in the previous discussion, covered by
FIGS. 3, 5, and 6, the pre-decode function allows the mul-
tiple bit-31 position of the VIM slot fields to be written with
the stored d-bits 518 shown 1n FIG. 5, that were generated
from the LV instruction that mnitiated the VIM loading
sequence. It 1s further noted that the unit field, bits 27 and 28,
in the arithmetic istructions, see, for example, FIG. 4E, 1s
needed to determine which VIM slot an arithmetic instruc-
tion 1s to be loaded into. Consequently, since the mstruction
in IR1 can be specifically associated with the execution unit
slot in VIM by use of the pre-decode tunction, the Group bits
and Unit field bits do not need to be stored 1n the VIM and
can be used for other purposes as demonstrated by use of the
single d-bit 1n the previous discussion. The Speciﬁc bit posi-
tions 1n the VIM slots are shown in VIM 700 in FIG. 7,
wherein one of the instruction group bits, bit 30 of FIG. 4E,
and the instruction Unait field bits, bits 27 and 28 are replaced
in VIM 700 by the Translation Extension Option bits “0” for

Opcode Extensions bit-30 labeled 721 of FIG. 7, “r” for
Register File Extensions bit-28 labeled 723, and “c” for
Conditional Execution Extensions bit-27 labeled 723. These
additional bits are separately stored 1n a miscellaneous regis-
ter 850 shown 1n FIG. 8A, that the programmer can load to
or store from. These bits provide extended capabilities that




US RE41,703 E

9

could not provide due to lack of mstruction encoding bits 1n
a 32-bit instruction format. For the opcode extension bit “0”
it 15 possible to map one set of 1nstructions into a new set of
instructions. For the register extension bit “T, 1t 1s possible
to double the register file space and have two banks of regis-
ters providing either additional register space or to act as a
fast context switching mechanism allowing two register
banks to be split between two contexts. For the condition
execution extension bit “c”, it 1s possible to specily two
different sets of condltlons or specily a different conditional
execution functionality under programmer control.

FIG. 8A depicts an 1VLIW system 800 which illustrates
aspects of the 1IVLIW translation extension load and fetch
pipeline showing the addition of the o,r and ¢ bits register
850 and the set of pre-decode control signals 815, 817, 819,
821, 823, 825, 827, and 833. It 1s noted that other uses of
these freed up bits are possible. For example, all three bits
could be used for register file extension providing either
individual control to the three operand instructions or pro-
viding up to eight blanks of 32x32 registers.

To allow a single 32-bit instruction to execute by 1itself in
the 1IVLIW PE or iVLIW SP, the bypass VIM path 835 1s
shown in FIG. 8A. For example, when a simplex ADD
instruction 1s received mto IR1 810 for parallel array
execution, the pre-decode function 812 generates the
IR2MUX2 833 control signal, which in conjunction with the
instruction type pre-decode signal, 823 in the case of an
ADD, and lack of an XV 817 or LV 815 active control
signal, causes the ALU multiplexer 834 to select the bypass
path 835. Since as described herein, the bypass operation 1s
to occur during a full stage of the pipeline, 1t 1s possible to
replace the group bits and the unit field bits 1n the bypassed
instructions as they enter the IR2 latch stage. This 1s indi-
cated mn FIG. 8A by the “o,r, and ¢” bits signal path 851
being used to replace the appropriate bit positions at the
input to the multiplexers 830, 832, 834, 836, and 838.

It 1s noted that alternative formats for VIM 1VLIW storage
are possible and may be preferable depending upon technol-
ogy and design considerations. For example, FIG. 8B
depicts an alternative form VIM 800' from that shown 1n
FIGS. 7 and 8A. The d-bits per execution slot are grouped
together with the additional bits “o, r, ¢ and uaf” bits. These
ten bits are grouped separately from the execution unit func-
tion bits defined 1 bits 0-26,29 per each slot. The unit
alfecting field (uaf) bits 22 and 23 of FIG. 4A from the LV
istruction are required to be stored at a single 1IVLIW VIM
address since the “vat™ bits pertain to which arnthmetic unit
alfects the flags at the time of execution. Other storage for-
mats are possible, for example, storing the d-bits with the
function bits and the bits associated with the whole 1IVLIW,
such as the “uaf” bits, stored separately. It 1s also noted that
for a k-slot iIVLIW, k*32-bits are not necessarily required to
be stored in VIM. Due to the pre-decoder function, not only
can additional bits be stored 1n the k*32-bit space assumed
to be required to store the k 32-bit instructions, but the k*32-
bit space can be reduced if full utilization of the bits 1s not
required. This 1s shown 1n FIG. 8B, where the total number
ol storage bits per VIM address 1s given by five times the
28-bits required per execution unit slot position (0-26 and
29) plus five d-bits, plus three “o, r, and ¢” bits plus 2 “vat”
bits for a total of 150 bits per 1IVLIW address which 1s less
than the 5*32=160-bits that might be assumed to be
required. Increased functionality while reducing VIM
memory space results. In general, additional information
may be stored in the VIM 1ndividually per execution unit or
as separate individual bits which affect control over the
1VLIW stored at that VIM address. For example, sixteen

10

15

20

25

30

35

40

45

50

55

60

65

10

additional load immediate bits can be stored 1n a separate
“constant” register and loaded 1n a VIM address to extend
the Load Unit’s capacity to load 32 bits of immediate data.
To accomplish this extension, the VIM data width must be
expanded appropriately. Also the size of the stored 1VLIWSs
1s decoupled from being a multiple of the instruction size
thereby allowing the stored 1IVLIW to be greater than or less
than the k*32-bits for a k instruction 1VLIW, depending
upon requirements.

In a processor consisting of an SP controller 102 as 1n
FIG. 1 but not shown for clarity in FIG. 9 or FIG. 10 and an
array ol PEs, such as processor 900 of FIG. 9, or processor
1000 of FIG. 10, a problem may be encountered when
implementing SMIMD operations when dealing with inter-
PE communications. The typical SIMD mode of communi-
cations specifies all PEs execute the same inter-PE commu-
nication instruction. This SIMD nter-PE 1nstruction, being
the same 1n each PE, requires a common controlling mecha-
nism to ensure compliance with the common operation
defined between the PEs. Typically, a Send Model 1s used
where a single instruction, such as SEND-WEST, 1s dis-
patched to all PEs in the array. The SIMD inter-PE commu-
nication instruction causes a coordinated control of the net-
work interface between the PEs to allow each PE to send
data to the PE topologically defined by the inter-PE 1nstruc-
tion. This single SIMD 1nstruction can be interpreted and the
network interface 911 can be controlled by a single PE as
shown 1n FIG. 9 since all PEs recerve the same instruction. It
1s noted that the ManArray 2x2 cluster switch, shown 1n
FIG. 9, 1s made up of four 4-to-1 multiplexers 920, 922, 924,
and 926, for the interface Input/Output (I/0) buses between
the DSU. These buses can be 8, 9, 16, 32, 64, or other num-
ber of bit, bit buses without restriction. The control of a
single 4-to-1 multiplexer requires only two bits of control to
select one out of four of the possible paths. This can be
extended for larger clusters of PEs as necessary with larger
multiplexers. It 1s also possible 1n a SIMD system to have a
centralized control for the intrface network between PEs as
shown 1n FIG. 10. In FIG. 10, a centralized controller 1010
receives the same dispatched inter-PE communication
instruction 1011 from the SP controller as do the other PEs
in the network. This mechanism allows the network connec-
tions to be changed on a cycle-by-cycle basis. Two attributes
of the SIMD Send Model are a common 1nstruction to all
PEs and the specification of both sender and receiver. In the
SIMD mode, this approach is not a problem.

In attempting to extend the Send Model into the SMIMD
mode, toher problems may occur. One such problem 1is that
in SMIMD mode 1t 1s possible for multiple processing ele-
ments to all attempt to send data to a single PE, since each
PE can receive a dfiferent inter-PE communication instruc-
tion. The two attributes of the SIMD Send Model break
down immediately, naemly having a common inter-PE
instruction and specitying both source and target, or, in other
words, both sender and recerver. It 1s a communications haz-
ard to have more than one PE target the same PE 1n a SIMD

model with single cycle communication. This communica-
tion hazard 1s shown 1n FIG. 9 wherein the DSUs for PEs 1,
2 and 3 are to send data to PEOQ while PEO 1s to send data to
PE3. The three data mnputs to PEO cannot be received. In
other systems, the resolution of this type of problem many
times causes the insertion of interface bulilers and priority
control logic to delay one or more of the conflicting paths.
This violates the mnherently synchronous nature of SMIMD
processing since the scheduling of the single cycle commu-
nications operations must be done during the programming

of the 1iVLIW i1instructions to be executed in the PEs. To




US RE41,703 E

11

avold the communication hazards without violating the syn-
chronous MIMD requirements, a Receive Model 1s advanta-
geously employed. The single point of network control, be 1t
located 1n a single PE or 1n a centralized control mechanism,
that 1s facilitated by the Send Model 1s replaced 1n the
Receive Model with distributed network interface control.
Each PE controls 1ts own recerver port. The Recerve Model
specifies the recerve path through the network interface. In
the case of the ManArray network, each PE controls 1ts own
multiplexer input path of the cluster switch.

This arrangement 1s shown for a 2x2 array processor 1100
in FIG. 11 where each PE has its own control of 1its mput

multiplexer, 1120, 1122, 1124 or 1126, respectively. For
example, PEOQ has control signals 1111 for controlling 1its
input multiplexer 1120. The Receive Model also requires
that data be made available on the PEs output port to the
interface network without target PE specification.
Consequently, for any meaningful communication to occur
between processing elements using the Recerve Model, the
PEs must be programmed to cooperate 1n the recerving of the
data that 1s made availabe. Using Synchronous MIMD, this
cooperation 1s guaranteed to occur if the cooperating mstruc-
tions exist in the same 1VIW location. With this location of
instructions when an XV struction 1s executed, the cooper-
ating PEs execute the proper inter-PE communications
instructions to cuase data movement between any two or
more PEs. In general, 1n an array of PEs, there can be mul-
tiple groups of PEs. In each such a group, a one or more PEs
can receive data from another PE while 1n another group one
or more PEs can receive data from a different PE. A group
can vary 1n size from two PEs to the whole array of PEs.
While FIG. 11 does not show an SP, such as the SP controller
102 of FIG. 1, for case and clarity of illustration, such a
controller will preferably be included although 1t will be
recognized that SP functionality can be merged with a PE

10

15

20

25

30

12

such as PEO as taught in U.S. Provisional Application Ser.
No. 60/077,457 previously incorporated by reference, or SP
functionality could be added toall of the PEs although such
increased functionality would be relatively costly.

FIG. 4F shows the definition 470 of three Synchronous-

MIMD 1VLIWs 1n a 2x2 ManArray configuration. The top

section 480 gives a descriptive view of the operation. The
bottom section 490 gives the corresponding instruction mne-
monics which are loaded 1n the LU, MAU, ALU, DSU, and
SU, respectively. Each 1VLIW contains four rows between
thick black lines, one for each PE. The leftmost column of
the figure shows the address where the 1IVLIW 1s loaded 1n
PE 1VLIW Instruction Memory (VIM). The next column
shows the PE numer. Each 1tVLIW contains one row for each
PE, showing the instructions which are loaded into that PE’s
VIM entry. The remaining columns list the instruction for
cach of the five execution units: Load Unit (LU), Multiply-
Accumulate Unit (MAU), Anthmetic Logic Umt (ALU),
Data Select Unit (DSU), and Store Unit (SU).

For example, VIM entry number 29 in PE2495 1s loaded
with the four instructions li.p.w R3, A1+, A7, Tmpy.pm.1iw
RS, R2, R31, fadd.pa.1tw R9, R7, RS, and pexchg.pd.w RS,
RO, 2x2 PE3. These instructions are those found 1n the next
to last row of FIG. 4F. That same VIM entry (29) contains
different imnstructions in PEs 0, 1, and 3, as can be seen by the
rows corresponding to thes PEs on VIM entry 29, for PE0
491, PE2 493, and PE3 497.

The following example 1-1 shows the sequence of instruc-
tions which load the PE VIM memories as defined 1n FIG.
4F. Note that PE Masking 1s used 1n order to load different

instructions into different PE VIMs at the same address.

EXAMPLE 1-1

Loading Synchronous MIMD 1VLIWs into PE VIMs

! first load 1n instructions commeon to PEs 1, 2, 3

li.p.w R1, Al+, A7
fmpy.pm.1fw R6, R3, R31
lv.p vO, 28, 2, d=, I=

ll.p.w R2, Al+, A7
fmpy.pm.1fw R4, R1, R31
lv.p v0O, 29, 2, d=, I=

li.p.w R3, Al+, A7
fmpy.pm.1fw R5, R2, R31

lim.s.hO SCR1, 1
lim.s.hO VAR, O
lv.p v0, 27, 2, d=, 1=

! mask off PEO in orderto loadin 1, 2, 3
! load VIM base address reg vO with zero
! load VIM entry vO+27 (=27) with the
! next two 1nstructions; disable no
! instrs; default flag setting to ALU
! load instruction into LU
! mpy mstruction into MAU
! load VIM entry vO+28 (=28) with the
! next two 1nstructions; disable no
! instrs; default flag setting to ALU
! load instruction into LU
! mpy instruction mto MAU
! load VIM entry vO+29 (=29) with the
! next two 1nstructions; disable no
! instrs; default flag setting to ALU
! load instruction into LU
! mpy instruction mto MAU

! now load in instructions unique to PEO

lim.s.hO SCR1, 14

nop

lv.p vO, 27, 1, d=!mad, {=

si.p.w R1, A2+, R28
lv.p vO, 28, 1, d=!mad, {=

si.p.w R1, A2+, R28
lv.p vO, 29, 1, d=!mad, {=

! mask off PEs 1, 2, 3 to load PEO
! one cycle delay to set mask
! load VIM entry vO+27 (=27) with the

! next instruction; disable 1nstrs
' in LU, MAU, ALU, DSU slots; default

! flag setting to ALU
! store instruction into SU

! load VIM entry vO+28 (=28) with the
! next instruction; disable instrs
in LU, MAU, ALU, DSU slots; default

! flag setting to ALU
! store mstruction mmto SU
! load VIM entry vO+29 (=29) with the
! next instruction; disable 1nstrs
im LU, MAU, ALU, DSU slots; default
! flag setting to ALU



US RE41,703 E
13

-continued

si.p.w R1, A2+, R28 ! store imstruction into SU

! now load in instructions unique to PE1

lim.s.hO SCR1, 13
nop
wv.p v, 27, 3, d=, {=

fadd.pa.1fw R10, R9, R¥
pexchg.pd.w R7, RO, 2x2_ PE3
si.p.w R10, +A2, A6

lv.p vO, 28, 2, d=s, I=

fadd.pa.1fw R9, R7, R4
pexchg.pd.w R&, R5, 2x2_ PE2
lv.p vO, 29, 3, d=, {=

fcmpLE.pa.1fw R10, RO
pexchg.pd.w R15, R6, 2x2_ PE1
t.si.p.w RO, A2+, O

! now load 1n nstructions unique to PE2

lim.s.hO SCR1, 11
nop
lv.p vO, 27, 3, d=, I=

fcmpLE.pa.1fw R10, RO
pexchg.pd.w R15, R6, 2x2_ PE2
t.si.p.w RO, A2+, O

lv.p vO, 28, 3, d=, {=

fadd.pa.1fw R10, R9, R¥
pexchg.pd.w R7, R4, 2x2_ PEI
si.p.w R10, +A2, A6

lv.p vO, 29, 2, d=s, 1=

fadd.pa.1fw R9, R7, R5
pexchg.pd.w R&, RO, 2x2_ PE3

! now load in instructions unique to PE3

lim.s.h0 SCR1, 7
nop
lv.p vO, 27, 2, d=s, 1=

fadd.pa.1fw R9, R7, R6
pexchg.pd.w R&, R4, 2x2_ PE2
lv.p vO, 28, 2, d=d, 1=

fcmpLE.pa.1fw R10, RO
t.si.p.w RO, A2+, 0
lv.p vO, 29, 3, d=, I=

fadd.pa.1fw R10, R9, R¥
pexchg.pd.w R7, R5, 2x2_ PEI
si.p.w R10, +A2, A6

lim.s.hO SCR1, 0

nop

! mask off PEs 0, 2, 3 to load PE1
! one cycle delay to set mask
! load VIM entry vO+27 (=27) with the
! next three instructions; disable no
! instrs; default flag setting to ALU
! add nstruction into ALU
! per comm instruction mto DSU
! store instruction into SU
! load VIM entry vO+28 (=28) with the
! next two 1nstructions; disable mstr
! 1in SU slot; default flag setting to ALU
! add instruction into ALU
! per comm 1nstruction into DSU
! load VIM entry vO+29 (=29) with the
! next three instructions; disable no
! instrs; default flag setting to ALU
! compare instruction into ALU
! pe comm instruction into DSU

! store mmstruction mto SU

! mask off PEs O, 1, 3 to load PE2
! one cycle delay to set mask
! load VIM entry vO+27 (=27) with the
! next three mmstructions; disable no
! instrs; default flag setting to ALU
! compare mmstruction into ALU

! pe comm instruction into DSU
! store instruction mto SU
! load VIM entry vO+28 (=28) with the
! next three instructions; disable no
! instrs; default flag setting to ALU
! add nstruction into ALU
! pe comm instruction into DSU
! store instruction mmto SU
! load VIM entry vO+29 (=29) with the
! next two 1nstructions; disable instr
! 1in SU slot; default flag setting to ALU
! add instruction into ALU

! pe comm instruction into DSU

! mask off PEs O, 1, 2 to load PE3

! one cycle delay to set mask

! load VIM entry vO+27 (=27) with the

! next two 1nstructions; disable instr

! 1in SU slot; default flag setting to ALU
! add nstruction into ALU

! pe comm instruction into DSU

! load VIM entry vO+28 (=28) with the

! next 2 instructions; disable instr in

! DSU slot; default flag setting to ALU
! compare mstruction into ALU
! store instruction into SU

! load VIM entry vO+29 (=29) with the

! next three instructions; disable no

! instrs; default flag setting to ALU
! add nstruction into ALU

! pe comm instruction mnto DSU
! store instruction into SU

! reset PE mask so all PEs are on

! one cycle delay to set mask



US RE41,703 E

15

The following example 1-2 shows the sequence of instruc-
tions which execute the PE VIM entries as loaded by the
example 1-1 code in FIG. 4F. Note that no PE Masking 1s
necessary. The specified VIM entry 1s executed in each of the
PEs, PEO, PE1, PE2, and PE3.

EXAMPLE 1-2

Executing Synchronous MIMD 1VLIWs from P.
VIMs

L1l

T

! address register, loop, and other setup would be here

! startup VLIW execution

! f= parameter indicates default to LV flag setting

xv.p v0, 27, e=l, I= ! execute VIM entry VO+27, LU only

xv.p v0, 28, e=lm, = ! execute VIM entry VO+28, LU, MAU only
xv.p v0, 29, e=lm, 1= ! execute VIM entry VO+29, LU, MAU only
xv.p v0, 27, e=lmd, = P execute VIM entry VO+27, LU, MAU,

DSU only

xv.p v0, 28, e=lamd, {= ! execute VIM entry VO+28, all units
except SU

xv.p v0, 29, e=lamd, {= ! execute VIM entry VO+29, all units
except SU

xv.p v0, 27, e=lamd, {= ! execute VIM entry VO+27, all units
except SU

xv.p v0, 28, e=lamd, {= ! execute VIM entry VO+28, all units
except SU

xv.p v0, 29, e=lamd, {= ! execute VIM entry VO+29, all units
except SU

! loop body - mechanism to enable looping has been previously set up

loop__begin: xv.p v0, 27, e=slamd, {= ! execute vO+27, all units
xv.p v0, 28, e=slamd, {= ! execute vO+28, all units

loop__end: xv.p v0, 29, e=slamd, = ! execute vO+29, all units

Description of Exemplary Algorithms Being Performed
The 1VLIWs defined 1n FIG. 4F are used to effect the dot
product of a constant 3x1 vector with a stream of variable

3x1 vectors stored in PE local data memories. Each PE
stores one element of the vector. PE1 stores the x
component, PE2 stores the y component, and PE3 stores the
7z component. PEO stores no component. The constant vector
1s held 1n identical fashion 1n a PE register, in this case,
compute register R31.

In order to avoid redundant calculations or 1dle PEs, the
1VLIWSs operate on three variable vectors at a time. Due to
the distribution of the vector components over the PEs, 1t 1s
not feasible to use PE0 to compute a 4” vector dot product.
PEO 1s advantageously employed instead to take care of
some setup for afuture algorithm stage. This can be seen 1n
the 1VLIW load slots, as vector 1 1s loaded in iVLIW 27
(component-wise across the PEs, as described above), vector
2 1s loaded 1n 1VLIW 28, and vector 3 1s loaded in iVLIW 29
(lo.p.w R*, A1+, A7). PE1 computes the x component of the
dot product for each ofthe three vectors. PE2 computes the y
component, and PE3 computes the z component
(ftopy.pm.11tw R*, R*, R31). At this point, the communica-
tion among the PEs must occur in order to get the y and z
components of the vector 1 dot product to PE1, and x and z
components of the vector 2 dot product to PE2, and the x and
y components of the vector 3 dot product to PE3. This com-
munication occurs in the DSU wvia the pexchg instruction. In
this way, each PE 1s summing (fadd.pa.1iw R9, R7, R* and
fadd.pa.1fw R10, R9, R8) the components of a umique dot
product result simultaneously. These results are then stored
(s1.p.w. R10, +A2, A6) into PE memories. Note that each PE
will compute and store every third result. The final set of
results are then accessed in round-robin fashion from PEs 1,
2, and 3.

Additionally, each PE performs a comparison

(fcmpLE.pa.1tw R10, R0) of its dot product result with zero

10

15

20

25

30

35

40

45

50

55

60

65

16

(held in PE register R0), and conditionally stores a zero
(t.s11.p.w R0, A2+, 0) 1n place of the computed dot product 11
that dot product was negative. In other words, 1t 1s deter-
mined 1f the comparison 1s R10 less than R0? 1s true. This
implementation of adot product with removal of negative
values 1s used, for example, 1n lighting calculations for 3D
graphics applications.

While the present invention has been disclosed in the con-
text of presently preferred methods and apparatus for carry-
ing out the mvention, variuos alternative implementations
and variations wil be readily apparetn to those of ordinary
skill in the art. By way of example, the present mvention
does not preclude the abaility to load an 1nstruction into VIM
and also execute the instruction. This capability was deemed
an unnecesary complication for the presently preferred pro-
gramming model among other considerations such as
instruction formats and hardware complexity. Consequently,
the Load 1VLIW delimiter approach was chosen.

We claim:

1. An mdirect very long instruction word (VLIW) pro-
cessing system comprising:

a first processing element (PE) having a VLIW 1nstruction

memory (VIM) for storing function mnstructions 1n slots
within a VIM memory location;

a first register for storing a control instruction and a func-
tion 1nstruction, the function instruction having a plu-
rality of definition bits defining both [a] #2e control
istruction type and an execution unit type of the func-
tion 1nstruction;

a predecoder for decoding the plurality of defimition bits;
and

a load mechamism for loading the function instruction 1n
one of said slots 1n VIM based upon both said decoding,
and a control instruction defining a load operation.

2. The system of claim 1 wherein the predecoder 1s for
decoding an execute VLIW control instruction containing an
address offset and a pointer to a base address register for
indirectly exeucting VLIWs.

3. The system of claim 1 wherein the predecoder 1s for
decoding said control mnstruction defining a load operation
containing an address offset and pointer to a base address
register for loading the function instruction.

4. The system of claim 1 wherein the definition bits are
removed from the function instruction before the function
instruction 1s stored 1n VIM.

5. The system of claim 1 wherein the definition bits are
removed from the function 1nstruction and at least one sim-
plex control bit 1s added to the fucntion instruction before
the function struction 1s stored in VIM.

6. The system of claim 5 wherein the at least one simplex
control bit includes an enable/disable bit.

7. The system of claim 35 wherein the at least one simplex
control bit includes an operation code extension bat.

8. The system of claim S wherein the at least one simplex
control bit includes a register file extension bit.

9. The system of claim S wherein the at least one simplex
control bit includes a conditional execution extension bit.

10. The system of claim 9 further comprising a plurality of
execution units, and first and second banks of registers, and
the register file extension bit 1s utilized to determine whether
the plurality of execution units read from or write to the first
bank of registers or the second bank of registers.

11. The system of claim 1 further comprising a second
register for storing the function 1nstruction; a bypass path for
connecting an output of the first register to an mput of the
second register; and a selection mechanism for selecting a
bypass operation in which the function mstruction is passed




US RE41,703 E

17

from the first register to the second register without being
loaded into VIM.

12. The system of claim 1 further comprising at least one
additional PE connected through a network interface con-
nection to the first PE, and each PE has an associated cluster
switch connected to a receive port such that each PE controls
a portion of the cluster switch.

13. The system of claim 12 wherein the associated cluster
switch comprises at least one multiplexer per PE intercon-
nected to provide independent paths between the PEs in a
cluster of PEs.

14. The system of claim 1 further comprising a sequence
processor (SP) connected to the first PE and providing both
said control nstruction and said function instruction to the
first PE, the control instruction containing an address offset
and a ponter to a base address register for loading the func-
tion instruction.

15. The system of claim 14 further comprising at least one
additional PE connected to the SP and said control instruc-
tion 1s provided synchronously to both the first PE and said
at least one additional PE.

16. The system of claim 15 wherein a plurality of PEs are
connected to the SP and the plurality of PEs 1s organized nto
first and second groups of one or more PEs.

17. The system of claim 16 wherein the first group of PEs
indirectly operate on a VLIW instruction ata first VIM
address during a cycle of operation and the second group of
PEs indirectly operate on a different VLIW 1nstruction at the
same first VIM address during the cycle of operation.

18. The system of claim 16 wherein the plurality of PEs
operate Tollowing a recerve model of communication control
in which each PE has a receive port and controls whether
data 1s received at the recerve port.

19. The system of claim 18 wherein each PE has a output
port for making data available 1n the cluster switch.

20. The system of claim 18 whereby each PE has an input
multiplexer connected to the receive port and controls com-
munication by controlling said input multiplexer.

21. The system of claim 18 wherein the plurality of PEs
are programmed to cooperate by storing a cooperating
instruction so that one PE has a receive mstruction specity-
ing the path that the other PE 1s making data available on 1n
the same location 1n VIM for each of said plurality of PFEs.

22. The system of claim 16 further comprising a masking
mechanism for masking individual PEs ON or OFF.

23. The system of claim 22 in which VIMs for PEs
masked ON are loaded and VIMs for PEs masked OFF are
not loaded during al oad VLIW operation.

24. 'The system of claim 16 wherein different PEs execute
different VLIWSs at the same VIM address during the same
cycle.

25. The system of claim 1 wherein the VIM comprises
slots for storing function instructions of the following type:
store unit instructions; load unit instructions; arithmetic
logic unit instructions; mulitply-accumulate unit instruc-
tions; or data select unit instructions.

20. A processing system comprising.

a plurality of processing elements (PEs) communicatively
connected to each other, each of said PEs including a
very long instruction word (VLIW) memory (VIM) for
storing VLIWSs to be executed by each PE; and

a sequence processor (SP) operable for concurrently ini-
tiating indirvect execution of a VLIW storved at a first
address in the VIM of each PE, in response to the SP
issuing an indirect instruction to initiate concurrent
execution by each PE, each PLE of said plurality of PL's
concurrently executing the VLIW stoved at the first

address in the VIM associated with each PE, and

5

10

18

at least one of said plurality of PEs concurrently exectt-
ing a VLIW at the first address of its VIM which defines
a different operation from a VLIW concurrently
executed by another PE of said plurality of PEs.

27. The processing system of claim 26 wherein the SP is

further operable for concurrently initiating the execution of

instructions stoved in a VLIW at a second address in the VIM

of each PE wherein each PLE concurvently executes an
instruction stoved in a VLIW at the second address in the
instruction memory associated with each PE, and

the plurality of PL's execute instructions which define the
same operation.
28. The processing system of claim 27 wherein the plural-

ity of PEs include a first PE and a second PE and the SP is

15 further operable for:

20

25

30

35

40

45

50

55

60

65

concurrvently initiating the execution of instructions stoved
in a VLIW at a thivd address in the VIMs such that the
first PE executes a first instruction stored in a VLIW at
the third address in the VIM associated with the first
PE, and the second PE executes a second instruction
stoved in a VLIW at the thivd address in the VIM associ-
ated with the second PE.

29. The processing system of claim 28 wherein:

the first instruction and the second instruction define dif-
Jerent operations.
30. The processing system of claim 28 wherein.

the first instruction and the second instruction define the
same operation.
31. The processing system of claim 26 wherein the SP is

further operable for executing an instruction stored in a

VLIW at the first address in the VIM of one of said plurality

of PEs.
32. The processing system of claim 26 wherein each PE

includes a base address register, and wherein the first
address in each PE is determined utilizing the base address
register and an offset value contained in an indivect instruc-
tion issued by the SP.

33. The processing system of claim 26 wherein the instruc-
tion to be executed by the PEs comprises at least one very
long instruction word (VLIW).

34. The processing system of claim 26 wherein the indirect

instruction to initiate concurrent execution by each PE is an
execute VLIW instruction.

35. The processing system of claim 34 wherein the execute
VLIW instruction is operable to enable each of at least two
instructions comprising a VLIW for execution.

36. The processing system of claim 35 wherein:

each PE includes a base addvess register; and

each PE determines the first address utilizing the base
address register associated with each PE and an offset
value contained in the execute VLIW instruction.

37. The processing system of claim 26 wherein.

each PE is operable to receive data from other PEs; and

each PE is operable to control from which PE data is
received.

38. A processing system comprising:
a first processing element (PE) including a first instruc-
tion memory for storing a first very long instruction

word (VLIW) to be executed by said first PE; and

a second processing element (PFE) including a second
instruction memory for stoving a second VLIW to be

executed by said second PE, said second VLIW and
said first VLIW defining different operations;

wherein the first VLIW and the second VLIW arve both

stored at the same address location in each memory;



US RE41,703 E

19

wherein the first PL and the second PE are operable for
simultaneously executing the first VLIW and the second
VLIW, respectively, in response to each PE rveceiving an
execute very long instruction word (VLIW) instruction.
39. The processing system of claim 38 further comprising
a sequencing processor (SP) which initiates the concurvent
execution of the first instruction and the second instruction
by issuing the VLIW instruction.
40. The processing system of claim 38 wherein

each PE includes a base address register; and
each PL determines the first address utilizing both the

base address register associated with each PE and an
offset value contained in the execute VLIW instruction.

41. The processing system of claim 38 wherein:

the first and second instructions comprise very long
instruction word (VLIW) instructions; and

each VLIW instruction comprises a plurality of simplex
instructions.
42. The processing system of claim 41 wherein:

each PE comprises a plurality of execution units; and

each simplex instruction is adapted for being executed by
at least one of the execution units.

43. The processing system of claim 38 wherein each PE

further comprises:

an instruction register for storing the execute VLIW
instruction; and

a predecoder for decoding if the instruction stored in the

instruction register in an execute VLIW instruction.

44. The processing system of claim 43 wherein the prede-
coder of the first PE generates a first signal which is used to
initiate the load of the first instruction into the first PE, and
wherein the predecoder of the second PE generates a second
signal which is used to initiate the load of the second
instruction into the second PL.

45. A processing method for a processing system compris-
ing a first processing element (PL) including a first very long
instruction word memory (VIM), the first PE communica-
tively connected to a second PE including a second VIM, the
method comprising:

loading a first function instruction in the first VIM at a
first address;

loading a second function instruction in the second VIM
at the first address;

receiving an execute VLIW instruction; and

concurrently executing the first function instruction by the
first PE and the second function instruction by the sec-

ond PE, in rvesponse to the received execute VLIW
Instruction;

wherein the first function instruction stoved in the first
VIM at the first address and the second function
instruction storved in the second VIM at the first address

define different operations.
46. The method of claim 45 wherein the first PE includes a

base addvess register and the method further comprising,
before the step of loading the first function instruction:

20

receiving a load VLIW instruction which contains an
address offset;

predecoding the load VLIW instruction; and

determining the first address utilizing the address offset
and the base address register.

47. The method of claim 45 wherein the first address of the
first VIM includes a plurality of slots and whervein the step of
loading the first function instruction further comprises.

10 receiving the first function instruction; and

predecoding the first function instruction to determine
into which slot the first instruction is to be loaded.
48. The method of claim 47 wherein the step of predecod-

ing the first function instruction further comprises:

. determining if any of said plurality of slots are to be dis-
abled: and
if any of said plurality of slots are to be disabled, loading
a disable bit in a storage bit for each slot which is to be
20 disabled.

49. The method of claim 47 wherein the first function
instruction includes at least one group bit defining an
instruction type and at least one unit field bit defining an
execution unit type, and the step of predecoding the first

2> function instruction utilizes both the instruction type and the
execution unit type to determine which slot the first function
instruction should be loaded.

50. The method of claim 49 further comprising:

removing the at least one group bit and the at least one
unit field bit from the first function instruction before
the first function instruction is loaded into the first VIM ;

and

30

adding at least one replacement bit to the first function
instruction.

51. The method of claim 45 wherein the first PE includes a

base address register, wherein the execute VLIW instruction

includes an address offset, and wherein the step of receiving

the execute VLIW instruction further comprises:

40 : : :
predecoding the execute VLIW instruction; and

determining the first address utilizing the address offset
and the base address register.
52. The processing method of claim 45 whevein the step of
loading a first function instruction in the first VIM at a first
address further comprises:

masking the first PE to be enabled; and

masking the second PE to be disabled.

53. The processing method of claim 45 whevrein the step of
loading a second function instruction in the second VIM at

the first address further comprises:

masking the first PE to be disabled; and
masking the second PE to be enabled.

45



	Front Page
	Drawings
	Specification
	Claims

