USOORE41293E
(19) United States
a2 Relssued Patent (10) Patent Number: US RE41,293 E
Drogichen et al. 45) Date of Reissued Patent: Apr. 27,2010
(54) MULTIPROCESSOR COMPUTER HAVING (56) References Cited
CONFIGURABLE HARDWARE SYSTEM
DOMAINS U.S. PATENT DOCUMENTS
| 5,473,599 A * 12/1995 Lietal. .ccoeoveeeeevennee.. 370/219
(75) Inventors: Daniel P. Drogichen, Encinitas, CA 5,550,816 A * 81996 Hardwick etal. 370/397
(US); Andrew J. McCrocklin, San 5,572,674 A * 11/1996 Ermnst ..ocoeeeeeeevneenennannnn. 709/221
Diego, CA (US); Nicholas E. 5,649,106 A * 7/1997 Tsujimichi et al. 395/800.15
A,_Aneshansley:JI San]:)ieggjrJ CA (US) 5,680,634 A 10/1997 Estes coovvvvvnninnnnnn.n. 395/800.15
5,689,661 A * 11/1997 Hayashietal. 395/800.15
S : 5,710,938 A * 1/1998 Dahletal. 395/800.15
Y A glrinﬂhjlégrOSYStemsj e Santa Clare, 5751967 A * 5/1998 Raab et al. vooveee........ 700/228
5,784,802 A * 7/1998 Greenstein et al. 395/800.15
(21) Appl. No.: 09/920,433 * cited by examiner
(22) Filed: Aug. 1, 2001 Primary Examiner—Daniel Pan

(74) Attorney, Agent, or Firm—Meyertons Hood Kivlin

Related U.S. Patent Documents Kowert & Goetzel, P.C.

Reissue of: (57) ABSTRACT

(64) Patent No.: 5,931,938
Issued: Aug. 3, 1999 Global address and data routers interconnect individual sys-
Appl. No.: 08/763,934 tem units each having 1ts own processors, memory, and I/O.
Filed: Dec. 12, 1996 A domain filter coupled to the routers dynamically defines

groups of system units as domains and clusters of domains

(51) Int. CL H which have both software and hardware 1solation from each
GO6E 15/173 (2006'0;) other. Clusters can share dynamically definable ranges of
GO6F 11/00 (2006'0;) memory with each other. The domain filter has software-
GOoF 15/76 (2006.01) loadable registers on the system units and 1n the global rout-

ers to set the parameters of the domains and clusters. The

(52) US.CL .. 712/15; 712/23; 712/29; registers label individual inter-system transactions on the

709/242 routers as invalid for system units not in the same domain or

(58) Field of Classification Search 709/221, cluster as the originating unit.

709/238, 242; 712/135, 23, 29
See application file for complete search history. 63 Claims, 13 Drawing Sheets
400
} w160
440 S15953
S 430 S 00 0000 0000
SYS UNITe— |
— 0100000
UNIT o0
1 —~ 02 0000 0000
€A | p BYs UNTAZ—TC
A M| — 030000 0000
T ISYS UNITa | AJA L '
i I g | 04 0000 0000
' | R BYS UNTo R |° B
O F
|— 050000 0000
29 |V onme ! | §
E 410-5 “1u|R |
\ L g — 060000 0000
CBY [|R[SYs UNT 3
410-6
—— R — 070000 6000
53’1 SYS UNIT
4107
' - — 080000 0000
IDOMAIN CONFIG 4201 |491403
CONTROL, | 4
SERVICE 470

U.S. Patent Apr. 27, 2010 Sheet 1 of 13 US RE41,293 E

201

NNV ANV A/ e VA
2 __-—_

N'-‘r-m

l'.'.'D
NEOD*-W Sl
3 a’g N
N “’c:: DV’Q Qwo“’ogj’o eS|,
ﬁm m /@ L@ | o z% S
O — =
O Lnfg
O <~ <« CEODI-—LIJO:
o
ANNS NN AT ANIENYN O]
8 —-
1— A. Ok _J Q—NF-0—M0m
o
(AN I ETEE S
Q| .
o N cu ml ml ‘ Ty
O“"---. o O z = o oUl <
-~ |62 %5 38|38 35|28 28 28| B2 | o2
T =0 =0 |0 =0 =0 2z OS
7y 4
. O b &
,"_' c::-q:l—-«q: @OV

U.S. Patent Apr. 27, 2010 Sheet 2 of 13 US RE41,293 E

S 8 8 8 8 8 8 8 8
S 8 8 8 8 8 8 & B8
S 2 8 8 8 8 8 8 &
S 8 8 8 8 8 8 & 3
- oy N P, <} D w Bieg 0
Q = - < t‘.".D o - <O -
% —lu—w— 2 «
2] N AN AN SN AN >
"" NNV SA/NN | N VAXI N -

I Y A v A

~ T ool apesa \L 1\
87/] | <ooumosrum\I\ I
l-musm e m

Z
:)gn Dm :JrT
U')r:: U"JE
E-n-

O~ < D.‘:OD I—Ll.lf.E

FIG. 4

00

ﬁ.

J DOMAIN JAIN CONFIG

CONTROL,
SERVICE

N) WEEIRSNEEEES A SIS
5 % %
| T

l- .-L
-

q‘.c:::a: <=:or:m: o
— o
hJ anmwn'—mc\lnm; N’)rr:l-l-l N
7 e e W O
&1""5‘”5 ﬁmﬁ 89 é’]g
'E = L
: ex<tae=®|
5:’- 3 I
M 2) |
Y SNSRI VRS
oy
"3 G %
S’

293 E

2

US RE41

Sheet 3 0f 13

Apr. 27, 2010

U.S. Patent

)
3

— Al — ._Jf

|

414

 OISAS
1165 (119 %

¢ES CEG
oeg-#
£eS ¢lS

19 .
11D J04d'N)

1M0d JHOVO
JHAVI

Ty mpgeyr el I TR Y Py TR S R e, g e

=
£
SO0 O O~

119 | 904d'I
A R 1 %G

0LS |viva DO OISLT

18 CWS _
owws— |

US RE41,293 E

Sheet 4 of 13

Apr. 27, 2010

U.S. Patent

g "Il

US RE41,293 E

Sheet So0f 13

Apr. 27, 2010

U.S. Patent

L Ol

¢CL

219071
11gaV

| odid

L16 g1y 0L |ieL
0414

&L ouws [T
0414 [—SSO0dO

116 gy, 2L
04l

116 12t

'WIN TIONVO

816 7160

U.S. Patent

811

PORT
CONTROL

FIG. 8

Apr. 27, 2010

810

FIFO

Sheet 6 0of 13

SoL4
;

FIFO

820

REQ
GR

REQ
GR

REQ
GR

REQ
GR

ARBITRATION

LOGIC

HO
Hi

HO
H

HO
Hi

HO
H

ASO

ASI

ASO

AS|

ASO

ASI

ASO

ASI

RO R1 R2 R3

N~
LARQ SEL. 8249

US RE41,293 E
821 _
_____GABC
822 891
GAB
891 822
GABZ
822 821
GAB3
822
825
GABO
B26 305
GAB
205 826
GABZ2
826 325
GABJ
~826
824
GABO
827
824
GAB1
B27
B24
GAB2
827
324
GABJS
827

US RE41,293 E

Sheet 70f 13

Apr. 27, 2010

U.S. Patent

arvAa
A

¢cb

T3O0NVO A

gL6

Gl6

>

126

TAXS

1£6

3dAl SNVl
/46 o6 MINS .
o| S¥6 HENS
c¥il
(o8¥)ove 7

NIVNOO—NON{™-£¥6

E O Aldd B
A

UD M/¥
0z6~"
._om._.zoo
oo
0c6 JHOVO
| oo
WAL ~ lE
- Odid
l%
- Odid
IE
o 04l |
¢16G 16 c16 .

Jaav
ONNOBNI

6

203
1003
003

l¥6

mwm

16

106

¢£¢6

116

L1

BY6

130NYD "N

WIN

¢ 1¥0d

I 140d

0 1¥0d

6 Ol

U.S. Patent Apr. 27, 2010 Sheet 8 of 13 US RE41,293 E

1021-1

_ 5562
GRANT-0 822 's ropa 1021-0

i
GRANT—~F
1010 II 1013-0 JTAG

1144

=0 FIG. 10

U.S. Patent Apr. 27, 2010 Sheet 9 of 13 US RE41,293 E

1144

‘ —
480 .
. SYSTEM UNIT
410-0

-
-
-
440

SYSTEM UNIT

 —— 410—F

1116

1115
1142

1114
1110 470 1120

- '/ »

1130 C o
/o|_ SERVICE |G 1122 REMOTE r;(‘)]
POWER. PROCESSOR m M| CONSOLE |
COOUING

113 4442 1111 1121 1123

< OO

el

FIG. 11

U.S. Patent Apr. 27, 2010 Sheet 10 of 13 US RE41,293 E

NO, 1226
@ 1230
YES Vg

SELECT \~1231
EXPORT
SELECT 1232
IMPORT

LOAD 1233
REGS 944
LOAD 1234
1220 —a_ Syorey V1222 REGS 1020
UNITS
LOAD 1223 >.M.BASE
REGS 942 REégAg45 1238
LOAD 1224
REGS 1020 SE’I}TEB ~1237

1225

ol . M
S
YES ~ NO

U.S. Patent Apr. 27, 2010 Sheet 11 of 13 US RE41,293 E

FIG. 13 - . 1/"’0"
(410~0) (910-p)

Q"l‘fETgT | _-l 1311
1310 K 11312

U.S. Patent Apr. 27, 2010 Sheet 12 of 13 US RE41,293 E

<+
w
O
C FhEH |
ﬂ o El = L
T 5 4
2 5 § 0
E 2 ™~
3
o
>
,_,i_ -
--ll-ll-— ::3
=
Eu"’.
r oL
s?.
- L
Lo
\
e
Q y—-
T~
F
—
S
R
N
<
c:::
il
—_— = e
O
3% i
I

1402-0

[

-

VALID

10230

5
Cp
£
)

1013-0
. . 1013—F

?
g

GRANT

GRANT

GRANT
1401-00

U.S. Patent Apr. 27, 2010

1144
JTAG

1560

¥ | CLUSTER

. | REGS

1965

1530

Sheet 13 of 13 US RE41,293 E

FIG. 15

1570
1570-0

ARB. STCP

1520
l 1520-0

FROM-O

1010

1510-0 1510
REQ-0 O/F
REQ-1,0/F

US RE41,293 E

1

MULTIPROCESSOR COMPUTER HAVING
CONFIGURABLE HARDWARE SYSTEM
DOMAINS

Matter enclosed in heavy brackets [] appears in the
original patent but forms no part of this reissue specifica-
tion; matter printed in italics indicates the additions
made by reissue.

BACKGROUND OF THE INVENTION

The present invention relates to electronic computers, and
more particularly concerns multiprocessor architectures in
which a large number of processors can be dynamically 1so-
lated 1nto variable groups or domains for operational 1inde-
pendence and for the ability to continue running despite
hardware errors.

Many centralized mainframe computers driving large
numbers of simple terminals have been replaced by net-
works of personal computers. Most of these networks 1ncor-
porate one or more server computers which store data and
programs for the mdividual users. In fact, the servers are
evolving 1nto high-performance superservers which have
taken over many of the attributes of mainframes. However, a
superserver functions differently 1n a networked system, and
thus the architecture of a superserver needs to be different
from those of mainframes or of personal computers.

One area 1n which superservers differ from other architec-
tures 1s their need to be able to run more than one operating
system or more than one version of an operating system—
simultaneously for different jobs or for different users.

Superservers must also have a very high availability and
reliability. They must have high tolerance for both hardware
and software errors, and it 1s desirable that the computer be
serviceable while 1t 1s running. Unlike the single (or closely-
coupled multiple) processor architectures ol personal
computers, and also unlike the massively parallel designs of
supercomputers, superservers need the flexibility to run
widely varying numbers and types of tasks with unpredict-
able resource demands.

In many ways, superservers are called upon to perform
both as very large computers and as small computers. This
places a number of conflicting demands upon their architec-
tures.

SUMMARY OF THE INVENTION

The present invention provides an overall computer archi-
tecture which overcomes these and related problems by
means of software configurable “hardware domains™ which
isolate the overall computer into a number of 1ndependent
units for both software and hardware aspects. That 1s, differ-
ent domains not only run different operating systems and
applications independently of each other, but also operate
independently of fatal hardware errors occurring in other
domains. “Clusters™ allow multiple domains to share a com-
mon range of memory addresses, for rapid data transfer.
Privileged configuration-control software allows an operator
or software process to divide the computer resources into
domains and domain clusters without physically altering the
computer, and to reconfigure the domains and clusters at any
time. A computer using this architecture may be constructed
of easily obtamnable commodity components, such as the
microprocessors commonly employed in personal or work-
station computers.

The invention allows the testing of new versions of soft-
ware 1n a completely 1solated environment, while continuing,

10

15

20

25

30

35

40

45

50

55

60

65

2

normal tasks 1n the remainder of the computer. One part of
the computer may run extended diagnostics or preventive
maintenance, while the remainder executes normal user
tasks concurrently. Different parts of the same computer can
run under different operating-system software (or different
versions of the same software, or diflerent tunings or param-
cter settings), for optimizing multiple different types of
workload, such as timeshare and database-query, or online
transaction processing and decision-support systems.

Each part of the computer 1s imnsensitive not only to soft-
ware errors in the other parts, but also to hardware faults
such as hard memory errors and address-request line mal-
functions. A computer according to the mvention prevents
hardware faults from erroneously transferring address or
data signals to any processor or memory not in the same
hardware domain, and physically prevents many systemwide
control signals from affecting hardware in different
domains.

Additional advantages will be obvious to those skilled 1n
the art. For example, interactive jobs can be 1solated from
batch jobs by running them 1n different domains. Production
tasks may be executed uninterrupted in one domain while
development or problem isolation occurs simultaneously 1n
another domain. New solftware releases can be tested for
compatibility on the same system which simultaneously
runs the old releases. Sometimes multiple organizations
share the same system; using separate domains, each can be
guaranteed a certain level of resource dedication to their own
tasks, and this dedication can be scheduled easily or altered
upon short notice merely by reconfiguring the domains and
clusters under software control, without physically replacing
components or manually switching signal lines.

Briefly, a computer according to the invention has a num-
ber of individual system units each having processors,
memory segments, and/or input/output adapters. A central
interconnect transports addresses and data among the system
units. A domain controller dynamically configures a domain
filter to form multiple domains which function indepen-
dently of each other, and which are even independent of
major hardware errors in other domains. The processors,
memory, and I/O of a domain act as a single, unified comput-
ing system, regardless of their physical location on the same
or different system units. In addition, multiple domains can
be dynamically interconnected into clusters to share some or
all of therr memory space. The domains and clusters are
defined by the contents of registers set under software con-
trol.

All communications among the various system units
occur as “transactions” over the interconnect. Transactions
may contain memory addresses, although some do not. An
ordinary memory transaction 1s one made to potentially
cacheable main memory, such as a non-privileged applica-
tion program might make. Other transactions include those
to (non-cacheable) system control registers, and to portions
of the address space used by 1/O adapters; these latter may
be accessed only by privileged-mode code, such as the sys-
tem boot, the OS kernel, and [/O drivers. Still other transac-
tions may be interrupts.

The multiple domains are both software- and hardware-
1solated from each other. Individual subsystems may com-
prise system cards, boards, or other units potentially contain-
ing hardware for processing, memory, and/or I/O functions.
Although not all individual system units need contain all the
functions of a complete processor, the set of units forming a
domain must include among them all the functions of a com-
plete data-processing system. A single system umit may form

US RE41,293 E

3

a domain. Any system unit can belong to only one domain. A
domain functions as a single data-processing system; 1its
individual system units have no secrets from each other.

“Software 1solation” means that no software running in
one domain can atfect software running 1n another domain,
in the absence of a hardware failure 1n a subsystem. This
requires that each domain have i1ts own physical
processor (s), memory units, and I/O adapters not shared
with those of other domains. Domain-filter hardware
between each system unit and the common address-
interconnect hardware has a mask register containing a sepa-
rate bit for each unit potentially 1n the complete system. The
states of these bits indicate which other units are members of
the same domain. A unit’s interface responds to a transaction
from the interconnect only when the transaction originated
at a system unit within the same domain. Such hardware
distributed among the subsystems 1s suilicient to ensure sofit-
ware 1solation, as long as the hardware 1s controllable only
by an agency outside the subsystems, such as a separate
SErvice processor.

“Hardware 1solation” denotes in addition that hardware
errors occurring within a domain do not atffect the operation
of different domains in the computer. Hardware 1solation 1s
not practical with a common bus architecture among the
individual subsystems, because a failing subsystem could
take the entire bus down with 1t. We therefore employ a
switched interconnect among the subsystems, such as cross-
bars and/or routers. Because a hardware failure within one
subsystem might possibly allow it to masquerade as belong-
ing to a different subsystem, or to generate system-wide fatal
interface signals such as control-signal parity errors, sub-
system hardware 1solation also requires some central control
logic outside the subsystems themselves, and that at least
some of the control signals be routed point-to-point between
this central logic and each subsystem. If the interconnect
hardware also has domain mask registers, 1t may produce a
“valid transaction” signal to each system unit in the origina-
tor’s domain; this prevents any unit from masquerading as
another unit. Because all units outside the source domain
ignore a transaction, they cannot generate error states for
hardware error signals sourced from another domain.
Although failures in the mterconnect hardware 1tself can still
possibly affect all domains, 1n practice the interconnect 1s
small and rugged compared to the hardware in the sub-
systems.

In some applications, certain domains need high-
bandwidth communications with each other by sharing one
or more segments of their individually addressable memory
space. The mvention can provide clusters of domains having
properties similar to those of individual domains. An 1ndi-
vidual system unit can be 1ts own cluster; any single unit can
be a member of only one cluster; and the cluster relation 1s
transitive. Also, a domain 1s 1n exactly one cluster, and a
cluster contains one or more domains. The requirement that
a cluster relation be transitive arises from 1ts use 1n sharing
memory between domains. If A exports memory to domains
B and C, then B and C must respond to each other’s transac-
tions on the interconnect, and thus be i1n the same cluster.
This requirement arises from the possibility i the described
system that the current value of a datum from shared
memory in A may actually reside in caches in B or C; 1f a
processor 1n B should write a new value to this address, then
the copy 1n the C cache must be invalidated; to accomplish
this, C must see all transactions from B.

A system unit 1n a cluster can share memory only with a
unit 1n the same cluster, although 1t need not share memory
with every other unit 1n the same cluster. If system unit A
exports a certain range of shared addresses to umit B, then B

10

15

20

25

30

35

40

45

50

55

60

65

4

1s necessarily in the same cluster; but unit C 1n the same
cluster as A and B need not share this address range. Any
system unit 1n the same cluster as a unit sourcing a transac-
tion will receive that transaction, but it need not necessarily
respond to the transaction. That i1s, the recerving umit may
filter 1t. In practice, multiple domains will be joined 1n a
cluster only to share memory, and all system units in all
member domains of the cluster will be configured to respond
to ordinary memory transactions for a specific range of
memory addresses corresponding to this shared memory,
from all units 1n the cluster. The shared memory 1tself resides
on one system unit within the cluster, which 1s said to
“export” this range to domains 1n the cluster other than 1ts
own. (A unit always responds to all transactions from source
units 1n 1ts own domain. This 1s not “exporting’” in the sense
used here; that term refers only to the addition of responses
to some memory transactions originating outside the
domain.) Therefore, a system umt may contain cacheable
memory which 1s not accessible from units to which 1t
exports a different range of memory addresses. The system-
control registers and I/O devices within a unit are never
accessible to units 1n a different domain, even though these
units may belong to the same cluster.

Clustering adds to the domain register on each system unit
a shared-memory register, and may also include range regis-
ters indicating which addresses are to be shared—i.e.,
exported to at least one system unit in another domain 1n the
cluster. The shared-memory register indicates which other
units can transfer addresses to and from its unit. Thus, a
system unit responds to an address in a transaction from
another unit only (a) when the sourcing unit 1s a member of
the same domain, or (b) when 1t 1s a member of the same
cluster, 1s designated 1n the shared-memory register, and the
address lies within the range designated to be shared (if any),
and only for an ordinary memory transaction, as defined
above. The domain registers in the interconnect become
domain-cluster registers, capable of sending validity signals
to other system units 1n the same cluster as the unit which
sources a transaction.

DRAWING

FIG. 1 1s a conceptual schematic of a prior-art bus-
oriented multiprocessor digital computer.

FIG. 2 1s a stmilar schematic of a computer having mul-
tiple system units.

FIG. 3 divides the computer of FIG. 2 into system
domains and clusters according to the concept of the mven-
tion.

FIG. 4 shows how the invention divides the computer of
FIG. 2 mto the domains and clusters of FIG. 3.

FIG. § 1s a block diagram of a fully-populated system unit
of FIG. 4, including relevant portions of other computer
units.

FIG. 6 details a port controller of FIG. 5.
FIG. 7 details a memory controller of FIG. S.
FIG. 8 details a local address arbiter of FIG. 5.

FIG. 9 details a local address router of FIG. 5, which

includes a local portion of a domain filter according to the
invention.

FIG. 10 details a global address arbiter of FIG. 5, which
includes a global portion of the domain filter.

FIG. 11 shows the domain configurator of FIG. 4.

FIG. 12 1s a flow chart illustrating a method of configuring,
a computer 1nto clustered system domains according to the
invention.

US RE41,293 E

S

FIG. 13 1s a flow chart of a transaction operation, empha-
s1zing the domain filtering of the invention.

FIG. 14 describes detailed logic circuits used in the
domain filter.

FIG. 15 details a global data arbiter of FIG. 5, including
an optional further global portion of the domain filter.

DESCRIPTION OF A PREFERRED
EMBODIMENT

FI1G. 1 shows a prior-art computer 100 having an architec-
ture typical of a server or midrange computer. Computer 100
has processors 110 on a mother board or on plug-in boards,
separate boards 120 for memory, and separate boards 130 for
I/0O adapters. A data bus 140 and an address bus 150 couple
the different functional boards together. A control distribu-
tion bus 160 routes control signals, including error signals,
to the various boards. Larger systems may have a dedicated
control and service umt 170 for boot-up, diagnostics, and
similar functions.

Bar 101 represents schematically the overall address
space ol computer 100. The processor or processors send all
addresses on bus 150 to those boards or units 120 containing
memory; each board has a memory responding to a certain
range ol addresses; each board contains different ranges of
addresses, usually set by mechanical switches or registers on
the memory boards. The processors 110 also communicate
with all of the I/O adapters on all boards 130.

FI1G. 2 illustrates a different architecture 200, one 1n
which a number of system units 210 may each contain
within 1itself processors, memory, and 10 adapters coupled
together such that the unit can potentially function by itself
as a complete computer. (Some system units, however, may
actually contain only processors, only memory, only 10, or
some subcombination of their total potential functionality).
The individual system units 210 transmit addressed data
within the same unit, or to other system units within the
same complex over high-speed routers 240 and 2350, con-
structed as a centerplane interconnect structure into which
the system units are plugged. A control distribution bus 260
sends control and error signals to all system units 210. Such
a computer 1s not limited to the bus organization of a typical
personal or midrange computer. For example, data and
address routers 240 and 250 may be implemented as conven-
tional point-to-point wiring, cross-point switches, or mul-
tiple arbitrated buses. The overall system 200 may be char-
acterized as a shared-memory symmetric-multiprocessor
system. Preferably, it also uses coherent caching; this feature
may be realized 1n a number of conventional ways. The pub-
licly available CS6400, available from Sun Microsystems,
Inc., 1s an example of this type of machine.

Bar 201 represents the address space of computer 200.
Although each system unit 1s potentially a complete com-
puter by itself, the interconnections provided by address
router 250 place all system umts within a common overall
address space. That 1s, the full qualified address of every
memory location on each system unit 210 must differ from
that of every memory location on all other unats.

Error and status signals on distribution bus 260 affect
every unit 210 1n the system. For example, error-correcting
codes correct some bit errors on router 250, and produce a
tatal error signal for other errors which the codes can detect
but not correct. Such a fatal-error signal generally brings the
entire system to 1ts knees even when the fault causing the
error 1s confirmed to a single system unit or router location.
A faulty system unit can assert an error signal continuously,
shutting down the entire system. CANCEL (sometimes

10

15

20

25

30

35

40

45

50

55

60

65

6

called ABORT) signals present a different situation. Some
high-performance systems initiate multi-cycle operations
speculatively, and cancel them when their assumptions were
incorrect; assertion of a CANCEL 1n such a single-domain
system holds up every unit in the whole system.

FIG. 3 shows a hypothetical computer 300 in which the
various system boards 310, corresponding to umts 210 of
FIG. 2, are physically divided into a number of domains,
cach having 1ts own physically separate data router or bus
340, 1ts own address router or bus 350, and 1ts own control
distribution means or bus 360 and possibly even its own
system controller 370. Computer 300 1n effect becomes mul-
tiple different computers or domains S1, S2, and S3. In
addition, multiple domains may share part or all of their
memory addresses to form clusters, as shown by area 351 of
address router 350. In FIG. 3, domain S1 1s a (degenerate)
cluster CA by itself, while domains S2 and S3 together form
a cluster CB. The address spaces of the different clusters
may overlap each other, each may run 1ts own operating
system independently of the others, and any memory faults
or other hardware errors 1n one domain cluster do not aifect
the operation of other domain clusters.

Bars 301, 302, and 303 indicate that the memory address
space of computer 300 may be treated as three separate
spaces, some or all of whose addresses may overlap each
other. In addition, some of the memory addresses may be
physically shared among multiple domains, as shown at 304
and 305. The area 351 bridging the lower two address rout-
ers 350 symbolizes the memory addresses shared among
different domains.

Computer 300 permits many of the control signals to be
isolated from domains to which they cannot apply. A fatal
error (such as an uncorrectable error in an address or control
bus) in domain S1 thus produces an ARBSTOP signal on bus
360 only within that domain cluster, and allows domains S2
and S3 to continue operation. However, system 300 must be
manually configured 1n a permanent or at least semiperma-
nent manner. That 1s, reconfiguration requires a complete
system shutdown, and rewriting or manual adjustments to
reposition boards or reset switches. This system cannot be
dynamically or easily reconfigured into different domains
and clusters having variable amounts of resource.

FIG. 4 builds upon the background of computer systems
200 and 300, FIGS. 2 and 3, to present an overview of a
preferred form of the invention in an example environment.
Although much of the detail described below 1s not directly
relevant to the mventive concept per se, it 1s helptul 1n under-
standing how the imvention functions in this environment.

Computer 400 has system units 410 corresponding to
units 310 of FIG. 3. Data router 440 physically interconnects
all system units 410. Address router 450 and control bus 460
physically couple all system units, just as in FIG. 2. In com-
puter 400, however, an added domain filter 480 electroni-
cally divides computer 400 into domains and clusters
capable of operating independently of each other. The place-
ment of domain filter between router 450 and units 410 sym-
bolizes that 1t acts upon addresses and control signals to
achieve separation into domains. In the preferred
implementation, filter 480 1s physically located in chips
which form parts of address router 450, and router 450 1s
itsell physically located partly within each system unit 410
and partly in a common centerplane structure. Filter 480
may also include components located 1n data router 440.
Domain configurator 420 commumnicates with filter 480 to
set up the domains and clusters arbitrarily and dynamically.
The example 1n FIG. 400 has the same memory address
maps 401-403 as the corresponding maps 301-303 of
FIG. 3.

US RE41,293 E

7

Anticipating later details, the numbers beside the maps
indicate addresses at various points. The numbers are 1n

hexadecimal; in the example implementation, they run from
‘00 0000 0000’ through ‘OF FFFF FFFF’. (FIG. 4 shows

only eight of the possible sixteen system units, and thus
includes only the first half of this space, up to address ‘08
0000 0000°.) The system also employs addresses <10 0000
0000’ through ‘1F FFFF FFFF’ as an alternative space, for

accessing system registers and 1/0 devices. With a few com-
plications not relevant to the mvention, an example system
architecture assigns a 4 gigabyte (GB) address range to each
system unit 410. Although each range starts at the assigned
unit number times 4GB, any memory actually installed on
the unit may begin and end anywhere within its assigned
range. Although this almost always results 1n holes 1n the
address range of installed memory, system 400 deals with
the situation easily. Other systems may easily implement the
invention with quite different memory architectures, how-
ever.

FIG. 5 shows a system unit 410 of FIG. 4, along with the
portions of the data router 440, address router 450, and
domain filter 480 which are part of and coupled to that sys-
tem unit. F1G. 5 does not show most of the individual control
lines of distributor 460 which are managed by the domain
filter of the invention; FIGS. 8-10 show and discuss repre-
sentative control signals 1n greater detail. In this example,
computer 400 has eight of a possible sixteen system units

410 installed.

System unit 410 contains the space and wiring on one
physical structure, such as a circuit board, for all of the
major components 110-130 of the computer 100, although
not all of these need be fully or even partially stuffed 1n a
particular unit. Processor subsystem 510 may have up to
four microprocessors 311, each with its own cache 512.
Input/output subsystem 530 contains two system-1/O busses
531 each controlling various conventional I/O adapters 532,
which 1n turn couple to lines 533 to external I/O devices such
as disk drives, terminal controllers, and communications
ports. Memory subsystem 520 contains up to four banks of
memory 521, each pair of which couple to conventional
pack/unpack modules 522. As an alternative to fully generic
system units, more specialized boards are feasible. For
example, a first type of system unit might have wiring and
locations for processor and memory subsystems only, and a
second type would contain only one or more I/O subsystems.

Data router 440 passes transaction data among the sub-
systems 3510-530; in this embodiment, the data router 1s
physically divided between a local portion 5410 on each
system unit 410 and a global portion 54G0 located on the
centerplane; 1n FIG. 5, label 5410 denotes the entire local
portion, having components 541.1-541.3, of data router 440;

label 54G0 denotes the entire global portion, having compo-
nents 34G1-54G2.

Each butfer 3411 of local router 5410 has a small amount
of fast static RAM, capable of holding, e.g., 256 transac-
tions. Its conventional purpose 1s to provide a holding queue
for 1solating and smoothing the flow of data against possible
bursts of activity. Local data switch 541.2 1s a full-duplex,
bidirectional 1x4 crossbar. Local data arbiter 541.3 accepts
grants from global arbiter 54G2, and instructs at most one
buffer to store the corresponding transaction packet.
Simultaneously, local arbiter 5413 uses conventional fair-
ness algorithms to select an awaiting packet from one of the

builers and to generate on its behall a request for transmis-
sion to global arbiter 54G2. Global data router 34G0 trans-
ters data from the LDR 3410 of one system unit to the LDR

541.0 of the same or a different unit, using a 16x16 crossbar

10

15

20

25

30

35

40

45

50

55

60

65

8

array 54(G1 which receives sixteen sets of four-bit steering
logic from arbiter 54G2. A lower level realizes this as six-
teen sixteen-mnput multiplexers, one for each system unait.

Address router 450 passes addresses among the sub-
systems 510-330 on each system unit 410, and also from
one system unit to another; like the data router, 1t has both a
local portion, denoted SSLL0, and a global portion, $5G0. In
this implementation, address routing proceeds 1n the same
way for both local (intersystem) and global (intersystem)
transactions. Port controllers 3511 and memory controller
5512 provide a conventional interface between subsystems
510-530 and the individual routing switches 551L.3. For the
moment, mdividual processors 311, I/O busses 531, and
memory units 521 may be considered to be effectively con-
nected directly to local address switches (LAS) 551.3. LASs
5513 perform a number of conventional functions, such as
cache coherency. For purposes of the present invention, their
function 1s to route addresses from processors 511, 1/0 bus-
ses 531, and memory 3521 in the system unit to and from
global address router 55G0.

The global portion 55G0 of address router 450 in this
embodiment has four address busses 35G1 shared among the
sixteen system units. A separate global address arbiter 55G2
allocates each address bus to various system units 410 1n
response to requests for transactions from a local address

arbiter 551.4 1n each unit.

In this embodiment, each LAS 3513 on a system unit
connects to a different one of the four GABs 55G1, as sym-
bolized by the open circles on lines 915 and 922. Arbiter
5514 physically comprises four identical sections, which
cach communicate with a different one of GAAs 55G2 and
LLASs 5513, 1n response to access requests from lines 811.
That 1s, the overall function of the combined local and global
portions of address router 450 1s to schedule the four GABs
55G1 among contending requests from the six ports (two
from each of the controllers 551.1) of all system units 410.
The decisions for all four GABs 35G1 proceed simulta-
neously with respect to each other 1n the LAA 551.4 of each
system unit.

FIG. 6 shows the relevant address routing within the con-
ventional port controller 5511 of FIG. 5. Each controller
chip contains address lines and control lines to interface two
processors or two 1I/0 buses to any of four address buses.
Bidirectional driver/receivers 610 route outbound transac-
tions from lines 611 to first-in/first-out (FIFO) butfers 620.
Switches 621 send the FIFO outputs to bidirectional driver/
receivers 630, whence they proceed over lines 911 to local
address routers 5501.3, FIG. 5. Inbound transactions from
lines 911 proceed from driver/ recetvers 630 to FIFOs 640.
Multiplexers 641 select among the stored transactions and
send them to driver/recervers 610 for transmission over lines
611. Lines 811 control switches 621, multiplexers 641, and
other components (not shown) within port controller 551.1.

The controller components also transmit status and other
information to local address arbiter 5514, FIG. 5.

FIG. 7 shows the relevant portion of a conventional
memory controller 55L.2 of FIG. 5. This chip performs func-
tions similar to those of a port controller 5511 for four banks
of DRAM memory chips 521. Lines 911 from local address
routers 551.3, FIG. 5, feed transactions into FIFO storage
710. Crossbar switch 720 routes addresses from these trans-
actions to the four memory banks over lines 721; that is,
multiple banks on the same system unit 410 may read or
write data simultaneously, as long as the data 1s located in
different subranges of the memory addresses 1n the memory
segment located in the unit. Conventional arbitration logic

US RE41,293 E

9

722 assigns the different FIFOs 710 to the various outputs
721. Line 948 from FIG. 9 cancels memory accesses from
transactions which are not to be made visible to this system
unit.

FIG. 8 details local address arbiter 5514 of FIG. 5. Each
system unit 410 contains one LAA chip 550L4. Each port
controller 351 may request a shot at one of the available
global address buses 55G1, by raising a GAB request signal
into a queue 1 FIFO butfers 810; these lines form a part of
the conventional port control lines 811 shown in FIG. 5.
Arbitration logic 820 selects among these requests using any
of a number of conventional fairness algorithms, then raises
GAB request and steering lines 821. A request line indicates
whether or not logic 820 desires access to a particular global
address bus. When global address arbiter 55G2 grants a
request for a particular address bus on lines 822, arbiter chip
55014 signals the appropriate LAS chip 5513 over lines 823.

LAA 5514 may mterrupt the operation of computer 400
in a number of ways. A fatal error such as a parity error on
the system unit may generate an ARBSTOP control signal
on line 824; that 1s, the LAA acts as a generator of the
ARBSTOP control signal. In a conventional computer, this
signal broadcasts through control distributor 460 directly to
an ARBSTOP detect line 827 in the LAA of every other
system unit; thus, a fatal error in one unit conventionally
shuts down every system unit of the entire computer 400, to
avold corruption of user data and to permit immediate
dumps for failure analysis. As described 1n connection with
FIG. 10, however, the present computer filters this signal so
that only those system units in the same domain cluster
receive an outgoing ARBSTOP signal from one of the units
in the domain cluster.

A system unit may also assert HOLD control signals 825
to all other units on their corresponding detect lines.
Conventionally, an outbound HOLD signal from any system
unit travels directly to the corresponding inbound HOLD
line 826 of every other unit, thus precluding the entire com-
puter from requesting more transactions whenever an input
queue of that system unit 1s saturated with pending opera-
tions. In addition, a faulty system unit 410 can bring down
the entire computer by asserting HOLD continuously. FIG.
10, however, filters this signal also, so that an outgoing
HOLD on a line 825 only affects the incoming HOLD 826

on system units 1n the same domain cluster.

Local address arbiter 3514 thus acts as a generator of
control signals, such as GAB REQ, ARBSTOP-out, and
HOLD-out, which can affect the operation of other system
units. It also acts as a receptor of these control signals, GAB
GRANT, ARBSTOP-1n, and HOLD-1n, from other system
units. A conventional system would merely tie outgoing con-
trol signals from all system units together and route them to
the receptors of all other units; the present system, however,
passes them through a domain filter, so that a signal gener-
ated 1n one LAA affects the LAAs of only those units 1n the
same domain or domain cluster. As apparent below, other
operational devices also act as generators and receptors of
control signals which the domain {filter can pass or block,
according to different domain definitions.

FIG. 9 details a local address router chip 55L3, FIG. 5,

concentrating upon its function as a part of domain filter
480, FIG. 4. Although 1ts overall operation 1s complex and
involves multiple cycles per transaction, the present purpose
requires only that each address bus 35G1, FIG. 5, carry
address bits and a few control signals for certain transac-
tions.

Outbound address control 910 receives transaction
addresses from each port controller 3511 (FIG. 5) on lines

5

10

15

20

25

30

35

40

45

50

55

60

65

10

911, and routes them through error-correcting-code genera-
tors 912 to FIFO butffers 913. Multiplexer 914 selectively
couples waiting addresses onto outbound global address
lines 915 via drivers 916, 1n accordance with their priorities
as established by local address arbiter 551.4 and communi-
cated over lines 823.

Conventional inbound address switch 920 receives trans-
action addresses from a global address bus at receivers 921
over inbound address lines 922, whenever a VALID signal
on line 1023 signals that the transaction 1s valid for this
particular system unit 410; if this line remains mactive, LAS
5513 treats the corresponding bus cycle as an 1dle cycle, and
performs no action. Addresses from valid transactions pro-
ceed directly to memory controller 5512 via line 923.
Addresses from other system units proceed through ECC
decoder 924 and cache-coherency unit 930 to inbound
address switch 925. Some addresses proceed through read/
write control 926 or reply control 927 to switch 925. Finally,
switch unit 925 gates inbound addresses to the proper lines
911 to one of the port controllers S5L.1.

Blocks 930 maintain coherency among caches 512, FIG. 5
in a conventional manner. Line 931 produces a CANCEL
control signal from 1ts own system unit when cache control
930 determines that an operation 1s to be aborted. High-
performance systems may execute an operation specula-
tively over multiple clock-cycles, 1n parallel with determin-
ing whether or not the operation 1s to be executed at all.
Should the conditions for executing the operation fail, out-
going line 931 broadcasts the CANCEL signal through con-
trol distributor 460 to the incoming CANCEL line 932 of all
other system units, which causes cache control 930 to assert
MEM CANCEL line 948 to memory controller 5512, to
prevent the completion of any memory operation before data
can be modified. For example, memory 1s read from RAM
while the system determines whether the current value
instead resides 1n the cache of one of the processors. Again,
domain filter 480 prevents the CANCEL-out signal 931 from
one system unit from atfecting the CANCEL-1n lines 932 of
units not 1 the same domain cluster, so that each cluster may
operate independently of the others with respect to this and
other control signals. Line 933 also cancels any on-board
memory operation via line 948, as described later.

System 400 makes no distinction between transactions
originating and terminating at different system units 410,
and those both originating and terminating at the same unait.
All transactions traverse a global address bus 1n the present
system, because each cache controller in a domain or cluster
must be aware of transactions in the cache lines of all other
caches of the same group.

The local portion 940 of domain filter 480, FI1G. 4, 1n each
arbiter chip 55013 1s i1dentical to —and always carries the
same data as—the portion 940 located 1n all of the other
chips 5513 in the same system umit 410. However, each copy
ol blocks 940 receives inbound address lines 921 from a

diftferent one of the buses 55G1 via lines 921.

Comparator 941 detects matches between an address from
lines 922 and each of four registers 942 and 944-946.

Domain mask register (DMR) 942 has sixteen bits, one
for each of the possible system units 1n a computer 400. The
bit position for (each copy of) each domain register 1n each
system unit in a given domain contains a “1” bit 1 all the
other registers of system units in the same domain. Using the
example of FIG. 4, suppose that the first four system units
(410-0 through 410-3) are defined as one domain, the next
two (410-4 and -5) form a second domain, and the next two
(410-6 and -7) comprise a third domain, and only eight of the

US RE41,293 E

11

possible sixteen system units are present. Then the domain
mask registers 942 of the eight installed system units 410
contain the following values:

12

A shared-memory mask register 944 located 1n each copy
of the local domain filter 940 defines which system units
contain physical RAM 521 to be exported to other units as

Unit Bit Position
Number 0 1 2 3 4 5 6 7 8 9 A B C D E T
0 1 o o o o o o o0 0 0 0 o0 0
1 1 o o o o o o o0 0 0 0 o0 0
2 1 1 1 1 o o o o o o o0 0 0 0 o0 0
3 1 1 1 1 o o o o o o o 0 0 0 o0 0
4 o o o0 0 1 1 o o o o o o o0 0 0 0
5 o o0 0 0 1 1 o o o o o o0 o0 0 0 0
6 o o oo o o o 1 1 o o0 o o 0 0 «o 0
7 o o o 0 o0 0 1 1 o o o0 0 0 0 0O 0
8-F (these registers do not exist in the system
Again, all four copies of register 941 1n the same system unit 20 shared memory in a cluster defined by cluster registers 1020

410 contain 1dentical values.

Lines 922 contain signals representing the number of the
particular system unit 410 which had 1ssued the current
transaction. If the corresponding bit of the recerving unit’s
DMR 942 is not on, then comparator 941 produces an 1nhib-

iting signal on NON-DOMAIN line 943, which prevents
inbound switch 925 from passing the transaction over lines

911 to ports 5511, FIG. 5. Comparator also producos
MEMORY CANC. JL inhibiting signal on line 948, via line

949 and OR gate 901. This signal tells memory controller
55012 to disregard addresses on lines 923, when the current
transaction originates outside the domain. This effectively
1solates the domain, making 1t insensitive to transactions
occurring in other domains.

As thus far described, system units in different domains
can exchange data with each other only through external I/O
devices such as serial communications lines iterconnected
by dedicated wiring such as 533, FIG. 5. Many applications
of computer 400 would be onhancod by allowing different
domains to cooperate via a much faster method. To this end,
domain filter 480, FIG. 4, also allows grouping multiple
domains together into a cluster. Domains within a cluster

Unit

Number

-] O ot s ha — O

P
=

may share part or all of their memory with each other. When
a processor in one domain writes data into a predefined
range of the address space, a processor 1n another domain of
the same cluster can read the data. That 1s, different domains
in a cluster have a range of shared memory. This memory
can reside physically in any system unit 1n the cluster, and 1s
accessible via global address router 35G0, FIG. 5, for trans-
ferring data over global data router 55G0 to and from any
other system unit in any domain 1n the cluster.

25

30

35

40

in FIG. 10. The contents of each SMMR 944 1n the same
system unit are the same.

Each SMMR 944 has sixteen bits, one for each of the

possible system umits in a computer 400; and each system
unmt 410 has four copies of its own SMMR, one copy for
cach global address bus 35G1 1n computer 400. Bit position j
for the SMMR 1n a system umt 410-1 in a given cluster
contains a “1” value 11l unit 410-1 should respond to any
memory transaction from system unit 410-1. Returning to the
example shown 1n FIG. 4, suppose that the two umts 410-4
and -5 of the second domain form a cluster with the two units
410-6 and -7 of the third domain, and that unit 410-4 is to
export shared memory to the domain comprising units 410-6
and -7. That 1s, at least some of the address numbers of
memory physically installed on unit 410-4 can also be read
from and written to under the same address numbers by
processors on units 410-6 and -7, as though that memory had
been installed on the latter units. (Again, only eight of the
possible sixteen system units are present, so the values for

bit positions 8-F are immaterial.) The SMMRs 944 of 410
then contain the following values:

Bit Position

o 1 2 3 4 5 6 7 8 9 A B C D E g
o o o o o o o o0 o0 o 0o o0 0o 0 0 0
o o o o o o o o0 o0 o0 0o 0o 0o 0 o0

o o o o o o o o0 o0 o 0o o0 0o 0 0 0
o o o o o o o o0 o0 o 0o 0o 0o 0 o0 0
o 0 0 0]]] o 0O o0 0 0 0 0 0
o 0 0 0 o 0O o0 0 0 0 0 0
o 0 0 0 o 0O o0 0 0 0 0 0
o o o o 1 1 1 1 O o0 O 0O 0 0 0 0

(these registers do not exist in the system

Bit positions 8-F 1n all registers are “0” because their
corresponding system units do not exist. Units 410-0

U through -3 have no “1” values because they are in the same

65

domain, and none of the units 1n that domain export any
memory to the other domains. The “1”” values at bits through
7 for 410-4 through 410-7 indicate that these units should
respond to ordinary memory transactions from all of the
units 410-4 through 410-7 to implement shared memory.
The memory resides on one of these umts (for example,

410-4), but the specific location 1s not deduceable from the

US RE41,293 E

13

SMMRs 944. The requirements for cache coherency on the
shared memory dictate that all units using this shared
memory see all transactions within this address range from
all other units which use the shared memory.

Register 944 alone would suifice to indicate whether all or
none of a system unmit’s memory 1s shared. In almost all
cases, however, it 1s desirable to share only a designated
portion of the memory among the domains of a cluster. Reg-
isters 945 and 946 specily the boundaries of an address
range to be shared in a particular cluster. Each shared-
memory base register (SMBR) 945 on each system unit
which has access to shared memory 1n 1ts cluster contains the
lowest address within the total address space of computer
400 to be shared. In the example of FIG. 4, unit 4104 physi-
cally houses memory for addresses ‘04 0000 0000” through
‘04 FFFF FFFE’, but exports only the memory in the highest
1 GB, 1.e., from addresses ‘04 C0000 0000’ to ‘04 FFFF
FFFE’. Only the high-order 25 bits of the 41-bit address are
actually stored in register 945, so that the granularity of
shared memory 1s 64K bytes. Thus, the SMBRs of units
410-4 through 410-7 contain the value ‘004 C000’. Various
ways exist to designate SMBRs which do not hold a base-
address value at all; in this example, such registers hold the
value ‘000 0000°. (The additional high-order ‘0’ on these
addresses 1s the address-space bit, which 1s 0’ for a memory
address, or ‘1’ for a system address such as the addresses of
registers 940 themselves.)

Similarly, each shared-memory limit register (SMLR) 946
in the same cluster contains the high-order 25 bits of the
highest address of the shared address range. In this example,
the SMLR of system units 410-4 through 410-7 hold the
value ‘004 FFFE’, specifying that the uppermost shared
address 1s the same as the highest address of the physical
memory on that unit, ‘004 FFFF FFFE’. The SMLRs of all
other units hold a designated 1nvalid value 000 0000°.

Unuit SMBR (945) SMLR (946)
0 00 0000 00 0000
1 00 0000 00 0000
2 00 0000 00 0000
3 00 0000 00 0000
4 04 COO0O0 04 FFFF
5 04 CO0O0 04 FFEFF
6 04 COO0O0 04 FFFF
7 04 CO0O0 04 FFEFF
8-F (do not exist) (do not exist)

Register control 947 permits control lines 1143 to load
different values into registers 942, 944, 945 and 946. This
allows dynamic reconfiguration of the system units 410 1n
domains and clusters, and of the location of each cluster’s
shared memory. FIGS. 11 and 12 will describe how this
function occurs. Placing additional copies of base and limait
registers 945 and 946 in cach register set 940 would allow
multiple ranges of shared addresses within a single domain
cluster, 1I desired. Registers may alternatively store base
addresses and shared-segment sizes, or other parameters.

It would be possible to use NON-DOMAIN line 943 to
inhibit or block transactions from non-shared memory, just
as 1t mhibits other transactions from outside the domain.
While this arrangement would permit rapid control of non-
memory transactions, memory filtering requires more time
in comparator 941. Because latency 1n memory subsystem
520 1s more critical than latency in other subsystems of FIG.
5, comparator 941 preferably also receives a conventional
signal from lines 922 indicating the type of the current trans-

5

10

15

20

25

30

35

40

45

50

55

60

65

14

action. It line 923 specifies a non-memory transaction, line
943 1nhibits lines 911 as previously described; but an ordi-
nary memory transaction will not be filtered at this point,
and will proceed to memory subsystem 520, where prepara-
tions will commence for its execution. However, comparator
941 activates MEMORY CANCEL line 948 for any ordinary
memory transaction originating from a system unit outside
this unit’s domain (as defined by DMR 942), which registers
945 and 946 indicate lie outside the range of memory shared
with another domain, or which originates from a system unit
not mdicated in SMMR 944. This line 948 then blocks the
transaction directly at switch 720, FIG. 7, preventing the
transaction from having any actual effect upon data stored in
any of the banks 521 1n FIG. 5 even though a part of 1ts
processing has already commenced.

Thus far, computer 400 has achieved “software 1solation”
between domains and clusters. Different domains may run
entirely different operating systems, for example, without
interfering with each other. It remains to provide “hardware
isolation” 1n the computer, so that hardware error signals
from control bus 460, FIG. 4 cannot crash the entire system
when the error atffects only the operation of a system unit in
another domain cluster. For example, an error detected by an
ECC block 924 1n system unit 410-0 should not affect a
system unit such as 410-5, because their hardware units oth-
erwise run independently of each other, and a hardware fail-
ure 1n one unit can have no effect upon any operation run-
ning 1n the other.

FIG. 10 details one of the four global address arbiters
55G2 of FIG. 5, which includes one of four identical global
portions of domain filter 480, FIG. 4. Assume that arbiter
55G2 1n FIG. 10 controls a first, $5G1-0, of the four global
address buses (GABs) 55G1. This arbiter recerves one of the
four GAB-request line 821 from local address arbiter (LAA)
820, FIG. 8, located on each of the system units 410 1n
computer 400. Whenever LAA 5514 has decided which port
on its system unit deserves the next access to each of the four
global buses, its line 821 asserts a request to broadcast a
transaction via the GAB controlled by arbiter logic 1010.
Because computer 400 has four GABs 35G1, four separate
lines 821 run from each local arbiter 5514 to the four global
arbiters 55G2.

Arbaitration logic 1010 uses any of a number of conven-
tional algorithms to allocate transter cycles of its GAB 55G1
(FI1G. 5) to the LAA 55014 of one of the sixteen system units
410, by raising one of the sixteen grant lines 1013. As 1 a
conventional system, the grant signal returns directly to each
of the system-units” LAA 55A over lines 822, FIG. 8. Disre-
garding filter logic 1022 for the moment, the address trans-
action sourced by a selected LAS 5513 propagates over 1ts
GAB 5531 to the corresponding LASs on all sixteen system
units. In the next transier operation of global address router
450, global address arbiter 35G2 commands the selected
LAA 5514 to signal the local address switch 5513 to gate an
address onto 1its corresponding GAB 55G1. The GRANT
lines 1013 of the successiul transaction indicate to all system
units which of them 1s to source the transaction on that GAB
55G1. The recetving system unit identifies the source unit
from information in the transaction itself, when 1t recerves
the transaction. Local data router 541.2 negotiates with data
arbiters 541.3 and 54G2, FIG. 5, which of the global data

paths 54G1 1s to carry any data required by the successiul
transaction.

In the multi-domain computer according to the invention,

a global portion of domain filter 480 physically accompanies
cach global address arbiter 35G2. A bank 1020 of cluster
register 1021, one for each of the sixteen possible system

US RE41,293 E

15

units 410, receives the sixteen grant-signal lines 1013. Each
individual cluster register 1021-1 has one bit position 1021-
1-] for each of the sixteen system units 410-1. A “1”” value 1n
the “unit-3” position of the first register 1021-0, for example,
indicates that system unit 410-3 1s in the same cluster with
system unit 410-0. The table below 1llustrates the contents of
registers 1021 for the example configuration described
above.

5

16

via the inbound CANCEL lines 932 only when filter logic
1028 permiuts 1t to do so. All of the filter logics, such as 1022
and 10261028, connect in parallel to cluster registers 1021
via lines 1025.

Control unit 1024 permits lines 1144 to load registers
1021 with different values, 1n order to reconfigure the cluster
definitions dynamically. As an implementation choice, each

global arbiter 55G2 occupies an 1dentical integrated circuit,

Register Bit Position

Number 0 1 2 3 4 5 6 7 8 9 A B C D E Iy
0 1 1 1 1 o o o o o0 o o 0 0 0 0 0
1 1 1 1 1 O O o O o0 o0 O o0 0 0 0 0
2 1 1 1 1 o o o o o0 o0 o0 0 0 o0 0 0
3 1 1 1 1 O O o O o0 o0 O o0 0 0 0 0
4 o o o o 1 1 1 1 © o o0 o0 0 0 0 0
5 o o0 o o0 1 1 1 . 0 0 0 0 0 0 0 0
6 o o o o 1 1 1 1 O O O o0 0 0 0 0
7 o o o o 1 1 1 1 O o O o0 0 0 0 0
8 o o0 o o o o o o 1 o o0 o0 0 o0 0 0
9 o o0 o o o o o o0 o0 1 o0 o0 0 0 0 0
A o o0 o o o o o o o0 o 1 o0 0 0 0 0
B o o0 o o o o o o0 o0 o o0 1 0 0 0 0
C o o0 o o o o o o o0 o o o 1 0 0 0
D o o0 o o o o o o0 o0 o o o o0 1 0 0
E o o0 o o o o o o o o o0 o o 0 1 0
g o o0 o o o o o o0 o0 o o0 o0 0 o0 0 1

Registers for all sixteen possible system units are always
implemented. The values in register 1021-8 through 1021-F,
corresponding to system units not installed in FIG. 4, are
immaterial. However, assigning a “1” to all diagonal bait
positions (1.e., position 1 of register 1), and assigning “0”
clsewhere, permits hot-plugging a system unit into computer
400 and runnming standalone diagnostics immediately, with-
out interfering with any other units already 1n the system.
Filter logic 1022 couples grant lines 1013 to lines 1023 in
accordance with the cluster defimitions in register 1021. Each
line 1023 travels to 1ts corresponding system unit 410 as a

“olobal address valid” (VALID) signal 822. In a conven-
tional system such as 300, FIG. 5, a VALID signal 1s merely

a timing signal indicating that the transaction currently on
the bus 1s good, and 1s broadcast to all system units. In the
present system 400, on the other hand, multiple system units
in different clusters may carry the same addresses; the
recipient 1n the same cluster as the source must receive that
transaction, while system units in other clusters must remain
wholly 1gnorant that any transaction at all 1s taking place,
even though 1t may carry an address corresponding to that
system unit.

In a conventional, single-domain computer, a HOLD sig-
nal 825 from any LAA 5514, FIG. 8, would merely be
propagated to the lines 826 for that GAB 1n the LAA 5504 in
every other system unit 410 of the entire computer. In com-
puter 400, however, another filter-logic set 1026 on each
GAA chip 55G2 allows a HOLD signal 825 to reach only
those lines 826 belonging to other system units 1n the same
hardware group, as defined by cluster registers 1020. The
ARBSTOP signals 824 operate similarly. Rather than
merely being connected to the inbound ARBSTOP lines 826
for all other LAAs, a STOP asserted by one system unit
reaches only those other units specified by registers 1020.
This global portion of domain filter 480 contains respective
sets of filter logics for other control signals as well. For
example, a CANCEL signal 931 asserted by a cache control-
ler 930, FIG. 9, of any system unit can cancel a transaction

30

35

40

45

50

55

60

65

cach of which includes a duplicate set of cluster registers and

filter logics. All sets of clusters registers are loaded with
identical sets of stored values.

FIG. 14 shows a detailed circuit 1400 implementing one
set of domain -filter logic such as 1022 or 1026-1028. FIG.

14 uses logic 1022 as a paradigm, showing the signal desig-
nations for that instance of circuit 1400. For ease of
exposition, FIG. 14 also shows the cluster register 1021
themselves, rather than only their bit lines 1025.

Line 1023-0 asserts a VALID signal to system unit 410-0
whenever any system nit within 1ts hardware domain cluster

initiates a transaction. GRANT signal 1013-0, associated
with unit 410-0, satisfies AND gate 1401-00 when bit 1021 -

0-0 of register 1021-0 contains a “1”” value, indicating that
umt 410-0 1s 1n 1ts own cluster. Logic OR gate 1402-0 then
asserts output 1023-1, which returns it to system unit 410-0.
Assertion of GRANT line 1013-1 from system unit 410-1
also raises line 1023 for unit 410-0 if these two units are 1n

the same cluster. If they are, a *“1,,” value 1n bit 1 of register
1021-0 (called bit 1021-0-1 for simplicity) satisties AND

gate 1401-01 and OR 1402-0 when 1013-1 rises. The four-
teen remaining AND gates 1n this bank operate similarly for
register bits 1021-0-2 through 1021-0-F.

Gates 1401-10 through 1401-1F and 1402-1 function 1n a
similar matter to produce VALID signal 1023-1 to system
unmt 410-1 whenever a system unit 1n the same domain clus-
ter proposes a transaction. Fourteen additional banks of
gates handle the remaining lines through 1023-F. Normally,
the contents of registers 1021 form a diagonal matrix, so that
bit 1021-1-] always has the same value as bit 1021-7-1. Also,
cach unit 1s normally a member of 1ts own cluster, so that all
main-diagonal bits 1021-1-1 are always 17

FIG. 11 shows the manner in which configurator 420,
FIG. 4, dynamically sets up domains and clusters within
computer 400.

Conventional control and service unit 470, FIG. 4, takes
the form of an already available dedicated service processor
1110 communicating with a standard workstation 1120,

US RE41,293 E

17

which functions as a remote console. These two units com-
municate with each other via standard adapters 1111 and
1121, coupled by a cable or other link 1122. Console 1120
may also be connected to its own mput/output devices (not
shown) by adapters 1123, I/O adapters 1112 of the service
processor sense and control a number of functions within
computer 400. Lines 1113, for example, interface to the
power and cooling subsystems 1130 for the entire computer.

Lines 1114 connect to a number of lines 1n controldistribu-
tion means 440, FIG. 4.

One of the conventional functions implemented in com-
puter 400 1s the ability to perform tests on 1ts logic circuits
by means of stored test patterns sent through a set of lines
1115 to various elements, as indicated at 1116. The conven-
tional function of these lines 1s to implement boundary-scan

[1

tests, as described 1n references such as K. P. Parker, THE
BOUNDARY-SCAN HANDBOOK (Kluwer Academic
Publishers, 1992). Those 1n the art usually refer to this pro-
tocol as the “JTAG standard.”

Configurator 420 coopts the already existing JTAG lines
1115 for an additional function. Normally, these lines pro-
vide conventional address and data lines to many chips
throughout the entire computer 400 for the purpose of test-
ing the functions of these chips. Control logic 947, FIG. 9,
and 1024, FIG. 10, within the chips for LAS 3513 and GAA
55G2 detect certain predetermined signal combinations on
JTAG lines 1143 and 1144. These lines then carry domain
and cluster specifications to lines 1143 for loading the con-
tents of filter registers 940 1n local address routers 551.3 of
selected system units 410, as shown in FIGS. § and 9. Lines
1142 also carry cluster specifications to lines 1144 for load-
ing filter registers 1020 associated with global address arbi-
ters 55G0, as shown 1n FIGS. 5 and 10. Systems 400 which
do not have JTAG or other such lines already 1n place may
casily employ dedicated lines from service processor 1110
to serve as control lines 1143 and 1144, or to switch some
other lines to perform the configuration function; these lines
merely happen to be easily available in this particular imple-
mentation. Another alternative 1s to treat registers 940 and
1020 as a small block of memory within a system memory
space; as noted above, computer 400 has such a space from
addresses ‘10 0000 0000’ to ‘1F FFFF FFFF’ 1n 1ts total
range.

The form of service processor 470 1s not at all critical; it
might even be possible 1n some cases to use a part of the
normal system itself for this function, without having a
physically separate entity. In fact, the preferred computer
400 allows system units themselves to provide some of the
functions of a domain configurator when desired. Privileged
soltware within the operating system running in a system
unit 410 may also write to the shared-memory registers 945
and 946, FIG. 9, to respecily shared-memory blocks on the
fly. The service processor might also selectively enable sys-
tem units to write register 944 by setting a configuration bit
in a status word 1n 1I/O controller 1112, which then appears
on one of the control lines 1114.

FIG. 12 describes a method 1200 for dynamically config-
uring domains and clusters 1n computer 400. Those blocks
pointing toward the right in FIG. 12 execute 1n remote con-
sole 1120; blocks pointing left run 1n service processor 1110,
FIG. 11, in the embodiment described. Blocks 1210 set up
the configuration process. Block 1211 starts the configura-
tion mode 1n response to an operator’s command. Block
1212 imtializes registers 940 and 1020 to default values.
Preferably, all registers 942 recetve a “1” bit 1n the position
which places themselves in their own domain, and “0” else-
where. All registers 944-946 recerve values indicating that

10

15

20

25

30

35

40

45

50

55

60

65

18

no shared memory 1s exported. Registers 1020 preferably
contain “0” except for a diagonal stripe of “1” bits which
indicate that each system unit 1s in a cluster by 1tself.

Blocks 1220 set the configuration of domain filter 480,
FIG. 4. In block 1221, an operator at the remote console
selects a particular domain to configure, and enters the num-
bers of the system umts 410 belonging to that domain in
block 1222. Service processor 1110 then sends signals on
lines 11135 and 1142 to load the proper values into domain
mask registers 942, FIG. 9, in block 1223. Block 1224 sets
the approprate registers 1020 to make each domain 1ts own
cluster; although this step may occur at any time, it 1s
necessary, 1n this embodiment, to set the cluster registers
even when domains are not combined into clusters. Block
1225 returns control to block 1221 1f the operator has speci-
fied additional domains to be configured. Otherwise, block
1226 asks whether there are any multi-domain clusters to be
set up.

If so, blocks 1230 set up any desired shared memory. In
block 1231, the operator selects one of the system units 410
which 1s to export memory, and block 1232 selects which
domain 1s to import that memory. (A system unit “exports”
memory when its physically mstalled memory 1s made avail-
able to another system unit, which “imports™ that memory as
though 1t were located on the importing unit.) Block 1233
loads the appropnate registers 944 as explained 1n connec-
tion with FIG. 9. Block 1234 sets the appropriate bits in
registers 1020, as explained 1n connection with FIG. 10.
Block 1235 receives a value for the base address of the
shared memory range from the operator; block 1236 enters
this 1into the proper SMB registers 945. Block 1237 receives
the corresponding limit address value, and block 1238 loads
it into the SMLRs 946. I the operator wishes to define addi-
tional clusters, block 1226 returns control to block 1231.
Otherwise, procedure 1200 ends. A large number of varia-
tions in the sequence of the steps shown in FIG. 12 are
possible. Likewise, the timing of routine 1200 with respect
to other tasks on the computer 1s not critical. Also, privileged
software 1n computer 400 may run routine 1200 1nstead of an
operator. Dashed line 1201 indicates symbolically that
reconfiguration may be performed repeatedly, either by an
operator or by software, without any manual changes to the
computer hardware.

Although system units 410 can arbitrarily combine into
domains, obviously all domains and clusters must include at
least one system unit which has at least one processor
installed, and one which contains memory. A domain or a
cluster almost always contains some I/O facilities on one or
more of 1ts system boards. How these resources are appor-
tioned among the various system boards 1n a domain or
cluster, however, 1s arbitrary. Method 1200 may configure
domains and clusters during normal operation of the entire
system 400 and 1ts operating system(s). To avoid complexity
and the possibility of subtle errors, 1t 1s prudent to permit
reconfiguration only when the system 1s 1 a special state
before any of the operating systems are booted.

FIG. 13 1s a simplified diagram of a typical transaction
1300, emphasizing the effects of domains and clusters 1n
computer 400 during normal operation: that 1s, after block
1242, FIG. 12, has completed configuring computer 400.
Transaction 1300 assumes that computer 400 contains 1ts
maximum complement of sixteen system units. A transac-
tion begins at line 1301.

Blocks 1310 occur on all system units 410, as symbolized
by the multiple columns in FIG. 13. They mitiate a request
for a transaction, either between two different system units
or within the same unit. Requests proceed asynchronously

US RE41,293 E

19

and concurrently whenever any one or more ports of one or
more system units requests a transaction at any of the blocks
1311. In blocks 1312, local arbiter 551.4 selects one of the
requesting ports on a system unit to proceed, based upon any
of a number of tratfic-equalizing priority algorithms.

Blocks 1320 transmit the addresses for all transactions. As
indicated by lines 1321-0 through 1321-F, each block 1322
receives transaction requests from all system units, 410-0
through 410-F, and grants one of the buses 55G1 to the sys-
tem unit. Each of the four global address arbiters 55G2 per-
forms block 1322 1in parallel, using a standard fairness
method to allocate its particular bus 55G1 among the con-
tending transactions. Block 1323 then broadcasts the address
from the system unit selected by 1ts block 1322 to all sixteen
system units, as indicated by lines 1324. Again, each of the
four buses 35G1 1n this implementation may broadcast a
separate address concurrently with any other such bus.

Step 1330 filters the transactions on each bus 55G1 so that
only the appropriate system units 410-0 through 410-F are
permitted to act upon them. Separate blocks 1330 exist for
cach global address bus for each system unit; thus the
present embodiment has 4x16=64 blocks 1330. Each block
1330 determines simultaneously from registers 1020
whether its system unit 1s within the same cluster as the
sending unit for the transaction on its bus. (Recall that a
single domain by 1itself 1s also defined as a cluster 1n registers
1020.) If not, the system unit ignores the transaction, and
control passes to output 1302; otherwise, control passes to
1340.

A separate set of blocks 1340 appears for each global
address bus 1n each system umit, or 4x16=64 sets of blocks.
Blocks 1341 read the source unit’s number from the transac-
tion itself on GAB 55G1 as 1t travels along lines 922 to
comparator 941, FIG. 9. I a domain mask register 942
reveals that the source unit 1s not in the same domain as the
unit in whach 1t 1s located, block 1341 passes control to block
1342. I shared-memory register 944 detects that its system
unit shares memory with the source unit, block 1342 moves
to block 1343. If a comparator 941 shows that the address of
the transaction carried on lines 922 exceeds the base address
stored 1n register 9435, the block 1344 tests whether that
address lies below the shared-memory upper limit stored 1n
register 946. For each set of blocks 1330 which indicate that
its system unit 1s not involved 1n the current transaction, exit
1345 concludes the transaction at that location. But any
chain of filter blocks 1330-1340 which senses the same
domain, or the same cluster and the appropriate address
range, causes line 1346 to pass control to block 1350 for that
system unit.

Blocks 1350 execute the actual transaction from the
requesting system unit to the proper destination within the
target unit, including any required data transter through data
router 440. (As noted earlier, there are many different types
ol transactions.) Point 1302 marks the completion of the
transaction. At any given point in time, several different
transactions may be in progress in the same or different
blocks of flowchart 1300, each proceeding independently of
the others.

FIG. 14 shows an additional domain filter which can be
added to the preferred embodiment to prevent another type
of hardware fault from affecting system units outside their
own domain cluster. Domain filter 480 as thus far described
limits the effects of errors in a system unit 410 or an address
router 55G0, FIG. 5, from affecting other system units which
are not 1n the same domain cluster.

As described 1n connection with FIG. § and elsewhere, a
transaction may mvolve the transfer of data from one system

10

15

20

25

30

35

40

45

50

55

60

65

20

unit to another on global data router 54G0. Global data arbi-
ter recerves conventional signals 1510 from all system unats.
For example, lines 1510-0 from the local data arbiter 541.3
of system unit 410-0 may request a transier from that unit
410-0 to a particular one of the units 410-0 through 410-F,
FIG. 4. Lines 1510-1 designate which system unit 410-0 to
410-F 1s to receive a transfer from unit 410-1, and so forth.
Arbitration outputs 1520 establish a data path by allowing
data from one of the data lines 1530 to tlow to another of the
lines 1530. For example, i1 logic 54G2 grants the request of
lines 1510-0 to transport data from unit 410-0 to 410-1, then
FROM-0 line 1521 couples data bus 54G1 to lines 1530-0
and TO-1 line 1540-1 would be coupled directly to TO-1 line
1580-1, enabling lines 1530-1 to pass the data out to unit
410-1.

Under normal conditions, this arrangement 1s transparent
to the domain structure of computer 400. However, a fault
which mistakenly sends data to the wrong system unit (One
not 1n the same domain cluster) can disrupt the operation of
the system units in the other cluster. For instance, suppose
that unit 410-0 1n FIG. 4 attempts to send data to unit 410-3
in the same domain S1, but an erroneous signal sends it
instead (or additionally) to unit 410-7. Such a fault allows
domain S1 to affect the operation of domains S2 and S3,
bypassing the separation enforced by domain filter 480. This
1s called a “transgression error.”

Further filter logic 1550 eliminates this possibility by sig-
naling an attempted out-of-cluster data transier. Another set
of cluster registers 1560, 1dentical to registers 1020, FIG. 10,
holds a copy of the cluster definitions of computer 400, and
passes them to logic 1550 via lines 1565. Logic 1550 1s

constructed of AND/OR circuits 1n a manner similar to that
of filter logic 1400, FIG. 14. Logic 1550 produces two sets

of outputs. Outputs 1570 produce ARBSTOP signals of the
same kind as signals 824 shown 1in FIGS. 8 and 10; these
shut down the source system unit which initiated the
improper data transier. Outputs 15380 prevent the transfer
from aflecting any system unit not 1n the same cluster as the
source unit which caused the improper request. Continuing,
the above example, a fault 1n system units 410, request lines
1510, etc. may cause data path 54(G1 to activate the incorrect
sets of lines 1530. However, data-router filter logic 1550
detects that the only proper destinations from unit 410-0 are
units 410-0, -1, -2, and -3 1n the same domain cluster, as
defined by the bits 1n registers 1560. An improper signal
1540, such as TO-7 designating 410-7 as the destination,
activates ARBSTOP-0 line 1570-0, indicating that unait
410-0 has attempted an 1llegal transfer, and shuts down that
unmit. That 1s, the ARBSTOP signal goes to the source unit,
and to other units in the same domain cluster, so that the
error 1n domain cluster CA only affects the system units
within domain cluster CA.

Logic 1550 also uses the definitions 1n cluster registers
1560 to interdict any TO signals 1540 from reaching a desti-
nation unit which 1s not to the same cluster as the unit which
1ssues a FROM signal. In this example, an assertion of any of
the TO lines 1540-0 through 1540-3 would be passed to the
corresponding TO line 1580-0 through 1580-3, to enable the
corresponding system unit 410-0 through 410-3 to receive
data on lines 1530-0 through 1530-3. On the other hand, the
simultaneous generation of a FROM signal on line 1520-0
and a TO signal 1550-7 —that 1s, to a unit 1n a different
cluster— 1s blocked by logic 1550. Thus, the corresponding
TO line 1580-7 remains dormant, and data path 54G1 does
not pass data to system unit 410-7. In this manner, filter logic
causes a transgression error to shut down the unit sourcing
the data transfer by sending an ARBSTOP to that unit, and

US RE41,293 E

21

prevents the transfer from having any effect upon the desti-
nation unit, by inhibiting 1ts TO line; so that no transfer 1s
ever actually granted to that unait.

FIG. 15 shows only one data path of the crosspoint data
router 440, FI1G. 4. Additional data paths function in the
same manner, requiring only further sets of filter logic 1550.
Moreover, each data path may be split into multiple sections,
for further fault 1solation or redundancy, without affecting
the operation of FIG. 15.

I claim as my invention:

1. A multiprocessor computer having hardware domains
[variable] variably configurable by commands from an
operator, said computer comprising:

a plurality of separate system units for performing

sequences of transactions, each said system unit being
individually physically removable and replaceable

within said computer, and each including at least one
of:

a processor unit for generating addresses within a pre-
determined global range].].

a memory umt for storing data at a set of addresses
within said predetermined global range, and

an input/output adapter for generating and/or receiving
a set of addresses within said predetermined global

range[];
a global address router coupled to said system units for
transierring addresses generated 1n any of said system

units to others of said system units;
a global data router for transferring data from any of said
system units to others of said system units|:];

a control-signal distributor for communicating a plurality
of control signals from any of said system units to oth-
ers of said system units for atfecting the operation of all
of said system units in response to conditions occurring
in said any system unit{:];

a domain configurator for electronically dividing said
computer 1nto a plurality of software-configurable
hardware domains each comprising an arbitrary subset
of said system units independently of any physical
reconnection of said system units within said com-
puter|:]:

a computer controller responsive to said commands for
specilying to said domain configurator which of said
system units belong to each of said hardware
domains][:];

a domain filter coupled to all of said system units for
clectronically 1nhibiting at least some of said control
signals originating in those of said system units within
one of said domains from affecting certain of said sys-
tem units outside said one domain, wherein said
domain {ilter 1s coupled to at least one of said global
routers for inhibiting transactions on said one global
router originating in those of said system units within
one of said domains from being recerved 1n certain of
said system units outside said one domain.

2. A computer according to claim 1, wherein said one

global router 1s said global address router.

3. A computer according to claim 2, wherein said global
address router has multiple paths coupled to all of said sys-
tem units for carrying a plurality of transactions between
different subsets of said system units simultaneously.

4. A computer according to claim 1, wheremn said one
global router 1s said global data router.

5. A computer according to claim 4, wherein said global
data router has multiple paths coupled to all of said system
units for carrying data associated with a plurality of transac-
tions between difierent subsets of said system units simulta-
neously.

5

10

15

20

25

30

35

40

45

50

55

60

65

22

6. A computer according to claim 1, wherein said domain
filter 1s coupled both to said global address router and to said
global data router for inhibiting both addresses and data
originating in those of said system units within one of said
domains from being received 1n certain of said system units
outside of said one domain.

7. A computer according to claim 1, wherein said domain
filter includes:

a connection for identifying which of said system units
has generated a current address 1n said address router;

least one domain-mask register for each of said system
units specifying which of said system units belong to
which of said domains,

gating logic responsive to said source-identitying connec-
tion and to said domain-mask register for decoupling
said system unit from all of said system units not 1n the
same domain as said system unit having generated said
current address.
8. A computer according to claim 7, wherein said domain
filter includes

a plurality of cluster registers each i1dentitying which of
said system units belong to a domain cluster, and
responsive to a current one of said transactions;

a connection for transmitting a valid-transaction signal to
cach of said system units in said common cluster for
any of said transactions originating from one of said
system units belonging to said domain cluster.

9. A computer according to claim 8, wherein said domain
filter includes a shared-address register indicative of a range
of shared addresses among different system units within said
domain cluster.

10. A multiprocessor computer having hardware domains
variably configurable by commands from an operator, said
computer comprising:

a plurality of separate system units for performing
sequences of transactions, each said system unit being,
individually physically removable and replaceable
within said computer, and each including at least one
of:

a processor unit for generating addresses within a pre-
determined global range].],

a memory unit for storing data at a set of addresses
within said predetermined global range|.], and

an mput/output adapter for generating and/or receiving,
a set of addresses within said predetermined global
range[:];

a global address router coupled to said system units for
transierring addresses generated 1n any of said system
units to others of said system units|:]:

a global data router for transierring data from any of said
system units to others of said system units|:];

a control-signal distributor for communicating a plurality
of control signals from any of said system units to oth-
ers of said system units for affecting the operation of all
of said system units 1n response to conditions occurring
in said any system unit{:];

a domain configurator for electronically dividing said
computer into a plurality of solftware-configurable
hardware domains each comprising an arbitrary subset
of said system units independently of any physical
reconnection of said system units within said computer,
said domain configurator further combining a plurality
of said hardware domains into a domain cluster com-
prising an arbitrary subset of said domains indepen-
dently of any physical reconnection of said system
units within said computer;

at

US RE41,293 E

23

a computer controller responsive to said commands for
speciiying to said domain configurator which of said
system units belong to each of said hardware domains,
said computer controller being responsive to further
ones of said commands for specifying to said domain
configurator which of said system units belong to said
domain cluster:;

a domain filter coupled to all of said system units for
clectronically 1nhibiting at least some of said control
signals originating in those of said system units within
one of said domains from affecting certain of said sys-
tem units outside said one domain, said domain filter
permitting said at least some control signals originating
in those of said system units within said one domain to
alfect those of said systems units outside said one
domain but within said domain cluster.

11. A computer according to claim 10, wherein one of said
domains within said domain cluster includes physical
memory accessible within the same predetermined shared
address range by a diflerent domain within said domain clus-
ter.

12. A method of partitioning a computer having a plurality
of system units, a global address router, a global data router,
a control-signal distributor, and a domain filter into a plural-
ity of independent hardware domains under programmable
control, comprising;:

(a) starting a configuration modes;

(b) recerving specification data defining a subset of said
system units for inclusion within one of said hardware
domains[:]:

(¢) loading said specification data into a domain filter so
as to render those of said system units within said one
domain responsive to certain control signals 1 said
distributor, and to render others of said system units
unresponsive to said distributor|:]:

(d) repeating steps (b) and (c¢) for further specification
data defining a different subset of said system units|.]:

wherein step (c) 1s also responsive to said specification
data for loading said domain {filter so as to render those
of said system units within said one domain responsive
to addresses on said global address router originating
from those of said system units within said one domain,
and to render said system units within said first domain
unresponsive to addresses on said global address router
originating from at least some of those of said system
units not within said first domain.

13. A method according to claim 12, comprising the fur-

ther steps of:

(1) receiving second specification data defining a cluster
of multiple ones of said domains;

(g) loading said second data into said domain filter so as to
render those of said system units within said cluster of
domains responsive to addresses on said global address
router originating from those of said system units
within said cluster of domains.

14. A method according to claim 13, comprising the fur-

ther steps of:

(h) receiving third specification data defining a shared
range of addresses physically present within one of said
domains, and accessible to other domains within said
cluster of domains;

(1) loading said third data into said domain filter so as to
render those of said system units within said cluster of
domains responsive to addresses on said global address
router originating from those of said system units
within said cluster of domains but only within said
shared range.

10

15

20

25

30

35

40

45

50

55

60

65

24

15. A method according to claim 14, wherein said shared
range 1s less than the total range of addresses of memory
physically present on at least one of those system units
within said domain cluster.

16. A method of partitioning a computer having a plurality
ol system units, a global address router, a global data router,
a control-signal distributor, and a domain filter into a plural-
ity to independent hardware domains under programmable
control, comprising;:

(a) starting a configuration mode;

(b) recerving specification data defining a subset of said
system units for inclusion within one of said hardware
domains;

(¢) loading said specification data mnto a domain filter so
as to render those of said system units within said one
domain responsive to certain control signals 1 said
distributor, and to render others of said system units
unresponsive to said distributor;

(d) repeating steps (b) and (c¢) for further specification
data defining a different subset of said system units; and
thereatfter

(1) broadcasting a transaction from one of said system
units within said first domain via said global address

router to all of said system umits, both within and waith-
out said first domain;:

(k) filtering said transaction at each of said system units
such that those of said system units within said first
domain are enabled to respond to said transaction, and
others of said system units outside said first domain are
disabled from responding to said transaction.

[17. A method according to claim 16, wherein steps 0) and

(k) are performed after step (e).}]

18. A method according to claim 16, wherein step (k)
disables less than all of said system units outside said first
domain.

19. A method according to claim 16, wherein a plurality of
said system units in different ones of said domains physi-
cally include memory having addresses within respective
ranges, and wherein said addresses of said respective ranges
overlap at least partially.

20. A system unit for a multiprocessor computer having a
global address router, a global data router, and a control-
signal distributor for interconnecting a plurality of other
ones of said system units, said computer also having a com-
puter controller, said system unit comprising:

means coupled to both of said global routers for accepting
at least one processor unit for generating addresses
within a predetermined global range;

means coupled to said global routers for accepting at least
one memory umt for storing data at a set of addresses
within said predetermined global range;

means coupled to said global routers for accepting at least
one input/output adapter for generating and/or recerv-
ing a set of addresses within said predetermined global
range;

means connected to at least one of said preceding means
for generating control signals to said distributor, said
control signals representing error conditions within
said system unit, and for receiving control signals rep-
resenting error conditions within said other system
units;

means for filtering said control signals such that only

those control signals from selectable ones of said other
units can aifect the operation of said system unit;

means connectible to said computer controller for select-
ing said ones of said other units.

US RE41,293 E

25

21. A system unit according to claim 20, said filtering
means mcluding:

a domain mask register for holding data designating said
selectable ones of said other units:

gating means for passing certain signals from said select-

able ones, and for blocking said certain signals from
others of said system units.

22. A system unit according to claim 21, further compris-

ing means for loading variable data into said domain mask

register.

23. A system unit according to claim 20, said filtering
means including a shared-memory register for holding data
designating memory physically installed on any of said sys-
tem units 1n said computer in a portion of said global range
as being accessible to said system unait.

24. A system unit according to claim 23, further compris-
ing means for loading variable data into said shared-memory
register.

25. A system unit according to claim 23, said filtering
means including at least one further shared-memory register
for holding data designating an address range comprising

only a portion of said memory physically installed on said
any system unit.

26. One system unit of a plurality of system units for a
multiprocessor computer including:

a global address router for transferring addresses originat-
ing m any ol said system units to all others of said
system units, each address of said addresses having a
source 1dentifier indicating which of said plurality of
system units had originated said each address|,];

a global data router for transferring data from any of said
system units to all others of said system units|.];

a control-signal distributor for communicating a plurality
of control signals from any of said system units to all
others of said system units for affecting the operation of
all of said system units in response to conditions occur-
ring in said any system unit[,];

a domain configurator for electronically dividing said
computer into a plurality of software-configurable
hardware domains each comprising an arbitrary subset
of said system units independently of any physical
reconnection ol said system units within said
computer].];

a computer controller responsive to said commands for
speciiying to said domain configurator which of said
system units belong to each of said hardware
domainsl|.,];

a domain filter coupled to all of said system units for
clectronically inhibiting at least some of said control
signals originating in those of said system units within
one of said domains from affecting certain of said sys-
tem units outside said one domain, said one system unit
comprising;

at least one subsystem connected to said global address
router for coupling said addresses between said sub-
system and any other of said system units, and con-
nected to said global data router for transferring trans-
action data between said subsystem and any other of
said system units, said subsystem being taken from the
group consisting of:

a processor subsystem for executing transactions|,];

a memory subsystem for storing data within said global
rangel.], and

an 1mput/output subsystem for communicating with
input/output adapters;

at least one generator of said control signals coupled to
said distributor:

10

15

20

25

30

35

40

45

50

55

60

65

26

at least one receptor of said control signals;

a domain writable mask register recerving from said com-
puter controller a value representing which of said plu-
rality of system units belong to the same domain as said
one system unit; and

a comparator coupled to said domain mask register for
producing an 1hibiting signal when said source identi-
fier indicates that said each address did not originate
within said same domain, said inhibiting signal being
coupled to said at least one subsystem so as to render 1t
unresponsive to said each address.

27. A system unit according to claim 26, wherein said
domain configurator further combines a plurality of said
hardware domains into a domain cluster comprising an arbi-
trary subset of said domains independently of any physical
reconnection of said system units within said computer;

at least one writable shared-memory mask register which
of said plurality of system umts belong to the same
domain cluster as said one system unit,

said comparator being further coupled to said domain
mask register for producing said inhibiting signal when
said source identifier indicates that said each address
originated at certain of said system units outside said
same domain cluster.

28. A system unit according to claim 16, wherein said at
least one subsystem 1includes said memory subsystem for
storing data within a portion of said global address range,
said system unit further comprising:

at least one shared-memory address register recerving
from said computer controller a value defining a shared
range ol memory addresses within said portion of said
global range,

said comparator being further responsive to said shared-
memory address register for ihibiting said memory
subsystem when said each address lies outside said
shared range.

29. A system unit according to claim 26, wherein said at
least one generator of said control signals forms a portion of
a local address arbiter for requesting and recerving accesses
to said global address router.

30. A system unit according to claim 29, wherein said at
least one receptor of said control signals further forms a
portion of said local address arbiter.

31. A system unit according to claim 26, wherein said one
system unit includes at least two diflerent ones of said sub-
systems.

32. A system unit according to claim 31, wherein said one
system unit includes all three of said subsystems.

33. A system unit according to claim 26, wherein said
processor subsystem includes a plurality of individual
MICroprocessors.

34. A multiprocessor computer having hardware domains
variably configurable by commands from an operator, said
computer comprising;:

a plurality of separate system units for performing

sequences of transactions, each said system unit being,
individually physically removable and replaceable

within said computer, and each including at least one
of:

a processor unit for generating addresses within a prede-
termined global range,
a memory umt for storing data at a set of addresses
within said predetermined global range, and
an input/output adapter for generating and/or receiving
a set of addresses within said predetermined global
range:;

US RE41,293 E

27

a global address router coupled to said system units for
transierring addresses generated 1n any of said system
units to others of said system units;

a global data router for transferring data from any of said
system units to others of said system units;

a control-signal distributor for communicating a plurality
of control signals from any of said system units to all
others of said system units for affecting the entire
operation of all of said system units 1n response to error
and status conditions occurring 1n said any system unit;

a domain configurator for electronically dividing said
computer into a plurality of software-configurable
hardware domains each comprising an arbitrary subset
of said system units independently of any physical
reconnection of said system units within said computer;

a computer controller responsive to said commands for
specilying to said domain configurator which of said
system units belong to each of said hardware domains;

a domain filter coupled to all of said system units for
clectronically inhibiting at least some of said control
signals originating in those of said system units within
one of said domains from affecting certain of said sys-
tem units outside said one domain.

35. A computer according to claim 34, wherein said
domain filter 1s coupled to at least one of said global routers
for inhibiting transactions on said one global router originat-
ing 1n those of said system units within one of said domains
from being received in certain of said system units outside
said one domain.

36. A computer according to claim 34, wherein:

saild domain configurator further combines a plurality of
said hardware domains 1nto a domain cluster compris-
ing an arbitrary subset of said domains independently
of any physical reconnection of said system units
within said computer;

said computer controller 1s responsive to further ones of
said commands for specilying to said domain configu-
rator which of said system units belong to said domain
cluster:;

saild domain filter permitting said at least some control
signals originating in those of said system units within
said one domain to affect those of said systems units
outside said one domain but within said domain cluster.
37. A method of partitioning a computer having a plurality
of system units, a global address router, a global data router,
a control-signal distributor coupled directly to every one of
said system units, and a domain {filter into a plurality of
independent hardware domains under programmable
control, comprising:
(a) starting a configuration mode;

(b) recerving specification data defining a subset of said
system units for inclusion within one of said hardware
domains;

(¢) loading said specification data into a domain filter so
as to render those of said system units within said one
domain responsive to certain control signals 1 said
distributor, and to render others of said system units
unresponsive to said distributor, said certain control
signals representing error and status conditions occur-
ring 1n any of said system units for aifecting the opera-
tion of the entire system;

(d) repeating steps (b) and (c) for further specification
data defiming a different subset of said system unaits.
38. A method according to claim 37, wherein step (c) 1s

also responsive to said specification data for loading said

5

10

15

20

25

30

35

40

45

50

55

60

65

28

domain filter so as to render those of said system units within
said one domain responsive to addresses on said global
address router originating from those of said system units
within said one domain, and to render said system units
within said first domain unresponsive to addresses on said
global address router originating from at least some of those
of said system units not within said first domain.
39. A method according to claim 37, further comprising,
the steps, performed after step (d), of:
(¢) broadcasting a transaction from one of said system
units within said first domain via said global address
router to all of said system units, both within and with-

out said first domain;

(1) filtering said transaction at each of said system units
such that those of said system units within said first
domain are enabled to respond to said transaction, and
others of said system units outside said first domain are

disabled from responding to said transaction.

40. A multiprocessor computer having havdware domains
variably configurable by commands from an operator, said
computer comprising.

a plurality of separate system units for performing
sequences of transactions, each including at least one
of :

a processor unit for genervating addresses within a pre-
determined global range,

a memory unit for storing data at a set of addresses
within said predetermined global vange, and

an input/output adapter for generating and/or receiv-
ing a set of addresses within said predetermined glo-
bal range;

a global address rvouter coupled to said system units for
transferving addresses generated in any of said system
units to others of said system units;

a global data vouter for transferving data from any of said
system units to others of said system units;

a control-signal distributor for communicating a plurality
of control signals from any of said system units to oth-
ers of said system units for affecting the operation of all
of said system units in response to conditions occurving
in said any system unit;

a domain configurator for electronically dividing said
computer into a plurality of software-configurable
hardware domains each comprising an arbitrvary subset
of said system units independently of any physical
reconnection of said system units within said computer;
and

a domain filter coupled to all of said system units for
electronically inhibiting at least some of said control
signals originating in those of said system units within
one of said domains from affecting certain of said sys-
tem units outside said one domain, wherein said
domain filter is coupled to at least one of said global
vouters for inhibiting transactions on said one global
vouter originating in those of said system units within
one of said domains from being received in certain of
said system units outside said one domain.

41. A computer according to claim 40 further comprising

a computer controller responsive to said commands for
specifving to said domain configurator which of said system
units belong to each of said havdware domains.

42. A computer according to claim 41, whervein said one
global rvouter is said global address router.

43. A computer accorvding to claim 41, wherein said glo-
bal address vouter has multiple paths coupled to all of said
svstem units for carrving a plurality of transactions between
different subsets of said system units simultaneously.

US RE41,293 E

29

44. A computer according to claim 41, wherein said one
global router is said global data router.

45. A computer accovding to claim 44, wherein said glo-
bal data vouter has multiple paths coupled to all of said

system units for carrving data associated with a plurality of 5

transactions between differvent subsets of said system units
simultaneously.

46. A computer according to claim 41, wherein said
domain filter is coupled both to said global address vouter
and to said global data vouter for inhibiting both addresses
and data oviginating in those of said system units within one
of said domains from being received in certain of said system
units outside said one domain.

47. A computer according to claim 41, wherein said
domain filter includes.

a connection for identifying which of said system units has
generated a current address in said address vouter;

at least one domain-mask register for each of said system
units specifving which of said system units belong to
which of said domains;

gating logic vesponsive to said source-identifving connec-
tion and to said domain-mask rvegister for decoupling
said system unit from all of said system units not in the
same domain as said system unit having genervated said
currvent address.
48. A computer according to claim 47, wherein said
domain filter includes

a plurality of cluster registers each identifying which of
said system units belong to a domain cluster, and
responsive to a curvent one of said transactions;

a connection for transmitting a valid-transaction signal to
each of said system units in said common cluster for
any of said transactions originating from one of said
system units belonging to said domain cluster.

49. A computer according to claim 48, wherein said
domain filter includes a shared-address rvegister indicative of
a range of shared addresses among different system units
within said domain cluster.

50. A multiprocessor computer having hardware domains
variably configurable by commands from an operator, said
computer COmprising.

a plurality of separate system units for performing
sequences of transactions, each including at least one
of:

a processor unit for generating addresses within a pre-
determined global range,

a memory unit for storing data at a set of addresses
within said predetermined global vange, and

an input/output adapter for generating and/or receiv-

ing a set of addresses within said predetermined glo-
bal range;

a global address vouter coupled to said system units for
transferving addresses generated in any of said system
units to others of said system units,

a global data router for transferring data from any of said
system units to others of said system units;

a control-signal distvibutor for communicating a plurality
of control signals from any of said system units to all
others of said system units for affecting the operation of
all of said system units in response to errov and status
conditions occurring in said any system unit;

a domain configurator for electronically dividing said
computer into a plurality of software-configurable
hardware domains each comprising an arbitrary subset
of said system units independently of any physical
reconnection of said system units within said computer;

10

15

20

25

30

35

40

45

50

55

60

65

30

a domain filter coupled to all of said system units for
electronically inhibiting at least some of said control
signals originating in those of said system units within
one of said domains from affecting certain of said sys-
tem units outside said one domain.

51. A computer according to claim 50, further comprising

a computer controller rvesponsive to said commands for
specifving to said domain configurator which of said system
units belong to each of said harvdware domains.

52. A computer according to claim 50, wherein said
domain filter is coupled to at least one of said global routers
Jor inhibiting transactions on said one global rvouter ovigi-
nating in those of said system units within one of said
domains from being received in certain of said system units
outside said one domain.

53. A computer according to claim 50, wherein:

said domain configurator further combines a plurality of
said havdware domains into a domain cluster compris-
ing an arbitrary subset of said domains independently
of any physical reconnection of said system units within
said computer;

said computer controller is vesponsive to further ones of
said commands for specifving to said domain configu-

rator which of said system units belong to said domain
cluster;

said domain filter permitting said at least some control
signals originating in those of said system units within
said one domain to affect those of said systems units
outside said one domain but within said domain cluster.

54. A computer system comprising:

a plurality of separate system units for performing
sequences of transactions, each including at least a
processor unit for generating addresses within a prede-
termined global range;

a global addvess vouter coupled to said plurality of sepa-
rate system units and configured to transfer addresses
generated in any of said system units to others of said
system units;

a control-signal distvibutor configured to communicate a
plurality of control signals from any of said system
units to others of said system units for affecting the
operation of all of said system units in vesponse to con-
ditions occurring in said any system unit,

a domain configurator coupled to electronically partition
said plurality of system units into one or more software-
configurable havdware domains independently of any
physical reconnection of said plurality of system units,
wherein each of said one or more software-
configurable hardware domains includes an arbitrary
subset of said plurality of system units; and

a domain filter coupled to each of said plurality of system
units and configured to electronically inhibit at least
some of said control signals oviginating in system units
belonging to a given one of said havdware domains
from affecting system units not belonging to said given
one of said havdware domains, wherein said domain
filter is further coupled to inhibit transactions originat-
ing in system units belonging to said given one of said
hardware domains from being received in said system
units not belonging to said given one of said havdware
domains.

55. The computer system according to claim 54, wherein

said domain filter includes:

a connection for identifving which of said plurality of sys-
tem units has generated a curvent address in said glo-
bal address router;

US RE41,293 E

31

a domain-mask register corvesponding to each of said
plurality of system units configured to specify to which
of said hardware domains each of said plurality of sys-
tem units belongs; and

gating logic responsive to said comnnection and to said
domain-mask vegister and configured to decouple a sys-
tem unit having generated said current address and
belonging to a particular hardware domain from sys-
tem units not belonging to said particular hardware
domain.

56. The computer system accorvding to claim 35, wherein
each of said plurality of system units may include a portion
of said domain filter.

57. The computer system accovding to claim 56, wherein
said domain filter is further configured to group system units
of one or more of said plurality of havdware domains into a
cluster, wherein said system units of said one or more

domains belonging to a given cluster sharve a range of

addresses within a system memory space.
58. The computer system accovding to claim 57, wherein
said domain filter further comprises:

a plurality of cluster registers each identifying to which
cluster each of said plurality of system units belongs,

wherein said plurality of cluster vegisters is vesponsive
to a current one of said transactions;

a second connection for transmitting a valid-transaction
signal to each of said plurality of system units belong-
ing to a given cluster for any of said transactions ovigi-
nating from one of said plurality of system units belong-
ing to said given cluster.

59. The computer system accovding to claim 57, wherein
said domain filter further includes a shared-address vegister
indicative of said range of addresses being shared among
said system units of said one or move domains belonging to
said given cluster.

60. A method of partitioning a computer system having a
plurality of system units into one ov more independent hard-
ware domains, said method comprising:

receiving specification data defining a first subset of said
plurality of system units for inclusion within a first
hardware domain;

loading said specification data into a domain filter and
causing each system unit belonging to said first subset
of said plurality of system units to be responsive to a

10

15

20

25

30

35

40

32

fivst set of control signals, and to cause system units not

belonging to said first subset of said plurality of system
units to be unresponsive to said first set of control sig-
nals; and

in response to said loading said specification data into
said domain filter causing each system unit belonging
to said first subset of said plurality of system units to be
responsive to addresses originating from said system
units belonging to said first subset of said plurality of
system units, and causing each system unit belonging to
said first subset of said plurality of system units to be
unresponsive to addresses oviginating from said system

units not belonging to said first subset of said plurality
of system units.

61. The method according to claim 60, further compris-
ing.

identifving which of said plurality of system units has gen-

erated a currvent address;

specifving using a domain-mask vegister to which of said

hardware domains each of said plurality of system units
belongs;

decoupling a system unit having genervated said current

address and belonging to a particular hardware
domain from system units not belonging to said particu-
lav hardware domain.

62. The method accovding to claim 60 further comprising
grouping system units of one or more of said plurality of
hardware domains into a cluster, wherein said system units
of said one or more domains belonging to a given cluster
shave a range of addresses within a system memory space.

63. The method according to claim 60 further comprising:

identifying to which cluster each of said plurality of sys-
tem units belongs using a plurality of cluster registers,
whevrein said plurality of cluster vegisters is vesponsive
to a current one of said transactions,; and

transmitting a valid-transaction signal to each of said plu-
rality of system units belonging to a given cluster for

any of said transactions orviginating from one of said
plurality of system units belonging to said given cluster.

64. The method according to claim 60 further comprising
indicating said range of addvesses being shared among said

system units of said one or more domains belonging to said
given cluster.

UNITED STATES PATENT AND TRADEMARK OFFICE
CERTIFICATE OF CORRECTION

PATENT NO. : RE41,293 E Page 1 of 1
APPLICATION NO. : 09/920433

DATED . April 27, 2010

INVENTOR(S) . Daniel P. Drogichen et al.

It is certified that error appears in the above-identified patent and that said Letters Patent is hereby corrected as shown below:

In column 29, line 60, delete “affecting the operation™ and insert --affecting the entire operation--.

In column 32, line 1, delete “control signals,” and 1nsert --control signals in a control signal
distributor,--.

Signed and Sealed this
Twelith Day of June, 2012

David J. Kappos
Director of the United States Patent and Trademark Office

	Front Page
	Drawings
	Specification
	Claims
	Corrections/Annotated Pages

