USOORE41152E
(19) United States
a2 Relssued Patent (10) Patent Number: US RE41,152 E
Reynar et al. 45) Date of Reissued Patent: Feb. 23, 2010
(54) LEMPEL-ZIV DATA COMPRESSION FOREIGN PATENT DOCUMENTS
TECHNIQUE UTILIZING A DICTIONARY
PRE-FILLED WITH FREQUENT LETTER 5 A s
COMBINATIONS, WORDS AND/OR PHRASES
(Continued)
(75) Inventors: Jeffrey C. Reynar, Woodinville, WA
(US); Fred Herz, Milton, WV (US); OTHER PUBLICATIONS
Jason Eisner, Baltimore, MD (US); Lyle) _ o _ .
Ungar, Philadelphia, PA (US) Adaptive Dictionary Encoders: Ziv—Lempel Coding”, Sec-

tion 8.3.1 LZ 77, Jan. 2, 1990, 218-227, XP-002132837.
(73) Assignee: Pinpoint Incorporated, Forth Worth,

TX (US) (Continued)
Primary Examiner—Farid Homayoumehr
(21) Appl. No.: 09/952,602 (74) Attorney, Agent, or Firm—Woodcock Washburn LLP

(22) Filed: Sep. 14, 2001 (57) ABSTRACT
Related U.S. Patent Documents An adaptive compression technique which is an improve-
Reissue of: ment to Lempel-Ziv (LZ) compression techniques, both as
(64) Patent No.: 5,951,623 applied for purposes of reducing required storage space and
Issued: Sep. 14, 1999 for reducing the transmission time associated with transfer-
Appl. No.: 08/692,474 ring data from point to point. Pre-filled compression dictio-
Filed: Aug. 6, 1996 naries are utilized to address the problem with prior Lempel-

Z1v techniques in which the compression software starts

(51) Int. Cl. with an empty compression dictionary, whereby little com-

gzg§ 172 0/30 (38828) pression 1s achieved until the dictionary has been filled with
Ho3M. 700 (220 6. O:L) sequences common 1n the data being compressed. In accor-

(01) | | | dance with the mvention, the compression dictionary 1s pre-

(52) US.CL ... e 708{203,, 708{2125 341/50f filled, prior to the beginning of the data compression, with
341/515 341/87; 341/95; 341/106; 358/426.01; letter sequences, words and/or phrases frequent in the

_ _ _ 3807217 domain from which the data being compressed 1s drawn. The

(58) Field of Classification Search 708/212, letter sequences, words, and/or phrases used in the pre-filled

708/203; 341/50, 51, 55, 59, 60, 81, 82, 87, compression dictionary may be determined by statistically
341/93, 106, 358/261.1, 426, 426.01; 38/217; sampling text data from the same genre of text. Multiple
380/217;382/232 pre-filled dictionaries may be utilized by the compression

See application file for complete search history. software at the beginning of the compression process, where
the most appropriate dictionary for maximum compression

(56) Reterences Cited 1s 1dentified and used to compress the current data. These
U.S PATENT DOCUMENTS modifications are made to any of the known Lempel-Ziv
compression techniques based on the variants detailed 1n
4,386,416 A 5/1983 Giltner et al. 364/900 1977 and 1978 articles by Ziv and Lempel.
4,464,650 A 8/1984 Eastman etal. 340/347
(Continued) 85 Claims, 14 Drawing Sheets

COMPUTE FREQUENCY STATISTICS
FOR CHARACTER SFQUENCES 1M »
SAMPLE (# OF OCCURRENCES)

I

DETERMINE COMPRESSION USIRG A 4/32

EIYED DICTIONARY POIRTER
LENGTH FOR EACH
—— SEQUENCE BY COMPUTING
(# OF OCCURRENCES) X (UNENCODED
LENGTH-DICTIONARY ENTRY
POINTER LENGTH)
SELECT SEQUENCE WAICH 34
MAXIMIZES COMPRESSION.ADD T 4+~

T0 THE DICTIONARY, AND UPOATE
COUNTS IN DATA TREE STRUCTURE

e

15
MODIEY CHARACTER COUNTS FOR +
ALL SUBSTRINGS OF STRINGS ADDED
10 GICTIONARY, INCLUDING STRING

W /7 DICTIONARY S8
—— FULL?

YES
(END.

40

(CICTIONARY CREATION)

US RE41,152 E
Page 2

U.S. PATENT DOCUMENTS

4,558,302 A 12/1985 Welch ..oovvvvieiiniininn 340/347
4,672,679 A 6/1987 Freemancocovennenn.. 382/40
4,701,745 A 10/1987 Waterworth 340/347
4,814,746 A 3/1989 Miller et al. 341/95
4,847,619 A 7/1989 Katoetal. 341/106
4,876,541 A 10/1989 Storerooevvvvvvenvenenn.n. 341/51
4,881,075 A 11/1989 Wengcooevvviivininnnnn.n. 341/87
4,906,991 A 3/1990 Fialaetal.cooeenn.en. 341/51
4,988,998 A 1/1991 O’Briencocovvvvvnnnnnnn. 341/58
5,001,478 A 3/1991 Nagy .cooeveriviiiiiininnn.n. 341/67
5,003,307 A 3/1991 Whiting et al. 341/51
5,016,009 A 5/1991 Whiting et al. 341/67
5,023,610 A 6/1991 Rubow et al. 341/51
5,049,881 A 9/1991 Gibsonetal. 341/95
5,058,137 A 10/1991 Shahccoevvvvniiniinin..n. 375/94
5,087,913 A 2/1992 Eastmancocceeenneen.. 341/95
5,126,739 A 6/1992 Whiting et al. 341/106
5,140,321 A 8/1992 Jungcovvvvivininnnnnnnn. 341/55
5,153,591 A 10/1992 Clark ...oovvvvvvvviiniinnn.nn. 341/51
5,155,484 A 10/1992 Chambers, IV 341/55
5,179,378 A 1/1993 Ranganathan et al. 341/51
5,243,341 A 9/1993 Seroussietal. 341/51
5,262,776 A 11/1993 Kutka ..ooovvevvvvnieneannnn.n. 341/51
5,373,290 A 12/1994 Lempel etal. 341/51
5,455,576 A 10/1995 Clark, ITetal. 341/50
5,485,526 A 1/1996 Tobincccoovvvvvninninnenn. 382/232
5,561,421 A 10/1996 Smith et al. 341/51
5,590,317 A * 12/1996 Iguchietal. 707/2
5,872,530 A * 2/1999 Domyo etal. 341/106
FORFEIGN PATENT DOCUMENTS

JP 5-241777 9/1993

JP 6-28149 2/1994

JP 6-161705 6/1994

JP 7-64765 3/1995

JP 7-152533 6/1995

JP 8-69370 3/1996

JP 8-505008 5/1996

JP 8-162874 6/1996

OTHER PUBLICATIONS

Bell, et al. “Text compression”, 1990, Englewood Cliiis,
New Jersey, Prentice Hall.

Bell, T.C., “Better OPM/L text compression”, IEEE Trans.
On Comm., 1986, COM-34(12), 1176-1182.

Bell, et al., “Adaptive dictionary encoders: Ziv—lempel cod-
ing”’, Dictionary Techniques, Chap 8, 214-234.

Bentley, I.L. et al., “A locally adaptive data compression
scheme”, Comm of ACM, 1986, 29(4), 320-330.

Huffman, D.A., “A method for the construction of mini-
mum-—redundancy codes”, Proceedings of the LR.E., 1952,
40, 1098-1101.

Langdon Ir., G.G., “A note on the Ziv—Lempel model for
compressing individual sequences™, IEEE Trans. On Infor-
mation Theory, 1983, 29(2), 284-287.

Marcus, et al., “Building a large annoted corpus of English:
The Penn Treebank™, Computational Linguistics, 1993,
19(2), 313-330.

Miller, V.S. et al., “Variations on a theme by Ziv and Lem-
pel”, Combinatorial Algorithms on Words, NATO ASI

Series, Apostolico, A and Galil, Z., eds., 1985, vol. F12,
131-140.

Rodeh, et al., “Linear algorithm for data compression via

string matching”, J. of the Assoc. for Computing Machinery,
1981, 28(1), 16-24.

Storer, J.A. et al., “Data compression via textual substitu-

tion”, J. of the Assoc. for Computing Machinery, 1982, 29,
028-951.

Welch, T.A., “A technique for high—performance data com-
pression”, IEEE, 1984, 8-19.

Zipt, G., “Human Behavior and the principle of least effort™,
1949.

Z1v, J. et al., “A universial algorithm for sequential data com-
pression”, [EEE Trans. On Information Theory, 1977,

IT-23(3), 337-343.

Z1v, 1. et al., “Compression of individual sequences via vari-
able-rate coding”, IEEE Trans. On Information Theory,
1978, I'T-24(5), 530-336.

* cited by examiner

NOISSIHAND LX3L 1221 18V Youd (&)} D14

Y1V ININOONI
MOONIM H3LIVHVHD § 40 NOISSIH4NOI

MOONIM NI VIVG SIHDLVM 404 O3HONII V1V0

HILVN INIMO 1104 zﬂo«%zoul._ _

035S384W00 38 0L 1S31 VivQ GIHILVN

US RE41,152 E

———

G802 VvE88VvV3I8VZAXM T

Sheet 1 of 14

NOISSINANGY IX3L 1i21 18V ¥owud (7] 4 "O1 L4

ViVQ JININQOINI
ROONIM ¥ILOVEVHO 8 30 NOISSIYJNO

MOONIM z* VIVQ S3HOLVK 404 GIYONII VIVQ

HILYN INIMOTI04 Ehzquolj_ ~ _llll_ll

.:qdumu GVIBVZAXM

Feb. 23, 2010

Swmm_EzS 38 0L 1X31 vivQ 03HOLVN

U.S. Patent

U.S. Patent Feb. 23, 2010 Sheet 2 of 14 US RE41,152 E

START OF GOMPRESSION:

‘I' DATA T0 B8t COMPRESSED
DICTIONARY ENCODING AND CURRENT POINTER

0: EMPTY STRING (E) (0 A) N ABCABBA
'

0:t (0,8) A BCABBA

H ! B
'

0:E (0 C) AB,CABBA

1A

2:B

' !

VH Y (1,8) ABC’ABBA

{:A ‘

2:B
‘

0:t J3:C (2A) ABCAB* BA

{:A 4:AB

2:B
‘

0:€ J3:C — ABCABBA \

{:A 4:AB

2:8 J:iBA
'

END OF COMPRESSION

Fiqg. 2 PRIOR ART L778 TEXT COMPRESSION

U.S. Patent Feb. 23, 2010 Sheet 3 of 14 US RE41,152 E

START OF COMPRESSION:

' DATA TO BE COMPRESSED

DICTIONARY ENGODING w
0:A (0) ABCABBA
M t
2:(C

AS ABOVE (1) A,BCABBA B
0:A (2) AB’CABBA

1.8

2:0

3:AB

0:A 4:80C (3) ABC’ABBA

{:8

2:C

J:AB

0:A 4:8C (1) ABCAB’BA

1:8 5:CAB

.0

J:AB

0:A 4:BC (0) ABCABB*A

{:8 35:CAB

2:C O:ABB

3:AB

0;A 4:8C — ABBABBA*

1:8 9:CAB

2:C ©:.ABB

3:AB 1:BA

|

END OF COMPRESSION

Fiq. 3 PRIOR ART L_MW TEXT COMPRESSION

U.S. Patent Feb. 23, 2010 Sheet 4 of 14 US RE41,152 E

DATA
_, TRANSMISSION

RECEPTION T0

U.S. Patent Feb. 23, 2010 Sheet 5 of 14 US RE41,152 E

INPUT
DATA 0

Fig.5
cogmss e (COMPRESSED DATA OPTIONS)

LOCALLY STORE } A4
COMPRESSED DATA
16 18
N Bﬂ'ﬁccggﬁgﬁ%sg’:% YES | STORE COMPRESSED
STORAGE SPACE ? DATA FILE
TRANSFER COMPRESSED DATA | -¢¢
T0 DATA TRANSMIT DEVICE
%4
TRANSMIT COMPRESSED DATA
TO NEW LOCATION
DECOMPRESS COMPRESSED] -2
DATA
STORE ORIGINAL DATA| 2B
AT NEW LOCATION

CEND

20

U.S. Patent Feb. 23, 2010 Sheet 6 of 14 US RE41,152 E

COMPUTE FREQUENCY STATISTICS
FOR CHARACTER SEQUENCES IN 30

SAMPLE (% OF OGCURRENGES)

DETERMINE COMPRESSION USING A
FIXED DICTIONARY POINTER
LENGTH FOR EACH
SEQUENCE BY COMPUTING
(4 OF OCCURRENCES) X C(UNENGODED

LENGTH-DICTIONARY ENTRY

POINTER LENGTH)

32

SELECT SEQUENCE WHICH
MAXIMIZES COMPRESSION, ADD IT
TO THE OICTIONARY, AND UPDATE
COUNTS IN DATA TREE STRUCTURE

34

3o

MODIFY CHARACTER COUNTS FOR
ALL SUBSTRINGS OF STRINGS AODED
T0 DICTIONARY, INGLUDING STRING

N0 / DICTIONARY Y38

FULL?
YES

A0
(END

Fig.6
(DICTIONARY CREATION)

U.S. Patent Feb. 23, 2010

INPUT
DATA

LZI18 DATA
COMPRESSION
MODULE

DSLM OR PFLM
% EXTENSION (C)

COMPRESSED DATA
(TRANSMIT OR STORE)

/

RAM 4

(COMPRESSION)

Sheet 7 of 14 US RE41,152 E

|
| DATA I
| octowe | #
| d
| OSLM || $LM+C |
| l

|

|

|

l

20
PFLM §

mcn?nm ll
|

|
|
|
{ PRE-FILLED
|
|
RY §
| DICTIONA

1 PFLM

3

PRE-FILLED
DICTIONARY

U.S. Patent Feb. 23, 2010 Sheet 8 of 14 US RE41,152 E

(START Y8
% 60
SORTA\ YES
GTREAM EMPTY? (END
0

SEARCH DATA SPECIFIC | ¢
DICTIONARY FOR LONGEST

18 MATCH(LM) AND STORE
MOVE CURRENT AS DSLM
POINTER BY
LENGTH (LM)+1 SEARCH PRE-FILLED

DICTIONARY FOR LONGES)
MATCH(LM) AND STORE

AS PELM

0 "
M

SET L NO /1S LENGTH(DSLM)=\YES | SET LM
10 PFLM - LENGTH(PFLM)? ﬂ 10 DSLM

IDENTIFY CHARAGTER 12
FOLLOWING LM AND
STORE AS EXTENSION{C)

TRANSMIT/STORE DICTIONARY | 74
ENTRY NO. OF LM AND

TRANSMIT/STORE C

CONCATENATE C TO LM
AND STORE IN DATA

SPECIFIC DICTIONARY
UNLESS IT 1S FULL

Fig.8

(LZ'IB COMPRESSION USING)
PRE-FILLED DICTIONARY

16

U.S. Patent Feb. 23, 2010 Sheet 9 of 14 US RE41,152 E

r— — -]
COMPRESSED | 86
DATA (LM+C) : sposAch}lc |

” ! DICTIONARY I}/gz
| |
L2768 DATA ' |
OECOMPRESSION 8
MODULE | ‘
‘ |

| { 84

| PRE- FILLED
|| DICTIONARY | |
DECOMPRESSED | 1 |
(ORIGINAL) | |
) | DICTIONARY ¢ |
It)
RAM 4) 90

(DECOMPRESSION)

U.S. Patent Feb. 23, 2010 Sheet 10 of 14 US RE41,152 E

34
96
STREAM EMPTY?
NO

LOOKUP DICTIONARY

98

103
ADVANCE POINTER

T0 START OF | | ENTRY USING DICTIONARY{ 100
NEXT DICTIONARY | | ENTRY NUMBER AND

ENTRY NUMBER STORE ENTRY AS E
IN DATA STREAM

STORE CHARACTER 102
FOLLOWING DICTIONARY
ENTRY NUMBER AS C

CONCATENATE € 104
AND £ AND
STORE AS "ADD

INSERT “ADD™ INTO 106
DATA SPECIFIC

DICTIONARY UNLESS
T 1S FULL

Fig. 10

(LZTB DECOMPRESSION USING)
PRE-FILLED DICTIONARY

U.S. Patent Feb. 23, 2010 Sheet 11 of 14 US RE41,152 E

' DICTIONARY (NITIALLY CONTAINS
(CONTENTS OF ALPHABET & FREQUENT SEQUENCES)

0:A 3:AB
CONTENTS OF J4.3 a:pp FREQUENT
ALPHABET 26 588 SEQUENGES
START OF COMPRESSION
' DATA T0 BE COMPRESSED

DICTIONARY ENCODING AND CURRENT POINTER
AS ABOVE (3,C) 1bABCABBA
0:A 4:.GC (3,8) ABC’ABBA
1:8 5:88
2.0 6:ABC
J:AB
0:A 4:CC (0,-) ABCABS A
{:8 5:88 '
2:0 06:ABC
3:AB T:ABB
AS ABOVE ABCABBA*

END OF COMPRESSION

Fiqg. {/ L1718 TEXT COMPRESSION
WITH PRE-FILLED DICTIONARY

U.S. Patent Feb. 23, 2010 Sheet 12 of 14 US RE41,152 E

0

12
15 DATA TES
STREAM EMPTY? (BN
NO

116

14

SEARCH PRE-FILLED DICTIONARY
FOR LONGEST MATCH (LM) AND
STORE AS POLM (AND EXT)

SEARGH PREVIOUS WINDOW
OF TEXT FOR LONGEST

MATCH (LM) AND STORE
AS WLM

124 20 122

LTERALIS | g ks JOENTIFY CHARACTER (EXT)
STORED AS m FOLLOWING WL IN
ESCAPE CODE TEXT T0 BE COMPRESSED

118

COMPARE COSTS OF TRANSMITTING. POLM
AS DICTIONARY ENTRY * WITH COSTS

OF TRANSMITTING WLM AS A POINTER
AND LENGTH AND OPTIONALLY EXT

STORE/ TRANSMIT EITHER POLM OR | -'¢8
WLM WITH OR WITHOUT EXT
MOVE POINTER BY LENGTH{LN)| ~130
[+1 IF EXT TRANSMITTED]
F

iqg. 12

(LZTHLZTB HYBRID COMPRESSION
USING PRE-FILLED DICTIONARY

126

U.S. Patent Feb. 23, 2010 Sheet 13 of 14 US RE41,152 E

¥

134 136

S DATA A\ VES
STREAM EMPTY? (END

146 N 3 40

LOOKUP ENTRY IN | wim / POLM "\ PpLM EN%S?“U“SﬂN%'%T(EOTTSEIRY
PREVIOUS WINDOW OF OR - ENTRY NUMBER AND
TEXT AND STORE AS E WLM? STORE ENTRY AS E

148 142

IF EXT SENT, STORE
CHARAGTER FOLLOWING
DICTIONARY ENTRY

IF EXT SENT, STORE
CHARACTER FOLLOWING
WINDOW ENTRY AS €

NUMBER AS C
90 144
CONCATENATE C AND CONCATENATE C AND
E AND STORE AS “ADD" E END STORE AS *ADD"

19

ADVANCE POINTER TO
START OF NEXT ENTRY

IN DATA STREAM

Fig. 15

(LZ'H/ LZ18 HYBRID DEBDHPRESSIDN)
USING PRE-FILLED DICTIONARY

U.S. Patent Feb. 23, 2010 Sheet 14 of 14 US RE41,152 E

PRE-FILLED DICTIONARY INITIALLY CONTAINS
(CONTENTS OF ALPHABET AND FREQUENT SEQUENGES):

e ELTETEXT 70 BE COMPRESSED:
{m:’ OEF } ABCBOEFGABC

START OF COMPRESSION:

DATA T0 BE COMPRESSED
Ol EP ENCODING METHOD AND CURRENT POINTER

0 D@ DICTIONARY ABCBDEFGABC

’
1 (1) LTTT REFERENCE ABGBOEFGAB
2 D1 DICTIONARY ABCBDEFGABC
3 6 L277 LITERAL ABCBOERGABG
! g DICTIONARY ABCBDEFGABC
COMPLETE ABCBOEF GABC,
END OF COMPRESSION
_Fig. 14

LEMPEL-Ziv TEXT COMPRESSION
USING A HYBRID OF LZ7T AND L2178

COMPRESSION WITH A PRE-FILLED DICTIONARY

US RE41,152 E

1

LEMPEL-ZIV DATA COMPRESSION
TECHNIQUE UTILIZING A DICTIONARY
PRE-FILLED WITH FREQUENT LETTER

COMBINATIONS, WORDS AND/OR PHRASES

Matter enclosed in heavy brackets [] appears in the
original patent but forms no part of this reissue specifica-
tion; matter printed in italics indicates the additions
made by reissue.

BACKGROUND OF THE INVENTION

1. Field of the Invention

The present invention relates to a method and apparatus
for compressing and decompressing textual data stored in
digital form 1n a lossless manner. In other words, the original
data 1s reconstructed 1n its original form after having first
undergone the compression and then the decompression pro-
cesses. The data 1s assumed to be drawn from a particular
alphabet which 1s specified 1n advance, such as the ASCII
code, which consists of a 7 or 8 bit representation of a par-
ticular set of characters.

2. Description of the Prior Art

Many different types ol text compression techmques are
described 1n the prior art. The text compression techniques
described herein are based on the text compression tech-
niques developed by Lempel and Ziv, who developed two
techniques for text compression which are similar but have
important differences. These two methods were outlined 1n
papers enfitled “A Universal Algorithm for Sequential
Compression,” IEEE Transactions on Information Theory,
Vol. IT-23, No. 3, Pp- 337343, and “Compression of Indi-
vidual Sequences via Variable- Ra‘[e Coding,” IEEE Transac-
tions on Information Theory, Vol. I'T-24, No. 5, pp. 530-536,
and are referred to commonly as LZ77 and LZ78, respec-
tively.

L.Z7'7 1s a text compression technique 1n which pointers to
previously compressed material within a fixed size window
are used to compress new material. The fixed size “compres-
sion window” 1s moved across the text data as 1t 1s being
compressed to exploit the principle of locality, 1.e., that data

1s likely to be most similar to proximal data. An example of
L.Z'77 will now be described with respect to FIGS. 1(A) and

1(B).

In FIGS. 1(A) and 1(B), a small window size of 8 charac-
ters 1s assumed for illustrative purposes. As shown 1n FIG.
1(A), the text that has not yet been compressed 1s compared
to the contents of the (up to) 8 character window containing,
the (up to) 8 characters of the compressed text immediately
preceding the text which has not yet been compressed. The
longest match starting at the beginning of the text which has
not yet been compressed with a sequence 1n the 8 character
window 1s identified. In FIG. 1(A), the longest match from
the 8 character window 1s “BB.” A pointer to this sequence
(“BB™), its length (2), and an extension (the next character
after the match 1n the text to be compressed) are then either
transmitted or compressed and stored locally, depending on
the application of the data compression algorithm. However,
if no matching sequence 1s found in the 8 character window,
then a literal character 1s transmitted. Once the block of data
pointed to by the pointer has been compressed and the infor-
mation regarding 1ts compression has been transmitted, the
window 1s moved by the number of characters referred to by
the pointer (BB) plus the extension, 11 any. In addition, the
pointer to the region of text being compressed 1s updated by
this number of characters. As 1illustrated 1n FIG. 1(B), this
process repeats for the shifted data until the data being com-
pressed 1s exhausted.

10

15

20

25

30

35

40

45

50

55

60

65

2

L.Z'78 differs from LZ77 1n that the text compression 1s
achieved by parsing the data being compressed into phrases
which are entered into a compression dictionary. Pointers to
these phrases or dictionary entries are then used to compress
new data. Initially, the dictionary contains only an empty
string (phrase of length zero). The phrase to be compressed,
at each step, 1s the longest phrase at the start of the new data
such that the prefix of this phrase 1s an entry in the
dictionary, where the prefix 1s defined to be the phrase with
its final character removed. The remaining character 1s
called the extension. Thus, when the first phrase 1s seen, 1t 1s
encoded as a reference to a dictionary entry consisting of the
empty string (which 1s the only entry mitially found i the
dictionary), followed by the last and only character of the
phrase. This character 1s then placed in the dictionary
(assuming the dictionary 1s not full), and the process of 1den-
tifying a phrase and transmitting 1ts prefix (as a reference to
the dictionary entry matching the prefix) and extension 1s
repeated. The not yet compressed data will then be com-
pared to both dictionary entries: the empty string and the
phrase consisting of the already encountered character. If the
next character in the new data does not match the already
compressed character, then 1t, too, will be compressed as the
empty string plus the character being compressed. In this
way, each phrase of the data 1s compressed as a prefix, which
1s found 1n the dictionary and 1s chosen to be as long as
possible, and an extension, which 1s the character which
tollows the prefix in the input data. An example of LZ78 will
now be described with respect to FIG. 2.

FIG. 2 shows a sample of LZ78 compression for a short
string ol characters. As shown, the dictionary 1nitially starts
with no entries aside from the empty string, which 1s referred
to as €, and a pointer indicating the start of the character
sequence to be compressed 1s placed at the beginning of the
sequence to be compressed. The longest 1nitial phrase whose
prefix 1s 1n the dictionary 1s one character long, since the
prefix of this phrase, namely €, 1s the only entry 1n the dictio-
nary. The first character 1s therefore encoded as a reference
to € and the first character of the sequence being transmitted.
Then, the dictionary 1s updated to contain the entry consist-
ing of the concatenation of the used dictionary entry and the
character following 1t 1n the compression sequence. The cur-
rent pointer 1s then moved by the number of characters
compressed, and the process repeats 1tsell, repeatedly 1dent-
tying the next phrase and transmitting a compressed version
of 1t, until the stream of data to be compressed 1s empty. As
will be appreciated by those skilled 1n the art, the LZ78
technique provides substantially more compression once the
dictionary 1s formed. A more detailed description of a par-
ticular implementation of the LZ78 text compression tech-
nique 1s given 1n U.S. Pat. No. 4,464,650—Eastman et al.,
while a good general description of Lempel-Ziv coding tech-
niques may be found 1n the text entitled “Text Compression,”

Bell et al., Englewood Clitts, N.J., Prentice Hall, 1990.

Numerous data compression systems have been described
in the prior art which utilize the concept of a compression
dictionary as described by Lempel and Z1v.

For example, Giltner et al. describe 1n U.S. Pat. No. 4,386,
416 a system for use 1n transmitting data over a Telex or
similar network. The system described by Giltner et al. uses
two dictionaries. The first 1s pre-filled with frequent words
from the data’s language, while the second dictionary 1s 1ni-
tially empty and 1s filled with words which are encountered
in the data but which are not present 1n the first dictionary.
When transmitting data, 1f a word 1s found in the first
dictionary, an escape code and the number of the word’s
entry 1n the first dictionary are transmitted. If a word 1s not

US RE41,152 E

3

found 1n the first dictionary, 1t 1s compressed using Huilman
coding and 1t 1s added to the second dictionary for later use.
As a result, if the word 1s encountered again, 1t can be trans-
mitted by sending an escape code indicating that the number
of the word’s entry in the second dictionary refers to the
second dictionary, followed by the number of the word’s
entry in the second dictionary. Giltner et al. define a “word”
to be either a predetermined number of characters or a
sequence ol characters surrounded by white space or a com-
bination of white space and punctuation. A small, but fixed
number of words common to all the types of messages
handled by the Telex or similar network 1s provided in the
first dictionary, and additional “words™ are stored in the sec-
ond dictionary. However, Giltner et al. do not address fre-
quently occurring sequences of text which fall outside the
limited definition of a valid word. As a result, Giltner et al.
do not take advantage of the fact that the similarity of texts 1s
greater when the comparison between them 1s made at the
level of character sequences. Also, Giltner et al. do not
address how words which occur frequently 1n the text can be
chosen for the first dictionary whereby it 1s filled with valid
words which are frequent within the type of text being trans-
mitted. Giltner et al. also fail to teach how to identily the
most appropriate library of text or the identification of the
genre of the document to be compressed. Furthermore, Gilt-
ner et al.’s library 1s fixed; users cannot create their own

pre-filled dictionaries as needed.

Similarly, Weng describes 1n U.S. Pat. No. 4,881,075 an
“adaptive” data compression technique which uses two dic-
tionaries. The first dictionary 1s used to perform compression
or decompression while the second 1s being rebuilt to better
reflect the local characteristics of the most recent input data.
The second dictionary 1s then used to compress and decom-
press the input data while the first dictionary 1s being rebuilt
using the most current input data. Weng repeatedly switches
between dictionaries until compression 1s completed.

Kato et al. describe in U.S. Pat. No. 4,847,619 a modifica-
tion to adaptive compression techniques in which the com-
pression system’s degree of compression 1s monitored and
the dictionary 1s reset when the degree of compression drops
below a threshold. The reset 1s not permitted to occur before
the dictionary 1s suificiently full in order to prevent the dic-
tionary from resetting prematurely. This technique could be
used 1 conjunction with a LZ compression techmque, or
any other adaptive technique.

In U.S. Pat. No. 5,153,591, Clark describes a modification
to the Lempel-Z1v compression algorithm 1n which the dic-
tionary 1s stored as a tree data structure. This allows large
dictionaries to be stored in less space than in the original
embodiment described in U.S. Pat. No. 4,464,650. In
addition, 1t allows these dictionaries to be searched more
casily and more quickly.

In U.S. Pat. No. 5,243,341, Seroussi et al. outline a
Lempel-Z1v vanant 1n which two dictionaries are used. The
first dictionary 1s used until 1t 1s filled, then 1t 1s replaced with
a standby dictionary, which 1s filled with those entries from
the first dictionary which yield the most compression before
compression continues.

Many other modifications to the original Lempel-Ziv
compression techniques appear in the prior art.

For example, Welch describes 1n U.S. Pat. No. 4,558,302

an implementation of Lempel-Ziv in which the encoding and
decoding processes require less complicated computation

and, therefore, are faster than in the implementation
described 1n U.S. Pat. No. 4,464,650—FEastman et al.

Miller et al. suggest in U.S. Pat. No. 4,814,746 several
modifications to the Lempel-Ziv algorithm. The first of these

10

15

20

25

30

35

40

45

50

55

60

65

4

modifications 1s to include all possible characters 1n the dic-
tionary before compression actually begins. As a result, 1t 1s
not necessary to transmit a flag which indicates that the fol-
lowing datum 1s a character rather than a pointer. In addition,
Miller et al. also associate a time stamp with each dictionary
entry 1n order to facilitate the removal of the least recently
used entry when the dictionary becomes full. These modifi-
cations are aimed at reducing the memory requirements by
limiting the dictionary to a fixed size and improving com-
pression by allowing the dictionary to more accurately
reflect the current characteristics of the data being com-
pressed.

Storer describes 1n U.S. Pat. No. 4,876,541 a compression
technique which does not suffer from some of the same dii-
ficulties as prior Lempel-Z1v techniques. In particular, unen-
coded characters never need to be transmitted, since the
compression dictionary mitially contains all of the charac-
ters 1n the alphabet, as 1n U.S. Pat. No. 4,814, 746—Miller et
al. In addition, a least recently used queue 1s maintained so
that the dictionary can be purged of less useful entries. The
encoding and decoding dictionary in Storer’s system can
vary 1n size, and there may be several active at a time. The
compression ratio of each of the dictionaries 1s monitored,
and the one which yields the best compression 1s used.

In U.S. Pat. No. 4,906,991, Fiala et al. describe a substitu-
tion style data compression technique which 1s somewhat
similar to Lempel-Ziv compression. Their technique relies
on searching a fixed window of characters (e.g. 4096
characters) which have already been compressed in order to
determine whether the text being compressed can be
encoded as a pointer to a location within the window. If the
text bemng compressed can be encoded in this manner, a
pointer to the starting location, along with the length of the
overlap between the text being compressed and the location
within the window 1s generated. 11 the text being compressed
cannot be encoded 1n this manner, 1t 1s encoded as a length
followed by a literal string of that length. Like LZ78
compression, this technique fails to compress data much at
the beginning of documents, since the window 1s devoid of
strings which can be pointed to 1n order to bring about com-
pression.

O’Brien suggests 1n U.S. Pat. No. 4,988,998 modifica-
tions to the Lempel-Z1v algorithm which allow for enhanced
compression of data which contains long strings of repeated
characters. Since the Lempel-Ziv algorithm adds entries to
the compression dictionary by appending a single character
to an existing dictionary entry, it will take many occurrences
of a repeated string of characters before such strings are
found in the dictionary. Accordingly, O’Brien preprocesses
the data using a run-length encoding technique 1n which the
run-lengths are inserted into the text. The resulting combina-
tion of text and run-lengths for repeated characters 1s then
compressed using the Lempel-Z1v technique.

In U.S. Pat. No. 5,049,881, Gibson et al. describe a data
compression system which creates 1ts own pointers from the
sequence of characters previously processed and emphasizes
maximizing the product of the data rate and the compression
ratio. Thus, previously mput data 1s used as the dictionary
and 1s combined with a hashing algorithm to find candidates
for string matches without the requirement of a string match-
ing table.

In U.S. Pat. No. 5,058,137, Shah describes a Lempel-Z1v

decoder which has memories for storing code words and
data separately. Upon receipt of a code word, the decoder
stores the previously recerved code word, applies the newly
received code word to the code word memory to obtain the

US RE41,152 E

S

location of the last data element which 1s part of the data
represented by the newly received code word, and another
code word associated with the prefix. Upon completion of
decoding the latest code word, the first data element of the
decoded word 1s appended to the next previously recerved
code word, and the combination 1s stored as the equivalent of
a code word which 1s next after the highest code word
already recerved. At least one memory 1s shared for use dur-
ing encoding and decoding.

In U.S. Pat. No. 5,087,913, Eastman describes a Lempel-
Z1v algorithm which uses a searchtree database to allow later
portions of the data to be decompressed without having to
decompress all preceding portions. The searchtree database
1s grown to a fixed, predetermined size and 1s allowed to
ogrow no further. The fact that the compression searchtree
database 1s established i1n advance of decompression allows
decompression of portions of the data without decompress-
ing the entire preceding portion of the data.

In U.S. Pat. No. 5,140,321, Jung details a Lempel-Z1v
modification which allows for enhanced compression speed
at the cost of a reduction 1 compression. Rather than
attempting to find the optimal matching substring in the
entire compressed portion of the data, the principle of local-
ity 1s exploited and only the most recent compressed data 1n
a first-in-first-out buifer 1s examined to find a matching
sequence. A hash table 1s used to store the strings which have
been compressed recently and to allow for fast retrieval of
matching strings.

In U.S. Pat. No. 5,179,378, Ranganathan et al. describe a
Lempel-Z1v implementation which uses a systolic array of
processors to improve performance by forming fixed-length
codewords from a variable number of data symbols.

In U.S. Pat. No. 5,262,776, Kutka describes an implemen-
tation of the Lempel-Ziv algorithm which takes advantage of
a tree data structure to avoid the search step normally
required by the compression process. The sequence of ele-
ments 1n a primary sequence 1s converted 1into elements 1n a
reduced set of elements using escape sequences. This tech-
nique 1s particularly suited to compressing data representing,
the coellicients of a discrete cosine transform of an 1image.

In addition to the above modifications to the Lempel-Z1v
compression technique which are described in the patent
literature, others appear 1n technical journals.

For example, 1n “Linear Algorithm for Data Compression
via String Matching,” Rodeh et al. describe a modification to
the LZ77 technique 1n which the size of the window 1s not
fixed. As a result, pointers to previous strings 1n the com-
pressed portion of the data grow 1n length and are encoded in
a variable-length code.

In “Better OPM/L Text Compression,” Bell describes a
Lempel-Ziv variant referred to as LZSS 1 which not all
compression 1s done using a combination of a prefix and an
extension. Instead, 1f the cost of transmitting a pointer is
higher than that of merely transmitting a character or
sequence ol characters, then the character or sequence of
characters 1s transmitted. A binary search tree 1s used to find
the longest string match, without a limit on the length of the
match.

In “A Technique for High-Performance Data
Compression,” Welch describes a modification to LZ78 1n
which only pointers to previously compressed data are used,
rather than a combination of pointers and characters. A
string table 1s formed which maps strings of input characters
into fixed-length codes. For every string 1n the table, 1ts pre-
fix string 1s also in the table. The string table contains strings
that have been encountered previously in the message being,

5

10

15

20

25

35

40

45

50

55

60

65

6

compressed. It consists of a running sample of strings in the
message so that available strings reflect the statistics of the
message. This technique 1s commonly referred to as LZW. It
uses a “greedy” parsing algorithm 1n which the input string
1s examined character-serially in one pass, and the longest
recognized input string 1s parsed oil each time. The strings
added to the string table are determined by this parsing.

In “Variations on a Theme by Z1v and Lempel,” Miller and
Wegman describe another variant of LZ78. In their version,
the dictionary 1s filled in advance with all strings of length 1
(that 1s, all of the characters 1n the alphabet over which com-
pression 1s taking place), which helps to reduce, but does not
climinate the problem of starting with a dictionary devoid of
usetul entries. Also, rather than reset the compression dictio-
nary when 1t becomes full, they propose to delete strings
from the dictionary which were least recently used.
However, the largest contribution of their version, which will
be referred to as LZMW, 1s that extensions are never trans-
mitted. Rather, since the dictionary begins with all strings of
length 1, 1t 1s possible to encode all of the data using the
initial dictionary. However, this would result in no compres-
sion. Instead, the dictionary 1s grown by adding entries to the
dictionary which consist of the concatenation of the previous
two matches.

In FIG. 3, a sample of LZMW compression 1s shown. The
alphabet 1s assumed to contain only 3 characters (A,B,C) for
purposes of illustration. As shown, the compression dictio-
nary mitially contains the characters of the alphabet. The
pointer to the character at which compression will begin 1s
placed at the first character in the sequence of text being
compressed. The longest match within the dictionary 1s
found and a pointer to this entry 1s transmitted. Alternatively,
the pointer may be stored locally depending on the applica-
tion of the compression algorithm. The pointer 1s then
moved by the number of characters transmitted. Normally,
the dictionary 1s updated to contain the concatenation of the
two previously transmitted dictionary entries, but since there
was no previous transmission, this step 1s skipped. On the
second 1teration through the processing cycle, the largest
match 1s found, 1ts dictionary entry number 1s transmitted,
the pointer 1s moved by the appropriate number of
characters, and the concatenation of the two previous dictio-
nary entries transmitted 1s added to the dictionary as a new
entry. This process then repeats until the data to be com-
pressed has been exhausted.

Commonly used compression algorithms also use varia-
tions of the LZ77 and LZ78 algorithms. For example, the
compression algorithm used 1n commercially available “zip™
and freely available “gzip” 1s a vanation of LZ77 which
finds duplicated strings in the mput data. In “gzip,” the sec-
ond occurrence of a string 1s replaced by a pointer to the
previous string in the form of a pair (distance, length). When
a string does not occur anywhere 1n the previous number of
bytes within a designated distance, such as 32 Kbytes, 1t 1s
transmitted as a sequence of literal bytes. Literals or match
lengths are compressed with one Huilman tree, and match
distances are compressed with another tree. The trees are
stored 1n a compact form at the start of each block. The
blocks can have any size, except that the compressed data for
one block must fit 1n available memory. A block 1s termi-
nated when “gzip”” determines that 1t would be usetul to start
another block with fresh trees. Duplicated strings are found
using a hash table. All input strings of length 3 are inserted in
the hash table, and a hash 1index 1s computed for the next 3
bytes. If the hash chain for this index 1s not empty, all strings
in the chain are compared with the current imnput string, and
the longest match 1s selected. The hash chains are searched,

US RE41,152 E

7

starting with the most recent strings, to favor small distances
and thus take advantage of the Huffman coding. The hash
chains are singly linked. There are no deletions from the
hash chains; the algorithm simply discards matches that are
too old. To avoid a worst-case situation, very long hash
chains are arbitrarily truncated at a certain length as deter-
mined by a runtime option. As a result, “gzip” does not
always find the longest possible match but generally finds a
match which 1s long enough.

Unfortunately, despite the large number of Lempel-Ziv
variants 1n the prior art, none adequately addresses the prob-
lem that beginning with a dictionary completely devoid of
words virtually prevents small files from being compressed
at all and prevents larger files from being compressed fur-
ther. U.S. Pat. Nos. 4,814,746 and 4,876,541 and the work of
Miller and Wegman begin to address this problem by begin-
ning with a dictionary containing all of the characters in the
character set in which the data 1s encoded. This solves the
problem of needing to transmit escape codes to indicate that
what follows 1s not a dictionary entry number, but a charac-
ter.

However, the present imventors have found that further
compression may be obtained by observing that many
documents, especially those textual documents written 1n
either natural human languages or computer programming
languages, such as English or C, have a small number of
words which are statistically extremely frequent and which
should be part of the compression dictionary. Zipt has shown
this to be true for language 1n a book entitled Human Behav-
ior and the Principle of Least Effort. In fact, the frequency of
words 1n English obeys what has come to be known as a
Zipfian distribution. That 1s, the product of the rank of a
word and 1ts frequency 1s approximately constant. Thus, the
second most common word will appear roughly half as many
times as the most frequent word. This implies that the most
common words will comprise a large fraction of the total
occurrences of all words 1n a document. For instance, 1n the
Wall Street Journal data collected as part of the treebank
project described 1n an article by Marcus et al. entitled
Building a Large Annotated Corpus of English: The Penn
Treebank, Computational Linguistics, Vol. 19, No. 2, pp.
313-330 (1993), the first ten “words”, which are “,”, “the”,
“7,“of”, “to”, “a”, “and”, “in”, *“’s”, “1s” and “that” account
for sllgh‘[ly more than 25 percent of all of the words 1n the
corpus. The 100 most frequent words alone account for 48.1
percent of all words 1n the corpus, while the 500 most fre-
quent words account for 63.6 percent. This means that the
remaining 80901 words account for the remaining 37.4 per-
cent of all words 1n the corpus. Thus, the average word found
in the top five hundred words 1s approximately 275 times
more frequent than the average word not found 1n the top
five hundred words.

It 1s thus desired to modity the Lempel-Ziv text compres-
s1on techniques described in the prior art to take advantage
of this observation so as to allow further compression of
large documents as well as significant compression of
smaller documents.

SUMMARY OF THE INVENTION

The present invention expands upon the Lempel-Ziv text
compression techniques of the prior art. In particular, the
present invention provides a compression dictionary and/or a
compression window which contains some of the statisti-
cally significant words which will almost certainly allow
compression to be achieved earlier mto a document than 1f
the compression software were required to relearn the list of

10

15

20

25

30

35

40

45

50

55

60

65

8

extremely common words, letter sequences and phrases 1n
the document to be compressed. For example, when using
compression techniques based on LZ78, 1n which entries are
added to the compression dictionary by extending previous
entries by a single character, the invention makes 1t unneces-
sary to take several repetitions of even extremely frequent
words before they are entered 1nto the compression dictio-
nary. This also means that the compression dictionary used
in accordance with the mvention does not necessarily con-
tain prefixes of the long, frequent words that are initially
present in the dictionary, unless such prefixes are themselves
frequent. Rare prefixes aid the compression process little,
and their main contribution 1 LZ78 1s to allow a longer
word to enter the compression dictionary, a step which 1s
unnecessary when using the techniques of the invention,
where the longer, frequent word 1s 1n the dictionary at the
outset. Omitting the rare prefixes from the dictionary leaves

room for other, more useful phrases.

While most extremely frequent words are short, the
present inventors recognize that knowledge of the type of
text being compressed can lead to larger benefit from a pre-
filled dictionary. If, for instance, scientific text 1s being
compressed, then samples of similar texts can be used to get
a profile of the type of text being compressed. In scientific
texts, some long phrases may be extremely common. These
phrases would be learned by the compression software and
would be used when the first reference to them was made 1n
the data being compressed. So, 1, for mstance, a length 10
word or phrase were common, then even the first occurrence
of that word could be encoded using a single dictionary
reference, whereas under conventional [.Z78, such an encod-
ing might not be possible until as late as the eleventh occur-
rence of the word. The dictionary will also be prevented
from containing substrings of this frequent word or phrase as
would be the case 1n LZ78 unless such substrings are inde-
pendently added during the compression process because
they are useful outside the context of the frequent word or
phrase.

When compressing text which 1s 1n a computer program-
ming language, the present inventors have recognized that
there 1s potentially even more to gain at the outset of com-
pression. The programming language C, for istance, has a
small number of words which represent constructs in the
language. While the user can add to the list of these fre-
quently occurring words by creating variables and functions,
all C programs will make use of a subset of this basic set of
words. As a result, having these words 1n the dictionary prior
to the start of compression will result 1n better compression,
especially for small files.

Thus, 1n order to take advantage of the frequency distribu-
tion of words 1n human languages and other sorts of data as
well, the present mventors propose modilying standard
Lempel-Z1v compression algorithms to incorporate a dictio-
nary pre-filled with statistically important words and the
entire alphabet over which compression 1s taking place. The
process of filling the dictionary with words that are signifi-
cant 1s handled 1n any of a number of ways. One possibility
1s for a user of the compression software to create a list of
frequently used words. Since this process 1s objectionable 1n
most circumstances, automatic processes are preferably used
in accordance with the mvention. However, additional pre-
filled compression dictionaries may be created by the user of
the compression software as desired.

On the other hand, several pre-filled compression dictio-
naries may be automatically tested at the start of the com-
pression process on a small subset of the entire document to
be compressed, and the dictionary that achieves the highest

US RE41,152 E

9

compression on this subset 1s chosen for compressing the
entire document. Of course, the user may also select a par-
ticular compression dictionary as desired. Preferably, the
identity of the pre-filled dictionary being used for the com-
pression 1s stored 1n the compressed data so that the decom-
pression software can 1dentity which pre-filled dictionary to
use during decompression.

The same pre-filled dictionary must be available to both
the comprising device at compression time, and to the
decompressing device at decompression time. It 1s possible
to transmit such dictionaries from one device to another over
a communications network, as necessary, to make the appro-
priate dictionaries available. For example, a plurality of pre-
filled data compression dictionaries may be stored on com-
municating servers so that any text shared among the servers
may be compressed/decompressed using the techniques of
the invention. Also, the pre-filled data compression dictio-
naries are preferably created for different genres of text data
and stored hierarchically so that the optimum pre-filled data
compression dictionary may be selected for the data to be
transmitted. In order to save memory space, any common
entries among the plurality of pre-filled data compression
dictionaries need only be stored once on each server. On the
other hand, a pre-filled data compression dictionary used to
compress a particular document may be the data specific
dictionary formed during the compression of another, related
text. In this manner, the compression of a plurality of docu-
ments may be iterative and based on a single original pre-
filled data compression dictionary.

As will become apparent to those skilled 1n the art, the
techniques of the invention may be used 1n connection with
any of the known vaniants of the Lempel-Z1v compression
algorithms.

BRIEF DESCRIPTION OF THE DRAWINGS

The above and other objects and advantages of the inven-
tion will become more apparent and will be more readily
appreciated from the following detailed description of the
presently preferred exemplary embodiments of the invention
taken 1n conjunction with the accompanying drawings, of

which:

FIGS. 1(A) and 1(B) together provide an example of prior
art LZ77 text compression.

FIG. 2 1s an example of prior art LZ78 text compression.

FIG. 3 1s an example of prior art LZMW text compres-
S1011.

FIG. 4 1llustrates a sample hardware configuration for
implementing the modified Lempel-Z1v compression tech-
nique 1n accordance with the invention.

FIG. 5 illustrates the options for the use of the compressed
data generated 1n accordance with the mnvention.

FIG. 6 illustrates a flowchart of the dictionary creation
process 1n accordance with the invention, whereby the
sequence selected for entry into the dictionary is the
sequence which maximizes compression.

FIG. 7 1llustrates a preferred embodiment of a LZ78 com-
pression system which uses one or more pre-filled dictionar-
ies 1n accordance with the techniques of the invention.

FIG. 8 1s a flowchart illustrating a modified LZ78 com-
pression technique 1n accordance with the mvention.

FIG. 9 1illustrates a preferred embodiment of a LZ78
decompression system which uses one or more pre-filled
dictionaries 1 accordance with the techniques of the mven-
tion.

FIG. 10 1s a flowchart illustrating a modified LZ78
decompression technique 1n accordance with the mvention.

10

15

20

25

30

35

40

45

50

55

60

65

10

FIG. 11 1s an example of text compression using the modi-
fied L7278 technique of the invention.

FIG. 12 1s a flowchart illustrating a hybrnid LZ77/1LZ78
compression technique 1n accordance with the invention.

FIG. 13 1s a flowchart illustrating a hybnd LZ77/LZ78
decompression technique 1n accordance with the mnvention.

FIG. 14 1s an example of text compression using a combi-
nation of the hybnd LZ77/L.Z’78 techniques in accordance
with the invention.

DETAILED DESCRIPTION OF THE PRESENTLY
PREFERRED EMBODIMENTS

The present invention will be described in detail below
with respect to FIGS. 4-14. Those skilled in the art will
appreciate that the description given herein 1s for explana-
tory purposes only and 1s not intended to limit the scope of
the invention. Accordingly, the scope of the invention 1s only
to be limited by the scope of the appended claims.

The extension to the Lempel-Ziv algorithms in accor-
dance with the mvention can be used 1n conjunction with all
of the known variants of the Lempel-Ziv compression tech-
niques described 1n the patent literature as well as 1n the text
compression literature. However, 1 presently preferred
embodiments, the present invention 1s used as a modification
to the LZ77 or LZ'78 compression techniques or as a modifi-
cation to a Lempel-Z1v variant which 1s 1tself a modification
to or extension of the LZ77 or LZ78 techniques. The exten-
sion to the Lempel-Z1v algorithms 1n accordance with the
invention 1s preferably implemented as part of a software
compression package or as a module which 1s used 1n con-
junction with pre-existing software packages which would
benefit from data compression, such as a commercial word
processing package. A sample system configuration 1is

shown 1n FIG. 4.

The present mvention 1s preferably implemented as soft-
ware containing instructions for controlling a processor of a
user’s computer 1. In a preferred embodiment, the execut-
able version of the software implementing the Lempel-Ziv
compression algorithm 1s stored on a fixed program storage
device such as a hard disk 2 which 1s readable by a processor
(CPU) 3 of computer 1 whereby the program of instructions
stored thereon for implementing the Lempel-Z1v compres-
sion algorithm 1s executable by the processor 3 to perform
the desired data compression. As shown in FIG. 4, CPU 3
includes a RAM 4 for storing the data during execution of
the Lempel-Ziv compression algorithm. In a preferred
embodiment, the data to be compressed 1s provided in digital
form on a computer readable medium such as a floppy disk
5, an optical disk 5', or a CD ROM 5", or 1s received via a
modem 6 and loaded into RAM 4. Of course, the data may
be stored on the computer’s hard disk 2 prior to being loaded
into RAM 4 or may be provided directly via a network con-
nection. Data input into the computer 1 from the user 1s
provided via keyboard 7 and/or a mouse 8, and any accom-
panying graphics images are displayed on a computer video
display 9.

In accordance with the invention, the pre-filled compres-
s1on dictionaries are stored on the hard disk 2 along with the
executable version of the software implementing the
Lempel-Ziv compression algorithm and are loaded 1nto the
RAM 4 of CPU 3 durning the execution of the Lempel-Ziv
data compression algorithm. The data to be compressed may
be stored as files on the hard disk prior to being compressed
and then restored locally or transmitted after compression.
In other words, 11 the data compression 1s being performed
strictly to save local storage space, the results of the com-

US RE41,152 E

11

pression process are written to the hard disk 2 or other local
memory. Alternatively, the input data and the pre-filled com-
pression dictionaries may be provided on a computer read-
able medium such as a tloppy disk 5, an optical disk §', a CD
ROM 5", received via modem 6, or provided directly via a
network connection. On the other hand, if the data compres-
sion 1s being performed to allow faster data transmission
across a point to point connection (e.g., via modem 6), then
the CPU 2 1s connected to the modem 6 or some other trans-
mission device, and the compressed data 1s transmitted via
that transmission device. In addition, the compressed data
may be returned to the original computer readable medium
(e.g., tloppy disk 5, optical disk §', or CD ROM 5").

Accordingly, during operation of the compression algo-
rithm 1n accordance with the invention, RAM 4 typically
receives the executable code, one or more pre-filled com-
pression dictionaries, and the input data from hard disk 2,
some other memory element such as a floppy disk 5, optical
disk 5'. or CD ROM 5", or via a modem connection, and the
compressed data 1s either restored on the hard disk 2 or some
other memory element such as floppy disk 5, optical disk %',
or CD ROM 5", or 1s transmitted via modem 6 to another
computer for storage and/or decompression. In addition,
when used with LZ78 algorithm variants, RAM 4 will prei-
erably allocate space for a data specific dictionary of the type
conventionally developed during operation of the LZ78
algorithm and 1ts variants.

FI1G. 5 1llustrates the options for the use of the compressed
data generated 1n accordance with the invention. As shown
in FIG. 5, the input data to be compressed 1s mput at step 10,
compressed at step 12 using the preferred Lempel-Z1v com-
pression algorithm varnant, and the compressed data 1s tem-
porarily stored at step 14. If 1t 1s determined at step 16 that
the compression 1s being performed to save local storage
space on the hard disk 2, CD ROM 5", and the like, the
compressed data file 1s locally stored at step 18, and the
routine 1s exited at step 20. However, if the mput data 1s
being compressed to speed up transmission to another
computer, the compressed data is transierred at step 22 to a
data transfer device such as modem 6 and transmitted to a
new location at step 24. The transmitted compressed data 1s
then decompressed at step 26 and stored in 1ts original,
decompressed form at step 28. The routine 1s then exited at
step 20. As will be described below, 1t may be necessary to
transmit the pre-filled compression dictionary with the com-
pressed data or at least to 1dentity the pre-filled compression
dictionary used for the compression so that the same pre-
filled compression dictionary may be used at the recerver
during step 26 to decompress the compressed data. Of
course, the recetved compressed data need not be decom-
pressed immediately, but may be stored in 1ts compressed
form at the receiver until 1t 1s needed.

The process of pre-filling a compression dictionary with
words that are significant to the Lempel-Ziv algorithm 1s
handled 1n any of a number of ways in accordance with the
invention. One possibility 1s for a user of the compression
soltware to create a list of frequently used words. Since this
process 1s objectionable 1n most circumstances, automatic
processes are preferably used 1n accordance with the mven-
tion. As in U.S. Pat. No. 4,386,416, one possibility for such
an automatic process 1s to restrict the pre-filled compression
dictionary to what are normally referred to as words-that 1s,
sequences ol characters which are delimited by either
spaces, tabs or punctuation marks. However, it 1s preferred
that statistics be collected from a representative sample of
text to determine the most frequent sequences of characters
of various lengths. The number of dictionary entries of each

5

10

15

20

25

30

35

40

45

50

55

60

65

12

length can be determined by a function of the amount of
compression which will result from the use of a particular
length entry (that 1s, the number of bits originally required to
encode a string of the particular length less the number of
bits required to transmit a reference to a dictionary entry,
which will not vary with the length of the dictionary entry,
but rather will be a fixed quantity determined from the size
ol the dictionary) and the observed frequency of that
sequence within the sample of text utilized.

For example, assuming a dictionary reference when per-
forming compression costs 12 bits (that 1s, the dictionary
contains at most 2'* or 4096 entries) and also assuming a 7
bit encoding of the ASCII character set, a sequence of 10
characters would require 70 bits of storage space without
compression, while a sequence of 9 characters would require
63 bits of storage space without compression. If 1 the
sample of text from which frequency statistics were derived
a particular length 10 sequence occurred 60 times, then the
savings that would result, 1f that sequence were 1n the
dictionary, would be 60%70=4200 (the cost of transmitting
the raw data) less 60*12 =720 (the cost of transmitting the
pointers) which 1s 3480 bits of savings. Assuming the length
9 string was more frequent and occurred 65 times, the cost
savings associated with having that length 9 sequence 1n the
dictionary would be (65%63)-(65%12)=3313 bits of savings.
Thus, the length 10 sequence would be preferred as a dictio-
nary entry over the length 9 sequence.

The contents of the pre-filled dictionary may be etficiently
selected as follows. The text of all of the documents from
which the pre-filled dictionary will be learned should be
loaded 1nto a data structure which allows all of the subse-
quences of the text to be 1dentified easily. Generally, a maxi-
mum length will need to be chosen for the strings 1n the
dictionary to prevent the cost of the computation from get-
ting too high. A length of 10 or 15 characters would probably
suifice, but an appropriate maximum length may be deter-
mined experimentally, 1 desired. However, since there 1s not
a particular maximum length specified in the design of the
algorithm of the mvention, the choice of a maximum length
1s left to the user of the dictionary building software. As a
result, the chosen maximum length may not result 1n optimal
compression. This 1s because there 1s a trade-oll between
compression and the cost of generating the pre-filled
dictionary, and the user of the dictionary building software
must choose a maximum length which will allow the pre-
filled dictionary to be built in a reasonable amount of time on
his or her computer.

A tree data structure 1n which each node contains a one
character string and a count will be used to identify fre-
quently occurring strings. The root of this tree contains the
empty string and the total number of characters 1n the cor-
pus. Each daughter node will extend the string created by
concatenating all of the characters contained by nodes on the
path from the root of the tree to the current node. In this way,
all of the character sequences up to a particular length can be
stored 1n a tree no deeper than the chosen maximum length.
This tree could grow to be very large, with the leaves of the
tree numbering the size of the alphabet raised to the power of
the depth of the tree. However, because of the sparsity of
data, the tree should in practice be much smaller. As will be
appreciated by those skilled in the art, the data 1s sparse as a
result of the properties of human language whereby the lan-
guages do not contain, or at least do not frequently contain,
all of the possible n-grams. For example, the letter sequence
“zqwxv” 15 extraordinarily rare and unlikely to appear 1n the
training data if the data 1s 1n the English language.

Once the tree data structure has been filled, sequences
which maximize the cost savings formula outlined above

US RE41,152 E

13

will be identified. Overlapping strings are handled since all
subsequences of an 1dentified sequence need to have their
count in the tree data structure updated by subtracting the
number of occurrences of the sequence chosen to enter into
the dictionary. This may be illustrated by an example. Sup-
pose a sequence “ABC” which occurs 10 times 1n the data 1s
chosen as a dictionary entry. The count associated with the
node for “AB” 1n the tree would then be decremented by 10,
as would the count for “BC”, the count for “A”, the count for
“B”, and the count for “C”. Even the node associated with
the sequence “ABC” itself would be decremented by 10,
thus eliminating 1t from the tree and from future consider-
ation as a dictionary entry.

FIG. 6 illustrates a flowchart of the dictionary creation
process 1n accordance with a preferred embodiment of the
invention, whereby the sequence selected for entry into the
dictionary 1s the sequence which maximizes compression.
As 1llustrated 1n FIG. 6, the pre-filled compression dictio-
nary 1s created from a text sample by computing the number
ol occurrences (frequency statistics) of particular character
sequences 1n the sample at step 30 and then determining at
step 32 the compression for each character sequence given a
fixed dictionary size, and therefore, a fixed dictionary entry
pointer length. The text sample may be a portion of the text
to be compressed, a similar document, or a collection of
similar documents of the same genre. As in the above
example, the compression 1s computed as: the number of
occurrences of a particular sequence as determined 1n step
30 multiplied by the difference between the unencoded
length of that particular sequence and the dictionary entry
pointer length. The resulting compression for each character
sequence 15 then used to determine which sequences maxi-
mize the compression. The character sequence which maxi-
mizes compression 1s selected and added to the compression
dictionary at step 34. As necessary, the counts 1n the data tree
structure are updated as described above. The character
counts for all substrings of the character sequence which was
just added to the compression dictionary at step 34, includ-
ing the character count for the character sequence 1tself, are
then modified at step 36. By so modilying the character
count of the string 1tself, later inclusion of that same string 1n
the compression dictionary 1s prevented. IT 1t 1s determined
at step 38 that the compression dictionary 1s not full, the
process of selecting those sequences which yield the most
compression continues until i1t 1s determined at step 38 that
the compression dictionary 1s filled with those sequences
which yield the most compression. The routine then ends at
step 40. Of course, a compression dictionary formed in this
manner will generally contain short sequences which occur
very Irequently as well as those longer sequences which
occur frequently enough to lead to substantial compression.

The address space for the dictionaries preferably will be
shared, thus no flag indicating which dictionary 1s being
used need explicitly be sent. The address space can be
divided between the pre-filled dictionary and the conven-
tional data specific or adaptive dictionary 1n any way seen {it
by the builder of the compression dictionary. Also, the over-
all size of the combined compression dictionary can be
determined by the builder of the compression dictionary.
However, the size should be an even power of 2, since the
dictionary entry numbers themselves will be encoded 1n a
binary representation.

Those skilled 1n the art will appreciate that a large repre-
sentative sample of uncompressed text may include docu-
ments that fall naturally into different genres of text, each
with 1ts own terminology and statistical properties. The
documents of a given genre thus constitute a smaller text

10

15

20

25

30

35

40

45

50

55

60

65

14

sample specific to that genre. Each such sample may be used
to create a separate pre-filled compression dictionary tai-
lored to its genre. Thus, any combination of the above tech-
niques or other techniques for derving a compression dictio-
nary can be applied to several different types, or genres, of
data such as English text, French text, computer programs
written 1n C, computer programs written 1n Pascal, database
files, images, and the like. Once the most frequent “words™
[for each type of] in the context of text data or “bits” or “bit
strings” in the context of image data ov other ASCII-type
data are discovered, a dictionary for each type of data can be
created. This dictionary, in conjunction with an mitially
empty dictionary, to which new “words” will be added, will
then be used to perform Lempel-Z1v compression using con-
ventional techniques. For example, 11 English newspaper
text were being compressed, the dictionary would be pre-
filled with the most frequent English letter sequences, words

and/or phrases found 1n a sample of newspaper articles.

In order to compress a document of a particular genre, the
compressing computer first identifies the genre to which the
document 1s most similar by automatic means (e.g., based on
key words or clustering methods) and selects the pre-filled
compression dictionary appropriate to that genre. Informa-
tion 1dentitying the selected pre-filled compression dictio-
nary 1s then appended to the compressed data file. At decom-
pression time, the decompressing computer examines the
appended information 1n order to determine which pre-filled
dictionary to use when decompressing the received data.

For this method to work as desired, the collection of
sample documents must initially be partitioned to multiple
genres. This may be done by any one of several methods. For
example, a human or humans may decide the partition
manually based on subjective or objective criteria.
Alternatively, a computer may automatically scan each
document for words or statistical orthographic patterns that
indicate membership 1n a particular genre, such as the genres
of “Spanish text” or “compiled computer programs.” In
addition, 11 nothing 1s known about the collection of sample
documents, the collection may be automatically partitioned
into a reasonable set of genres by using data clustering meth-
ods well known 1n the literature.

Thus, additional pre-filled dictionaries can be created by
the user of the compression software as desired. If the user
routinely compresses data which has a standard vocabulary
of 1ts own, such as computer manuals or business
documents, both of which make frequent use of words not
commonly found 1n other forms of text, he or she can apply
the dictionary creation process to a large body of this type of
text and create a customized dictionary for use with these
types ol documents. Obviously, for decompression to be
possible, the software performing the decompression must
also have access to this dictionary. Similarly, 1f the data 1s
not being compressed for archival purposes, but 1s being
compressed for on-line transmission, the recipient of the
compressed data must have access to this custom-made dic-
tionary. Thus, the dictionary creation process should not be
undertaken frequently, as 1t would require distribution and
storage of a large number of dictionaries and would elimi-
nate or, at least, reduce the added benefit of using a more
appropriate dictionary for compression purposes.

During the compression process, the pre-filled dictionary
which 1s likely to achieve the highest level of compression
can be determined by performing compression on a small
subset of the entire document to be compressed using each
of the pre-filled dictionaries. In other words, the first N char-
acters of data of the text to be compressed (N 1s arbitrary and
may be chosen 1n advance or computed as a percentage of

US RE41,152 E

15

the document length, subject to a maximum so that identify-
ing the dictionary does not consume too much time) are
compressed using each of the putative pre-filled dictionaries.
The compression using each pre-filled dictionary 1s
computed, and the pre-filled dictionary which maximized
compression 1s selected for compressing the entire text. In
this way, the most appropriate dictionary can be used for the
particular text to be compressed. In addition, the user can
choose a dictionary manually 11 he or she 1s aware that the
document being compressed 1s typical of the class of docu-
ments represented by a particular pre-filled dictionary. This
would prevent the software from experimenting with various
compression dictionaries and result 1n a time savings during
the compression process. Additionally, manual selection
may be necessary to allow the transmission of a document to
another user who does not possess all of the pre-filled dictio-
naries the sender possesses or 1n the event of compression
for archival purposes, so that the document may be decom-
pressed at a later time by software not cognizant of all of the
available compression dictionaries, such as solftware at a
remote site.

In addition, 11 it 1s determined during the compression of
the subset of characters 1n the data to be compressed that
starting with a completely empty data compression dictio-
nary would allow for the most compression, then the pre-
filled data compression dictionary may be eliminated from
the encoding of that particular data.

During the decompression process, the same modifica-
tions to the data-specific dictionary are made which were
made to the data-specific dictionary built during compres-
sion. In this way, references to the data-specific dictionary
within the compressed data may be expanded properly into
the reconstituted text created by the data decompression sys-
tem. The 1dentity of the pre-filled dictionary being used for
compression 1s preferably stored 1n the compressed data so
that the decompression module 1s able to 1dentify which pre-
filled dictionary to use during decompression. Similarly, an
indication of which variant of the Lempel-Z1v algorithm
used to perform the data compression may also be stored
with the compressed data as well as an 1ndication of which
policy was used during compression to tlush the entries in
the two dictionaries. In addition, an indication of how the
dictionary address space 1s allocated to the dictionaries
involved 1in compression may be stored within the com-
pressed data—that 1s, what the starting and ending addresses
are for the data specific dictionary as well as the starting and
ending addresses for the one or more pre-filled dictionaries
used 1n the compression. Also, 1t the compressed data 1s
transmitted to a remote site, 1t may be necessary to send the
compression dictionary 1n order to permit decompression at
the remote site. However, this may defeat the purpose of
compression unless the time savings 1s greater than the time
needed to transmit the dictionary. On the other hand, even it
the time savings does not exceed the cost of transmitting the
dictionary, 1t might be wise to transmit the dictionary 1f other
documents compressed using this dictionary are likely to be
transmitted. Accordingly, when the compressed data is to be
transmitted to a remote site, 1t 1s generally desirable to use
only pre-filled compression dictionaries which are available
at the recipient site.

However, if the sender determines that the optimal pre-
filled dictionary 1s dictionary A, but compresses with dictio-
nary B instead because the recerver does not have dictionary
A, then the sender could also transmit a message to the
receiver suggesting that the recerver obtain dictionary A for
tuture use. Once the recetver gets enough such messages, the
receiver will eventually request a copy of dictionary A from

5

10

15

20

25

30

35

40

45

50

55

60

65

16

the sender or another server on which dictionary A 1s avail-
able. The recetver then places the copy of dictionary A 1n
local long-term or medium-term storage.

As another option, the sender may compress the data file
using pre-filled dictionary A, without consideration of
whether the recerver has dictionary A. Then, whenever the
receiver decompresses the file for the first time, 1t will need a
copy of dictionary A. If dictionary A 1s not currently stored
at the receiver, the receiver will obtain a copy via the net-
work. The receiver then places a copy of dictionary A in
long-term or medium-term storage, for future use, 1 addi-
tion to using 1t to decompress the {ile.

On the other hand, 1t may happen that one may desire to
compress a large collection of documents at once, e.g., for
archival purposes. Rather than compress the documents
separately, 1t 1s desirable to exploit the similarities among
the various documents, not just the similarities within each
document or 1ts similarity to a preselected corpus. In other
words, 1f some of the documents are related to each other in
some manner, many of them will contain similar strings
which can be exploited to provide more compression.

For example, suppose that document A were compressed
in accordance with the mvention using a dictionary D pre-
filled with common English language words. At the end of
the compression of document A, an extended dictionary D'
remains that contains entries from D as well as strings that
appeared 1in document A. Another document B may now be
compressed using the dictionary D' instead of the pre-filled
dictionary D (or some compromise between dictionary D
and dictionary D'") as the starting dictionary. If document B 1s
quite similar to document A, this technique has been found
to provide superior compression.

However, in the general case i which 1t 1s desired to
compress a large number of documents, any compressed
document B ought to specily the starting dictionary to use
when decompressing. It may specily one of the stock pre-
filled dictionaries, or it may name another compressed
document, document A, and specily that the final dictionary
resulting from the decompression of document A be used as
the starting dictionary for the decompression of document B.

Clustering techniques may be used to determine which
documents are dependent on the final dictionaries of other
documents. Documents determined through clustering to be
very similar to each other are compressed using one anoth-
er’s compression dictionaries. The information about which
documents depend on one another 1s specified 1n the header
of the document when 1t 1s compressed so that the decom-
pression soltware can correctly decompress the document
once all of the documents on which 1t depends are them-
selves decompressed.

Thus, 1n general, the compression rates for certain data
can be improved by having a great many compression dictio-
naries available, each tailored for a highly specific type of
text. However, there 1s a cost associated with storing, and
sometimes transmitting, so many dictionaries. This cost can
be minimized by recognizing that the different dictionaries
code many of the same strings and hence overlap 1n content
to a substantial degree. This characteristic of the dictionary
coding can be taken advantage of so that pre-filled dictionar-
ies for a plurality of genre-specific text samples can be cre-
ated simultaneously from a single large corpus of docu-
ments. In this example, a special combined representation
for the multiple dictionaries would be created which would
take up less space than that necessary to store all of the
different genre-specific dictionaries separately. In short,
memory space 1s saved by storing a string which appears in

US RE41,152 E

17

multiple dictionaries only once rather than separately storing,
the entry 1n each respective dictionary.

Those skilled 1n the art will appreciate that, to a certain
degree, the mvention trades off compression efficiency with
dictionary compactness. To illustrate this, a parameter can be
defined which i1ndicates the relative importance of compres-
s101 ef1c1ency and dlctlonary compactness. When the
parameter 1s set to 1, maximum compressmn efliciency 1is
obtained. In other words when the parameter 1s 1, a special-
1zed dictionary 1s 1ndependently built for each genre and the
dictionaries for each genre are only combined to eliminate
the redundant storage of duplicates as described above. On
the other hand, 1f the parameter 1s reduced somewhat, then
the genre dictionaries are not built wholly independently;
{
{

hey are deliberately constructed to improve their overlap. If
he parameter 1s reduced all the way to 0, then maximum
overlap 1s obtained by using the same dictionary for every
genre. The parameter setting of 0 thus produces the smallest
combined dictionary, but it does not take advantage of the
genre-specific properties at all. At present, the iventors
believe that the technique of the mmvention will work best
when the many specialized genres have been grouped
together two or three at a time into hierarchical “super-
genres” analogous to the “Dewey Decimal” classification
system for sample documents. Such hierarchical classifica-
tion techniques may be accomplished, 1f necessary, by well
known automatic clustering methods.

A preferred embodiment of the invention now will be
described with respect to FIGS. 7-11 as an extension of
L.Z'78. In the LZ78 algorithm of the preferred embodiment,
text 1s compressed, as was shown 1n FIG. 2, using a com-
pression dictionary which 1s expanded during the compres-
s10n process whereby references to the compression dictio-
nary are transmitted in place of the original text. Unlike
conventional LZ78, however, the compression dictionary
used 1n accordance with the invention does not start with
only the empty string. Instead, 1t 1s 1nitialized to contain not
only the empty string but also the contents of a pre-filled
dictionary, or several pre-filled dictionaries, created 1n one of
the manners described above. The pre-filled dictionary may
also contain the entire contents of the alphabet over which
compression 1s being performed. Also, the compression dic-
tionary can either be regarded as two separate dictionaries
which share a common address space or as a single larger
dictionary, depending on the specifics of the embodiment of
the technique. Thus, the technique used 1n accordance with
the invention begins with a pre-filled dictionary, or several
pre-filled dictionaries, as well as the conventional data-
specific dictionary which contains only the empty string to
which additional entries are added. However, it all the char-
acters ol the alphabet have been added to the pre-filled
dictionary, as in LZMW, then the data specific dictionary
should be empty (since 1t 1s never necessary to transmit the
empty string followed by 1ts extension).

The pre-filled dictionary space may be regarded as two
separate dictionaries sharing the same address space or as
one or more mdependent pre-filled dictionaries which may
or may not be concatenated to form one larger pre-filled
dictionary prior to the start of compression. When a
sequence of characters to be compressed 1s encountered, the
longest match (LM) within either the pre-filled dictionary or
dictionaries or the data specific dictionary 1s found 1n either a
look-up table or using a tree data structure. Once this match
1s found, then a dictionary entry number and the character
tollowing this sequence 1s transmitted. Then, the concatena-
tion of the just transmitted dictionary entry and the character
transmitted 1s added to the data specific dictionary. This pro-
cess repeats until the data to be compressed 1s exhausted.

10

15

20

25

30

35

40

45

50

55

60

65

18

As with LZ78, the pre-filled dictionary has a fixed size,
which determines the size of the dictionary entry number
which needs to be transmitted to effect compression. Once
the pre-filled dictionary 1s filled, no further entries to 1t are
allowed. However, any of the modlﬁcatlons to dictionary
handling outlined 1n the literature may be used. For example,
a least recently used algorithm could be used to discard dic-
tionary entries when new entries need to be added.
Alternately, performance could be monitored and the data
specific dictionary could be reset when the compression
ratio drops below a certain threshold or deviates from the
compression ratio achieved for the preceding sections of the
data being compressed.

FIGS. 7 and 8 illustrate a preferred embodiment for per-
forming LZ78 data compression in accordance with the
invention. As shown in FIG. 7, the input data to be com-
pressed 1s provided to an LZ78 data compression software
module 42, which may contain any of the known LZ78 algo-
rithm variants. As noted above, the dictionary 44 can be
regarded as containing two separate dictionaries—a conven-
tional LZ78 data specific dictionary 46 and a pre-filled dic-
tionary 48, respectively, both sharing the same common
address bus 30. Also, a plurality of pre-filled dictionaries 52
may be used 1n order to find the pre-filled dictionary which
provides the most compression for the particular input data.
All of the active elements 1 FIG. 7 would typically be
brought into RAM 4 for processing by CPU 3 (FIG. 4) dur-
ing operation.

FIG. 8 1s a flowchart of software for implementing the
modified LZ78 compression technique 1 LZ78 data com-
pression module 42 1n accordance with the invention. As
shown, the routine starts at step 56 by checking at step 58
whether the input data stream 1s empty. It 1t 1s empty, then all
input data has been compressed and the routine exits at step
60. However, i1 the data stream 1s not empty, and hence there
1s more mput data to compress, the data specific dictionary
46 1s searched at step 62 for the longest match (LM) with the
data sequence following the current pointer. The longest
match found is stored 1n the LZ78 data compression module
42 as DSLM. The pre-filled dictionary 48 and/or pre-filled
dictionaries 52 are then searched at step 64 for the longest
match (LM) with the data sequence following the current
pointer. The longest match found 1s stored in the LZ78 data
compression module 42 as PFLM. At step 66, the CPU 3
then determines whether the length of the longest match
found 1n the data specific dictionary 46 1s longer than the
length of the longest match found 1n the pre-filled dictionary
48 (and other pre-filled dictionaries 52 if more than one 1s
used). If the length of DSLM 1s greater than the length of
PFLM, then the longest match 1s set to DSLM at step 68;
otherwise, the longest match 1s set to PFLM at step 70. (If
the lengths of DSLM and PFLM are the same, then the same
dictionary used for the previous input data sequence may be
used, although 1t may be desirable to simply assign one of
the dictionaries when the lengths are the same to avoid the
need for a flag to keep track or which dictionary was last

used.)

Once LM 1s determined 1n steps 66—70, the character fol-
lowing LM 1n the mput data stream 1s 1dentified at step 72
and stored as an extension (C) 1in the LZ78 data compression
module 42. The dictionary entry number of LM (and which
dictionary) 1s then transmitted/stored as desired at step 74.
Similarly, the extension (C) 1s transmitted/stored as desired
at step 74. Then, at step 76, the extension (C) 1s concatenated
to the longest match (ILLM) and stored in the data specific
dictionary 46 unless 1t 1s already full. Of course, prior art
updating techniques may also be used to allow the latest

US RE41,152 E

19

entry to be inserted into the data specific dictionary 46 1n
place of, e.g., the least recently accessed entry. At step 78,
the current pointer to the input data 1s then moved by the
length of the longest match plus one (for the extension).
Control then returns to step 58, and the compression process
1s repeated for the next sequence of mput data until the data
stream 1s exhausted and the compression process completed.

The method of FIG. 8 may be modified to take into
account the cost savings associated with compressing a data
sequence using the data-specific dictionary with LZ78 or the
window in LZ77 or referring to the pre-filled dictionary. In
[.Z'78, the cost of each approach will probably be identical,
but when extending I.Z77 to include pre-filled dictionaries in
accordance with the invention, the cost of compressing using
the two approaches may differ and 1t may be advantageous to
chose one method over the other 1n the event that compres-
s10n using both techniques 1s possible.

Decompression of a LZ78 compressed data sequence in
accordance with the invention 1s performed in substantially
the same way as with conventional LZ78 decompression
techniques. All modifications to the compression dictionary
made during compression are made during decompression
as well. This limits the usefulness of the algorithm
somewhat, as 1s the case with conventional LLZ78, since
decompressing a portion of data requires that the preceding
portion be decompressed 1n 1ts entirety. When performing
decompression, the list of dictionary entry number and char-
acter pairs 1s processed one pair at a time until 1t 1s
exhausted. Generally, each dictionary entry 1s looked up
within the dictionary and the text which 1t refers to 1s dis-
played followed by the character in 1ts dictionary entry and
character pair. In this way, lossless compression/
decompression 1s achieved.

FIGS. 9 and 10 1illustrate a preferred embodiment for per-
forming [.Z78 data decompression in accordance with the
invention. As shown in FIG. 9, the compressed data 1s pro-
vided to an LZ'78 data decompression software module 80,
which may contain any of the known LZ78 algorithm vari-
ants. During operation, the LZ78 data decompression mod-
ule 80 looks up the dictionary entry of the mput compressed
data in the dictionary 82, which includes pre-filled dictio-
nary 84 and a conventional data specific dictionary 86, using,
the dictionary entry number which identifies the LM. The
resulting dictionary entry 1s then stored in the LZ78 data
decompression module 80 as the entry E. The character fol-
lowing the dictionary entry number in the mput compressed
data stream 1s then stored 1n the LZ78 data decompression
module 80 as C. C and E are then concatenated by the CPU 3
and 1nserted 1nto the data specific dictionary 86, unless 1t 1s
tull, and then output as the reconstituted, decompressed
(original) data. The concatenated data 1s 1nserted into the
data specific dictionary 86 using the same conventions for
which the data was 1nserted into the data specific dictionary
48 during compression. In other words, the dictionary code
assigned or reassigned to the concatenated data 1s deter-
mined 1n the same manner as the assigned dictionary code 1s
determined during compression.

Those skilled 1n the art will appreciate that the dictionary
entry number 1s assigned differently during decompression
depending on the variation of compression used. If conven-
tional Lempel-Z1v compression 1s used, then the dictionary
entry number assigned will be the next one 1n sequence (1.e.,
the first one will be numbered O, the next 1, the next 2, etc.).
Since conventional Lempel-Z1v does not make any provision
for performing any special functions on the dictionary, then
the dictionary will either be reset and the dictionary numbers
will revert to O when the dictionary 1s full, or the dictionary

10

15

20

25

30

35

40

45

50

55

60

65

20

will not be allowed to grow further. On the other hand, 1f a
more complicated scheme 1s used to manage the dictionary,
like “least recently used” (LRU), then the dictionary entry
number assigned will be the same as the one just described
until the dictionary fills up. At that point 1n time, the LRU
algorithm will come into play, and the dictionary entry num-
ber of the least recently used dictionary entry will be
assigned. The dictionary entry previously associated with
that dictionary entry number will be removed from the dic-
tionary.

As with the pre-filled dictionary 48 on the compression
side, the dictionary 82 can be regarded as two separate dic-
tionaries sharing the same common address bus 88. Also, a
plurality of pre-filled dictionaries 90 may be used during
decompression 1i a plurality of such pre-filled dictionaries
were used during compression. All of the active elements 1n
FIG. 9 would typically be brought into RAM 4 for process-
ing by CPU 3 (FIG. 4) during operation.

FIG. 10 1s a flowchart of software for implementing the
modified LZ78 decompression technique 1n accordance with
the invention. As shown, the routine starts at step 94 by
checking at step 96 whether the input compressed data
stream 1s empty. IT 1t 1s empty, then all input data has been
decompressed and the routine exits at step 98. However, 1f
the compressed data stream 1s not empty, and hence there 1s
more mput data to decompress, the dictionary entry corre-
sponding to the current pointer 1s looked up at step 100 using
the dictionary entry number. The corresponding dictionary
entry so found 1s then stored in the L.Z’78 data decompression
module 80 as E. I desired, the decompressed data 1s also
displayed to the user. At step 102, the character 1n the 1input
compressed data stream which follows the current dictionary
entry number 1s then stored in the LZ78 data decompression
module 80 as C. If desired, that character 1s also displayed to
the user. At step 104, the character C and the dictionary entry
E are concatenated and stored 1n the LZ78 data decompres-
sion module 80 as ADD. Once again, 1f desired, the resulting
concatenation 1s also displayed to the user. Then, at step 106,
the concatenation “ADD” 1s inserted into the data specific
dictionary 84 unless 1t 1s already full. Of course, prior art
updating techniques may also be used to allow the latest
entry to be inserted into the data specific dictionary 80 1n
place of, e.g., the least recently accessed entry. Finally, at
step 108, the current pointer to the input data 1s then
advanced to the start of the next dictionary entry number 1n
the 1nput compressed data stream. Control then returns to
step 96, and the decompression process 1s repeated for the
next sequence ol input data until the input compressed data
stream 1s exhausted. The decompression process 1s then
complete.

FIG. 11 1s an example of text compression using the LZ78
embodiment of the invention described with respect to
FIGS. 7-10. As 1n the example of FIG. 2, the alphabet 1s
assumed to contain only 3 characters (A,B,C) and the data to
be compressed 1s the same as 1n FIG. 2 for purposes of
illustration. As shown, the compression dictionary initially
contains the characters of the alphabet as well as frequent
sequences, where the frequent sequences were determined
from a sample of the text, from similar text previously
stored, from user 1put, or from any of the other statistically
based techmques which would be apparent to those skilled
in the art. The pointer to the character at which compression
will begin 1s placed at the first character 1n the sequence of
text being compressed. As 1n the FIG. 2 example, the longest
match within the dictionary 1s found and a pointer to this
entry 1s transmitted or stored locally depending on the appli-
cation of the compression algorithm. The longest match

US RE41,152 E

21

within the dictionary may be found by building a tree struc-
ture containing all of the dictionary entries 1dentical to the
type of tree structure described above to 1dentily strings to
be 1nserted into the pre-filled dictionary. Another possibility
1s to use a lookup table or hashing function. In any event, the
pointer 1s then moved by the number of characters transmit-
ted.

As shown 1n FIG. 11, the dictionary 1s updated to contain
the concatenation of the two previously transmitted dictio-
nary entries. In the first step, there was no previous
transmission, so nothing 1s added to the dictionary. On the
second 1teration through the processing cycle, the largest
match 1s found, 1ts dictionary entry number is transmitted,
the pointer 1s moved by the appropriate number of
characters, and the concatenation of the two previous dictio-
nary entries transmitted 1s added to the dictionary as a new
entry. In this case, “ABC” 1s added. This process 1s then
repeated 1n the third step, and the new entry “ABB” 1s added
to the dictionary. This process repeats until the data to be
compressed has been exhausted, which 1n this example 1s
only 3 steps as opposed to 6 steps used in the LZ78 tech-
nique of prior art FIG. 2 for the same input sequence. Thus, a
pre-filled dictionary containing frequently occurring
sequences 1n accordance with the invention can provide sub-
stantial improvement 1n the encoding/decoding efliciencies
of conventional LZ78 compression algorithms.

Of course, as will be appreciated by those skilled 1n the
art, a pre-filled dictionary also will improve the compression
performance of the LZ77 data compression variants as well.
However, to understand how the pre-filled dictionary of the
invention can be used with the LZ77 data compression
variants, one must recall the differences between the 1.Z77
and LZ78 compression techniques noted above. As
described with respect to FIG. 1, the LZ’77 technique, rather
than building a dictionary explicitly, as with LZ78, retains a
“window” of text consisting ol part of the already com-
pressed portion of the document. At each step, the system
identifies the longest substring of the window that appears as
a prefix of the text remaining to be compressed. The system
encodes this prefix by transmitting a pointer nto the
window, which specifies either the position 1n the window at
which the copy of the prefix starts or the position 1n the
window at which the copy of the prefix ends, at user election,
and then the system transmits the length of the prefix and
perhaps an extension. However, i the prefix selected 1s
empty, the system instead transmits an escape code followed
by the next literal character to be compressed. The window
1s updated to include the newly compressed text, and com-
pression continues with the portion of the document 1mme-
diately following the prefix. The LZ77 technique does not
require that a literal character be transmitted together with
cach prefix that 1s transmitted. As a result, the variants of the
L.Z'77 technique are generally more efficient than the LZ78
technique and are used 1n many popular compression pro-
grams such as gzip and PKZIP.

A pre-filled dictionary in accordance with the invention
can be incorporated into the LZ77 technique 1 any of a
number of ways. First, and most simply, a standard text can
be created which contains many common strings, and this
text can be kept prepended to the window throughout the
compression of any document. It should be noted that the

prepended text 1s not actually compressed and transmitted,
but since 1t 1s 1n the window, the compression software may
refer to it 1n the same way that 1t refers to text that was
recently compressed and transmitted. Thus, at the beginming,
of the compression process, when no text would otherwise
be available to serve as the window, the compression algo-

10

15

20

25

30

35

40

45

50

55

60

65

22

rithm can still transmit pointers into the text containing com-
mon strings. This improves compression performance, espe-
cially at the beginning of compression, where the standard
L.Z'77 technique must transmit many literal characters or
other short strings due to lack of sufficient text in the win-
dow. As compression proceeds, the text containing common
strings may optionally be gradually shortened to allow more
room in the window for text from the document being com-
pressed. The optimal ratio of pre-filled dictionary text to
compressed text can be determined experimentally and will
generally vary from one document genre to another. In
L7777, a fixed-sized window of text 1s generally used for
such compression.

Another preferred, but more complicated, technique
involves treating the set of pointers used by the compression
algorithm as being divided, perhaps unevenly, mto two
classes. Pointers in the first class refer to positions in the
window, which consists of part of the already compressed
portion of the document, as in standard L.Z’77. Pointers in the
second class refer to entries 1 a dictionary that lists fre-
quently occurring strings. This hybrid method 1n effect com-
bines some of the properties of LZ77 and LZ78. At each
step, the system selects, encodes, and transmits a prefix of
the remainder of the document by one of two methods. It
may follow the LZ77 method, transmitting a pointer to a
substring in the window, followed by the length of this
substring, or when necessary, transmitting an escape code
followed by a literal character. Alternatively, the system may
follow the LZ78 method, transmitting a pointer to the long-
est dictionary entry that 1s a prefix of the text remaining to be
compressed. The latter method 1s used at any step where
such a dictionary entry exists, provided that the method
achieves better compression (measured by the ratio of bits
transmitted to text length) at that step than the LZ77 method
does. One advantage of the hybrid method over LZ77 1s that
no length needs to be transmitted: each dictionary entry has a
fixed length that 1s permanently stored (or otherwise
recorded) 1n the dictionary. The hybrid method is also more
eificient than LZ78 1n that dictionary entries are not accom-
panied by literal characters.

FIG. 12 1s a flowchart of software for implementing such a
hybrid LZ77/1L.Z"78 compression technique. In a presently
preferred embodiment, such a system i1s implemented by
respectively moditying the LZ78 data compression module
42 of FI1G. 7 and the L2778 data decompression module 80 of
FIG. 9 to contain the LZ77 compression and decompression
soltware. As shown, the resulting hybrid routine starts at step
110 by checking at step 112 whether the input data stream 1s
empty. If 1t 1s empty, then all input data has been compressed
and the routine exits at step 114. However, 11 the data stream
1s not empty, and hence there 1s more input data to compress,
the pre-filled dictionary 1s searched at step 116 for the long-
est match (LM) with the data sequence following the current
pointer. The longest match found (and optionally the charac-
ter extension EXT) 1s stored in the LZ77/LZ78 data com-
pression module as PDLM (and EXT). The previous window
of text 1s then searched for the longest match (LM) with the
data sequence following the current pointer. The longest
match found 1s stored in the LZ77/L.7Z°78 data compression
module as WLM. At step 120, the CPU 3 then determines
whether a match was found 1n step 118, and 11 so, the char-
acter following the longest match WLM 1n the text to be
compressed (EXT) 1s optionally 1dentified at step 122 (if the
extension option 1s desired). On the other hand, 11 the CPU 3
determines at step 120 that no match was found in WLM, an
escape code 1s used at step 124 instead of a pointer and
length to 1dentity the one character literal EX'T pointed at by
the current pointer.

US RE41,152 E

23

At step 126, the costs of transmitting PDLM as a dictio-
nary entry number are compared with the costs of transmuit-
ting WLM as a pointer and a length, and, optionally, a one
character extension EXT, or as a literal. Specifically, 1t 1s
determined at step 126 which technique saves the most com-
pared to transmitting the data uncompressed. Generally, this
may be accomplished by computing the compression ratio
for each technique. Based on the results of step 126, the
technique which saves the most of the PDLM and the WLM
1s then transmitted/stored as desired at step 128 (with or
without EXT). Finally, at step 130, the current pointer to the
input data 1s then moved by the length of the longest match
or the length of the longest match plus one (if an extension
EXT 1s used). Control then returns to step 112, and the com-
pression 1s repeated for the next sequence of input data at the
current pointer until the data stream 1s exhausted and the
compression process completed.

FIG. 13 1s a flowchart of solftware for implementing a
hybrid LZ77/LLZ"78 decompression technique in accordance
with the invention. As shown, the routine starts at step 132
by checking at step 134 whether the input compressed data
stream 1s empty. IT 1t 1s empty, then all input data has been
decompressed and the routine exits at step 136. However, 1
the compressed data stream 1s not empty, and hence there 1s
more mput data to decompress, the entry corresponding to
the current pointer 1s checked at step 138 to determine

whether i1t 1s a PDLM or a WLM. For example, whether the
reference 1s a PDLM reference or a WLM reference may be
determined by checking how the addressed space 1s divided
up. If the entry 1n the compressed data stream 1s a PDLM,
then the LZ78 technmiques described with respect to FI1G. 10
are followed. In particular, the dictionary entry in the pre-
filled dictionary corresponding to the current pointer 1s
looked up at step 140 using the dictionary entry number. The
corresponding dictionary entry so found 1s then stored in a
LZ77/L.7Z"78 decompression module as E. If desired, the
decompressed data 1s also displayed to the user. At step 142,
i the optional extension EXT was sent (as determined prior
to running the algorithm), the character in the input com-
pressed data stream following the current dictionary entry
number 1s then stored in the LZ77/LLZ78 decompression
module as C. If desired, that character 1s also displayed to
the user. At step 144, the character C and the dictionary entry
E are concatenated and stored in the LZ77/LZ’78 data
decompression module as ADD. Once again, 1f desired, the
resulting concatenation 1s also displayed to the user.

On the other hand, 11 1t 1s determined at step 138 that the
entry in the compressed data stream 1s a WLM, then the
entry at the pointer 1s used at step 146 to lookup the entry 1n
the previous window of text pointed to by that entry. That
value 1s stored 1n the LZ77/L.Z'78 decompression module as
E. If desired, the decompressed data 1s also displayed to the
user. At step 148, 11 the optional extension EX'T was sent (as
determined prior to runmng the algorithm), the character 1n
the mput compressed data stream following the current entry
1s then stored 1n the LZ77/LZ78 decompression module as
C. If desired, that character 1s also displayed to the user. At
step 150, the character C and the dictionary entry E are
concatenated and stored in the LZ77/L.Z78 data decompres-
sion module as ADD. Once again, 1f desired, the resulting

concatenation 1s also displayed to the user.

At the completion of either step 144 or step 150, the cur-
rent pointer to the mput data stream 1s advanced to the begin-
ning of the next entry in the data stream at step 152. Control
then returns to step 134, and the decompression process 1s
repeated for the next sequence of mput data until the input
compressed data stream 1s exhausted. The decompression
process 1s then complete.

10

15

20

25

30

35

40

45

50

55

60

65

24

FIG. 14 1s an example of text compression using the
hybrid technique of FIGS. 12 and 13. In the example, the

alphabet 1s assumed to contain 7 characters (A,B,C.D,E.F,
(3), and the data to be compressed 1s “ABCBDEFGABC.” As

shown, the compression dictionary 1nitially contains the fre-
quent sequences “ABC” and “DEF”, where the frequent
sequences were determined using any of the techniques
described above or from any other statistically based tech-
nique as would be apparent to one skilled 1n the art. FIG. 14
illustrates the way compression was achieved, where there
are three options: pre-filled dictionary, LZ’77 reference, and
L.Z'77 literal. In the example of FIG. 14, no character exten-
sion 1s used. During compression, a bit 1s used to indicate
whether the following information 1s a literal or either a
dictionary reference or a LZ77 reference. The latter two
options share a common address space, but a length 1s only
used 1f an L2777 style reference 1s used.

As 1llustrated 1n FIG. 14, at the start of compression, the
pointer to the character at which compression will begin 1s
placed at the first character in the sequence of text being
compressed. At step 0, the longest match 1s found in the
compression dictionary, and a pointer to this entry (DO) 1s
transmitted or stored locally depending on the application of
the compression algorithm. The pointer 1s then moved by the
number of characters transmitted. At step 1, an LZ77 refer-
ence 1s transmitted since neither “B” nor “BD” are in the
compression dictionary. The flag indicates that a LZ77 refer-
ence (2,1) 1s transmitted, where “2” 1s a pointer to the second
entry 1n the current window, and *“1” 1s the length. The
pointer 1s then moved one character prior to step 2. At step 2,
the longest match 1s found in the compression dictionary,
and a poimnter to this entry (D1) 1s transmitted or stored
locally depending on the application of the compression
algorithm. The pointer 1s then moved by the number of char-
acters transmitted prior to step 3. Atstep 3, an LZ77 literal 1s
sent since the character “G” 1s not 1n the compression win-
dow or the compression dictionary. The pointer 1s then
moved one character prior to step 4. At step 4, the longest
match 1s found 1n the compression dictionary, and a pointer
to this entry (DO) 1s transmitted or stored locally depending
on the application of the compression algorithm. The pointer
1s then moved by the number of characters transmitted. In
step 4, the dictionary entry was used instead of the window
entry since it was assumed to be cheaper than the LZ77
pointer reference. Since the pointer 1s at the end of the text to
be compressed, the encoding process 1s completed.

Any of the standard improvements to LZ77, such as
applying some form of compression to the literals, lengths,
and addresses being transmitted, seeding the dictionary or
window so that no literals need to be transmitted, and the
like, may be equally well applied to any of the above-
mentioned embodiments which are extensions of the LZ77
compression technique. Also, as described above, different
dictionaries (or ditlerent texts to prepend to the window) can
be used for different genres of data being transmitted. An
initial code number sent at the beginning of each message
would then indicate which dictionary or prepended text was
being used (e.g., the one for English prose, for computer
soltware, or for business transaction forms), or a special
code would be transmitted indicating that the dictionary or
prepended text has been specially dertved from a previously
transmitted text.

In a sample implementation of the techniques of the
invention, a set of pre-filled data compression dictionaries 1s
distributed to a number of servers that regularly exchange
compressed documents amongst themselves. As described
above, the dictionaries may be combined before distribution

US RE41,152 E

25

to save transmission costs. Periodically, a new set of pre-
filled dictionaries 1s distributed to supplement the old set of
pre-filled dictionaries. The new set might include dictionar-
ies for new genres, as well as more up-to-date dictionaries
for old genres which retlect terminology changes. Ideally,
the new dictionaries are constructed so that they overlap
substantially with the old dictionaries, whereby the com-
bined representation for all the new and old dictionaries does
not differ much from the combined representation for the old
dictionaries alone. A file listing the changes between the two
representations of a pre-filled dictionary 1s then distributed.
Upon recerving this file, each of the servers modifies its
combined dictionary representation 1n order to add the new
dictionaries. The old dictionaries may now be either retained
in the combined representation or deleted from 1t, depending
on whether or not they will be needed 1n order to decompress
old files. Such a technique will lead to substantially reduced
data transmission and storage costs, particularly between
two servers which often exchange files of the same genre.

For example, a sitmulation of the mnvention was performed
using half of a corpus of data, where the pre-filled dictionary
was learned from the other half. For comparison purposes,
the data was compressed using “gzip”, a simulation of
“o71p”’, and a simulation of “gzip” with a pre-filled dictio-
nary in accordance with the mvention. A simulation was
used since “gzip”” would have to be modified to be used with
a pre-filled dictionary in accordance with the mvention. The
simulation of “gzip” was tested without the pre-filled dictio-
nary merely to verity that the simulation approximated the
performance of “gzip” before the addition of the pre-filled
dictionary. The following results were obtained:
Compression percentage with gzip: 50.6
Compression percentage with stmulation: 50.7
Compression percentage with simulation using dictionary:

62.8
Those skilled 1n the art will appreciate that a 12 percentage
point decrease 1n file size 1s quite substantial. In this
example, that amounts to approximately a 25% memory sav-
ngs!

Although numerous embodiments of the invention and
numerous extensions of the inventive concept have been
described above, those skilled 1n the art will readily appreci-
ate that many additional modifications are possible in the
exemplary embodiment without matenially departing from
the novel teachings and advantages of the invention.

For example, as noted above, the pre-filled dictionaries of
the mvention may be formed in any of a number of ways and
may be used with any of a number of variations of the basic
Lempel-Z1v compression technique. Moreover, compression
performance may be optimized by separately monitoring or
tracking the compression performance of the pre-filled data
compression dictionary and the data specific compression
dictionary. For example, if the pre-filled data compression
dictionary 1s not providing better data compression than the
data specific compression dictionary, then in the event that
the data specific dictionary becomes full and needs to be
reset, the pre-filled data compression dictionary 1s replaced
by the data specific dictionary and the data specific dictio-
nary 1s reset. On the other hand, in the event that the pre-
filled data compression dictionary 1s more useful for
compression, it 1s retained and the data specific compression
dictionary 1s reset. To determine which dictionary 1s provid-
ing better compression than another dictionary, the savings
associated with each of the dictionaries 1s maintained while
compression 1s proceeding. The length of each of the strings
compressed using each of the dictionaries 1s also kept, as 1s
the amount of data resulting from the portion of the com-

10

15

20

25

30

35

40

45

50

55

60

65

26

pression elfected by each dictionary. A threshold 1s chosen
below which the pre-filled dictionary 1s said to be yielding so
little improvement that allowing the data-specific dictionary
to grow further would be better. This 1s done both globally
(for the entire document compressed so far) as well as
locally by maintaining several different sets of these data. In
elfect, this process allows the entire address space atforded
to the pre-filled data compression dictionary and the data
specific compression dictionary to be utilized by the data
specific dictionary when the pre-filled dictionary is not pro-
viding an improvement to the compression process.
Moreover, a least recently used (LRU) method of the type
described by Storer 1n U.S. Pat. No. 4,876,541 makes 1t
unnecessary to keep the two dictionaries separate, for the
least recently used entry 1s always discarded, regardless of
which dictionary 1t came from. It should be noted that, 1n this
context, “used” includes reading or writing a code as part of
a compressed data stream, but the entry of the code into the

dictionary on the first appearance of its string may or may
not be counted as a “use.”

In addition, multiple pre-filled data compression dictio-
naries may be used in the compression process at the
expense of reducing the size of the data specific dictionary.
In the most extreme case, the data specific dictionary could
be eliminated entirely and the entire address space normally
shared by the pre-filled dictionary and the data specific dic-
tionary would be shared by the relevant pre-filled dictionar-
1ies. Of course, 1n this case, all character sequences, words,
and phrases 1n the text to be compressed would need to be
present 1n one or more pre-filled data compression
dictionaries, which 1s quite possible when the pre-filled dic-
tionary or dictionaries are large enough to contain all combi-
nations of characters likely to occur in the text to be com-
pressed. Moreover, even 11 all combinations of characters are
not found 1n the pre-filled data compression dictionary, com-
binations not found could simply be stored uncompressed
and/or the pre-filled dictionary could be updated during
compression to include that character combination. On the
other hand, an algorithm could be used to determine whether
the entire character set 1s present 1n the pre-filled data com-
pression dictionary created by the software described with
respect to FIG. 6, which performs the frequency analysis of
the collection of documents from which the pre-filled dictio-
nary 1s formed. In the event that all of the characters are not
present, those characters which are absent will be mserted
into the pre-filled data compression dictionary, while the
least frequent codewords are eliminated, thereby guarantee-
ing that no escape sequences need be sent to indicate that the
tollowing character 1s absent from the dictionary.

As another modification to the preferred embodiments of
the invention, the codeword addresses of the dictionary
entries may themselves be encoded using a technique such
as Huffman coding so that the more frequently used
addresses can be represented using fewer bits. Similarly, the
extension characters may be encoded using a variable length
coding, such as Huffman coding, to improve performance.
In such a case, 1t 1s not necessary to limit the size of the data
specific dictionary, and hence unnecessary to ever flush the
data specific dictionary, for the Lempel-Ziv codewords are
just 1mtegers. These integers are then encoded by variable-
length bit sequences. Moreover, 1f the distribution of these
integer codewords varies through the document, so that 1ts
local entropy 1s lower than 1ts global entropy, then adaptive
versions ol the variable-length coding scheme, such as adap-
tive Hullman coding or adaptive arithmetic coding, should
be used.

In accordance with this technique, the size of the code
being transmitted using the encoding for codewords is

US RE41,152 E

27

known and 1s based on the number of codewords 1n the dic-
tionary. A list of recently used codewords can be maintained
and at such a time as the recently used codewords form a
small subset of the entire space of codewords involved 1n the
compression of codewords scheme, compression of these
codewords can be restarted. That 1s, a new dictionary to
compress codewords can be created. This new dictionary
could be constructed from recently used codewords on the
assumption that recently used codewords are more likely to
be used again locally, while those which have not been
recently used are less likely to be used again.

One skilled 1n the art may also choose to store a data
specific compression dictionary created during compression
ol a particular document as a pre-filled data compression
dictionary for use 1n the compression of other related docu-
ments. On the other hand, the data specific dictionary may be
analyzed to determine whether particular entries should be
included in other pre-filled data compression dictionaries.

Accordingly, all such modifications are intended to be
included within the scope of this invention as defined in the
tollowing claims.

We claim:

1. A data compression method for compressing [a] bit
strings of data and/or text, said bit strings containing a
sequence of characters, comprising the steps of:

(a) selecting a pre-filled data compression dictionary con-
taining predetermined combinations of [characters] bit
strings likely to occur frequently in [said] a sequence of
[characters] bit strings to be compressed,

(b) initializing a pointer to a first [character] biz in said
sequence of [characters for compression] bit strings to
be compressed,

(c) comparing [characters] bit strings starting at said
pointer with [sequences of characters] bit strings stored
in said pre-filled data compression dictionary and deter-
mining a longest match of said [characters] bit strings
starting at said pointer with said sequences of [charac-
ters] bit strings stored in said pre-filled data compres-
sion dictionary;

(d) storing a dictionary pointer to said longest match 1n
said pre-filled data compression dictionary 1in a memory
as a compressed representation of said [characters] bit
strings making up said longest match;

(e) moving said pointer to a [character] bit in said
sequence of [characters] bit strings which follows said
longest match; and

(f) repeating steps c—e for all [characters] bit strings in
said sequence of [characters] bit strings to be com-
pressed.

2. A method as 1n claim 1, comprising the further step of

creating said pre-filled data compression dictionary by per-
forming the steps of:

analyzing [character] bit string sequences in at least one
sample sequence of [characters] bit strings which is
representative of [the] a sequence of [characters] bit
strings to be compressed to determine the frequency of
occurrence of said [character] bit string sequences in
said at least one sample sequence of [characters] bit
strings; and
selecting as said predetermined combinations those [char-
acter] bit string sequences in said at least one sample
sequence of [characters] bit strings which occur most
frequently in said at least one sample sequence of [char-
acters] bit strings.
3. A method as 1n claim 2, wherein said analyzing step
comprises the steps of determining a number of occurrences

10

15

20

25

30

35

40

45

50

55

60

65

28

of each of said [character] bit string sequences in said at
least one sample sequence of [characters] bit strings and
calculating for each [character] bit string sequence a product
of the number of occurrences of said each [character] bit
string sequence with the difference 1n bit length of said each
[character] bit string sequence and a bit length of said dictio-
nary pointer.

4. A method as 1n claim 3, wherein said predetermined
combinations selecting step comprises the step of selecting
for storage 1n said pre-filled data compression dictionary
those data sequences having the largest product determined
in said product calculating step.

5. A method as 1n claim 4, comprising the further steps of
determining whether an entire character set 1s present 1n said
pre-filled data compression dictionary, and, 1n the event that
all of the characters 1n said entire character set are not
present 1n said pre-filled data compression dictionary, insert-
ing those characters in said character set which are absent
from said pre-filled data compression dictionary into said
pre-filled data compression dictionary as new dictionary
entries 1n place of dictionary entries having the smallest
product determined 1n said product calculating step.

6. A method as 1n claim 1, wherein said step of selecting
said pre-filled data compression dictionary comprises the
steps of performing steps b—e for a subset of [characters] bit
strings of [said] a sequence of [data characters] bit strings to
be compressed for a plurality of different pre-filled data
compression dictionaries to determine which one of said
plurality of different pre-filled data compression dictionaries
provides the most compression for said subset of [charac-
ters] bit strings, and selecting said one pre-filled data com-
pression dictionary as said pre-filled data compression dic-
tionary for use in compressing said sequence of [characters]
bit strings.

7. A method as 1n step 6, wherein said step of selecting
said one pre-filled data compression dictionary comprises
the step of selecting an empty data compression dictionary
in the event that 1t 1s determined while performing steps b—¢
for said subset of [characters] bit strings of said sequence of
[data characters] bit strings to be compressed that starting
with an empty data compression dictionary would allow for
the most compression of said sequence of [data characters]
bit strings.

8. A method as 1n claim 1, comprising the further step of
(g) transmitting to a recipient said dictionary pointer as said
compressed representation of said [characters] bit strings
making up said longest match.

9. A method as 1n claim 8, wherein said step of selecting
said pre-filled data compression dictionary comprises the
steps of selecting a pre-filled data compression dictionary
out of a plurality of pre-filled data compression dictionaries
based on whether or not said plurality of pre-filled data com-
pression dictionaries are available to said recipient of data
transmitted in step g.

10. A method as 1n claim 1, wherein said step of selecting
a pre-filled data compression dictionary comprises the step
of selecting multiple pre-filled data compression dictionaries
for use during compression of [said] a sequence of [charac-
ters] bit strings to be compressed.

11. A method as 1n claim 1, comprising the further step of
encoding said dictionary pointer so that said dictionary
pointer can be represented using fewer address bits.

12. A method as 1n claim 1, comprising the further step of
storing with said compressed representation of said [charac-
ters] bit strings making up said longest match a reference to
a pre-filled data compression dictionary to be used during a
decompression process.

US RE41,152 E

29

13. A method as 1n claim 1, comprising the further step of
storing a plurality of pre-filled data compression dictionaries
contaiming at least one of different statistical patterns and
different genres of [text] data, wherein said pre-filled data
compression dictionary selecting step comprises the step of
selecting said pre-filled data compression dictionary from
said plurality of pre-filled data compression dictionaries
whereby the selected pre-filled data compression dictionary
contains data from the most similar genre to said sequence of
[characters] bit strings to be compressed.

14. A method as 1n claim 13, wherein said step of storing
said plurality of pre-filled compression dictionaries com-
prises the step of arranging said plurality of pre-filled data
compression dictionaries hierarchically by genre of [text]
data contained within the respective pre-filled data compres-
s1on dictionaries.

15. A method as 1n claim 13, wherein said step of storing
said plurality of pre-filled compression dictionaries com-
prises the step of storing common entries in said plurality of
pre-filled data compression dictionaries only one time on a
storage medium whereby said common entries are shared by
said plurality of pre-filled data compression dictionaries.

16. A data compression method for compressing [a] bit
strings of data and/or text, said bit strings containing a
sequence of characters, comprising the steps of:

(a) selecting a pre-filled data compression dictionary con-
taining predetermined combinations of [characters] bit
strings likely to occur frequently in [said] a sequence of
[characters] bit strings to be compressed,

(b) mmitializing a data specific data compression dictio-
nary.,

(c) initializing a pointer to a first [character] biz in said
sequence of [characters for compression] bit strings to
be compressed,

(d) comparing [characters] bit strings starting at said
pointer with sequences of [characters] bit strings stored
in said pre-filled data compression dictionary and said
data specific data compression dictionary and deter-
mining a dictionary entry number of a longest match of
said [characters] bit strings starting at said pointer with
said sequences of [characters] bit strings stored in said
pre-filled data compression dictionary and said data
specific data compression dictionary;

(e) storing said dictionary entry number and an extension
[character] bit string in a memory as a compressed rep-
resentation of said [characters] bit strings making up
said longest match and said extension [character] bit
string, said extension [character] bit string being that
[character] bit string in said sequence of [characters] bit
strings to be compressed which occurs after said long-
est match starting at said pointer;

() selectively storing said [characters] bit strings making
up said longest match and said extension [character] bit
string 1n said data specific data compression dictionary
as a new dictionary entry;

(g) moving said pointer to a [character] bit in said
sequence of [characters] bit strings which follows said
extension [character] bit string; and

(h) repeating steps d-g for all [characters] bit strings in
said sequence of [characters] bit strings to be com-
pressed.

17. A method as in claim 16, comprising the further steps
of momitoring compression performance of said pre-filled
data compression dictionary and said data specific data com-
pression dictionary during compression of said sequence of
[characters] bit strings and, when said data specific data

5

10

15

20

25

30

35

40

45

50

55

60

65

30

compression dictionary becomes full during compression of
said sequence of [characters] bit strings, resetting the data
compression dictionary determined in said monitoring step
to be providing the lesser data compression performance and
using the data compression dictionary determined in said
monitoring step to be providing the greater data compression
performance as said pre-filled data compression dictionary
for compression of subsequent [characters] bit strings in said
sequence of [characters] bit strings to be compressed.

18. A method as 1n claim 16, comprising the further step
of storing said data specific data compression dictionary
with the new dictionary entries stored therein during com-
pression of [said] a sequence of [characters] bit strings as at
least a portion of a pre-filled data compression dictionary for
use in compression of a different sequence of [characters] bit
strings.

19. A method as 1n claim 16, comprising the further step
of storing with said compressed representation of said [char-
acters] bit strings making up said longest match and said
extension [character] bit string at least one of (1) an indica-
tion of which pre-filled data compression dictionary was
used to form said compressed representation; (2) an indica-
tion ol how dictionary address space 1s allocated between
said data specific data compression dictionary and said pre-
filled data compression dictionary, (3) an indication of a
Lempel-Ziv algorithm variant to be used to decompress said
compressed representation of said [characters] bit strings.,
and (4) an mdication of what technique to follow when said
data specific data compression dictionary becomes filled.

20. A method as 1n claim 16, wherein said pre-filled data
compression dictionary selecting step comprises the step of
selecting said pre-filled data compression dictionary from a
plurality of pre-filled data compression dictionaries contain-
ing at least one of different statistical patterns and different
genres of [text] data, whereby the selected pre-filled data
compression dictionary contains data from the most similar
genre to said sequence of [characters] bit strings to be com-
pressed.

21. A method as 1n claim 20, comprising the further step
of repeating steps (b)—(g) for [a] different [text] bit strings to
be compressed from the same genre as said [text] bit strings
using the data specific data compression dictionary formed
during the compression of said [text] biz strings as the pre-
filled data compression dictionary for compression of said
different [text] bit strings to be compressed.

22. A method as 1n claim 21, wherein said pre-filled data
compression dictionary selecting step comprises the step of
speciiying whether the pre-filled data compression dictio-
nary is formed during the compression of [another text] said
different bit strings.

23. A data compression method for compressing [a] bit
strings of data and/or text, said bit strings containing a
sequence ol characters, comprising the steps of:

(a) initializing a [character] bit string window which con-
tains a predetermined number of [characters] bit
Strings,

(b) appending a pre-filled data compression dictionary
containing predetermined combinations of [characters}
bit strings likely to occur frequently in [said] a
sequence of [characters] bit strings to be compressed to
said [character] bit string window:;

(c) initializing a pointer to a first [character] bit in said
sequence of [characters] bit strings for compression;

(d) comparing [characters] bit strings starting at said
pointer with sequences of [characters] bit strings in said
[character] bit string window with said pre-filled data
compression dictionary appended thereto and deter-

US RE41,152 E

31

mining a window pointer to and a length of a longest
match of said [characters] bit strings starting at said
pointer with said sequences of [characters] bit strings in
said [character] bit string window with said pre-filled
data compression dictionary appended thereto;

(¢) storing said window pointer and said length of said
longest match 1n a memory as a compressed representa-
tion of said [characters] bit strings making up said
longest match;

(f) updating said [character] bit string window to include
the [characters] bit strings making up said longest
match;

(g) moving said pointer to a [character] bit in said
sequence of [characters] bit strings which follows said
longest match; and

(h) repeating steps d—g for all [characters] bit strings in
said sequence of [characters] bit strings to be com-
pressed.

24. A method as 1n claim 23, comprising the further step
of storing in said memory a literal character pointed to by
said pointer when a sequence of [characters] bit strings
pointed to by said pointer is not found in said [character] bit
string window with said pre-filled data compression dictio-
nary appended thereto 1n step d.

25. A method as 1n claim 23, comprising the further step
of transmitting to a recipient said window pointer and said
length of said longest match as said compressed representa-
tion of said [characters] bit strings making up said longest
match.

26. A data compression method for compressing [a] bit
strings of data and/or text, said bit strings containing a
sequence of characters, comprising the steps of:

(a) selecting a pre-filled data compression dictionary con-
taining predetermined combinations of [characters] bit
strings likely to occur frequently in [said] a sequence of
[characters] bit strings to be compressed,

(b) initializing a [character] bit string window which con-
tains a predetermined number of [characters] bit
Strings,

(c) initializing a pointer to a first [character] biz in said
sequence of [characters for compression] bit strings to
be compressed,

(d) comparing [characters] bit strings starting at said
pointer with sequences of [characters] bit strings stored
in said pre-filled data compression dictionary and with
sequences of [characters] bit strings in said [character]
bit string window and determiming longest matches of
said [characters] bit strings starting at said pointer with
said sequences of [characters] bit strings stored in said
pre-filled data compression dictionary and with
sequences of [characters] bit strings in said [character]
bit string window;

(¢) determining whether greater compression will be
obtained by representing said [characters] bit strings
starting at said pointer as a dictionary entry number of a
longest match of said [characters] bit strings starting at
said pointer with said sequences of [characters] bit
strings stored 1n said pre-filled data compression dictio-
nary or by representing said [characters] bit strings
starting at said pointer as a window pointer to and a
length of a longest match of said [characters] bit strings
starting at said pointer with said sequences of [charac-
ters] bit strings in said [character] bit string window;

(1) storing said window pointer and said length of said
longest match 1n a memory as a compressed representa-

10

15

20

25

30

35

40

45

50

55

60

65

32

tion of said [characters] bit strings making up said
longest match when it 1s determined in step e that
greater compression will be obtained by representing
said [characters] bit strings starting at said pointer as
said window pointer to and said length of said longest
match of said [characters] bit strings starting at said
window pointer with said sequences of [characters] bit
strings in said [character] bit string window; otherwise
storing said dictionary entry number of said longest
match of said [characters] bit strings starting at said
pointer with said sequences of [characters] bit strings
stored 1n said pre-filled data compression dictionary;

(g) updating said [character] bit string window to include
the [characters] bit strings making up said longest
match;

(h) moving said pointer to a [character] biz in said
sequence of [characters] bit strings which follows said
longest match; and

(1) repeating steps d—h for all [characters] bit strings in
said sequence of [characters] bit strings to be com-
pressed.

27. A method as 1n claim 26, comprising the further step
of transmitting to a recipient said window pointer and said
length of said longest match when 1t 1s determined 1n step ¢
that greater compression will be obtained by representing
said [characters] bit strings starting at said pointer as said
window pointer to and said length of said longest match of
said [characters] bit strings starting at said window pointer
with said sequences of [characters] bit strings in said [char-
acter] bit string window; otherwise transmitting to said
recipient said dictionary entry number of said longest match
of said [characters] bit strings starting at said pointer with
said sequences of [characters] bit strings stored in said pre-
filled data compression dictionary.

28. A method of decompressing a compressed representa-
tion of a sequence of [characters] bit strings of data and/or
text, said bit strings containing a sequence of characters,
said compressed representation comprising dictionary point-
ers to respective longest matches of sequences of [charac-
ters] bit strings starting at a pointer to particular [characters]
bit strings within said sequence of [characters] bit strings
with sequences of [characters] bit strings stored in a pre-
filled data compression dictionary, said pre-filled data com-
pression dictionary containing predetermined combinations
of [characters] bit strings likely to occur frequently in said
sequence of [characters] bit strings, said decompressing
method comprising the steps of:

(a) imtializing a pointer to a first dictionary pointer 1n said
compressed representation of said [characters] bit
Strings,

(b) retrieving a dictionary entry from said pre-filled data
compression dictionary using said dictionary pointer
pointed to by said pointer;

(¢) storing said dictionary entry as a decompressed repre-
sentation of the [characters] bit strings making up said
longest match;

(d) moving said pointer to a next dictionary pointer in said
compressed representation of said [characters] bit
strings; and

(¢) repeating steps b—d for all dictionary pointers in said
compressed representation of said [characters] bit
strings until all compressed [characters] bit strings in
said sequence of [characters] bit strings have been
decompressed.

29. A method as 1n claim 28, comprising the further step

of extracting from said compressed representation of said

US RE41,152 E

33

[characters] bit strings at least one of: (1) the identity of the
pre-filled data compression dictionary to use during
decompression, and (2) an indication of a Lempel-Ziv algo-
rithm variant to be used to decompress said compressed rep-
resentation of said [characters] bit strings.

30. A method of decompressing a compressed representa-
tion of a sequence of [characters] bit strings of data and/or
text, said bit strings comntaining a sequence of characters,
said compressed representation comprising extension [char-
acters] bit strings and dictionary entry numbers of respective
longest matches of sequences of [characters] bit strings
starting at a pointer to particular [characters] bit strings
within said sequence of [characters] bit strings with
sequences of [characters] bit strings stored in a pre-filled
data compression dictionary and a data specific data com-
pression dictionary, said extension [character] bit string
being that [character] bit string in the sequence of [charac-
ters] bit strings which occurs after the longest match starting
at said pointer, said pre-filled data compression dictionary
containing predetermined combinations of [characters] bit
strings likely to occur frequently in said sequence of [char-
acters] bit strings, said decompressing method comprising
the steps of:

(a) imtializing a data specific data decompression dictio-
nary.

(b) 1nitializing a pointer to a first dictionary entry number
in said compressed representation of said [characters}
bit strings;,

(c) retrieving a dictionary entry and an extension [charac-
ter] bit string from one of said pre-filled data compres-
ston dictionary and said data specific data decompres-
s1on dictionary using a dictionary entry number pointed
to by said pointer;

(d) selectively storing said [characters] bit strings making
up said longest match and said extension [character] bit
string 1into said data specific data decompression dictio-
nary,

(¢) moving said pointer to a next dictionary entry number
in said compressed representation of said [characters]
bit strings; and

(1) repeating steps c¢—e for all dictionary entry numbers
and extension [characters] bit strings in said com-
pressed representation of said [characters] bit strings
until all compressed [characters] bit strings in said
sequence of [characters] bit strings have been decom-
pressed.

31. A method as 1n claim 30, comprising the further step
of extracting from said compressed representation of said
[characters] bit strings at least one of: (1) an indication of the
pre-filled data compression dictionary to use during
decompression, (2) an indication of how dictionary address
space 15 allocated between said data specific data compres-
sion dictionary and said pre-filled data compression
dictionary, (3) an indication of a Lempel-Z1v algorithm vari-
ant to be used to decompress said compressed representation
of said [characters] bit strings, and (4) an indication of what
technique to follow when said data specific data compres-
s1on dictionary becomes filled.

32. A method of decompressing a compressed representa-
tion of a sequence of [characters] bit strings of data and/or
text, said bit strings comntaining a sequence of characters,
said compressed representation comprising window pointers
and lengths of respective longest matches of sequences of
[characters] bit strings starting at a pointer to particular
[characters] bit strings within said sequence of [characters]
bit strings with sequences of [characters] bit strings in a

10

15

20

25

30

35

40

45

50

55

60

65

34

[character] bit string window of a predetermined size with a
pre-filled data compression dictionary appended thereto,
said pre-filled data compression dictionary containing pre-
determined combinations of [characters] bit strings likely to
occur frequently in said sequence of [characters] bit strings,
said decompressing method comprising the steps of:

(a) mitializing a pointer to a first window pointer and
length in said compressed representation of said [char-
acters] bit strings;

(b) retrieving a number of [characters] bit strings deter-
mined by said length starting at a [character] bi¢ within

a current [character] bit string window pointed to by a
window pointer which 1s pointed to by said pointer;

(c) storing said retrieved [characters] bit strings as a
decompressed representation of the [characters] bit

strings making up said longest match;

(d) moving said pointer to a next window pointer and
length in said compressed representation of said [char-
acters] bit strings; and

() repeating steps b—d for all window pointers and
lengths in said compressed representation of said [char-
acters] bit strings until all compressed [characters] bit
strings in said sequence of [characters] bit strings have
been decompressed.

33. A method as 1n claim 32, comprising the further step
of extracting from said compressed representation of said
[characters] bit strings at least one of: (1) the identity of the
pre-filled data compression dictionary to use during
decompression, and (2) an indication of a Lempel-Ziv algo-
rithm variant to be used to decompress said compressed rep-
resentation of said [characters] bit strings.

34. A method of decompressing a compressed representa-
tion of a sequence of [characters] bit strings of data and/or
text, said bit strings comntaining a sequence of characters,
sald compressed representation comprising (1) window
pointers and lengths of respective longest matches of
sequences of [characters] bit strings starting at a pointer to
particular [characters] bit strings within said sequence of
[characters] bit strings with sequences of [characters] bit
strings in a [character] bit string window of a predetermined
s1ze and (2) dictionary entry numbers of respective longest
matches of sequences of [characters] bit strings starting at
said pointer to particular [characters] bit strings within a
pre-filled data decompression dictionary, said pre-filled data
compression dictionary containing predetermined combina-
tions of [characters] bit strings likely to occur frequently in
said sequence of [characters] bit strings, said decompressing
method comprising the steps of:

(a) mitializing a pointer to a first entry 1n said compressed
representation of said [characters] bit strings:;

(b) determining whether a current entry in said com-
pressed representation of said [characters] bit strings
pointed to by said pointer 1s (1) a window pointer and a
length or (2) a dictionary entry number;

(¢) 1f said current entry 1s a window pointer and a length,
retrieving a number of [characters] bit strings deter-
mined by said length starting at a [character] biz within
a current [character] bit string window pointed to by
said window pointer;

(d) 1t said current entry 1s a dictionary entry number,
retrieving [characters] bit strings at a dictionary entry
in said pre-filled data decompression dictionary i1denti-
fied by said dictionary entry number;

(e) storing [characters] bit strings retrieved in steps ¢ or d
as a decompressed representation of the [characters] bit
strings making up the longest match for the current
entry;

US RE41,152 E

35

(1) moving said pointer to a next entry in said compressed
representation of said [characters] bit strings; and

(g) repeating steps b—1 for all entries in said compressed
representation of said [characters] bit strings until all
compressed [characters] bit strings in said sequence of
[characters] bit strings have been decompressed.

35. A method as 1n claim 34, comprising the further step

of extracting from said compressed representation of said
[characters] bit strings at least one of: (1) the identity of the

pre-filled data compression dictionary to use during
decompression, and (2) an indication of a Lempel-Ziv algo-
rithm variant to be used to decompress said compressed rep-
resentation of said [characters] bit strings.

36. A data compression system for compressing [a] bit
strings of data and/or text, said bit strings containing a
sequence of characters, comprising:

a pre-filled data compression dictionary containing prede-
termined combinations of [characters] bit strings likely
to occur frequently in said sequence of [characters] bit
Strings,

a memory which stores said [text] sequence of bit strings
aiter 1t has been compressed; and

compressing means for performing the steps of (a) initial-
izing a pointer to a first [character] bit in said sequence
of [characters] bit strings for compression, (b) compar-
ing [characters] bit strings starting at said pointer with
sequences of [characters] bit strings stored in said pre-
filled data compression dictionary and determining a
longest match of said [characters] biz strings starting at
said pointer with said sequences of [characters] bit
strings stored in said pre-filled data compression
dictionary, (¢) storing a dictionary pointer to said long-
est match in said pre-filled data compression dictionary
in said memory as a compressed representation of said
[characters] bit strings making up said longest match,
(d) moving said pointer to a [character] bit in said
sequence of [characters] bit strings which follows said
longest match, and (e) repeating steps b—d for all [char-
acters] bit strings in said sequence of [characters] bit
strings to be compressed.

37. A system as 1n claim 36, further comprising means for
creating said pre-filled data compression dictionary, said
pre-filled data compression dictionary creating means nsert-
ing into said pre-filled data compression dictionary those
combinations of [characters] bit strings which most fre-
quently occur in at least one sample sequence of [characters]
bit strings which is representative of the sequence of [char-
acters] bit strings to be compressed.

38. A system as in claim 37, wherein said pre-filled data
compression dictionary creating means inserts into said pre-
filled data compression dictionary those combinations of
[characters] bit strings in at least one sample sequence of
[characters] bit strings which is representative of the
sequence of [characters] bit strings to be compressed which
have the greatest product of (a) a number of occurrences of
each of said combinations of [characters] bit strings in said
at least one sample sequence of [characters] bit strings with
(b) a difference in bit length of each said combination of
[characters] bit strings and a bit length of said dictionary
pointer.

39. A system as in claim 38, wherein said pre-filled data
compression dictionary creating means determines whether
an entire character set of said sequence of [characters] bit
strings to be compressed 1s present 1n said pre-filled data
compression dictionary, and, 1n the event that all of the char-
acters 1n said entire character set are not present in said
sequence of [characters] bit strings to be compressed, inserts

5

10

15

20

25

30

35

40

45

50

55

60

65

36

those characters in said character set which are absent from
said pre-filled data compression dictionary into said pre-
filled data compression dictionary as new dictionary entries
in place of dictionary entries which have the smallest prod-
uct determined by said pre-filled data compression dictio-
nary creating means.

40. A system as 1n claim 36, wherein said pre-filled data
compression dictionary 1s one of a number of pre-filled data
compression dictionaries, said one pre-filled data compres-
sion dictionary containing those combinations of [charac-
ters] bit strings which provide more compression of a subset
of [characters] bit strings of said sequence of data [charac-
ters] bit strings to be compressed than the compression pro-
vided to said subset of [characters] bit strings of said
sequence of data [characters] bit strings by each of the rest
of said number of pre-filled data compression dictionaries.

41. A system as 1n claim 36, wherein said memory 1s at a
location remote from said compressing means, further com-
prising means for transmitting said dictionary pointer as said
compressed representation of said [characters] bit strings
making up said longest match from said compressing means
to said memory.

42. A system as in claim 41, wherein said pre-filled data
compression dictionary 1s one of a number of pre-filled data
compression dictionaries which 1s also available at said
remote location.

43. A system as in claim 36, wherein said compressing,
means comprises means for encoding said dictionary pointer
so that said dictionary pointer can be represented using
tewer address bits.

44. A system as 1n claim 36, wherein said compressing
means stores i said memory with said compressed repre-
sentation of said [characters] bit strings making up said
longest match a reference to a pre-filled data compression
dictionary to be used during a decompression process.

45. A system as in claim 36, wherein said memory com-
prises at least one of a hard disk, a RAM, a CD ROM, a
floppy disk, and an optical disk.

46. A system as 1n claim 36, further comprising a dictio-
nary memory for storing a plurality of pre-filled data com-
pression dictionaries contaiming at least one of different sta-
tistical patterns and different genres of [text] data, whereby
the pre-filled data compression dictionary used to compress
said [text] sequence of bit strings contains data from the
most similar genre to said sequence of [characters] bit
strings to be compressed.

47. A system as in claim 46, wherein said plurality of
pre-filled data compression dictionaries are arranged 1n said
dictionary memory hierarchically by genre of [text] data
contained within the respective pre-filled data compression
dictionaries.

48. A system as in claim 46, wherein said plurality of
pre-filled data compression dictionaries are stored in said
dictionary memory such that common entries 1n said plural-
ity of pre-filled data compression dictionaries are stored 1n
said dictionary memory only one time and are shared by said
plurality of pre-filled data compression dictionaries.

49. A data compression system for compressing [a] bit
strings of data and/or text, said bit strings containing a
sequence ol characters, comprising:

a pre-filled data compression dictionary containing prede-
termined combinations of [characters] bit strings likely
to occur frequently in said sequence of [characters] bit
Strings,

a data specific data compression dictionary;

a memory which stores said [text] sequence of bit strings
after 1t has been compressed; and

US RE41,152 E

37

compressing means for performing the steps of (a) 1nitial-
izing a pointer to a first [character] 4it in said sequence
of [characters] bit strings for compression, (b) compar-
ing [characters] bit strings starting at said pointer with
sequences of [characters] bit strings stored in said pre-
filled data compression dictionary and said data spe-
cific data compression dictionary and determining a
dictionary entry number of a longest match of said
[characters] bit strings starting at said pointer with said
sequences of [characters] bit strings stored in said pre-
filled data compression dictionary and said data spe-
cific data compression dictionary, (¢) storing said dic-
tionary entry number and an extension [character] bit
string 1n said memory as a compressed representation
of said [characters] bit strings making up said longest
match and said extension [character] bit string, said
extension [character] bit string being that [character]
bit string in said sequence of [characters] bit strings to
be compressed which occurs after said longest match
starting at said pointer, (d) selectively storing said
[characters] bit strings making up said longest match
and said extension [character] bit string in said data
specific data compression dictionary as a new dictio-
nary entry, (€) moving said pointer to a [character] bit
string in said sequence of [characters] bit strings which
follows said extension [character] bit string, and (f)
repeating steps b—e for all [characters] bit strings in
said sequence of [characters] bit strings to be com-
pressed.

50. A system as in claim 49, wherein said compressing
means further comprises means for monitoring compression
performance of said pre-filled data compression dictionary
and said data specific data compression dictionary during
compression of said sequence of [characters] bit strings,
means for resetting the data compression dictionary deter-
mined by said monitoring means to be providing the lesser
data compression performance when said data specific data
compression dictionary becomes full during compression of
said sequence of [characters] bit strings, and means for sub-
stituting the data compression dictionary determined by said
monitoring means to be providing the greater data compres-
s10n performance for said pre-filled data compression dictio-
nary for compression of subsequent [characters] bit strings
in said sequence of [characters] it strings to be compressed.

51. A system as in claim 49, wherein said pre-filled data
compression dictionary and said data specific data compres-
sion dictionary share a common memory, said data specific
data compression dictionary being stored in said common
memory with any new dictionary entries stored therein dur-
ing compression of said sequence of [characters] bit strings
as at least a portion of a pre-filled data compression dictio-
nary for use in compression of a different sequence of [char-
acters of a different text] bit strings.

52. A system as 1n claim 49, wherein said compressing,
means stores 1 said memory with said compressed repre-
sentation of said [characters] bit strings making up said
longest match and said extension [character] bit string at
least one of (1) an 1ndication of which pre-filled data com-
pression dictionary was used to form said compressed
representation, (2) an indication of how dictionary address
space 15 allocated between said data specific data compres-
sion dictionary and said pre-filled data compression
dictionary, (3) an indication of a Lempel-Z1v algorithm vari-
ant to be used to decompress said compressed representation
of said [characters] bit strings, and (4) an indication of what
technique to follow when said data specific data compres-
s1on dictionary becomes filled.

10

15

20

25

30

35

40

45

50

55

60

65

38

53. A system as 1n claim 49, further comprising a dictio-
nary memory for storing a plurality of pre-filled data com-
pression dictionaries contaiming at least one of different sta-
tistical patterns and different genres of [text] data, whereby
the pre-filled data compression dictionary used to compress
said [text] sequence of bit strings contains data from the
most similar genre to said sequence of [characters] bit
strings to be compressed.

54. A system as 1n claim 33, wherein said compressing,
means repeats steps b—e for a different [text] sequence of bit
strings from the same genre as said [text] sequence of bit
strings using the data specific data compression dictionary
entries stored during the compression of said [text] sequence
of bit strings as the pre-filled data compression dictionary
for compression of said different [text] sequence of bit
strings.

55. A system as 1n claim 354, wherein said pre-filled data
compression dictionary contains means for indicating
whether the pre-filled data compression dictionary 1s formed
during the compression of [another text] different sequence
of bit strings.

56. A data compression system for compressing [a] bit
strings of data and/or text, said bit strings containing a
sequence ol characters, comprising:

a dictionary memory which stores a [character] bit string
window which contains a predetermined number of
[characters] bit strings and a pre-filled data compres-
s1on dictionary containing predetermined combinations
of [characters] bit strings likely to occur frequently in
said sequence of [characters] bit strings;

a compressed data memory which stores said [text]
sequence of bit strings after 1t has been compressed;
and

compressing means for performing the steps of (a) 1nitial-
izing a pointer to a first [character] bit in said sequence
of [characters] bit strings for compression, (b) compar-
ing [characters] bit strings starting at said pointer with
sequences of [characters] bit strings in said dictionary
memory and determining a window pointer to and a
length of a longest match of said [characters] bit strings
starting at said pointer with said sequences of [charac-
ters] bit strings in said pre-filled data compression dic-
tionary and said [character] bit string window, (c) stor-
ing said window pointer and said length of said longest
match 1 said compressed data memory as a com-
pressed representation of said [characters] bit strings
making up said longest match, (d) updating said [char-
acter] bit string window to include the [characters] bit
strings making up said longest match, (¢) moving said
pointer to a [character] it in said sequence of [charac-
ters] bit strings which follows said longest match, and
(f) repeating steps b—e for all [characters] bit strings in
said sequence of [characters] bit strings to be com-
pressed.

57. A system as in claim 56, wherein said compressing
means stores i said compressed data memory 1n step ¢ a
literal character pointed to by said pointer when a sequence
of [characters] bit strings pointed to by said pointer is not
found in said [character] bit string window or said pre-filled
data compression dictionary 1n step b.

58. A system as 1n claim 56, wherein said compressed data
memory 1s at a location remote from said compressing
means, further comprising means for transmitting said win-
dow pointer and said length of said longest match as said
compressed representation of said [characters] bit strings
making up said longest match from said compressing means
to said compressed data memory.

US RE41,152 E

39

59. A data compression system for compressing [a] bit
strings of data and/or text, said bit strings containing a
sequence of characters, comprising:

a pre-filled data compression dictionary containing prede-
termined combinations of [characters] bit strings likely
to occur frequently in said sequence of [characters] bit
Strings,

a [character] bit string window which contains a predeter-
mined number of [characters] bit strings:;

a compressed data memory which stores said [text]
sequence of bit strings after 1t has been compressed;
and

compressing means for performing the steps of (a) 1nitial-
izing a pointer to a first [character] 4it in said sequence
of [characters] bit strings for compression, (b) compar-
ing [characters] bit strings starting at said pointer with
sequences of [characters] bit strings stored in said pre-
filled data compression dictionary and with sequences
of [characters] bit strings in said [character] bit string
window and determining longest matches of said [char-
acters] bit strings starting at said pointer with said
sequences of [characters] bit strings stored in said pre-
filled data compression dictionary and with sequences
of [characters] bit strings in said [character] bit string
window, (¢) determiming whether greater compression
will be obtained by representing said [characters] bit
strings starting at said pointer as a dictionary entry
number of a longest match of said [characters] bit
strings starting at said pointer with said sequences of
[characters] bit strings stored in said pre-filled data
compression dictionary or by representing said [charac-
ters] bit strings starting at said pointer as a window
pointer to and a length of a longest match of said [char-
acters] bit strings starting at said pointer with said
sequences of [characters] bit strings in said [character]
bit string window, (d) storing said window pointer and
said length of said longest match in said compressed
data memory as a compressed representation of said
[characters] bit strings making up said longest match
when 1t 1s determined 1n step ¢ that greater compression
will be obtained by representing said [characters] bit
strings starting at said pointer as said window pointer to
and said length of said longest match of said [charac-
ters] bit strings starting at said window pointer with
said sequences of [characters] bit strings in said [char-
acter] bit string window; otherwise storing said dictio-
nary entry number of said longest match of said [char-
acters] bit strings starting at said pointer with said
sequences of [characters] bit strings stored in said pre-
filled data compression dictionary, (¢) updating said
[character] bit string window to include the [characters]
bit strings making up said longest match, (1) moving
said pointer to a [character] bit in said sequence of
[characters] bit strings which follows said longest
match, and (g) repeating steps b—f for all [characters]
bit strings in said sequence of [characters] bit strings to
be compressed.

60. A system as 1n claim 59, wherein said compressed data
memory 1s at a location remote from said compressing
means, further comprising means for transmitting to said
compressed data memory said window pointer and said
length of said longest match when 1t 1s determined by said
compressing means 1n step ¢ that greater compression will
be obtained by representing said [characters] bit strings
starting at said pointer as said window pointer to and said
length of said longest match of said [characters] bit strings
starting at said window pointer with said sequences of [char-

10

15

20

25

30

35

40

45

50

55

60

65

40

acters] bit strings in said [character] bit string window; oth-
erwise transmitting to said compressed data memory said
dictionary entry number of said longest match of said [char-
acters] bit strings starting at said pointer with said sequences
of [characters] bit strings stored in said pre-filled data com-
pression dictionary.

61. A data decompression system which decompresses a
compressed representation of a sequence of [characters] bit
strings, said compressed representation comprising dictio-
nary pointers to respective longest matches of sequences of
[characters] bit strings starting at a pointer to particular
[characters] bit strings within said sequence of [characters]
bit strings with sequences of [characters] bit strings stored in
a pre-filled data compression dictionary, said pre-filled data
compression dictionary containing predetermined combina-
tions of [characters] bit strings likely to occur frequently in
said sequence of [characters] bit strings, said decompressing
system comprising:

a compressed data memory for storing said compressed
representation of said sequence of [characters] bit
Strings,

a decompressed data memory for storing said sequence of
[characters] bit strings after decompression; and

decompressing means for performing the steps of: (a) 1ni1-
tializing a pointer to a first dictionary pointer in said
compressed representation of said [characters] bit
strings 1n said compressed data memory, (b) retrieving
a dictionary entry from said pre-filled data compression
dictionary using said dictionary pointer pointed to by
said pointer, (¢) storing said dictionary entry in said
decompressed data memory as a decompressed repre-
sentation of the [characters] bit strings making up said
longest match, (d) moving said pointer to a next dictio-
nary pointer 1n said compressed representation of said
[characters] bit strings, and (e) repeating steps b—d for
all dictionary pointers 1n said compressed representa-
tion of said [characters] bit strings in said compressed
data memory until all compressed [characters] bit
strings in said sequence of [characters] bit strings have
been decompressed.

62. A system as in claim 61, wherein said decompressing
means comprises means for extracting from said compressed
representation of said [characters] bit strings in said com-
pressed data memory at least one of: (1) the identity of the
pre-filled data compression dictionary to use during decom-
pression by said decompressing means, and (2) an indication
of a Lempel-Ziv algorithm variant to be used to decompress
said compressed representation of said [characters] bit
strings 1n said compressed data memory.

63. A data decompression system which decompresses a
compressed representation of a sequence of [characters] bit
strings, said compressed representation comprising exten-
sion [characters] bit strings and dictionary entry numbers of
respective longest matches of sequences of [characters] bit
strings starting at a pointer to particular [characters] bit
strings within said sequence of [characters] bit strings with
sequences of [characters] bit strings stored in a pre-filled
data compression dictionary and a data specific data com-
pression dictionary, said extension [character] bit string
being that [character] bit string in the sequence of [charac-
ters] bit strings which occurs after the longest match starting
at said pointer, said pre-filled data compression dictionary
containing predetermined combinations of [characters] bit
strings likely to occur frequently in said sequence of [char-
acters] bit strings, said data decompression system compris-
ng:

a compressed data memory for storing said compressed

representation of said sequence of [characters] bit

Strings,

US RE41,152 E

41

a decompressed data memory for storing said sequence of
[characters] bit strings after decompression; and

decompressing means for performing the steps of: (a) 1ni-
tializing a data specific data decompression dictionary,
(b) initializing a pointer to a first dictionary entry num-
ber in said compressed representation of said [charac-
ters] bit strings in said compressed data memory, (c)
retrieving a dictionary entry and an extension [charac-
ter] bit string from one of said pre-filled data compres-

ston dictionary and said data specific data decompres-
s1on dictionary using a dictionary entry number pointed
to by said pointer, (d) storing said dictionary entry 1n
said decompressed data memory as a decompressed
representation of the [characters] bit strings making up
said longest match,(e) selectively storing said [charac-
ters] bit strings making up said longest match and said
extension [character] biz string into said data specific
data decompression dictionary, (1) moving said pointer
to a next dictionary entry number 1 said compressed
representation of said [characters] bit strings in said
compressed data memory, and (g) repeating steps c—1
for all dictionary entry numbers and extension [charac-
ters] bit strings in said compressed representation of
said [characters] bit strings until all compressed [char-
acters] bit strings in said sequence of [characters] bit
strings have been decompressed.

64. A system as 1n claim 63, wherein said decompressing
means further comprises means for extracting from said
compressed representation of said [characters] bit strings in
said compressed data memory at least one of: (1) an 1indica-
tion of the pre-filled data compression dictionary to use dur-
ing decompression, (2) an indication of how dictionary
address space 1s allocated between said data specific data
compression dictionary and said pre-filled data compression
dictionary, (3) an indication of a Lempel-Z1v algorithm vari-
ant to be used to decompress said compressed representation
of said [characters] bit strings, and (4) an indication of what
technique to follow when said data specific data compres-
s1on dictionary becomes filled.

65. A data decompression system which decompresses a
compressed representation of a sequence of [characters] bit
strings, said compressed representation comprising window
pointers and lengths of respective longest matches of
sequences of [characters] bit strings in a [character] bit
string window having a pre-filled data compression dictio-
nary appended thereto with a sequence of [characters] bit
strings 10 be compressed, said pre-filled data compression
dictionary containing predetermined combinations of [char-
acters] bit strings likely to occur frequently in said sequence
of [characters] bit strings, said data decompression system
comprising;

a compressed data memory for storing said compressed
representation of said sequence of [characters] bit
Strings,

a decompressed data memory for storing said sequence of
[characters] bit strings after decompression; and

decompressing means for performing the steps of: (a) 1ni-
tializing a pointer to a first window pointer and length
in said compressed representation of said [characters}
bit strings 1n said compressed data memory, (b) retriev-
ing a number of [characters] bit strings determined by
said length starting at a [character] bi¢ within a current
[character] bit string window pointed to by a window
pointer which 1s pointed to by said pointer, (¢) storing
said retrieved [characters] bit strings as a decompressed
representation of the [characters] bit strings making up
said longest match in said decompressed data memory,

10

15

20

25

30

35

40

50

55

60

65

42

(d) moving said pointer to a next window pointer and
length in said compressed representation of said [char-
acters] bit strings in said compressed data memory, and
(e) repeating steps b—d for all window pointers and
lengths in said compressed representation of said [char-
acters] bit strings until all compressed [characters] bit
strings in said sequence of [characters] bit strings have
been decompressed.

66. A system as in claim 635, wherein said decompressing
means further comprises means for extracting from said
compressed representation of said [characters] bit strings in
said compressed data memory at least one of: (1) the identity
of the pre-filled data compression dictionary to use during
decompression, and (2) an indication of a Lempel-Z1v algo-
rithm variant to be used to decompress said compressed rep-
resentation of said [characters] bit strings.

67. A data decompression system which decompresses a
compressed representation of a sequence of [characters] bit
strings, said compressed representation comprising (1) win-
dow pointers and lengths of respective longest matches of
sequences of [characters] bit strings starting at a pointer to
particular [characters] bit strings within said sequence of
[characters] bit strings with sequences of [characters] bit
strings in a [character] bit string window of a predetermined
s1ze and (2) dictionary entry numbers of respective longest
matches of sequences of [characters] bit strings starting at
said pointer to particular [characters] bit strings within a
pre-filled data decompression dictionary, said pre-filled data
compression dictionary containing predetermined combina-
tions of [characters] bit strings likely to occur frequently in
said sequence of [characters] bit strings, said data decom-
pression system comprising:

a compressed data memory for storing said compressed
representation of said sequence of [characters] bit
Strings,

a decompressed data memory for storing said sequence of
[characters] bit strings after decompression; and

decompressing means for performing the steps of: (a) 1ni1-
tializing a pointer to a first entry 1 said compressed
representation of said [characters] bit strings in said
compressed data memory, (b) determining whether a
current entry in said compressed representation of said
[characters] bit strings pointed to by said pointeris (1) a
window pointer and a length or (2) a dictionary entry
number, (¢) 1f said current entry 1n said compressed
representation 1s a window pointer and a length, retriev-
ing a number of [characters] bit strings determined by
said length starting at a [character] bi¢ within a current
[character] bit string window pointed to by said win-
dow pointer, (d) 1f said current entry 1n said compressed
representation 1s a dictionary entry number, retrieving,
[characters] bit strings at a dictionary entry in said pre-
filled data decompression dictionary identified by said
dictionary entry number, (e) storing [characters] bit
strings retrieved 1n steps ¢ or d 1n said decompressed
data memory as a decompressed representation of the
[characters] bit strings making up the longest match for
the current entry, (1) moving said pointer to a next entry
in said compressed representation of said [characters}
bit strings 1n said compressed data memory, and (g)
repeating steps b—1I for all entries 1n said compressed
representation of said [characters] bit strings until all
compressed [characters] bit strings in said sequence of
[characters] bit strings have been decompressed.
68. A system as in claim 67, wherein said decompressing
means further comprises means for extracting from said
compressed representation of said [characters] bit strings in

US RE41,152 E

43

said compressed data memory at least one of: (1) the identity
of the pre-filled data compression dictionary to use during
decompression, and (2) an indication of a Lempel-Ziv algo-
rithm variant to be used to decompress said compressed rep-
resentation of said [characters] bit strings.

69. A data compression method for compressing bit
strings of data and/or text, said bit strings containing a
sequence of characters, comprising the steps of:

(a) compressing a first sequence of bit strings in a first
document to be compressed so as to create a data spe-
cific data compression dictionary for said first
sequence of bit strings;

(D) determining if a second sequence of bit strings in a
second document to be compressed has a similar statis-
tical pattern or belongs to the same data genre as said
first sequence of bit strings; and

(c) when said first and second sequences of bit strings to
be compressed have a similar statistical pattern or
belong to the same data genre, compressing said sec-
ond sequence of bit strings using said data specific data
compression dictionary to create a compressed version
of said second document for storvage and/ov data trans-
mission.

70. A data compression method for compressing bit

strings of data and/or text, comprising the steps of.

(a) selecting a pre-filled data compression dictionary con-
taining predetermined combinations of bit strings likely
to occur frequently and have a long bit sequence length
in a sequence of bit strings to be compressed;

(b) initializing a pointer to a first bit in said sequence of

bit strings to be compressed;

(c) comparing bit strings starting at said pointer with bit
strings stoved in said pre-filled data compression dic-
tionary and determining a match with a product of a

frequency of occurrence of a bit sequence and length of

the bit sequence for said bit strings starting at said
pointer with said sequences of bit strings stored in said
selected pre-filled data compression dictionary;

(d) storing a compressed vepresentation of said bit strings
making up said match,

(e) moving said pointer to a bit in said sequence of bit
strings which follows said match; and

(f) repeating steps c—e for all bit strings in said sequence

of bit strings to be compressed.

71. A method as in claim 70, comprising the further step
of encoding frequently used bit strings in said pre-filled data
compression dictionary into smaller bit strings.

72. A method as in claim 70, comprising the further steps
of variable length-encoding said compressed representa-
tions of said bit strings making up said match and transmit-
ting said encoded compressed vepresentations.

73. A method as in claim 70, comprising the further steps
of storing said compressed vepresentations in a data specific
data compression dictionary, determining overlap of dictio-
nary entries between pre-filled data compression dictionar-
les and said data specific data compression dictionary by
performing frequency analysis of a collection of documents
from which said pre-filled data compression dictionaries are
Jormed, determining whether all vepeating bit strings are
present in the pre-filled data compression dictionaries, and
if a repeating string is not present in the pre-filled data com-
pression dictionaries, inserting the vepeating stving that is
not present into at least one of the pre-filled data compres-
sion dictionaries.

74. A method as in claim 73, comprising the further step
of making room for the inserted vepeating string in said at

44

least one pre-filled data compression dictionary by using a
least recently used method to determine which pre-filled
data compression dictionary entry should be discavded.

73. A data compression method for compressing bit

5 strings of data and/or text, comprising the steps of:

10

15

20

25

30

35

40

45

50

55

60

65

(a) storing a plurality of pre-filled data compression dic-
tionaries containing at least one of different statistical
patterns and different genves of data;

(b) selecting a pre-filled data compression dictionary from
said plurality of pre-filled data compression dictionar-
les so as to optimize compression speed of said bit
strings to be compressed;

(c) initializing a pointer to a first bit in said sequence of
bit strings to be compressed;

(d) comparing bit strings starting at said pointer with bit
strings stoved in said pre-filled data compression dic-
tionary and determining a longest match of said bit
strings starting at said pointer with said sequences of
bit strings stoved in said selected pre-filled data com-
pression dictionary;

(e) storing a compressed representation of said bit strings
making up said longest match;

() moving said pointer to a bit in said sequence of bit
strings that follows said longest match; and

(g) repeating steps d—f for all bit strings in said sequence

of bit strings to be compressed.

76. A method as in claim 75, whervein said selecting step
comprises the step of selecting the pre-filled data compres-
sion dictionary most appropriate to a genre of the bit strings
to be compressed using clustering methods.

77. A method as in claim 75, wherein said storing step
comprises the step of storing pre-filled data compression
dictionaries on communicating servers.

78. A data compression method for compressing bit
strings of data and/or text, comprising the steps of.

(a) storing a plurality of pre-filled data compression dic-
tionaries containing at least one of different statistical
patterns and different genves of data;

(b) selecting a pre-filled data compression dictionary from
said plurality of pre-filled data compression dictionar-
les so as to optimize length of dictionary entry with
respect to computing time needed to build the pre-filled

data compression dictionary;

(c) initializing a pointer to a first bit in said sequence of
bit strings to be compressed;

(d) comparing bit strings starting at said pointer with bit
strings stored in said pre-filled data compression dic-
tionary and determining a longest match of said bit
strings starting at said pointer with said sequences of

bit strings stoved in said selected pre-filled data com-
pression dictionary;,

(e) storing a compressed representation of said bit strings
making up said longest match;

() moving said pointer to a bit in said sequence of bit
strings that follows said longest match; and

(g) repeating steps d—f for all bit strings in said sequence

of bit strings to be compressed.

79. A method as in claim 78, wherein said data comprises
at least one of computer programs, database files, images,
and ASCII code.

80. A data compression method for compressing bit
strings of data and/or text, comprising the steps of:

(a) compressing a first sequence of bit strings in a first

document to be compressed so as to create a data spe-

US RE41,152 E

45

cific data compression dictionary for said first
sequence of bit strings,; and

(b) compressing a second sequence of bit strings in a
second document using at least a portion of said data
specific data compression dictionary to create a com-
pressed version of said second document for storage
and/or transmission, where the second sequence of bit

strings vepresents data and/or text from a file and/or
data genve that is different from the file and/or data
genre of said first sequence of bit strings.

81. A method as in claim 80, comprising using a data
specific data compression dictionary created during com-
pression of said second sequence of bit strings to update said
data specific data compression dictionary for said first
sequence of bit strings.

82. A method as in claim 81, comprising providing said
data specific data compression dictionary created during
compression of said second sequence of bit strings as at
least one of the following: an update to a pre-filled data
compression dictionary for an old genre, an additional pre-
filled data compression dictionary, and a replacement for an
existing pre-filled data compression dictionary.

10

15

46

83. A method as in claim 1, wherein the sequence of bit
strings to be compressed are stoved on a device’s local stor-
age memory, loaded onto local processing hardware of said
device, processed on said local processing hardware in
accorvdance with steps (a)—(f), and re-storved on said device’s
local storage memory for purposes of saving memory space.

84. A method as in claim 83, wherein the sequence of bit
strings to be compressed are stoved on a device’s local stor-
age memory, loaded onto local processing havdware of said
device, processed on said local processing havdware in
accordance with steps (a)—f), and said processed bit strings
are transmitted to a rveceiver device for purposes of reducing
a quantity of data to be transmitted via a connection between
said local processing hardware and said receiver device.

85. A method as in claim 84, wherein processed bit strings
received by said receiver device is loaded into a local stor-

age memory of said receiver device as a compressed form of
said sequence of bit strings for decompression by decom-

»q pression havdware of said receiver device.

	Front Page
	Drawings
	Specification
	Claims

