USOORE41012E
(19) United States
a2 Relssued Patent (10) Patent Number: US RE41,012 E
Barry et al. 45) Date of Reissued Patent: Nov. 24, 2009
(54) REGISTER FILE INDEXING METHODS AND (56) References Cited
APPARATUS FOR PROVIDING INDIRECT U.S. PATENT DOCUMENTS
CONTROL OF REGISTER ADDRESSING IN A $391 891 A 1994 Tromitu of al
321, omitsu et al.
VLIW PROCESSOR 5,485,629 A 1/1996 Dulong
: : : 5,495,598 A 2/1996 Byersetal. 714/712
(75) Inventors: Edwin Franklin Barry, Vilas, NC (US); 5,517,628 A * 5/1996 Morrison etal. 712/234
Gerald George Pechanek, Cary, NC 5,649,135 A 7/1997 Pechanek et al.
(US); Patrick R. Marchand, Apex, NC 5,671,382 A 9/1997 Shintani et al.
(US) 5,680,600 A 10/1997 Childers et al.
5,696,922 A 12/1997 Fromm
(73) Assignee: Altera Corporation, San Jose, CA (US) g’zg’ggg i g//,}ggg i;ﬁ;? ctal
5,826,096 A 10/1998 Baxter
(21) Appl. No.: 10/860,669 5,890,222 A * 3/1999 Agarwaletal. 711/220
6,023,252 A 2/2000 Yano et al.
(22) Fll@d Jun. 3, 2004 6,081,884 A 6/2000 Miller
* cited by examiner
Related U.S. Patent Documents Primary Examiner—Daniel Pan
?eiisue of: (74) Attorney, Agent, or Firm—Priest & Goldstein, PLLC
64) Patent No.: 6,446,190
Issued: Sep. 3, 2002 (57) ABSTRACT
Appl. No.: 09/267,570 A double indirect method of accessing a block of data in a
Filed: Mar. 12, 1999 register file is used to allow efficient implementations with-

out the use of specialized vector processing hardware. In
addition, the automatic modification of the register address-
ing 1s not tied to a single vector instruction nor to repeat or
loop 1nstructions. Rather, the technique, termed register file
(51) Int.CL indexing (RFI) allows full programmer flexibility in control

U.S. Applications:

(60) Provisional application No. 60/077,766, filed on Mar. 12,
1998.

Gool’ 9/34 (2006.01) of the block data operational facility and provides the capa-
GO6F 9/35 (2006.01) bility to mix non-RFI instructions with RFI instructions. The
GO6F 9/44 (2006.01) block-data operation facility 1s embedded in the 1VLIW
GO6F 9/355 (2006.01) ManArray architecture allowing its generalized use across
GO6F 9/30 (2006.01) the instruction set architecture without specialized vector

istructions or being limited 1n use only with repeat or loop

(52) US.CL oo 712/229; 712/230; 712/24; ~ structions. The use of RFI 1n a processor containing mul-
712/206: 712/215- 712/207- 712/211: 712/220- tiple heterogeneous execution units which operate 1n

| | | 711/21 ﬁi; 711 /215 parallel, such as VLIW or 1VLIW processors, allows for

elficient pipelining of algorithms across multiple execution

(58) Field of Cl?iszl/ﬁz;iglgg Sze(? 61‘ cgl 52072 11 ;%g%i’ units while minimizing the number of VLIW 1nstructions
711216, 220 reaured
See application file for complete search history. 47 Claims, 12 Drawing Sheets
m-zsaizh‘
SCALABLE WA¥SRAY
ﬂiﬂﬁiﬁ%ml_
" - | 1
05— DGTAXTION BUE |
m'_&'ﬂlnm — :-:-f_i—'-—..:s 7 |'
____:';;E‘fw' = %}% | %11%11 1| |
l\i_"fiﬂmm B :E_'_!“ %j"

15— FE3IRELD

U.S. Patent Nov. 24, 2009 Sheet 1 of 12 US RE41,012 E

PE 32 DAIA |13, 101 FIG. 1A
o | o

AN EET
64-255 ENORY
125 — 41—

SCALABLE MANARRAY - 1 | BCAST DATA BUS
DATA BUS . 100
(1/0 B/¥ DEPENDENT) SP LOCAL MEM. , 2811
§ DATA BUS e
183 INTERFACE LOAD | oo
PE CONFIG. 12
REGISTER FILE
181 SP CONFIG. {71
REGISTER FILE . -/
o =
i
185 T

———— B

|
INTERFACE |
!

|

|

|

|

|

|

n :

REGISTER FILE| | ooy =

151 |
| el |
|

|

|

|

|

|

|

i
‘ I
|
e _ B e B
- ' =
NEMORY
—_—

[

»
L)
*

= 0 gl B F DN T EEEaweae F F TR b

157" '

|
55— I

REGISTER FILE

US RE41,012 E

Sheet 2 of 12

0¢

8¢

3¢

be

¢¢

Vi

1Y

LINA V0

LINMY JHOLS

1404

1H0d

1H0d

3114
BIRYREL

0¢

431133
S$SJ400v 1h0d

43151934
553400V 140q

43151338
3400V 1404

3l

b

Nov. 24, 2009

U.S. Patent

300340 NSA
HO VR WV

HILST93H NOTLIMHLSNI zoufﬁuh%m (5) Ay E (S)14
T

0
SNE NOLLINYLSNI

(LHV HOTHd)
g1 "91d

| 4] ‘N
(OHY1S)=3 *SHONIA “[T0 1A

[dS] AX 4]

04 NI G3I4SILVS ST NOILIONOD 4/1 41 AINO NOI1vd3d0 0G

{0=4) }1 NSQA[3VN) {SIHONIA+{T0 JA
(W=4) 1 NYW[3YN J{SIHOWIA+{T0 JA)
(V=4 J0=4) JT NIV[JVN](SIHONIA+[T0 JA)

US RE41,012 E

(0=0) 41 [NSO}(SHONIA*[FOJA) 330333) INOYD=S | gt ax
N=0) 31 [IVH](SHOKTA*[JOIA) 24n02X3| " {GWV1S)=3 "SHONIA “[T0IA

(¥=0) $T [NV] (SHONIA*[F0 JA) 3}n39x3
(10) 1 [M1](SHOHTA*[F0 o) 330833
(5=0) 41 [NS](SH0HTA+[T0JA) 23n0ax3

NOI1¥H3d0 SONYY3d0 NOILINHLSNI
NOI1VH1d0/XVINAS

E0¢

Sheet 3 of 12

8¢

914

Nov. 24, 2009

mz58 zu

U.S. Patent

(0H1S31q 3.Je}S OnoJg [0JJU0] 35T § {JH) S}IQ JJE4S OnoJd [0J380) PU

}X3ju0) 3J015ay/3ARS Xapu] 1J04 {OHI\YW 3 (THINIY
}Xxajun) aJojsay/anes xapu] jJod (18)3J03S § (0§1Pe0] (TH)NSC

Ja}510ay (041407 (1§)3J045 § (0B)PEC] Id4 fu¢
Ja]SI0aY 10J3u0) (OHINVW § (THINTY I4H 15
Ja)stlay [0Jju0) {18)3J0}S § "{0@)Peo] " {THINSQ IdH 35

aueN

US RE41,012 E

JaSTuay [0J1U0] (OHINVW 3 (THINIY T4 Pu¢
(THINSC

J3}5163y

~ : N :Butacio) ayy ase 5033s103Y (2KJW) 2 UOTSU3IXT il
. i 9€ 91
< — " powdesay 00 | pemJasey | paAJesay | ITI |
b I S I T D T e
= —peAmSsy | paKasay | paAasay | 700
% —penjessy | panJasey | poAJSsay | (00
awen J3ysi0ay f(atuowauy) 34| (dTuouauy) d4S mmm._mnm
:Butmorr04 Ay} aJe SJa}stha UoISUalX
2 gm.\\ ﬁ :.* u 1St03Y (FXUM) T UOISURLXI JuW
< g€ "9Id
<
. 5001124900 130(q (150 PUE 'aJ0]S_'peo] Joj SSaJppy a(qeu3 10| (S0 051130 T
= (3J3Y paddey SJa}SThaJ T)2-JaTST0ay ejeq UOTSUAIX] Jul| JHOXJHW | cHOX3WW | OFIII
= 343y paddel 513151630 TYJuMIT-Ja}S10ay ejeq uorsualNg iRl THOX3tH THOXIHH TOTTTT
(00000000%0 ST }ihejaq] JajSilay SSaJppy UOTSUBINT JHW] BVXHM HvX It 00TTTT
- pohosyy) pamdasay) paAdesay | TEOTID
D T PO R A TR A1 d1!
- e poAJosay] paaJasay | peAdsSay | 700101
- poAJasey]| paAdassy | paAdassy | (00701
JueN Jajsibay] (JTUOUAUN) 3d | [JTUOUAUK) ¢S | SS3JPRY

ccm.unxx“

vE 91

U.S. Patent

— paesy | pakissay | panasy

1JeIST 1Je1ST N im

0T

C IWYIH | IWWIdH] 107

1510134 ISWIY [007

TWYI Y TWYIdH | 110

1S 1014 1S10I8] 010

ONVIH | OWvIdH | 700

057014 RN %
(J[UoWBUK) 3d | (JTUOURK) 4S | oy nm

:SAO{[0} S ST S34 Pue S Joj JH 3uf

08t
[t
D3E
05E
1143
Ott
0ct
1€

¥OE
t0t
¢Ot
10t

U.S. Patent Nov. 24, 2009 Sheet 5 of 12 US RE41,012 E

FIG. 4A

HRFXAR
Reset value: 0x00000000

41
RS T
MRFX MRFX

108 406 404 402

FIG. 4B

MAFXDAR! or MAFXDR?
Reset value: Undefined

mmmmmmmmmmmmmmman@am

420

U.S. Patent Nov. 24, 2009 Sheet 6 of 12 US RE41,012 E

FIG. 3

RFIDLSO MAFX2 Address 000 .
31a0[28128[27 26 es 24 a2z T20] B[] 45 1413/ 2[14110[8 1B 7[6] 5] 4[3] 2 1] 0

OSUD Rt | DSUO Rx | DSUO R STOREQ Rs LOADO R

0 0 0 0 covot. | conTroL | cowtmal |0 © 0 0| cowtRoL CONTROL

210 505 504 503 502 501
REIAM0 MRFX2 Address 001

3130129 28[2 726 252412 322f2 1120 1] 18 7 6] a5 44! 13) 12 11{ 10f 9 { 8| 7] 6] 5] 4]3[2{1]0
ALUD Rt | ALUD Rx | ALUO n{ NAUO Rt | MAUO Rx | MAUD n{
0 0 0 Of coNtROL | CONTROL | CONTRO CONTROL | CONTROL | CONTRO
220 526 595 524 523 522 521
RFIDLSE NRFXZ Address 010

31[30[28[2e[27]26[2s 24[23[22f2 1]20] 19[8 73615 4[3] 12]1 3 30] 8 [8] 7] 6} 5[4]3] 2] 1] 0

DSUY Rt | DSUL Rx | OSU1 R
o 0 0 0| cONTROL | CONTAOL | CONTROL {0 0 0 o[STORELBS g o o o LOADLRY
: - RESERVED | RESERVED | RESERVED CONTROL CONTROL
30

RFIANI MRFX2 Address 011
31[30ed 2827 262524232l 120 a8 7 [s 3[el 4 {10} 8 [} 76 [5] 4{3[2] 1[0

ALU1 Rt | ALU1 Rx | ALU1 R{ MAUL Rt | MAUL Rx | HAUY FI[
00 0 0| CONTROL { CONTROL | CONTROL [0 O 0 O] CONTROL | CONTROL | CONTRC

RESERVED | RESERVED { RESERVED RESERVED | RESERVED | RESEAVED

240
RFIOLSY MRFX2 Address 100

31]30[29] 2827126 2s[2423f22]2 11200 19 18] 47] 161 45[14] 131 2214 d0{ S | B[7| 6] 514} 3] 2] 1] 0
"0(DSU Rt Index|DSU Rx Index|DSU Ry Index{0{0]Store Bs Index|{0]0| Load Rt Index
530

RFIAMI MRFXZ Address 101

A[30[29028]2726[2s 242322 2 oo 18] 18] 47] 6] 45 4] 43] 2] 44{ 0] 9 [B[7|6 [5{4]3[2[1] 0
"0[ALU Rt Index|ALU Rx Index|ALU Ry Index] 0{MAU Rt Index|MAU Rx Index|MAU Ry Index

Ssoﬂeserved MRFX2 Address 110

31[30]29[28l27]2e[25]2423[22[21]20] 15[18] 17[18] 15[t4] 13[2] 14 10f 8 B 7[B[5[4]3[2{1] 0.
- Peserved

Reserved

970
RF1Start MRFX2 Address 111

BTG] [7 % FREABAURE (|]2 (]
10100100 10 IRl 00 v oo 5 E S
0 562

587 986 585 584 583
081

o

ALL

IIIIIH!LIIIII
AL

LOAD/STORE

RESERVED

L

A
m :
i

.mm__m___wm_wmmm_

HII-
mllil

E

LOAD/STORE

RESERVED
__RESERVED

US RE41,012 E
512
APPLICABLE
UNITS

1] AL

1] AL

AL

AL

AL

AL

b00

505 606 507 608 505610 514

Sheet 7 of 12

604
B

RF

FIG. b

b03

Nov. 24, 2009

602

601

INC

U.S. Patent

U.S. Patent Nov. 24, 2009 Sheet 8 of 12 US RE41,012 E

FIG. 7A

LIM-LOAD IMMEDIATE /700

ENCODING

31{30]29]28127126]25]24] 23] 22{ 211 20] 19] 18] 17] 6] 15] 14] 13 12] 11] 10]9]8]7[6[5]4] 3] 2[1]0
GROUP [S/P{L/SL 000 fcEYl LOC Rt5-0 TNM1G

LOC Location for LIM instruction
00-Load Hi. do not affect HO

01:=Load H), do not affect Hi
10-Load HO, H1=-0x0000
11=Load HO, H1=-0xFFFF

FIG. 7B
710

Syntax/Operation ’(/

_Instruction | Operands | Operation

WORD
if (MSB(IMM17)==1)Rt.HY OxFFFF
LIM.[SP).W Rt, IMM17

if (MSB(IMM17)==0)Rt .H1 Ox0000
T.LIM.ISP].W Rt, IMM17 Do operation only if T condition is satisfied in FO

Rt.H) =—IMM16

HALFWORD
LIM{SPI.H1 [Rt IMHI6 |RtHi=—IMMGE
T.LIN.[SP].[HoH1]

Arithmetic Flags Affected
None
Cycles: 1

US RE41,012 E

Sheet 9 of 12

Nov. 24, 2009

U.S. Patent

yea NS

VK

Nmm.\\u....mwd
1IN 0¥0

311
EINRE.

1INN 34018

gi8

S

8§ 9Id

008

{18
EIRYGE

$53600v 160d

lIIl
lI. 1y 1901 310N

1T 1y Toumoo| ~¥ed :I
300dN 18

Ge8

= X 3 1T
A e YIS
0Hd1SI33Y

1041N0J

44151338
GV3HY A001
1H0d 03X30NI

3LVQdN

SN VIVO JUA

508 908 G08 108
NOISN3LX3 300240 NSQ
Y3L1ST934 NOLLINYLSNI 30070 (G)AY () %Y (S)1Y W0 CONH VY

V0B cng NOTLONWLSNT

£08

Sheet 10 of 12 US RE41,012 E

Nov. 24, 2009

U.S. Patent

ny

LINQ QYO

1IN JH01S

S

006

6 9Id

E)E
43151934

LEIRYRE!

SS3HOQY 140d

S A
— 11—
I I S () e

1041NOD

_ﬂu 4

-
B
| | _
[e) 25 e | =\) | {aLSI9
| v _ 404 (T
L.]

=1 |

NOISN3LX3
PR I TR N
b

v}

SAE NOILJNGLSNI

U.S. Patent Nov. 24, 2009 Sheet 11 of 12 US RE41,012 E

FIG. 10

3§

1005
1000

US RE41,012 E

Sheet 12 of 12

Nov. 24, 2009

U.S. Patent

411!

03
)
T0HLNO?

3183
I

3114
43151934

BTt "
" 43151334
" 10HINOD
| 31V(dN
0ETT —1___

H41SI934
853400V 140d

104INOD
XMW 3 110

l 1HVAS
__ Ehil _
lh

SNg Y1V JHK II...IIIII...II...II..I.I
\\ NOISNALX3 300240
0017 H31SI934 NOTLINHISNI 300340 EE ()14 NOLLIHLSNT

IT 974 SN NOILINHLSNI

US RE41,012 E

1

REGISTER FILE INDEXING METHODS AND
APPARATUS FOR PROVIDING INDIRECT
CONTROL OF REGISTER ADDRESSING IN A
VLIW PROCESSOR

Matter enclosed in heavy brackets [] appears in the
original patent but forms no part of this reissue specifica-
tion; matter printed in italics indicates the additions
made by reissue.

CROSS REFERENCE TO RELATED
APPLICATIONS

The present application claims the benefit of U.S. Provi-
sional Application Ser. No. 60/077,766 filed Mar. 12, 1998
and entitled “Register File Indexing Methods and Apparatus
for Providing Indirect Control of Register in a VLIW Proces-

22

SOT.

FIELD OF THE INVENTION

The present invention relates generally to improvements
in very long instruction word (VLIW) processing, and more
particularly to advantageous register file indexing (RFI)
techniques for providing indirect control of register address-
ing in a VLIW processor.

BACKGROUND OF THE INVENTION

One 1mportant processor model 1s that of vector process-
ing. This model has been used in prior art super computers
for many years. Typical features of this model are the use of
specialized vector instructions, specialized vector hardware,
and the ability to efficiently operate on blocks of data. It 1s
this very ability to operate typically only on vector data
types that makes the model inflexible and unable to effi-
ciently handle diverse processing requirements. In addition,
in prior art vector processors, support for control scalar pro-
cessing was typically done 1n separate hardware or 1n a sepa-
rate control processor. Another processor model 1s the prior
art very long instruction word (VLIW) processor model
which represents a parallel processing model based on the
concatenation of standard uniprocessor type single function
operations 1nto a long instruction word with no specialized
multicycle vector processing facilities. To efficiently operate
a block-data vector pipeline, 1t 1s important to have an eifi-
cient interface to deliver the individual vector elements. For
this purpose, a successiul class of prior art vector machines
have been register based. The register based vector proces-
sors provide high performance registers for the vector ele-
ments allowing ellicient access of the elements by the func-
tional execution units. A single vector istruction tied to an
implementation specific vector length value causes a block
data multicycle operation. In addition, many vector
machines have provided a chaining facility where operations
on the individual vector elements are directly routed to other
vector functional units to improve performance. These previ-
ous features and capabilities provide the background for the
present mvention. It 1s an object of the present invention to
incorporate scalar, VLIW, and flexible vector processing
capabilities efficiently in an indirect VLIW processor.

In typical reduced instruction set computer (RISC) and
VLIW processors, the access of register operands 1s deter-
mined from short instruction word (SIW) bit-fields that rep-
resent the register address of operands stored in a register
file. In register-based vector processors, specialized hard-
ware 1s used. This hardware 1s mitiated by a single vector
instruction and automates the accessing of vector elements
(operand data) from the dedicated vector registers. The mul-
ticycle execution on the block of data 1s also automated.

10

15

20

25

30

35

40

45

50

55

60

65

2

In the prior art, there have also been specialized hardware
techniques used to support the automatic accessing or regis-

ter operand data. For example, U.S. Pat. No. 5,680,600
which describes a technique for accessing a register file
using a loop or repeat istruction to automate the register file
addressing. This approach ties the register addressing to a
loop or repeat instruction which causes a load or store
instruction to be repeated while directing the register address
to increment through a register file’s address space. An elec-
tronic circuit 1s specified for reducing controller memory
requirements for multiple sequential instructions. Thus, this
prior art approach appears to be applied only to load and
store type operations mvoked by a special loop or repeat
instruction. As such, 1t 1s not readily applicable to indirect

VLIW ManArray processors as addressed further below.

SUMMARY OF THE INVENTION

A ManArray family of processors may suitably consist of
multiple “indirect VLIW” (1VLIW) processors and proces-
sor elements (PEs) that utilize a fixed length short instruction
word (SIW) of 32-bits. An SIW may be executed mndividu-
ally by one of up to eight execution units per processor and
in synchronism in multiple PEs 1n a SIMD mode of opera-
tion. Another type of SIW 1s able to reference a VLIW 1ndi-
rectly to cause the 1ssuance of up to eight SIW instructions in
parallel 1n each processor and 1n synchronism in multiple
PEs to be executed 1n parallel.

Operands are stored 1n register files and each execution
unit has one or more read and write ports connected to the
register file or files. In most processors, the registers selected
for each port are addressed using bit fields 1n the instruction.
With the indirect VLIW technique employed 1n the ManAr-
ray processor, the SIWs making up a VLIW are stored 1n a
VLIW memory. Since each SIW fixes a register operand
field by defimition for a single operation on register accessed
operand data, multiple VLIWs are required whenever a
single operand field must be different as required by a pro-
cessing algorithm. Thus, a suitable register file indexing
technique for operation on blocks of data for use 1n conjunc-
tion with such processors and extendible more generally to
parallel array processors will be highly advantageous.

This operand-data fixed register specification problem 1s
solved by the present mvention by providing a compact
means of achieving pipelined computation on blocks of data
using indirect VLIW instructions. A double indirect method
ol accessing the block of data 1n a register file 1s used to
allow efficient implementations without the use of special-
1zed vector processing hardware. In addition, the automatic
modification of the register addressing 1s not tied to a single
vector 1nstruction, nor to repeat or loop instructions. Rather,
the present technique, termed register file mndexing (REFI)
allows full programmer flexibility in control of the block

data operational facility and provides the capability to mix
non-RFI istructions with RFI instructions. The block-data
operation facility 1s embedded in the 1VLIW ManArray
architecture allowing its generalized use across the instruc-
tion set architecture without specialized vector instructions,
and without being limited to use only with repeat or loop
istructions. Utilizing the present invention, chaining opera-
tions are inherently available without any direct routing
between functional units further simplifying implementa-
tions. In addition, the present register file indexing architec-
ture reduces the VLIW memory requirements which can be
particularly significant depending on the types of algorithms
to be coded.

Further, when expressed as unrolled loops of VLIW
instructions, many computations exhibit clear register usage

US RE41,012 E

3

patterns. These patterns are characteristic of computational
pipelines and can be taken advantage of with the ManArray
indirect vector processing embedded 1n an indirect VLIW
processor as adapted as described further herein.

Among its other aspects, the present invention provides a
unique mitialization method for generating an operand reg-
ister address, a unique double-indirect execution
mechanism, a unique controlling method, and allows a reg-
1ster {ile to be partitioned 1nto independent circular butifers. It
also allows the mixing of RFI and non-RFI instructions, and
a scaleable design applicable to multiple array organizations
of VLIW processing elements. As addressed 1n further detail
below, the invention reduces both the VLIW memory and, as
a consequence, SIW memory requirements for parallel
instruction execution 1 an 1VLIW array processor.

These and other features, aspects and advantages of the
invention will be apparent to those skilled 1n the art from the
tollowing detailed description taken together with the
accompanying drawings.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1A illustrates a 2x2 ManArray 1VLIW processor
suitable for use 1n conjunction with the present invention;

FIG. 1B 1illustrates a typical prior art register addressing
mechanism:

FIG. 2A 1llustrates an XV 1nstruction encoding with RFI
enabling bits 1n accordance with the present invention;

FIG. 2B illustrates an XV syntax/operation description
suitable for use 1n the present mvention;

FI1G. 3 A 1llustrates a ManArray miscellaneous register file
(MRF) identitying the location of the RFI control registers;

FI1G. 3B illustrates the MRFX1 extension registers;

FIG. 3C illustrates the MRFX2 extension registers, and
identifies the RFI registers used in the sequence processor
(SP) and processing elements (PEs);

FIG. 4A 1llustrates an MRFXAR register which controls
the selection of the extension register;

FIG. 4B 1illustrates the data format for MRFXDRI1 and
MRFXDR2 wherein the RFI control registers are mapped as
specified by the MRFXAR register values of FIG. 4A;

FIG. § illustrates preferred RFI control registers for use in
conjunction with the present invention;

FIG. 6 illustrates exemplary specific control encodings
used for each RFI port;

FIG. 7TA 1illustrates a suitable load immediate (LIM)

instruction encoding which may be used for loading the RFI
control values of the present invention;

FI1G. 7B illustrates an LIM syntax/operation description;

FI1G. 8 1llustrates an exemplary RFI control block diagram
for the arithmetic execution units in accordance with the
present invention;

FI1G. 9 1llustrates an exemplary RFI control block diagram
tor the load and store execution units in accordance with the
present invention;

FIG. 10 illustrates a conventional full adder for use 1n the
update adder logic units in each RFI port logic in one
embodiment i accordance with the present invention; and

FIG. 11 1llustrates a reduced cost RFI control block dia-
gram for the arithmetic execution units in one embodiment
in accordance with the present invention.

DETAILED DESCRIPTION

Further details of a presently preferred ManArray archi-
tecture for use 1n conjunction with the present invention are

10

15

20

25

30

35

40

45

50

55

60

65

4

found 1 U.S. patent application Ser. No. 08/885,310 filed
Jun. 30, 1997, U.S. patent application Ser. No. 08/949,122
filed Oct. 10, 1997, U.S. patent application Ser. No. 09/169,
255 filed Oct. 9, 1998, U.S. patent application Ser. No.
09/169,256 filed Oct. 9, 1998, U.S. patent application Ser.
No. 09/169,072 filed Oct. 9, 1998, U.S. patent application
Ser. No. 09/187,539 filed Nov. 6, 1998, U.S. patent applica-
tion Ser. No. 09/205,558 filed Dec. 4, 1998, U.S. patent
application Ser. No. 09/215,081 filed Dec. 18, 1998, U.S.
patent application Ser. No. 09/228,374 filed Jan. 12, 1999,
and U.S. patent application Ser. No. 09/238,446 filed Jan.
28, 1999, as well as, Provisional Application Serial No.
60/092,130 entitled “Methods and Apparatus for Instruction
Addressing 1n Indirect VLIW Processors™ filed Jul. 9, 1998,
Provisional Application Serial No. 60/103,712 entitled
“Eificient Complex Multiplication and Fast Fourier Trans-
form (FFT) Implementation on the ManArray” filed Oct. 9,
1998, Provisional Application Ser. No. 60/106,867 entitled
“Methods and Apparatus for Improved Motion Estimation
for Video Encoding™ filed Nov. 3, 1998, Provisional Appli-
cation Serial No. 60/113,637 entitled “Methods and Appara-
tus for Providing Direct Memory Access (DMA) Engine”
filed Dec. 23, 1998, and Provisional Application Serial No.
60/113,555 entitled “Methods and Apparatus Providing
Transter Control” filed Dec. 23, 1998, respectively, and
incorporated by reference herein 1n their entirety.

In a presently preferred embodiment of the present
invention, a ManArray 2x2 1VLIW single instruction mul-
tiple data stream (SIMD) processor 100 shown 1n FIG. 1A
contains a controller sequence processor (SP) combined
with processing element-0 (PE0Q) SP/PEO 101, as described
in further detail 1n U.S. application Ser. No. 09/169,072
entitled “Methods and Apparatus for Dynamically Merging
an Array Controller with an Array Processing Element”.
Three additional PEs 151, 153, and 155 are also utilized to
demonstrate register file indexing and its scalable nature 1n
accordance with the present invention. It 1s noted that the 1n
parenthesis for PEO (PE00) 101, PE1 (PEO01) 151, PE2
(PE10) 153, and PE3 (PE11) 155. The SP/PE0 101 contains
a fetch controller 103 to allow the fetching of short mstruc-
tion words (SIWs) from a 32-bit mnstruction memory 105.
The fetch controller 103 provides the typical functions
needed 1n a programmable processor such as a program
counter (PC), branch capability, digital signal processing
loop operations, support for interrupts, and provides the
instruction memory management control which could
include an instruction cache if needed by an application. In
addition, the SIW I-Fetch controller 103 dispatches 32-bit
SIWs to the other PEs in the system by means of a 32-bit
instruction bus 102.

In this exemplary system, common elements are used
throughout to stmplily the explanation, though actual imple-
mentations are not so limited. For example, the execution
units 131 1n the combined SP/PE0 101 can be separated into
a set of execution units optimized for the control function,
¢.g., lixed point execution units, and the PEOQ, as well as the
other PEs 1351, 153 and 155, can be optimized for a floating
point application. For the purposes of this description, it 1s
assumed that the execution unmits 131 are of the same type 1n
the SP/PEO and the other PEs. In a similar manner, SP/PE(
and the other PEs use a five instruction slot iVLIW architec-
ture which contains a very long instruction word memory
(VIM) memory 109 and an 1nstruction decode and VIM con-
troller function unit 107 which receives instructions as dis-
patched from the SP/PE(’s I-Fetch unit 103 and generates
the VIM addresses-and-control signals 108 required to
access the 1IVLIWs, 1dentified by the letters SLAMD 1n 109,

US RE41,012 E

S

stored in the VIM. The ManArray pipeline design provides
an indirect VLIW memory access mechanism without
increasing branch latency by providing a dynamically recon-
figurable mstruction pipeline for the indirect execute 1VLIW
(X V) nstructions as described 1n further detail in U.S. patent
application Ser. No. 09/228,374 entitled “Methods and

Apparatus to Dynamically Reconfigure the Instruction Pipe-
line of an Indirect Very long Instruction Word Scalable Pro-
cessor’. The loading of the 1VLIWSs 1s described 1n further
detail 1n U.S. patent application Ser. No. 09/187,539 entitled
“Methods and Apparatus for Efficient Synchronous MIMD
Operations with 1VLIW PE-to-PE Communication™. Also
contained in the SP/PE0 and the other PEs 1s a common PE
configurable register file 127 which 1s described in further
detail in U.S. patent application Ser. No. 09/169,255 entitled
“Methods and Apparatus for Dynamic Instruction Con-
trolled Reconfiguration Register File with Extended Preci-
s1on’”.

Due to the combined nature of the SP/PEO, the data
memory interface controller 125 must handle the data pro-
cessing needs of both the SP controller, with SP data in
memory 121, and PEO, with PEO data 1n memory 123. The
SP/PE0 controller 125 also 1s the source of the data that 1s
sent over the 32-bit broadcast data bus 126. The other PEs
151, 153, and 155 contain common physical data memory
units 123', 123" and 123" though the data stored 1n them 1s
generally different as required by the local processing done
on each PE. The interface to these PE data memories 1s also a
common design in PEs 1, 2, and 3 and indicated by PE local
memory and data bus interface logic 157, 157" and 157",
Interconnecting the PEs for data transfer communications 1s
the cluster switch 171 more completely described i U.S.
patent application Ser. No. 08/885,310 entitled “Manifold
Array Processor”, U.S. application Ser. No. 09/949,122
entitled “Methods and Apparatus for Manifold Array
Processing”, and U.S. application Ser. No. 09/169,256
entitled “Methods and Apparatus for ManArray PE-to-PE
Switch Control”. The interface to a host processor, other
peripheral devices, and/or external memory can be done in
many ways. The primary mechamsm shown for complete-
ness 1s contained 1 the DMA control unit 181 that provides
a scalable ManArray data bus 183 that connects to devices
and 1nterface units external to the ManArray core. The DMA
control unit 181 provides the data flow and bus arbitration
mechanisms needed for these external devices to interface to
the ManArray core memories via bus 185.

All of the above noted patents are assigned to the assignee
of the present invention and incorporated herein by reference
in their entirety.

Turning now to specific details of the ManArray processor
apparatus as adapted to the present invention, this approach
advantageously provides an efficient and tlexible block-data
operation capability through a double indirect mechanism.
Register File Indexing Programming View

Register file indexing (RFI) in accordance with one aspect
of the present invention refers to methods and apparatus 1n
cach processing element and in the array controller for
addressing the operand register file through a double indirect
mechanism rather than directly through fields of an SIW, or
through specialized vector instructions and vector hardware
or with a required repeat or loop instruction. Each execution
unit operates read and write ports ol one or more register
files. A read or write port consists ol register selection
address and control lines supplied to the register file, a data
bus for register data being read from the register file for a
read port, and a data bus for register data being written to the
register file for a write port. The 1mputs to the register selec-

10

15

20

25

30

35

40

45

50

55

60

65

6

tion logic of these ports typically came only from bit-fields
of the istruction being executed as shown in the prior art
apparatus of FIG. 1B. In FIG. 1B, the instruction received 1n
a processor’s mnstruction register 10 typically contained reg-
ister file addresses which are typically latched in port
address registers, such as the registers 12, 14 and 16, and
then directly used to address the register file, such as register
file 20, to support the instruction execution by units, such as

store unit 22, load unit 24, AL U 26, MAU 28 and DSU 30 of
FIG. 1B.

In addition to this typical method for register selection,
RFI operation 1 accordance with the present mvention
allows each register file port of each execution unit to also be
1ndependently controlled through a double 1indirect mecha-
nism using simple control circuitry as addressed further
below.

RFI Operation
RFI operation may advantageously be embedded in the

ManArray 1VLIW architecture and mmvoked by a double
indirect mechanism. An exemplary execute VLIW (XV)
instruction 200 having 32 bit encoding format 201 1s shown
in FIG. 2A. A syntax/operation table 203 summarizing
instruction syntax, the parameters or operands, and the
operations carried out by the istruction 200 1s shown 1n
FIG. 2B. ManArray RFI operation uses bits 20 and 21, RFI
operation bits 202, in the execute VLIW (XV) mstruction
200 as shown 1 FIG. 2A to enable RFI operation.

In further detail, the XV instruction 200 1s used to indi-
rectly cause individual instruction slots of a specified SP or
PE VLIW Memory (VIM) to be executed. The VIM address
1s computed as the sum of a base VIM address register Vb
(VO or V1) plus an unsigned 8-bit offset VIMOFFS. Any
combination of individual instruction slots may be executed
via the execute slot parameter ‘E={SLAMD}’, where
S=Store Unit (SU), L=Load Unit (LU), A=Arithmetic Logic
Unit (ALU), M=Multiply-Accumulate Unit (MAU), and
D=Data Select Unit (DSU). A blank ‘E="parameter does not
execute any slots. The unit affecting flags (UAF) parameter
‘F=[AMDN] overrides the UAF specified for the VLIW
when 1t was loaded via a load VLIW (LV) instruction. The
override selects which arithmetic instruction slot (A=ALU,
M=MAU, D=DSU) or none (N=NONE) 1s allowed to set
condition flags for this execution of the VLIW. The override
does not ail:

LV 1nstruc-
tion. A blank ‘F="selects the UAF specified when the VLIW
was loaded. The register file indexing (RFI) parameter ‘R=
[01N] 1s used to enable or disable RFI for this XV’s indirect
execution of the mstruction slots. With "R=0" (the RFI opera-
tion bits 202=00 1n FIG. 2A), RFI operation 1s enabled and
the RFI control register group 0 1s selected. With ‘R=1" (the
bits 202=01), RFI operation 1s enabled and the RFI Control
Register group 1 1s selected. With ‘R=N" (the bits 202=11),
RFI operation 1s disabled.

The XV mstruction with RFI enabled causes a second
indirect operation to be mitiated. The second indirect opera-
tion comes into play on the next XV instruction that 1s
executed, wherein the register port addresses are indirectly
specified through automatically incrementing hardware con-
trolled 1n a manner specified by separate RFI control param-
cters. The RFI operation 1s described below, 1n the context of
the ManArray pipeline, primarily concerned with the decode
and execute phases of the pipeline, RFI control consists of
four parts: 1) RFI control specification; 2) RFI mnitialization
control; 3) RFI update control; and 4) RFI instruction execu-
tion.

RFI Control Specification
RFI control specification 1s preferably performed through
RFI control registers. Each control register specifies all the

ect the UAF setting specified via the I

US RE41,012 E

7

RFI control information for the register ports used by a par-
ticular execution unit. There 1s a control field 1n the control
register for each port and this field specifies whether or not
the RFI operation 1s enabled for that particular port and, i
enabled, specifies the RFI register update policy.

The RFI control registers are accessed through a ManAr-
ray miscellaneous register file (MRF) 300 1llustrated 1n FIG.
3 A. This register file 1s unique 1n that additional registers can
be added within the restricted MRF address space by address
mapping additional registers to a single MRF address. The
MRF extension registers 305 and 315, shown 1in FIGS. 3B
and 3C respectively, are accessed using the MRF extension
address register (MRFXAR) 301 and the MRF extension
data registers (MRFXDR) 302 and 303. The two MRF
extension data registers 302 and 303 are provided to simplily
the 1implementation, and to separate the intended uses of
cach set of extension registers. A register address 1s written
to the haltf-word H1 or HO portion of the 32-bit MRFXAR
register 410 of FIG. 4 using a load immediate 1nstruction as
illustrated 1n FIGS. 7A and B. The relationships of the
respective parts of FIGS. 3A-3C, and 4A and 4B are more

tully set forth as follows:

MRFX Addrl
402 (FIG. 4A)

MRF Extension Register Address-1. This field
contains the address of a register within the MRF
extension register group-1 of FIG.3B. When the
MRFXDRI1 302 of FIG. 3A 1s read or written, the
MRFX1 register in FIG. 3B specified by this
address is the target of the read or write operation.
MRF Extension Register Address-2. This field
contains the address of a register within the MRF
Extension register group-2 of FIG.3C. When the
MRFXD?2 303 of FIG. 3 A i1s read or written, the
MRFX2 register in FIG. 3C specified by this
address 1s the target of the read or write operation.
When set, this bit causes the MRFX Address field
1 402 or field 2 406 of FIG. 4A to increment by 1
after each read or write access to the MRFXDRI1
302 or MREFXDR2 303 of FIG.3A.

A Load/Store or DSU operation (COPY, BIT op)
which targets the MRFXDR1 302 or MRFXDR2
303 of FIG. 3A will access the MREX register
whose address is contained in bits [2:0] of the
MREFXARI 402 or bits| 8:6| MRFXAR2 406 of
FIG. 4A. If the auto increment bit 404 or 408 of
the selected MREFXAR 1s set, then the access will
also cause the address in the MRFXARI1 or
MREFXAR?2 to be incremented after the access.

MRFX Addr?
406 (FIG. 4A)

Autolncrement

(AJ1 or AJ2)
404 or 408 (FIG. 4A)

MRFEFX Data
(MREFX1 or MREFX?2)
420 (FIG. 4B)

In a presently preferred embodiment, five execution units
have RFI control. FIG. 3C shows a summary of an exem-
plary set of RFI control registers. These MRFX2 registers
510, 520, 530, 540, 550, 560, 570, and 580 are shown 1n
turther detail 1n FIG. 5, with each control register assigned to
the read/write ports for the specified execution units. These
execution units include arnthmetic logic unit (ALU), multi-
ply accumulate umit (MAU), data select unit (DSU), load
unit, and the store unit.

The registers are used 1n two control groups (510-540),
two save and restore context registers (5350 and 560), and one
register 580 to control the mitialization of the RFI controls
for each control group. A reserved register 5370 1s also
shown. The first control group 0 includes RFIDLS0 310 and
RFIAMO 320 1n FIG. 3C. Further details are shown 1n regis-
ters 510 and 520 of FIG. 5. The second control group 1
includes RFIDLS1 330 and RFIAM1 340 with further
details 1n registers 530 and 540.

When an 1VLIW 1s executed, one of the control groups 1s
specified 1in the XV struction via bits 21 and 20, the RFI
bits 202 of mnstruction 200 of FIG. 2 to allow RFI control of

10

15

20

25

30

35

40

45

50

55

60

65

8

any port used by instructions in that VLIW. It will be recog-
nized that the mvention does not preclude using another
mechanism for specitying the control information, or a sub-
set of the control information, such as directly in an instruc-

tion.
Specifically, in control group 0, RFIDLS0 510 1n FIG. §

contains the port control information for the single Load Rt
port 501, the single Store Rs port 502, the three operand

ports for the DSU Ry 503, Rx 504, and Rt 505. The second
register in control group 0 RFIAMO 520 contains the port

control information for the three operand ports for the MAU
Ry 521, Rx 522, Rt 523 and the three operands ports for the

ALU Ry 524, Rx 5235, and Rt 526. Associated with the two
control groups are initialization start bits which are con-

tained for both control groups 0 and 1 in the RFIStart regis-
ter 380 of FIG. 3C and 1n more detail 1n register 380 of FIG.

5. For control group 0, the initialization start bits are located
in the HO halfword 381 with a single bit per execution unit as
tollows: Store ports Start 0 bit-4 587, Load ports Start 0 bit-3
586, ALU ports Start 0 bit-2 585, MAU ports Start 0 bit-1
584, and DSU ports Start bit-0 583. In a similar manner, the
control registers RFIDLS1 530, RFIAM1 3540 for the second

control group 1 are set up as shown 1n FIG. 5. The 1nitializa-
tion start bits for control group 1 are located 1n H1 haltword

582 of RFIStart 580. The other two RFI registers RFIDLS1
550 and RFIAM1 560 store the port address values to save

the values of the port addresses upon an interrupt 1n support
ol a context save and restore operation.

Note that the control parameters may have any format that
allows a required set of control information to be
represented, as the mvention does not require a particular
format. An exemplary format 600 for a register file port 1s
shown 1n greater detail in FIG. 6. The RFI parameters are
encoded 1nto 4-bits as shown 1n columns 601 and 602. This
control information specifies the type of update to be applied
to generate the address of the next register to be selected on
the next RFI instruction execution. In the presently pretferred
embodiment, the control parameters are used to select an
update increment value 603 to be added to the register
address, and to specily the maximum sequential
(incrementing by one) register file address range (RFBS)
that can be selected 604. As described further below, the
starting register along with these parameters determines the
actual register set which may be selected by the index. Col-
umns 605611 are used to describe the operation of the indi-
rect vector apparatus shown in FIGS. 8 and 9. In these col-
umns 605-611, an “x” represents a “don’t care” state.
Column 612, the apphcable units column, specifies to which
execution units the control parameters apply.

RFI Initialization Control

RFI initialization takes place in two steps, which are best
understood with reference to FIGS. 8 and 9. FIG. 8 shows an
exemplary RFI apparatus 800 for the port logic 1n the arith-
metic units. FIG. 9 shows an exemplary RFI apparatus 900
for the port logic 1n the load and store units. This exemplary
description represents a low cost configuration which uses
control group 0 for the ALU, MAU, and DSU units and both
control groups 0 and 1 for the Load and Store units. This 1s a
subset of the architecture description outlined 1n FIG. § and
represents a programmer restriction, where all options are
available for all execution units 1n control group 0 while
control group 1 1s used primarily for block move, save, and
restore operations. When an RFI XV 1nstruction selects the
second control group 1 1n implementations which allow for
only control group 0 on the arithmetic units, the arithmetic
units default to the control group 0 specification even when
control group 1 1s specified. This subset minimizes on 1mple-
mentation expense and 1s described 1n more detail as fol-
lows.

US RE41,012 E

9

First, control information as illustrated in FIG. 6 for each
register file port 1s written into an RFI control register 810
and 910 by use of a load immediate (LIM) instruction 700
whose encoding format 1s shown i FIG. 7A and whose
syntax/operation 710 1s shown 1n FIG. 7B. The LIM instruc-
tion 700 1s first used to load MRFXAR halitword H1 410 of
FIG. 4 to set up the desired extension RFI control register to
be mapped to MRFXDR2 303 1n FIG. 3A. Then, the LIM
instruction loads a data value to the desired control register
by using the address for MRFXDR2. Each haltword section
of a control register 1s loaded separately be definition of the
LIM instruction.

For purposes of clarity, the LIM data path from instruction
register 804 HO halfword bits 15-0 1s not shown. This data
path 1s selectively controlled to load the HO halfword of the
LIM 1nstruction to either the low or high halfword portion of
any of the MRF extension registers listed in FIG. 5. For
example, a LIM 1nstruction could cause the loading of 1ts HO
haltword to the H1 portion of the RFIAMO register 520 of
FIG. §. In reference to the common arithmetic RFI port con-
trol logic of FIG. 8, one of the three control portions of
RFIAMO would be located 1n an update control register 0 for
that port, such as 810, for, in this case, the ALU 852. In a
similar manner, the other two port control values would be
loaded into their own port update control register Os con-
tained 1n their own RFI port control logic. Other ManArray
instructions can load the RFI control registers through use of
the MRF data bus 809. The MRF data bus 809 1s also used
tor saving the RFI port registers, for example, during a con-
text switch operation. The specific LIM 1nstruction descrip-
tion 1s as follows. The haltword form of the LIM 1nstruction
loads a 16-bit immediate value into the upper halfword (H1)
or lower haltword (HO) of an SP or PE target register Rt. The
16-bit 1immediate value 1s interpreted as a sign “neutral”
value, meaning that any value 1n the range —-32768 to 65535
1s accepted. This covers the 2’s complement signed value
range ol —32768 to +327677 and the unsigned value range of
0 to 65533.

The word form of the LIM instruction loads a signed-
extended 17-bit immediate value mto the target register. The
1°7-bit signed value may be any value 1n the range —-65536 to
65535. The encoding for the word form of LIM puts the
magnitude of the value into the IMM16 field and the sign bit
1s the LOC field bits 23 and 22 shown 1n FIG. 7A. LOC field
determines 11 the upper halfword 1s filled with all one or all
Zero bits.

In the second step of RFI mnitialization, a start bit, e.g. bit
583 for the DSU 854, 1s set in the RFI Start Register,
RFIStart of FIG. 5, that 1s located in the start bit and mux
control block 812 for each of the arithmetic execution unit’s
ports and block 912 for a load or store unit’s port. Each start
bit controls the imitialization for all the ports belonging to an
execution unit. While this 1s the presently preferred format,
the invention 1s not restricted to this format. The operation of
setting this bit 1s performed by any instruction capable of
writing to this register. At least one mnstruction of this type 1s
available. The next instruction which invokes RFI control for
this particular group and execution unit after the setting of
this bit, hereatter referred to as the “RFI instruction™, has its
execution unit’s operand registers first selected by fields 1n
the instruction word and then, with the next RFI instruction
for this group and execution umit, has its execution unit’s
operand registers selected under control of the RFI logic

shown in FIGS. 8 and 9. With the RFI XV 1nstruction, as
described 1n FIGS. 2A and 2B, a VLIW set of SIWs 1s indi-
rectly retrieved from a local VIM (five SIWs as described
herein for a ManArray implementation as i FIG. 1A). For

5

10

15

20

25

30

35

40

45

50

55

60

65

10

example, one of the set of five SIWs 1s loaded into an
instruction register 804 as shown in FIG. 8. The port RFI
logic for the fetched SIW Rt’s port 1s also shown 1n FIG. 8.
For the first execution of the fetched instruction, the Rt port
address 805 i1s the starting address for an RFI block opera-
tion. The Rt port address 805 1s passed through a multiplexer
814, as controlled by the start bit and mux control block 812
via control signal 813, to the port address register 816 via
multiplexer output 811. The Rt port address, now contained
on output 811, 1s latched into the port address register 816 at
the end of the decode pipeline stage. The output of the port
address register 816 directly addresses the register file 818
over signal path 817. The operands are selected from the
register file 818 and the SIW operation 1s executed 1n the
speciflied execution unit.

Upon the next 1ssuance of an RFI XV instruction, the
operands are indirectly specified from the RFI logic. This 1s
the second indirect specification in the operational sequence.
The first indirect specification 1s through the RFI XV
instruction which idirectly specified the SIW and the sec-
ond indirect specification 1s through the RFI logic as set up
via the RFI control parameters. In order to accomplish this,
operation update control register 0 810, update adder logic
830, indexed port look ahead register 820, multiplexers 814
and 822, and update control logic 824 are used to generate
the updated port address to be used in following RF1 instruc-
tion executions.

The basic concept 1s that the address output 811 of the
multiplexer 814 1s available early enough in the decode cycle
so that the update adder logic 830 can update the address
based upon the update control logic 824 signals. The
updated address 819 1s selected by mux control signals 815
to pass through multiplexer 822 and loaded into the imndex
port look ahead register 820 at the end of decode at the same
time the present port address 811 i1s loaded into the port
address register 816. On the next RFI instruction, the look
ahead register value 821 1s used in place of the fetched SIW
operand port address value and latched into the port address
register 816 for the next execute cycle, while the update
adder logic 1s again preparing the next port address to be
used. After the first RFI instruction following the setting of
the RFT start bit(s), the start bit(s) are cleared causing subse-
quent RFI 1nstructions to have their SIW operand registers
selected by corresponding indexed port look ahead registers.
The start bit and mux control block 812 provide the control
for determining whether an instruction’s registers are
selected by 1nstruction fields or by RFI indexed port look
ahead registers. Its inputs come from the mstruction opcode
807, the update control register 0 810, and an RFI enable
signal 825. These signals along with pipeline control signals
(not shown) indicating an instruction’s progress in the
pipeline, determine the register selection source via the mul-
tiplexer 814.

The use of the indexed port look ahead register 820 allows
non-RFI instructions to be mtermixed between RFI opera-
tions without atfecting the RFI register address sequence.
When a non-RFI istruction is detected, the RFI logic pre-
serves the required RFI state while the non-RFI instructions
are executing.

RFI Update Control

When an RFI operation 1s invoked, the address of one or
more registers 1n the register file 818 1s supplied by the RFI
logic. This logic updates the register address for the next
cycle by adding or subtracting a constant from an address
available 1n the early stages of the decode cycle while main-
taining the generated port address within a particular set of
register addresses. In the presently preferred embodiment,

US RE41,012 E

11

this 1s done by specilying an increment value and a register
file block size (RFBS) 604 as shown 1n FIG. 6 for each port
to be controlled. In the preferred embodiment, the RFBS
value 1s an integer power of 2, such as 1,2.4.8, etc., and
logically causes the register file to be partitioned into blocks
of registers with RFBS sequentially addressed registers per
block. Assume a starting register Rs (R =Rs on the first
update), an RFBS value M, a floor quotient Q=|Rs/M|, and a
positive update increment k, then the next register number,
R, _ . 1n a sequence i1s given by:

FlexX®

=R, +kimod M)+Q*M.

CLFYent

Because the remainder of Rs/M 1s 1gnored due to the floor
operation, the value of Q*M=Rs.

As an example, assume that the starting register port
address 1s 5, 1.e. Rs=R5 which also equals R for the
first operation. Also, assume the update increment 1s k=2,
and the RFBS 1s M=8. In FIG. 6, this exemplary setting
corresponds to the row 620 which lists for FIG. 8 the corre-
sponding signal values as follows: G3=x 606 and 831, G2=0
607 and 832, G1=1 608 and 833, G0=1 609 and 834, X1=1
610 and 835, and X0=0 611 and 836. The signals X1 and X0
provide the increment by 2 input to update adder logic 830.
The gate signals G3, G2, G1, and G0 maintain the block size
given an arbitrary starting register. The update adder logic
830 1s made up of five standard full adders 861, 862, 863,
864 and 865, shown 1n further detail 1n FIG. 10. The carry
out signal C. _, 1005 of full adder 1000 of FIG. 10 corre-
sponds to the carry out signals 841-844 from each stage of
the update adder 830. These carry out signals are gated by
AND gates 845-848 and gate signals 831-834 cifectively
creating the modulo-adder required by the specified control
description of FIG. 6. Under these assumptions, the succes-
sive 1nstructions which specily this port using RFI will
access registers 1n the following order: RS, R7, R1, R3, R5,
R7, and so on. If the starting register 1s R8, then the sequence
1s; R8, R10, R12, R14, R8, R10, and so on. The present
invention does not preclude using non-power of 2 incre-
ments and/or RFBSs, nor does 1t preclude using another
mechanism of specilying a register address sequence within
which to operate. For example, a read only memory can be
used to replace the update control logic 824 and update
adder logic 830 to provide any desired register port address
sequences desired. Since using memory blocks may cause
implementation wiring problems, being able to implement
the update function in discrete logic i1s the presently pre-
terred method.

FIG. 9 depicts the RFI logic 900 for the load and store
units which have been 1dentified to use two control register
groups 910 and 950, respectively. The XV 1nstruction speci-
fies which group 1s to be used via the bits 21-20 202 of FIG.
2. In the exemplary system, when control register group 1 1s
indirectly specified, the load and store SIWs fetched from
the VIM use update control register 1 950 as selected via
mux control signal 951 through multiplexer 952 while the
arithmetic units default to using control register group 0. In
alternative implementations, the RFI port logic of FIG. 9 can
be used for each arithmetic execution unit providing two RFI
contexts for all of the execution units.

In a VLIW processor, 1t 1s possible to have all ports of the
register file under RFI control for a single mstruction, such
as the presently described XV instruction. Since the RFI port
logic 1s independent between execution units, the ports can
be 1ndividually controlled by SIW execution-unit-specific
instructions. This means that 1f another instruction or group
ol instructions requires independent RFI control (1.e. a dii-

5

10

15

20

25

30

35

40

45

50

55

60

65

12

ferent set of control parameters) 1in addition to the XV
instruction, another group of control registers could be
assigned. Since the RFI set up latency 1s relatively small, the
control register set as described 1n FIG. § can be easily
shared with other RFI mstructions.

Another register file indexing apparatus 1100 1s shown 1n
FIG. 11. This RFI mechanism still uses the double indirect
mechanism outlined in the other RFI approaches discussed
relative to FIGS. 8 and 9. In the approach of FIG. 11,
however, a programming restriction 1s enforced requiring
that for the block of data being processed, RFI operations
cannot be mixed with non-RFI operations. This approach 1s
different than the approach used in FIGS. 8 and 9 which
allows RFI and non-RFI instructions to be mixed. For some
product definitions, this 1s not a problem and the simplified
hardware approach of FIG. 11 can be used.

The operation of the apparatus 1100 of FIG. 11 1s stmilar
to the operation of the previous RFI approach. For example,
the start bit for RFI initialization 1s used as previously
described. The main ditference 1n FIG. 11 1s that no indexed
port look ahead register, like register 820 of FIG. 8 1s used.
Rather, a port address register 1116 still addresses a register
file 1118, but update adder logic 1130 operation 1s displaced
in time, as compared to the approach used 1n FIG. 8, operat-
ing on the latched port address register output 1117 during
the execute cycle. In preparation for the next execute cycle,
the update adder logic 1130 updates the output 1117 of the
port address register 1116 as specified by an RFI update
control register 1110 for this port. By the end of the present
execute cycle, multiplexer 1114 1s controlled via control
mput 1113 to select an update adder logic output 1119 to
pass through multiplexer 1114 to output 1111. The multi-
plexer 1114 output 1111 1s then latched 1n the port address
register 1116 at the start of the next execute cycle thereby
updating the register file port address as specified by the RFI
control set up previously.

In addition to the XV RFI enabling apparatus, other
means ol enabling RFI are used. The purpose of this addi-
tional mechanism 1s to decouple the RFI sequencing from
only being used in the VLIW (XV) programming model. It 1s
desired to support block load, block store, and block move
operations with single istruction execution, which can be
independently done 1n the SP or concurrently in the PEs.
Rather than use additional bits 1n SIWs to specily this
operation, though this 1s not precluded by this invention, an
alternate indirect mechanism to enable RFI 1s used. This
savings 1n bits 1n the SIWs allows better use of the instruc-
tion format for standard operation encoding while not pre-
cluding the ability to achieve the RFI functionality provided
by the present mvention. This alternative mechanism oper-
ates with any SIW that can address a specific location 1n the
MRF. Though multiple locations 1n the MRF could be pro-
vided for this purpose, there are other uses 1n specific imple-
mentations which may preclude this. For the purposes of

describing this alternate RFI enabling mechanism, one loca-
tion 1n the MRF 1s used, as shown for RFILSD 304 in FIG.

3A.

To use the RFI enabling mechanism, the hardware decode
logic 1s extended to generate the RFI enable signal not only
when an XV RFI instruction 1s received but also whenever a
load, store, or DSU i1nstruction 1s receirved 1n the SP or PE
instruction register which specifies the RFILSD address as
the load Rt, store Rs, or DSU Rt or Rs operands. Prior to
using this alternate-RFI enabling mechanism, the RFI con-
trol registers are required to be set up specilying the nitial
registers to be used 1n a block load, store, or DSU operation.
No start bit 1s used 1n this alternate RFI enabling mechanism

US RE41,012 E

13

as the starting address of the block sequence 1s stored in the
port control registers. Upon receiving a load, store, or DSU
instruction, which uses the RFILDS bits as an operand
address, the RFI mode 1s enabled and each register operand
address 1s substituted with the pre-setup port (operand)
addresses by the RFI port logic as shown 1n the representa-
tive RFI logic of FIGS. 8,9, and 11. RFI and non-RFI opera-
tions can be mixed when using the hardware of FIGS. 8 and
9. In fact, by using two contexts for the load, store, and DSU
control registers, groups 0 and 1, as shown in FIG. 9, then,
RFI XV operations on a first block of data, RFI operations
using RFILSD on a second block of data, and non-RFI
operations can be mixed. It can be appreciated that by proper
extension of an arithmetic port register operand address
range, an arithmetic instruction could, by referencing the
RFILSD address, cause RFI to be invoked for the arithmetic
instruction execution.
RFI Instruction Execution

RFI operation 1s enabled through control information con-
tained 1n 1nstruction words. This control information 1s used
to specily whether conventional register address selection
fields (operand address fields contained in the instruction)
are to be used or whether the RFI selection of registers 1s to
be used. In the presently preferred embodiment, the control
information 1n the instruction, indirect VLIW XV 1nstruction
bits 21 and 20 202 of FIG. 2, indirectly specifies a control
register or set of registers which are to be used to control RFI
operation. One or more of these control register groups are
available for RFI control as seen i FIG. 5. The XV RFI
instruction both enables RFI mode and selects a control reg-
ister group for controlling the RFI operation. The group of
RFI control registers 510580 shown 1n FIG. § allow all of

the register ports to be RFI controlled, meaning that every
execution umt may operate in RFI mode concurrently.

It 1s noted that the ManArray processor finishes the execu-
tion phase of 1ts pipeline with a write back to the register file.
This approach allows the next cycle after the write-back
cycle to use the results 1n the next operation. By judicious
programming, chaining of vector operations 1s then inherent
in the architecture. No separate bypass paths need be pro-
vided 1n the execution units to support chaining.

A discussion concerning an exemplary use of RFI 1n
accordance with the present ivention 1s now presented to
illustrate several advantageous aspects of the invention.
Assuming an increment value of 1, RFBS value (M) a power
of 2, starting register R2, the register addresses alternate
between two registers, an even register R2 and 1ts corre-
sponding odd register (address+1) R3. For RFBS=4, the reg-
ister addresses cycle among 4 values with an increment of 1.
The following table shows some address sequences.

Register
Start File Block
Register Increment Size Sequence
R2 1 2 R2, R3, R2, R3,
R2 1 4 R2, R3, RO, R1, R2,.
RS 1 4 R5, R6, R7, R4, RS, .
R5 2 4 R5, R7,R5,R7, ...
RS 2 8 R5, R7, R1, R3, R5,.
R6 2 8 R6, RO, R2, R4, R6, . ..
RO 1 1 RO, R1,R2,R3,...R31,RO,R1...

for non-Load/Store units
RO, R1, R2, R3,...R63 (cycles ALL
registers) for Load/Store units

Assume 1t 1s desired to calculate a simple matrix-vector
multiplication on a 4-PE SIMD VLIW ManArray processor

10

15

20

25

30

35

40

45

50

55

60

65

14

such as processor 100 of FIG. 1A. Further assume that the
following instruction types are available.

Pseudo
Instructions Operation
LDB Ry, Pyt Load Broadcast: Loads from a memory location

specified by the address register Py in SP memory and
stores the value into register Ry of each PE (all receive
the same value. P; 1s post-incremented by 1.
Multiply-Accumulate: All PEs execute in SIMD
fashion the operation Rt = Rt + (R * Ry)

MAC Ry, Ry, Ry

ST Re, Pyt Store: All PEs store source register R¢ to local PE
memory location specified by P; P; 1s post-
incremented by 1.

REP N, M Execute the following N instruction M times

Also, assume that a 4x4 matrix A 1s distributed to the 4 PEs,
PEO, PE1, PE2 and PE3, such that each PE contains a row of
the matrix 1n registers R4, RS, R6 and R7 (PE0 gets row 0,
PE1 gets row 1, etc.) as shown 1n the following table.

Register — R4 R5 R6 R7
PEO a00 a01 a?2 al3
PE1 al0 all al?2 al3
PE2 a20 a2l a2? az23
PE3 a30 a3l a3?2 a3l

If a sequence of 4x1 vectors are read in from main (SP)
memory 105, multiplied by the matrix and the results stored
in local PE memory 123, 123", 123" and 123", an appropri-
ate sequential algorithm might appear as follows if 1t is
assumed R2 1s zero mitially:

L.DB RO, PO+
MAC R2, R4, RO

;load first element of input vector, x0
;accumulate product: a;,0 * xO (I 1s row index and

PE ID)

LDB RO, PO+ ;load second element of input vector, x1

MAC R2, R5, RO ; accumulate product: a;,1 * x1

LDB RO, PO+ ;load third element of input vector, x2

MAC R2, R6, RO ; accumulate product: a,2 * x2

LDB RO, PO+ ;load last element of input vector, x3

MAC R2, R7, RO ; accumulate product: 3,3 * x3

ST R2, P1+ ;store results: each local memory gets an element

of ;output vector

Performing this algorithm with VLIW 1nstructions yields:

VLIW SIW SIW Execute Action
L.DB RO, PO+ :Load
1 LDB RO, PO+ MACR2, R4, RO ;Load PEs and MAC x0O *

al 1][0]
:Load PEs and MAC x1 *

al1][1]
:Load PEs and MAC x2 *

ali][2]
:Load PEs and MAC x3 *

ali][3]

:All PEs store Store result

, LDB RO, PO+ MACR2, RS, RO

3 LDB RO, PO+ MAC R2, R6, RO

4 LDB RO, PO+ MAC R2, R7, RO

ST R2, P1+

This requires 4 VLIW-type 1nstructions, plus a single load
L.DB and a single store ST instruction, even though the only
difference between these VLIW instructions 1s the second
register specification of the MAC 1nstruction.

Now 11 the example 1s performed using RFI, the process 1s
as follows: Assume R2 and RO are both mitialized to zero

US RE41,012 E

15

and register file indexing 1s used with the following param-
cters associated with the VLIW indirectly executed by an
XV 1nstruction:

Execution Unit Register Port Increment REFBS
Load Write Port 0 1
MAU Rx Readport 1 4

Now the code can be written 1n compact VLIW form
where the second register RFI sequence starts with

R7—=R4—R35—=R6—=R7, etc.

VLIW LD RFIC, P1, ctrl :Imitialize RFI control for
MALU reg port

;:Repeat 1 instruction 35
times

:Load and MAC: first
:MAC 15 O and last

:load reads 1mnto next
;vector (or garbage)
:Store results

REP 1, 5

1 LDB RO, PO+ MAC R2, R7, RO

ST R2, P1+

il

The net etlect 1s to reduce 9 instructions to 4 1nstructions.
The fact that fewer VLIWSs are used, reduces the number of
1VLIWs executed and also the number of VLIWs that must
be loaded 1n the ManArray architecture. These savings are
indirect, but not insignificant since the VLIW memory
(VIM) represents an expensive on chip resource. The RFI
operation reduces the amount of VLIW memory needed,
thus allowing for less-expensive chips.

While the present invention has been disclosed in the con-
text of various aspects of presently preferred embodiments,
it will be recognized that the invention may be suitably
applied to other environments and applications consistent
with the claims which follow.

We claim:

1. A data processor with register file indexing comprising:

an 1nstruction sequencer and N execution units capable of
executing up to N 1nstructions in parallel;

a plurality of register files with registers which contain
data operands read and written by the N execution
units, each register file having read ports to and write
ports from the N execution units; and

read and write ports associated with each execution unit
which have associated control circuitry and register file
index (RFI) control registers which control the selec-
tion of a first addressing approach and a second indi-
rect addressing approach and allow registers to be
addressed using both [a] #ze first addressing approach
in which fields of an mstruction word made available to
a particular execution unit directly specily addresses,
and [a] tke second indirect addressing approach in
which the contents of [register file index] look ahead
registers are utilized in specitying the addresses.

2. The apparatus of claim 1 wherein said processor 1s a
VLIW processor.

3. The apparatus of claim 1 wherein said processor 1s an
1VLIW processor.

4. The apparatus of claim 1 wherein said processor 1s one
of a plurality of similarly configured processors in a ManAr-
ray architecture.

5. The apparatus of claim 1 further comprising a control
mechanism whereby an 1nstruction may optionally use one
or more [RFI] look ahead registers to supply the address for
its register file operands.

10

15

20

25

30

35

40

45

50

55

60

65

16

6. The apparatus of claim 1 further comprising a control
mechanism whereby the [RFI] look akead register may be
optionally updated automatically after each use by adding or
subtracting a constant from 1ts current register address
thereby selecting a different register for 1ts next use.

7. The apparatus of claim 6 wherein said update by the
control mechanism further causes the selected register to
cycle through one of many possible programmable sets of
registers, starting with a particular register within a set.

8. The apparatus of claim 1 further comprising a control
mechanism operable such that each port’s register index
may be mdependently configured for an update method and
a register address set, or optionally disabled for register file
indexing.

9. The apparatus of claam 1 further comprising a crowd
mechanism operable such that the [RFI] look ahead register
associated with each register file port may be initialized
automatically from a register field specified 1n an 1nstruction.

10. A method of register file index (RFI) control compris-
ing the steps of:

establishing an RFI control specification in RFI control
registers 10 specily RFI control and address informa-
tion for at least one register [ports] port used by a par-
ticular execution unit or units;

establishing RFI initialization control[:];

performing RFI update control for updating a register
port address in one of the RFI control vegisters associ-
ated with the at least one register port;

executing an RFI instruction as part of a first indivect
approach to select an instruction for execution; and

specifying the register port [addresses] address utilizing
the updated register port address as part of a [double}
second indirect approach to [their] select the specifica-
tion of the register port address.

11. The method of claim 10 wherein said step of establish-
ing RFI control specification 1s performed utilizing t2e RFI
control registers specitying all the RFI control information
for register ports accessed by a particular execution unait.

12. The method of claim 11 wherein the RFI control infor-
mation specifies RFI register update policy.

13. The method of claim 10 wherein said step of establish-
ing RFI imitialization control comprises the steps of:

writing control information into an RFI control register|:];
and

setting a bit in an RFI reset register (RFIRR) correspond-
ing to a particular RFI control group and particular
execution unit.

14. The method of claim 10 wherein the step of updating a
look ahead register port address comprises the step of:

updating a[n RFI] look ahead register for the next cycle by
adding or subtracting a constant from [its] ke register
port address stored in the look ahead rvegister while
maintaining [its] tke register port address within a par-
ticular set of register addresses.

15. The method of claim 14 wherein said updating 1s per-
formed by specilying an increment value and a register file
divisor (RFD) for each port to be controlled.

16. The method of claim 10 wherein the step of RFI
instruction execution 1s enabled through control information
contained 1n 1nstruction words.

17. The method of claim 16 wherein said control informa-
tion specifies whether standard register selection operand
fields are used or whether RFI selection of registers 1s to be
used.

18. The method of claim 16 wherein the control informa-
tion indirectly specifies another control register or set of
registers which are used to directly control RFI operation.

US RE41,012 E

17

19. A method for data processing with vegister file index-
ing (RET), the method including:

receiving a plurality of instruction words for execution,

reading, based on a start of an RFI sequence indication
storved in an RFI control vegister, a field in each of the
plurality of instruction words to divectly specify a first

plurality of operand addresses of a plurality of

registers, the plurality of registers as addressed by the
first plurality of operand addresses containing a first
plurality of data operands;

writing a second plurality of operand addresses to a look
ahead register based on the first plurality of operand
addresses as controlled by control cirvcuitry and RFI
control rvegisters,

executing the plurality of instruction words in parallel
utilizing the first plurality of data operands;

clearing the start of the RFI sequence indication,

specifving the second plurality of operand addresses of
the plurality of registers by reading, based on the
cleared start of the RFI sequence indication, the con-
tents of the look ahead register, the plurality of rvegisters
as addrvessed by the second plurality of operand
addresses containing a second plurality of data oper-
ands; and

executing the plurality of instruction words in parallel
utilizing the second plurality of data operands.
20. The method of claim 19 wherein the control circuitry
of the writing step further comprises:

adding or subtracting a constant to the first plurality of
operand addresses.

21. The method of claim 19 further comprising:

initializing an RFI control register from a register field
specified in one of the plurality of instruction words.

22. A control circuit apparatus for operating in both a

register file index (RFI) mode and non-RFI mode, the control

circuit apparatus comprising.
a register file storving a plurality of operands;
an instruction register holding a first instruction and a

first operand address of the vegister file for execution
with the first instruction;

RFT civcuitry for calculating and holding a second oper-
and address of the rvegister file for execution with the
fivst instruction; and

a multiplexer having two inputs and an output, one of the
two inputs connecting to the instruction vegister and the
other of the two inputs connecting to the RFI circuitry,
the output connecting to the register file; and in
response to a signal signaling RFI mode, the multi-
plexer selecting the first opevand address during a fivst
execution cycle and the second opevand addvess during
a second execution cycle; and upon loading the instruc-
tion register with a second instruction having a thivd
operand addrvess and in vesponse to the RFI signal sig-
naling non-RFI mode, the multiplexer selecting the
third operand address; and the selected operand
address specifving the operand from the register file for
use by an execution unit when executing the first
instruction ov the second instruction in a thivd execu-
tion cycle.

23. The control circuit apparatus of claim 22 wherein the
multiplexer selects the second operand addvess for execution
cycles subsequent to the thivd execution cycle.

24. The control circuit apparatus of claim 22 wherein the
RFI signal dependent on a bit in the instruction vegister.

25. The control circuit apparatus of claim 22 disposed in a
VLIW processor.

5

10

15

20

25

30

35

40

45

50

55

60

65

18

26. The control civcuit apparatus of claim 22 disposed in a
LVILIW processor.

27. The control circuit apparatus of claim 22 whevein the
second operand address represents the end of a block of
operand addresses.

28. The control circuit apparatus of claim 22 whevein the
RFI circuitry comprises an adder circuit for calculating the
second operand address and a look ahead register storing
the second operand address.

29. The control circuit apparatus of claim 28 whevrein the
RFI cirvcuitry further comprises update control logic control-
ling the adder circuit for calculating the second operand
address.

30. The control circuit apparatus of claim 28 wherein the
second instruction is not loaded until a block of operand
addresses have been calculated and executed.

31. The control circuit apparatus of claim 22 whevein the
RFI mode or non-RFI mode ave indications based upon
information contained in the instruction register which are
valid for the execution of each instruction loaded into the
instruction register.

32. The control circuit apparatus of claim 22 whevrein the
second operand address is initialized priov to RFI operation
by pre-setup loading of an initial second operand address.

33. The control circuit apparatus of claim 22 whevrein the
second operand address is calculated according to an incre-
ment value stored in the RFI circuitry.

34. The control circuit apparatus of claim 33 wherein the
RFET circuitry comprises:

a modulo adder circuit for calculating the second operand
address based on a currvent opervand address, the incre-
ment value, and a block size; and

a look ahead register stoving the second operand address
and supplying the second operand address to the multi-
plexer:

35. The control circuit apparatus of claim 22 whevrein the
second operand address R __ . is calculated upon each
receipt of the signal signaling RFI mode accovding to R, =
(R . +Kmod My+Q*M, whevein R_ . 1is the current
value of the second operand address prior to calculating, k
is an increment value, M is a block size, and Q is a floor
quotient |Rs/M| for a starting register operand address Rs
and wherein Rcurrent is equal to Rs for the first calculation
of an RFI sequence.

36. A method of operating in both a register file index

(RFT) mode and non-RFI mode, the method comprising:

receiving a first instruction having a first operand
address;

receiving a signal indicating RFI mode;

calculating a second opervand address based on the first
operand address;

selecting the first opevand address;
retrieving an operand using the first opevand address;

executing the first instruction with the rvetrvieved operand,
selecting the second operand address;

retrieving an operand using the second operand address;
executing the first instruction with the rvetrvieved operand,
receiving a second instruction;

receiving a signal indicating non-RFI mode;

selecting a third operand address carrvied in the second
Instruction;

retrieving an opervand using the thivd operand address;
and

executing the second instruction with the retrieved oper-
and.

US RE41,012 E

19

37. The method of claim 36 wherein the second operand
address represents the end of a block of operand addresses

to be executed with the first instruction.
38. The method of claim 36 wherein the received signal
indicating RFI mode is based on a bit in the first instruction.
39. The method of claim 36 wherein the received signal
indicating REFI mode is based on a miscellaneous register

file.

40. The method of claim 36 wherein the received signal
indicating RFI mode is based on the opcode carried in the
recelving instruction.

41. The method of claim 36 further comprising, before the
step of selecting the second operand address, the step com-

prising:
receiving a thivd instruction;
receiving a signal indicating non-RFI mode;

selecting a fourth operand addrvess carried in the third
Instruction;

vetrieving an opervand addrvess using the fourth operand
address; and

executing a third instruction, the thivd instruction operat-

ing in a non-RFI mode.

42. The method of claim 36 wherein the calculating step
comprises adding or subtracting from the first opevand
address.

43. The method of claim 36 wherein the calculating step
comprises updating the second opervand address upon each
receipt of the signal indicating RFI mode.

10

15

20

25

20
44. The method of claim 43 further comprising:

initializing the second operand addvess prior to REFI
operation with a pre-setup initial second operand
address.

45. The method of claim 43 further comprising:

updating the second operand address according to an
increment value.

46. The method of claim 45 further comprising:

calculating in a modulo adder circuit the second operand
address based on a current value of the second operand
address, the increment value, and a block size.

47. The method of claim 43 further comprising:

calculating the second opevand address R, . upon each

ext

receipt of the signal indicating RFI mode according to
R __=(R_ . . +Kmod My+Q*M whereinR_, ___ isthe
current value of the second operand address prior to
calculating, k is an increment value, M is a block size,
and Q is a floor quotient | Rs/M| for a starting register
Rs and wherein R _, _is equal to Rs for the first calcu-
lation of an RFI sequence.

¥ ¥ # ¥ ¥

	Front Page
	Drawings
	Specification
	Claims

