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BEADS BOUND TO A SOLID SUPPORT AND
TO NUCLEIC ACIDS

Matter enclosed in heavy brackets [ ] appears in the
original patent but forms no part of this reissue specifica-
tion; matter printed in italics indicates the additions
made by reissue.

RELATED APPLICATIONS

This application 1s a continuation-in-part of U.S. Ser. No.
08/746,036 now U.S. Pat. No. 5,900,481 filed Nov. 6, 1996,

entitled “Bead Linkers for Immobilizing Nucleic Acids to
Solid Supports”, now U.S. Pat. No. 5,900,481, the teachings

of which are incorporated herein by reference.

BACKGROUND OF THE INVENTION

In the fields of molecular biology and biochemistry, as
well as 1n the diagnosis of diseases, nucleic acid hybridiza-
tion has become a powertul tool for the detection, 1solation,
and analysis of specific oligonucleotide sequences.
Typically, such hybridization assays utilize an oligodeoxy-
nucleotide probe that has been immobilized on a solid sup-

port; as for example in the reverse dot blot procedure (Saiki,
R. K., Walsh, P. S., Levenson, C. H., and Erlich, H. A. (1989)

Proc. Natl. Acad Sci1. USA 86, 6230). More recently, arrays
of immobilized DNA probes attached to a solid surface have

been developed for sequencing by hybridization (SBH)
(Drmanac, R., Labat, 1., Brukner, I., and Crkvenjakov, R.

(1989) Genomics, 4, 114-128), (Strezoska, 7., Paunesku, T.,
Radosavljevic, D., Labat, 1., Drmanac, R., and Crkvenjakov,
R. (1991) Proc. Natl. Acad. Sci. USA, 88, 10089—-10093).
SBH uses an ordered array of immobilized oligodeoxynucle-
otides on a solid support. A sample of unknown DNA 1is
applied to the array, and the hybridization pattern 1s
observed and analyzed to produce many short bits of
sequence information simultaneously. An enhanced version
of SBH, termed positional SBH (PSBH), has been developed
which uses duplex probes containing single-stranded 3'- or
S'-overhangs. (Broude, N. E., Sano, T., Smith, C. L., and
Cantor, C. R. (1994) Proc. Natl. Acad Sci. USA, 91,
3072-3076). It 1s now possible to combine a PSBH capture
approach with conventional Sanger sequencing to produce
sequencing ladders detectable, for example by gel electro-
phoresis (Fu, D., Broude, N. E., Koster, H., Smith, C. L., and
Cantor, C. R. (1995) Proc. Natl. Acad Sci. USA, 92,
10162-10166)

For the arrays utilized 1n these schemes, there are a num-
ber of criteria which must be met for successiul perfor-
mance. For example, the immobilized DNA must be stable
and not desorb during hybridization, washing, or analysis. In
addition, the density of the immobilized oligodeoxynucle-
otide must be suilicient for the ensuing analyses. However,
there must be minimal non-specific binding of DNA to the
surface. In addition, the immobilization process should not
interfere with the ability of immobilized probes to hybnidize.
For the majority of applications, 1t 1s best for only one point
of the DNA to be immobilized, 1deally a terminus.

In recent years, a number of methods for the covalent
immobilization of DNA to solid supports have been devel-
oped which attempt to meet all the critenia listed above. For

example, appropriately modified DNA has been covalently
attached to flat surfaces functionalized with amino acids,

(Running, J. A., and Urdea, M. S. (1990) Biotechniques, 8,
276-277), (Newton, C. R., et al., (1993) Nucl. Acids, Res.,
21, 1155-1162.), (Nikiforov, T. T., and Rogers, Y. H. (1995)
Anal Biochem., 227, 201-209) carboxyl groups, (Zhang, Y.,
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et al., (1991) Nucl. Acids Res., 19, 3929-3933), epoxy
groups (Lamture, J. B., et al., (1994) Nucl. Acids Res. 22,
2121-2125), (Eggers, M. D., et al., (1994) BioTechniques,
17, 516-524) or amino groups (Rasmussen, S. R., et al.,
(1991) Anal. Biochem., 198, 138-142) Although many of
these methods were quite successiul for their respective
applications, when used to link nucleic acids to two-
dimensional (tlat) supports, the density of the immobilized
oligodeoxynucleotide 1s often insufficient for the ensuing
analyses (Lamture, J. B., et al., (1994) Nucl. Acids Res. 22,
21212125, Eggers, M. D., et al., (1994) BioTechniques, 17,
516-524).

SUMMARY OF THE INVENTION

In one aspect, the invention features novel compositions
comprised of at least one bead conjugated to a solid support
and further conjugated to at least one nucleic acid. The bead
can be comprised of any of a variety of materials and may be
swellable or nonswellable. Preferably the bead 1s made of a
material selected from the group consisting of: silica gel,
glass, magnet, Wang resin (4—(hydroxymethyl)
phenoxymethylcopoly(styrene—1% divinylbenzene(DVB)
resin), metal, plastic, cellulose, dextran cross-linked with
epichlorohydrin (e.g., Sephadex”™), and agarose (e.g.,
Sepharose™). In a preferred embodiment, the bead is of a size
in the range of about 1 to about 100 um 1n diameter. In
another preferred embodiment, the solid support 1s selected
from the group consisting of: a bead, capillary, plate,
membrane, waler, comb, pin, a waler with pits, an array of
pits or nanoliter wells.

In another aspect, the invention features preferred conju-
gation means for making the novel compositions. In a pre-
ferred embodiment, a covalent amide bond 1s formed
between the bead and the insoluble support In a particularly
preferred embodiment, the covalent amide bond 1s formed
by reacting a carboxyl-functionalized bead with an amino-
functionalized solid support, or a carboxyl-functionalized
support with an amino-functionalized bead.

In a further aspect, the mmvention features methods for
1solating target nucleic acids from a sample or reaction mix-
ture by a conjugation means described herein. In a particu-
larly preferred method, the nucleic acids are directly ana-
lyzed by mass spectrometry.

In a final aspect, the invention features kits containing
reagents for performing the conjugations and thereby 1immo-
bilizing nucleic acids to an insoluble support via a bead

linker.

As compared to “flat” surfaces, beads linked to a solid
support provide an increased surface area for immobilization
of nucleic acids. Furthermore, by selecting a bead with the
desired functionality, a practitioner can select a functional-
1zation chemistry for immobilizing nucleic acids, which 1s
different from the chemistry of the solid support.

The above and further features and advantages of the
instant invention will become clearer from the following
Detailed Description and claims.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 1s a schematic showing the covalent attachment of
a bead to a solid support and DNA to the bead.

FIG. 2 1s a schematic showing the covalent attachment of
(4—(hydroxymethyl)phenoxymethylcopoly(styrene—1%
divinylbenzene(DVB) resin) beads to a solid support as
described in Example 1.

FIG. 3 1s a schematic representation of nucleic acid immo-
bilization via covalent bifunctional trityl linkers as described
in Example 2.
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FIG. 4 1s a schematic representation of nucleic acid immo-
bilization via hydrophobic trityl linkers as described in
Example 3.

FIG. 5 shows a MALDI-TOF mass spectrum of a superna-
tant of the matnx treated Dynabeads containing bound oligo

(5' 1minob1otin-TGCACCTGACTC, SEQ. ID. No. 1). An
internal standard (CTGTGGTCGTGC, SEQ. ID. No. 2) was
included 1n the matrix.

FIG. 6 shows a MALDI-TOF mass spectrum of a superna-

tant of biotin treated Dynabeads containing bound oligo (5'
iminobi1otin-TGCACCTGACTC, SEQ. ID. No. 1). An inter-

nal standard (CTGTGGTCGTGC, SEQ. ID. No. 2) was
included in the matrix.

FIG. 7 schematically depicts conjugation of an unex-
tended primer to a bead via reaction of a 2', 3'-diol on the
primer with boronic acid functionalized beads.

FIG. 8 schematically depicts a pin tool apparatus.

FI1G. 9 depicts various pin conformations. FIG. 9A shows
a solid pin with a straight head. FIG. 9B shows a solid pin
with a concave head. FIG. 9C shows a solid pin with a trun-
cated pyramidal head. FIG. 9D shows a pin with a concave
head and a hollowed center (through which can be mserted
an optical fibre). FIG. 9E shows a pin with a truncated pyra-
midal head and a hollowed center.

FIG. 10 1s a schematic representation of the conjugation
of beads (activated carboxyl) to pins (amino-functionalized)
via amide bonds, and attachment of DNA (via an acid-
cleavable linker) to beads. A disulfide linker conjugating the
beads to the pins and a thioether conjugation between the
bead and the trityl group permits selective cleavage of the
beads (with DNA still attached) from the pin surface.

FIG. 11 1s a schematic representation ol paramagnetic
beads functionalized with streptavidin to pins via a magnetic
interaction and attachment of DNA (via a linker (e.g., modi-
fied biotin or photocleavable biotin) to allow selective cleav-

age ol the DNA from the beads.

FIGS. 12A—C schematically represent a pintool apparatus
and mount, each separately and a cross section of the mount
and tool 1nstalled.

FIG. 13 1s a schematic representation of mass spectrom-
etry geometries for the pin conformations shown 1 FIGS.
9A-E.

FIG. 14 schematically depicts a pintool onto which a volt-
age 1s applied. When an electrical field 1s applied, nucleic
acids are attracted to the anode. This system purifies nucleic
acids, since uncharged molecules would remain in solution,

while positively charged molecules are attracted towards the
cathode.

FIG. 15 shows a flow chart of the steps involved in

sequencing by mass spectrometry using post-biology cap-
ture.

DETAILED DESCRIPTION OF THE INVENTION

In general, the mvention relates to use of functionalized
beads for the immobilization of nucleic acids, wherein the
beads are stably associated with a solid support.

FIG. 1 depicts a bead conjugated to a solid support
through one or more covalent or non-covalent bonds.
Nucleic acids can be immobilized on the functionalized bead
betfore, during or after the bead 1s conjugated to the solid
support. As used herein, the term “nucleic acid” refers to
single stranded and/or double stranded polynucleotides such
as deoxyribonucleic acid (DNA), and ribonucleic acid
(RNA) as well as analogs or derivatives of either RNA or
DNA. Also included 1n the term “nucleic acid” are analogs
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of nucleic acids such as peptide nucleic acid (PNA), phos-
phorothioate DNA, and the like.

Preferred nucleic acids for use 1n the subject imnvention are
derivatized to contain at least one reactive moiety. Preferably
the reactive moiety 1s at the 3' or 5' end. Alternatively, a
nucleic acid can be synthesized with a modified base. In
addition, modification of the sugar moiety of a nucleotide at
positions other than the 3' and 5' position 1s possible through
conventional methods. Also, nucleic acid bases can be
modified, e.g., by using N7- or N9-deazapurine nucleosides
or by modification of C-5 of dT with a linker arm, e.g., as
described in F. Eckstein, ed., “Oligonucleotides and Ana-
logues: A Practical Approach,” IRL Press (1991).
Alternatively, backbone-modified nucleic acids (e.g., phos-
phoroamidate DNA) can be used so that a reactive group can
be attached to the nitrogen center provided by the modified
phosphate backbone.

In preferred embodiments, modification of a nucleic acid,
¢.g., as described above, does not substantially impair the
ability of the nucleic acid or nucleic acid sequence to hybrid-
1ze to 1its complement. Thus, any modification should prefer-
ably avoid substantially modifying the functionalities of the
nucleic acid which are responsible for Watson-Crick base
pairing. The nucleic acid can be modified such that a non-
terminal reactive group 1s present, and the nucleic acid,
when immobilized to the support, 1s capable of seli-
complementary base pairing to form a “hairpin” structure
having a duplex region.

Examples of insoluble supports for use in the instant
invention include beads (silica gel, controlled pore glass,
magnetic beads, biomagnetic separation beads such as
Dynabeads”™, Wang resin; Merrifield resin, which is chlo-
romethylated copolystyrene—divinylbenzene(DVB) resin,
Sephadex®™/Sepharose” beads, cellulose beads, etc.),
capillaries, flat supports such as glass fiber filters, glass
surfaces, metal surfaces (steel, gold, silver, aluminum, sili-
con and copper), plastic materials including multiwell plates
or membranes (e.g., ol polyethylene, polypropylene,
polyamide, polyvinylidenedifluoride), walers, combs, pins
or needles (e.g., arrays of pins suitable for combinatorial
synthesis or analysis) or beads 1n an array of pits or nanoliter
wells of flat surfaces such as waters (e.g. silicon watfers),
walers with pits with or without filter bottoms.

An appropriate “bead” for use in the instant invention
includes any three dimensional structure that can be conju-
gated to a solid support and provides an increased surface
area for binding of DNA. Preferably the bead 1s of a size 1n
the range of about 1 to about 100 .mu.m in diameter. For use
in the invention, a bead can be made of virtually any
insoluble or solid material. For example, the bead can be
comprised of silica gel, glass (e.g. controlled-pore glass
(CPG)), nylon, Wang resin, Merrifield resin, Sephadex”/
Sepharose”, cellulose, magnetic beads, Dynabeads”, a metal
surface (e.g. steel, gold, silver, aluminum, silicon and
copper), a plastic material (e.g., polyethylene,
polypropylene, polyamide, polyester, polyvinylidenedifluo-
ride (PVDF)) and the like. Beads can be swellable, e.g.,

polymeric beads such as Wang resin, or non-swellable (e.g.,
CPGQG).

As used herein, the term “conjugated” refers to 10nic or
covalent attachment. Preferred conjugation means include:
streptavidin- or avidin- to biotin interaction; hydrophobic
interaction; magnetic iteraction (e.g. using functionalized
Dynabeads); polar interactions, such as “wetting” associa-
tions between two polar surfaces or between oligo/
polyethylene glycol; formation of a covalent bond, such as
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an amide bond, disulfide bond, thioether bond, or via
crosslinking agents; and via an acid-labile linker. In a pre-
terred embodiment for conjugating nucleic acids to beads,
the conjugating means introduces a variable spacer between
the beads and the nucleic acids. In another preferred
embodiment, the conjugation is photocleavable (e.g.
streptavidin- or avidin- to biotin interaction can be cleaved
by a laser, for example for mass spectrometry).

Appropriate cross-linking agents for use in the mvention
include a variety of agents that are capable of reacting with a
functional group present on a surface of the bead, insoluble
support and or nucleic acid and with a functional group
present 1 the nucleic acid and/or bead, respectively.
Reagents capable of such reactivity include homo- and
hetero-bifunctional reagents, many of which are known in
the art. Heterobifunctional reagents are preferred. A pre-
terred bifunctional cross-linking agent 1s N-succinimidyl(4-
1odoacetyl) aminobenzoate (SIAB). However, other
crosslinking agents, including, without limitation,
dimaleimide, dithio-bis-nitrobenzoic acid (DTNB),
N-succinimidyl-S-acetyl-thioacetate (SATA),
N-succinimidyl-3-(2-pyridyldithio) propionate (SPDP), suc-
cinimidyl 4-(N-maleimidomethyl)cyclohexane-1-
carboxylate (SMCC) and 6-hydrazinomicotimide (HYNIC)
may also be used in the novel process. In certain
embodiments, the cross-linking agent can be selected to pro-
vide a selectively cleavable bond when the nucleic acid mol-
ecule 1s immobilized on the isoluble support. For example,
a photolabile cross-linker such as 3-amino-(2-nitrophenyl)
propionic acid (Brown et al. (1995) Molecular Diversity
4—12 and Rothschild et al (1996) Nucleic Acids Res.
24:351-66) can be employed to provide a means for cleav-
ing the nucleic acid from. the beads or msoluble (e.g., solid)
support, 1I desired. For further examples of cross-linking
reagents, see, €.2., S. S. Wong, “Chemistry of Protein Conju-
gation and Cross-Linking,” CRC Press (1991), and G. T.

Hermanson, “Bioconjugate Techniques,” Academic Press

(1995).

In one preferred embodiment, a covalent amide bond 1s
formed between a bead and a insoluble support by reacting a
carboxyl-functionalized bead with an amino-functionalized
solid support (e.g., as described 1n Example 1, below, by
reacting a carboxyl-functionalized Wang resin with an
amino-functionalized silicon surface). Alternatively, a
carboxyl-functionalized support can be reacted with an
amino-functionalized bead, which take advantage of an acid-
cleavable bifunctional trityl protection scheme employed for
nucleic acid attachment. The bifunctional trityl linker can
also be attached to the 4-nitrophenyl active ester on a resin
(c.g. Wang resin) via an amino group as well as from a
carboxy group via an amino resin

In the bitunctional trityl approach, the beads may require
treatment with a volatile acid (e.g. formic acid, trifluoracetic
acid, etc.) to ensure that the nucleic acid 1s cleaved and can
be removed. In which case, the nucleic acid may be depos-
ited as a beadless patch at the bottom of a well 1n the solid
support or on the flat surface of the solid support. After
addition of matrix solution, the nucleic acid can then be
desorbed 1nto the mass spectrometer, for example.

The hydrophobic trityl linkers can also be exploited as
acid-labile linkers by using a volatile acid or an appropriate
matrix solution (e.g. a matrix solution containing, for
example, 3-hydroxypicolinic acid (3-HPA) to cleave the
aminolink trityl group from the nucleic acid molecule). Also,
the acid lability can be changed. For example, trityl,
monomethoxy, demothoxy- or trimethoxytrityl can be
changed to the appropriate p-substituted and even more acid
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labile tritylamine derivatives of the nucleic acids (1.e. trityl
cther and tritylamine bonds to the nucleic acid can be made).
Theretore, the nucleic acid may be removed from the hydro-
phobic linker, for example, by disrupting the hydrophobic
attraction or by cleaving tritylether or tritylamine bonds
under acidic or the usual mass spectrometry conditions (e.g.
wherein the matrix, such as 3-HPA acts as an acid)

As pointed out above, the bead can also be associated with
the solid support by non-covalent interactions. For example,
a magnetic bead (e.g., a bead capable of being magnetized,
¢.g., a ferromagnetic bead) can be attracted to a magnetic
solid support, and can be released from the support by
removal of the magnetic field. Alternatively, the bead can be
provided with an 1onic or hydrophobic moiety, which can
associate with, respectively, an 1onic or hydrophobic moiety
of the solid support. Also, a bead can be provided with a
member of a specific binding pair, and become immobilized
to a solid support provided with a complementary binding
moiety. For example, a bead coated with avidin or streptavi-
din can be bound to a surface coated with biotin or deriva-
tives of biotin such as imino-biotin. It will be appreciated
that the binding members can be reversed, e.g., a biotin-
coated bead can bind to a streptavidin-coated solid support.
Other specific binding pairs contemplated for use in the
invention include hormone-receptor, enzyme-substrate,
nucleic acid-complementary nucleic acid, antibody-antigen

and the like.

Examples of preferred binding pairs or linker/interactions
are shown 1n the following Table 1

TABL.

(Ll

1

LINKER/INTERACTION EXAMPLES

biotinylated pin, avidin beads,
photolabile biotin DNA
C18-coated pin, tritylated DNA
electromagnetic pin, steptavidin
Dynabeads, biotin DNA

glass pin, bifunctional trityl-
linked DNA

silicon wafer, Wang resin,
amino-linked DNA

silicon wafer, beads are bound
on the flat surface forming

arrays or in arrays of nanoliter

wells, thiol beads, thiolated
DNA

streptavidin-biotin® ¢/photolabile biotin®

hydrophobic?

magnetic?
acid-labile linker®
amide bond(s)*

disulfide bond?

photocleavable bond/linker
thioether bond®

silicon watfer, beads are bound
on the flat surface forming

arrays or in arrays of nanoliter
wells, thiolated DNA

“These interactions are reversible

*These non-reversible interactions are rapidly cleaved

“Unless cleavable-linkers are incorporated at some point in the scheme, only
the complement of the solid-bound DNA can be analysed in these schemes.

In a particularly preferred embodiment the bead 1s conju-
gated to the solid support and/or the nucleic acid i1s conju-
gated to the bead using an acid-labile bond. For example, use
of a trityl linker, as further described in the following
Examples 2 and 3, can provide a covalent or hydrophobic
conjugation. Regardless of the nature of the conjugation, the
trityl group 1s readily cleaved 1n acidic conditions.

A nucleic acid can be bound to a bead which 1s 1tself
bound to a solid support, e.g., by any of the chemistries
discussed above for the attachment of nucleic acids to solid
supports, or attachment of beads to solid supports.

In certain embodiments, the mvention contemplates the
use of orthogonally-cleavable linkers for binding the bead to
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the solid support, and for binding the nucleic acid to the
bead. Thus, a bead can be selectively cleaved from the sur-
face without cleaving the nucleic acid from the bead, while
the nucleic acid 1s cleaved from the bead at a later stage. For
example, a disulfide linker (which can be cleaved, using,
e.g., DTT) could be employed to bind the bead to the solid
surface, and a bead-nucleic acid linker involving an acid-
cleavable bifunctional trityl group could be used to immobi-
lize a nucleic acid to the bead. Alternatively the linkage of
the nucleic acid could be cleaved while the linkage of the
bead to the support remains intact.

A bead can be bound to a solid support through a linking
group which can be selected to have a length and a chemaical
nature such that high-density binding of beads to the solid
support, and/or high-density binding of nucleic acid to the
beads, 1s promoted. Such a linking group would have a “tree-
like” structure in providing a multiplicity of functional
groups per attachment site on the solid support such as
polylysine, polyglutamic acid, pentaerythrole and tris-
hydroxy-aminomethane.

In certain embodiments, beads can be cross-linked to
other beads, e.g., by use of homobifunctional crosslinking
reagents. Cross-linked beads can provide additional
mechanical strength compared to non-crosslinked beads.

The methods and compositions described herein, can be
used to 1solate (purily) target nucleic acids from biological
samples (reactions). For example, the compositions and
methods can be used to 1solate particular nucleic acids,
which are generated by cloning (Sambrook et al., Molecular
Cloning : A Laboratory Manual, Cold Spring Harbor Labo-

ratory Press, 1989), polymerase chain reaction (PCR) (C. R.
Newton and A. Graham, PCR, BIOS Publishers, 1994),

ligase chain reaction (LCR) (Wiedmann, M., et al., (1994)
PCR Methods Appl. Vol. 3, Pp. 357-64; F. Barany Proc. Natl.
Acad. Sc1 USA 88, 189-93 (1991), strand displacement
amplification (SDA) (G. Terrance Walker et al., Nucleic
Acids Res. 22, 2670-77 (1994)) European Patent Publica-
tion Number O 684 315 entitled “Strand Displacement
Amplification Using Thermophilic Enzymes™) and varia-
tions such as RT-PCR (Higuchi, et al., Bio/Technology
11:1026-1030 (1993)), allele-specific amplification (ASA),

cycle sequencing and transcription based processes.

Further, the methods and compositions can be used to
1solate or transfer particular nucleic acids during the pertor-
mance of a particular reaction. For example, a PCR reaction
can be performed to ‘master’ mix without addition of the
dideoxynucleotides (d/ddNTPs) or sequencing primers. Ali-
quots can then be 1solated via a conjugation means described
herein and transferred, for example to a sequencing plate,
where d/ddNTPs and primers can then be added to perform a
sequencing reaction. Alternatively, the PCR can be split
between A, C, G, and T master mixes. Aliquots can then be

transierred to a sequencing plate and sequencing primers
added.

For example, 0.4—0.5 pmol of PCR product can be used in
a cycle-sequencing reaction using standard conditions,
allowing each PCR to be used for 10 sequencing reactions
(10xA, C, G, and T). The sequencing reactions can be car-
ried out 1 a volume of 10 ul containing 3-6 pmol of
S'-labeled sequencing primer 1n a standard 384 microwell
plate allowing up to 96 sequencing reactions (3360 bases at
35 bases per reaction). Alternatively, a 192 microwell plate
approximately 5x5 cm 1n a 12x16 format can be used. This
format allows up to 48 sequencing reactions to be carried out
per well, resulting 1n 1680 bases per plate (at 35 bases per
reaction). The format of the sequencing plate will determine
the dimensions of the transier agent (e.g. pin-tool).
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A pm tool 1n a 4x4 array (FIG. 8) can be applied to the
wells of the sequencing plate and the sequencing products
captured on functionalized beads as described herein, which
are attached to the tips of the pins (>=1 pmol capacity).
During the capture/incubation step, the pins can be kept 1n
motion (vertical, 1-2 mm travel) to mix the sequencing reac-
tion and increase the efficiency of the capture.

Alternatively, the nucleic acid can be directly captured
onto the pin-tool, for example, a linking functionality on the
pin-tool can immobilize the nucleic acid upon contact.
Further, immobilization can result from application to the
pin-tool of an electrical field, as shown 1n FIG. 14. When a
voltage 1s applied to the pin-tool, the nucleic acids are
attracted to the anode. This system also purifies nucleic
acids, since uncharged molecules remain in solution and
positively charged molecules are attracted to the cathode.
For more specificity, the pin-tool (with or without voltage),
can be modified to contain a partially or fully single stranded
oligonucleotide (e.g. about 5-12 base pairs). Only comple-
mentary nucleic acid sequences (e.g. in solution) are then
specifically conjugated to the pins.

In yet a further embodiment, a PCR primer can be conju-
gated to the tip of a pin-tool. PCR can be performed with the
solid phase (pin-tool)-bound primer and a primer in solution,
so that the PCR product becomes attached to the pin-tool.
The pin-tool with the amplification product can then be
removed from the reaction and analyzed (e.g. by mass
spectrometry).

Examples of different pin conformations are shown in
FIG. 9. For example, FIGS. 9a, 9b. and 9¢. show a solid pin
configuration. FIGS. 9d. and 9¢ show pins with a channel or
hole through the center, for example to accomodate an optic
fibre for mass spectrometer detection. The pin can have a flat
t1p or any of a number of configurations, including nanowell,
concave, convex, truncated conic or truncated pyramidal
(e.g. size 4-800u across x100u depth). In a preferred
embodiment, the individual pins are about 5 mm 1n length
and about 1 mm 1n diameter. The pins and mounting plate
can be made of polystyrene (e.g. one-piece 1njection
moulded). Polystyrene 1s an i1deal material to be functiona-
lised and can be moulded with very high tolerances. The pins
in a pin-tool apparatus may be collapsible (eg, controlled by
a scissor-like mechanism), so that pins may be brought into
closer proximity, reducing the overall size

Captured nucleic acids can be analyzed by any of a variety
of means including, for example, spectrometric techniques
such as UV/VIS, IR, fluorescence, chemiluminescence, or
NMR spectroscopy, mass spectrometry, or other methods
known 1n the art, or combinations thereof. Preferred mass
spectrometer formats include 1onmization (I) techniques, such
as matrix assisted laser desorption (MALDI), continuous or
pulsed electrospray (ESI) and related methods (e.g. Ionspray
or Thermospray), or massive cluster impact (MCI); these 1on
sources can be matched with detection formats including
linear or non-linear reflectron time-of-flight (TOF), single or
multiple quadrupole, single or multiple magnetic sector,
Fourier Transform 1on cyclotron resonance (FTICR), 1on
trap, and combinations thereof (e.g., 1on-trap/time-of-tlight).
For 1onization, numerous matrix/wavelength combinations
(MALDI) or solvent combinations (ESI) can be employed.

If conditions preclude direct analysis of captured DNA,
then the DNA can be released and/or transterred. However, 1t
may be important that the advantages of sample concentra-
tion are not lost at this stage. Ideally, the sample should be
removed from the surface in as little a volume of eluent as
possible, and without any loss of sample. Another alternative
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1s to remove the beads (+sample) from the surface, where
relevant, and measure the sample directly from the beads.

For example, for detection by mass spectrometry, the pin-
tool can be withdrawn and washed several times, for
example 1n ammonium citrate to condition the sample before
addition of matrix. For example, the pins can simply be
dipped into matrix solution. The concentration of matrix can
then be adjusted such that matrix solution only adheres to the
very tip of the pin. Alternatively, the pintool can be mverted
and the matrix solution sprayed onto the tip of each pin by a
microdrop device. Further, the products can be cleaved from
the pins, for example into a nanowell on a chip, prior to
addition of matrix.

For analysis directly from the pins, a stainless steel ‘mask’
probe can be fitted over the pins 1n one scheme (FIG. 12)
which can then be installed in the mass spectrometer.

Two mass spectrometer geometries for accomodating the
pin-tool apparatus are proposed in FIG. 13. The first acco-
modates solid pins. In effect, the laser ablates a layer of
material from the surface of the crystals, the resultant ions
being accelerated and focused through the 10n optics. The
second geometry accomodates fibre optic pins 1n which the
samples are lasered from behind. In effect, the laser 1s
focused onto the pin-tool back plate and into a short optical
fibre (about 100 um 1n diameter. and about 7 mm length to
include thickness of the back plate). This geometry requires
the volatilised sample to go through the depth of the matrix/
bead mix, slowing and cooling down the 1ons resulting 1n a
type of delayed extraction which should actually increase
the resolution of the analysis.

The probe through which the pins are fitted can also be of
various geometries. For example, a large probe with multiple
holes, one for each pin, fitted over the pin-tool. The entire
assembly 1s translated 1n the X-Y axes 1n the mass spectrom-
cter. Alternatively, as a fixed probe with a single hole, which
1s large enough to give an adequate electric field, but small
enough to fit between the pins. The pin-tool 1s then translated
in all three axes with each pin being introduced through the
hole for sequential analyses This format 1s more suitable for
the large pin-tool (1.e. based on a standard 384 well micro-
plate format). The two probes described above, are both suit-
able for the two mass spectrometer geometries described
above.

FIG. 15 schematically depicts the steps involved 1n mass
spectrometry sequencing by post biology capture as
described above.

The methods of the invention are useful for providing
spatially-addressable arrays of nucleic acids immobilized on
beads, which are further attached to solid supports. Such
spatially addressable or pre-addressable arrays are usetul 1n
a variety of processes (e.g., SBH, quality control, and DNA
sequencing diagnostics). In another aspect, the invention
provides combinatorial libraries of immobilized nucleic
acids bound to beads, which are further bound to a solid
support as described above.

In still another aspect, the mvention provides a kit for
immobilizing nucleic acids on beads, which are further
bound to a solid support. In one embodiment, the kit com-
prises an appropriate amount of: 1) beads, and/or 11) the
insoluble support, and 111) conjugation means. The Kkits
described herein can also optionally include appropriate
butlers; containers for holding the reagents; and/or mnstruc-
tions for use.

The present 1invention 1s further illustrated by the follow-
ing Examples, which are intended merely to further i1llustrate
and should not be construed as limiting. The entire contents
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of all of the references (including literature references,
issued patents, published patent applications, and
co-pending patent applications) cited throughout this appli-
cation are hereby expressly incorporated by reference.

EXAMPLE 1

Attachment of Resin Beads to a Silicon Surtface

A silicon surface (e.g. of a silicon waler) 1s derivatized
with amino groups by treatment with
3-aminopropyltriethoxysilane. Wang resin beads are treated
with succinic anhydride to provide carboxyl-tfunctionalized
resin beads. The carboxyl-functionalized resin beads are
then coupled to the amino-functionalized silicon surface
with a coupling reagent (for example, dicyclohexylcarbodi-
imide (DCC)), 1n the presence of p-nitrophenol. The resin
beads become covalently linked to the silicon surface, and
the unreacted carboxyl groups of the resin are converted to
the p-nitrophenyl ester (an activated ester suitable for cou-
pling with a nucleic acid).

Alternatively, the carboxyl groups of the Wang resin are
transiformed to the p-nitrophenyl active esters prior to react-
ing with the amino-tunctionalized silicon surface.

Thus, resin beads can be rapidly and conveniently
attached to a silicon surface, and can be simultaneously con-
verted to a reactive form suitable for covalent attachment of
nucleic acids.

EXAMPLE 2

Immobilization of Nucleic Acids on Solid Supports
via an Acid-labile Covalent Bitunctional Trityl
Linker

Aminolink DNA was prepared and purified according to
standard methods. A portion (10 eq) was evaporated to dry-
ness on a speedvac and suspended in anhydrous DMEF/
pyridine (9:1; 0.1 ml). To this was added the chlorotrityl
chloride resin (1 eq, 1.05 mol/mg loading) and the mixture
was shaken for 24 hours. The loading was checked by taking
a sample of the resin, detritylating this using 80% AcOH,
and measuring the absorbance at 260nm. Loading was ca.
150 pmol/mg resin.

In 80% acetic acid, the half-life of cleavage was found to
be substantially less than 5 minutes—this compares with
trityl ether-based approaches of half-lives of 105 and 39
minutes for para and meta substituted bifunctional
dimethoxytrityl linkers respectively. Preliminary results
have also indicated that the 3-hydroxy picolinic acid matrix
alone 1s suflicient to cleave the DNA from the chlorotrityl
resin during MALDI mass spectrometry.

EXAMPLE 3

Immobilization of Nucleic Acids on Solid Supports
via Hydrophobic Trityl Linker

The primer contained a 3'-dimethoxytrityl group attached
using routine trityl-on DNA synthesis.

C18 beads from an oligo purification cartridge (0.2 mg)
placed 1n a filter tip was washed with acetonitrile, then the
solution of DNA (50 ng 1 25 1) was flushed through. This
was then washed with 5% acetonitrile 1n ammonium citrate
buifer (70 mM, 250 1). To remove the DNA from the C18,
the beads were washed with 40% acetonitrile 1n water (10 1)
and concentrated to ca 2 1 on the Speedvac or directly sub-
jected to MALDI mass spectrometry.
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Alternatively C18 beads were first covalently attached to a
silicon surface (e.g. a silicon wafer) or adsorbed to a flat
surface by hydrophobic interaction.

The results showed that acetonitrile/water at levels of
ca.>30% are enough to dissociate the hydrophobic interac-
tion. Since the matrix used in MALDI contains 50%
acetonitrile, the DNA can be released from the support and
MALDIed successiully (with the trityl group removed dur-
ing the MALDI process)

EXAMPLE 4

Attaching Beads to Silicon Chips

Amino derivatisation ot silicon surtace

The silicon waters were washed with ethanol to remove
surtace debris and flamed over a bunsen burner until “red
hot” to ensure oxidation of the surface. After cooling, the
walers were immersed in an anhydrous solution of
3-aminopropyltriethoxysilane 1n toluene (25%v/v) for 3
hours. The wafers were then washed with toluene (three
times) then anhydrous dimethylacetamide (three times).

Activation of Wang resin beads

Vacuum-dried Wang resin beads (5g, 0.84mmol/g
loading, 4.2 mmol, diameter 100-200 mesh), obtained from
Novabiochem, were suspended in pyridine (40 ml) with
DMAP (0.1 eq, 0.42 mmol, 51 mg). To this was added suc-
cinic anhydride (5 eq, 21 mmol, 2.10 g) and the reaction was
shaken for 12 hours at room temperature. After this time, the
beads were washed with dimethylformamide (three times),
then pyridine (three times) and suspended i1n pyridine/
dimethylformamide (1:1, 20 ml). 4-Nitrophenol (2 eq, 8.4
mmol, 1.40 g) was added and the condensation was activated
by adding dicyclohexylcarbodiimide (DCC) (2 eq, 8.4
mmol, 1.73 g) and the reaction mixture was shaken for 12
hours. The beads were then washed with

dimethylformamide, pyridine and hexane, and stored at 4°
C.

Coupling of Beads to Silicon Waters

The amino-derivatised silicon wafer 1s treated with a sus-
pension of the 4-nitrophenol beads 1in dimethyl acetamide
(DMA), and within five minutes, the beads are covalently
linked to the surface. The coated surface can then be washed
with DMA, ethanol and water, under which conditions the
beads remain as a uniform monolayer. Care must be taken to
avold scratching the beaded surface. The beads can then be
reacted with the amino-functionalised modified DNA.

EXAMPLE 5

Immobilization of Nucleic Acids on Solid Supports
via Streptavidin-Iminobiotin

2-iminobiotin N-hydroxy-succinimid ester (Sigma) was
conjugated to the oligonucleotides with a 3'- or 5'-amino
linker following the conditions suggested by the manufac-
ture. The completion of the reaction was confirmed by
MALDI-TOF MS analysis and the product was purified by

reverse phase HPLC.

For each reaction, 0.1 mg of streptavidin-coated magnetic
beads (Dynabeads M-280 Streptavidin from Dynal) were
incubated with 80 pmol of the corresponding oligo 1n the
presence of 1M NaCl and 50 mM ammonium carbonate (pH
9.5) at room temperature for one hour. The beads with bound
oligonucleotides were washed twice with 50 mM ammo-
nium carbonate (pH 9.5) Then the beads were incubated 1n 2
ul of 3-HPA matrix at room temperature for 2 min. An ali-
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quot of 0.5 ul of supernatant was applied to MALDI-TOF.
For biotin displacement experiment, 1.6 nmol of free biotin
(80 fold excess to the bound oligo) in 1 ul of 50 mM ammo-
nium citrate was added to the beads. After a S min. incuba-
tion at room temperature, 1 ul of 3-HPA matrix was added
and 0.5 ul of supernatant was applied to the MALDI-TOF
MS. To maximize the recovery of the bound iminobiotin
oligo, the beads from the above treatment were again 1ncu-
bated with 2 ul of 3-HPA matrix and 0.5 ul of the supernatant
was applied to MALDI-TOF MS.

Both matrix alone and free biotin treatment quantitatively
released 1minobiotin oligo off the streptavidin beads as
shown in FIGS. 5 and 6. Almost no bound oligo was
observed after the second treatment which confirmed the

complete recovery
Equivalents

Those skilled in the art will recognize, or be able to ascer-
tain using no more than routine experimentation, numerous
equivalents to the specific procedures described herein. Such
equivalents are considered to be within the scope of this
invention and are covered by the following claims.

We claim:

1. A composition, comprising a bead conjugated to a solid
support and further conjugated to a nucleic acid, wherein the
solid support is selected from the group consisting of [multi-
well plates,] arrays of pits and multiwell supports compris-

ing nanoliter wells.
2. A composition of claim 1, wherein the bead 1s made

from a matenial selected from the group consisting of: silica
gel, glass, magnet, 4—(hydroxymethyl)
phenoxymethylcopoly(styrene—1% divinylbenzene) resin,
chloromethylated copolystyrene—divinylbenzene resin,
metal, plastic, cellulose, dextran cross-linked with
epichlorohydrin, and agarose.

3. A composition of claim 1, wherein the bead 1is
swellable.

4. A composition of claim 1, wherein the bead 1s non-
swellable.

5. A composition of claim 1, wherein the bead 1s 1n the
range of 1 to 100 um 1n diameter.

6. A composition of claim 1, wherein the nucleic acid 1s
DNA.

7. A composition of claim 1, wherein the nucleic acid 1s
RNA.

8. A process of making a bead conjugated to a solid sup-
port and further conjugated to a nucleic acid, comprising the
steps of conjugating a bead to a nucleic acid; and conjugat-
ing a bead to a solid support, wherein the solid support is
selected from the group consisting of [multiwell plates,]
arrays of pits[,] and multiwell supports comprising nanoliter
wells.

9. A process of claim 8, wherein the bead 1s functional-
1zed.

10. A process of claim 9, wherein the bead 1s functional-
1zed with carboxy functional groups.

11. A process of claim 9, wherein the bead 1s functional-
1zed with amino functional groups.

12. A process of claim 9, wherein the bead 1s conjugated
to the nucleic acid prior to conjugation of the bead to the
solid support.

13. A process of claim 9, wherein the bead 1s conjugated
to the nucleic acid aifter the bead 1s conjugated to the solid
support.

14. A kat, comprising:

1) beads,

11) an msoluble support, and

111) conjugation means for linking nucleic acids to the
beads and the beads to the support, wherein the solid
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support is selected from the group consisting of arrays
of pits and multiwell supports comprising nanoliter
wells.

[15. The kit of claim 14, wherein the solid support is
selected from the group consisting of: beads, capillaries,
plates, membranes, walers, combs, pins, waters with arrays
of pits, and supports with nanoliter wells.}

16. The kit of claim 14, wherein the bead 1s made {from
material selected from the group consisting of silica gel,
glass, magnet, p-benzyloxybenzyl alcohol copolystyrene-
divinyl benzene (DVB) resin, chlorotritylchloride
copolystyrene-DVB resin, chloromethylated copolystyrene-
DVB resin, metal, plastic, cellulose, cross-linked dextran,
and agarose gel.

17. A composition, comprising a bead conjugated to a
solid support and further conjugated to a nucleic acid,
wherein conjugation 1s eflected with a crosslinking agent

and the solid support is selected from the group consisting of

arrays of pits and multiwell supports comprising nanoliter
wells.

18. The method of claim 8, wherein conjugation 1s
cifected with a crosslinking agent.

19. [A composition, comprising a bead conjugated to a
solid support and further conjugated to a] The composition
of claim 1, wherein the nucleic acid [molecule comprising
protein] comprises a peptide nucleic acid.

20. A composition, comprising a bead conjugated to a
solid support and further conjugated to a nucleic acid,
wherein conjugation 1s eifected through a photocleavable
linkage, and the solid support is selected from the group
consisting of arrays of pits and multiwell supports compris-
ing nanoliter wells.

21. The composition of claim 20, wherein the linkage 1s
cleaved by exposure to a laser.

22. The composition of claim 20, wherein the linkage 1s
cleaved by exposure to electromagnetic radiation selected
from ultraviolet, visible, inirared radiation or electromag-
netic radiation generated by fluorescence or
chemiluminescence, or combinations thereof.

[23. A composition, comprising a bead conjugated to a
solid support and further conjugated to a nucleic acid,
wherein conjugation is effected through ionic linkages.}

24. The composition of claim I, wherein the solid support
comprises an array of pits.

25. The composition of claim 1, whervein beads are conju-
gated to the support in pits on the array.

26. The composition of claim I, wherein the solid support
is a multiwell support comprising nanoliter wells.

27. The composition of claim 1, wherein beads are conju-

gated to the support in wells on the support.

28. The composition of claim 1, wherein conjugation of

the bead to the solid support and/ov conjugation of the
nucleic acid to the bead is effected through an interaction
comprising an ionic, covalent, polar or hyvdrophobic interac-
tion.

29. The composition of claim 28, whevein intervaction is an
ionic interaction.

30. The composition of claim 28, wherein the interaction
is a covalent interaction.

31. The composition of claim 28, wherein the interaction
is a polar interaction.

32. The composition of claim 28, wherein the interaction
is a hydrophobic interaction.

33. A method, comprising:

a) conjugating a bead to a solid support and further con-

Jugating the bead to a nucleic acid, wherein the solid

support is selected from the group consisting of arrays
of pits and multiwell supports comprising nanoliter
wells: and
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b) analyzing the nucleic acid by a spectrometric method.

34. The method of claim 33, wherein the solid support
comprises an array of pits.

35. The method of claim 34, wherein beads are conjugated
to the support in pits on the array.

36. The method of claim 33, wherein the solid support is a
multiwell support comprising nanoliter wells.

37. The method of claim 36, wherein beads are conjugated
to the support in wells on the support.

38. A method, comprising:

a) providing a composition comprising a bead conjugated
to a solid support and further conjugated to a nucleic
acid, wherein the solid support is selected from the
group consisting of arrays of pits and multiwell sup-
ports comprising nanoliter wells; and

b) analyvzing the nucleic acid by a spectrometric method.

39. The method of claim 38, wherein the solid support
comprises an array of pits.

40. The method of claim 39, wherein beads are conjugated
to the support in pits on the array.

41. The method of claim 38, wherein the solid support is a
multiwell support comprising nanoliter wells.

42. The method of claim 41, wherein beads are conjugated
to the support in wells on the support.

43. The composition of claim I, wherein conjugation of
the bead to the solid support and/or comjugation of the
nucleic acid to the bead is effected through an acid labile
linkage.

44. The composition of claim I, wherein the nucleic acid
is single-stranded.

45. The process of claim 8, wherein the nucleic acid is
single-stranded.

46. The method of claim 33, wherein the nucleic acid is
single-stranded.

47. The method of claim 38, wherein the nucleic acid is
single-stranded.

48. A method, comprising:

(a) contacting a target nucleic acid with beads conjugated
to a solid support and further conjugated to a nucleic
acid, wherein target nucleic acid that hybridizes to the
nucleic acid conjugated to the beads is captured, and
wherein the solid support is selected from the group
consisting of arrays of pits and multiwell supports com-
prising nanoliter wells; and

(b) detecting captured target nucleic acid.
49. The method of claim 48, wherein the nucleic acid con-

Jugated to the beads is single-stranded.

50. The method of claim 48, wherein the solid support
comprises an array of pits.

51. The method of claim 50, wherein beads are conjugated
to the support in pits on the array.

52. The method of claim 48, wherein the solid support is a
multiwell support comprising nanoliter wells.

53. The method of claim 52, wherein beads are conjugated
to the support in wells on the support.

54. The method of claim 48, wherein conjugation of the
beads to the solid support and/or conjugation of the nucleic
acid to the beads is effected through ionic, covalent, polar or
hvdrophobic interactions.

55. The method of claim 54, wherein conjugation of the
beads to the solid support and/or conjugation of the nucleic
acid to the beads is effected through ionic interactions.

56. The method of claim 54, wherein conjugation of the
beads to the solid support and/or conjugation of the nucleic
acid to the bead is effected through covalent interactions.

57. The method of claim 54, wherein conjugation of the
beads to the solid support and/or conjugation of the nucleic
acid to the bead is effected through polar interactions.
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58. The method of claim 54, wherein conjugation of the
beads to the solid support and/or conjugation of the nucleic
acid to the beads is effected through hvdrophobic interac-
tions.

59. The method of claim 48, wherein the nucleic acid is
detected by a spectrometric method.

60. The method of claim 39, wherein the spectrometric
method comprises fluorvescence detection.

61. The method of claim 48, whervein the captured target
nucleic acid is from a biological sample.

62. The method of claim 48, wherein the nucleic acid con-

Jugated to the beads is DNA.

63. The method of claim 48, wherein the nucleic acid con-
Jugated to the beads is RNA.

64. A method, comprising:

(a) contacting a target nucleic acid with beads bound to a
solid support and further bound to a nucleic acid,
wherein target nucleic acid that hybridizes to the
nucleic acid bound to the beads is captured, and
wherein the solid support is selected from the group
consisting of arrays of pits and multiwell supports com-
prising nanoliter wells; and

(D) detecting captured target nucleic acid.

65. The method of claim 64, wherein the nucleic acid
bound to the beads is single-stranded.

66. The method of claim 64, wherein the nucleic acid
bound to the beads is DNA.

67. The method of claim 64, wherein the nucleic acid is
detected by a spectrometric method.

68. The method of claim 67, wherein the spectrometric
method comprises fluorescence detection.

69. A method for capturing a target polyvnucleotide, which
comprises.

contacting a target polynucleotide of a biological sample
with a complex comprising a bead conjugated to a solid
support and further conjugated to a capture nucleic
acid that can hybridize to the target polynucleotide,
wherein.

the bead is conjugated to the solid support by an interac-
tion selected from the group comsisting of an ionic
interaction, polar intervaction and hydrophobic interac-
tion; and

the solid support is selected from the group consisting of
glass supports, silicon wafers, supports with arrays of

pits and supports with nanoliter wells;

whereby the target polynucleotide is captured by the com-
plex.
70. The method of claim 69, wherein the interaction is an
ionic interaction.
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71. The method of claim 69, wherein the interaction is a
polar interaction.

72. The method of claim 69, wherein the interaction is a
hvdrophobic interaction.

73. The method of claim 69, wherein the solid support is a
glass surface.

74. The method of claim 69, wherein the solid support is a
support with an array of pits.

75. The method of claim 69, wherein the solid support is a
support with nanoliter wells.

76. The method of claim 69, wherein the solid support is a
silicon wafer.

77. The method of claim 69, wherein the capture nucleic
acid is DNA.

78. The method of claim 69, wherein the capture nucleic
acid is RNA.

79. A composition for capturing a target polynucleotide of
a biological sample, which comprises a bead of conjugated
to a solid suppoer and further conjugated to a capture
nucleic acid that can hybridize to the target polynucleotide,
wherein.

the bead is conjugated to the solid support by an interac-
tion selected from the group comsisting of an ionic
interaction, polar intervaction and hydrophobic interac-
tion; and

the solid support is selected from the group consisting of
glass supports, silicon wafers, supports with arrays of
pits and supports with nanoliter wells.
80. The composition of claim 79, wherein the interaction
IS an lonic interaction.
81. The composition of claim 79, wherein the interaction
is a polar interaction.
82. The composition of claim 79, wherein the interaction
is a hydrophobic interaction.
83. The composition of claim 79, wherein the solid sup-
port is a glass surface.
84. The composition of claim 79, wherein the solid sup-
port is a support with an array of pits.
85. The composition of claim 79, wherein the solid sup-
port is a support with nanoliter wells.
86. The composition of claim 79, wherein the solid sup-
port is a silicon wafer.
87. The composition of claim 79, wherein the nucleic acid
bound to the beads is DNA.

88. The composition of claim 19, wherein the nucleic acid

bound to the beads is RNA.
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