USOORE40989E
(19) United States
a2 Relssued Patent (10) Patent Number: US RE40,989 E
Jain et al. 45) Date of Reissued Patent: Nov. 17, 2009
(54) ATOMIC OPERATIONS ON DATA 5,956,480 A * 9/1999 Kuriharacouu...... 714/52
STRUCTURES 5,960,406 A * 9/1999 Rasanskyetal. 705/9
6,009428 A * 12/1999 Kleewemn etal. 707/10
(75) Inventors: Neel K. Jain, Redmond, WA (US): 6,026,474 A * 2/2000 Carteretal. 711/202
Bradley M. Waters, Woodinville, WA 6,067,550 A_ : 5/2000 Lometccevvinvnnennn... 707/202
(US): Mahlon David Fields, Kirkland, 6,247,027 th 6/2001 Clllaudhry etal. 707/206
6,484,185 B1 * 11/2002 Jametal. 707/203
WA (US) 6,535,869 Bl * 3/2003 Housel, III ...o....ovoeeren... 707/2
(73) Assignee: Microsoft Corporation, Redmond, WA OTHER PUBLICATIONS
(US) Courtois, P.J., F. Heymans and D.L. Parnas “Concurrent
Control with ‘Readers’ and ‘Writers’”, Communications of
(21) Appl. No.: 10/988,447 the ACM, vol. 14, No. 10, Oct. 1971, pp. 667—668.*
(22) Filed: Nov. 12, 2004 Easton, W.B. “Process Synchronization Without Long—Term
Interlock”, Proceedings of the 3™ ACM Symposium on
Related U.S. Patent Documents Operating Systems Principles, 1971, pp. 95-100.%
Reissue of: Easton, W.B. “Process Synchronization Without Long—Term
(64) Patent No.: 6,484,185 Interlock™”, ACM SIGOPS Operating Systems Review, vol.
Issued: Nov. 19, 2002 6, No. 1/2_, Jun. 1972, PP. 95—-100.*
Appl. No.: 09/286,552 Gerber, A.J. ACM SIGOPS Operating Systems Review, vol.
Filed: Apr. 5, 1999 11, No. 4, Oct. 1977, pp. 6-17.%
Lamport, L. “Concurrent Reading and Writing”, Communi-
(51) Int. Cl. cations of the ACM, vol. 20, No. 11, Nov. 1977 %
GO6F 12/00 (2006.01) Ramsperger, N. “Concurrent Access to Data”, Acta Infor-
matica, vol. 8, 1977, pp. 325-334.%
(52) US.CL ..., 707/203;°707/1; 7077/2; Reed, D.P. and R.K. Kanodia “Synchronization with Event-
707/3,°707/8; 707/201 counts and Sequencers”, Communications of the ACM, vol.
(58) Field of Classification Search 707/8, 22, No. 2, Feb. 1979, pp. 115-123.%
707/201 _
See application file for complete search history. (Continued)
Primary Examiner—Luke S. Wassum
(56) References Cited (74) Attorney, Agent, or Firm—Woodcock Washburn LLP

U.S. PATENT DOCUMENTS (57) ABSTRACT
5327556 A * 7/1994 Mohan et al. 7078 Performing atomic operations on data enfities having an
s
2,452,448 A) 971995 Sakurabaetal. 707/201 arbitrary size 1s disclosed. Version data 1s associated with a
5,748,978 A 5/1998 Narayan etal. 712/23 data entity. The version data is saved to a first attribute. The
5,761,677 A * 6/1998 Senatoretal. 707/203 data entitv is then accessed. The saved version data is com-
5,806,078 A * 9/1998 Hugetal. 715/511 ty .
5881229 A * 3/1999 Singhetalcoo........ 709/203 ~ pared to the current version data. If the two are equal, the
5918229 A * 6/1999 Davis et al.covvevn.... 707/10 data entity 1s valid.
5,946,699 A * §/1999 Sawashimaetal. 707/203
5,950,201 A * 9/1999 Van Huben et al. 707/10 40 Claims, 6 Drawing Sheets
i), 305

Acquire Exclusive
Access to Version Data

1

Set Varsion to
INVALID_VALUE

I~ 310

N

_—

Updata Data Entity

315

4

1

Update Version Data

S ey e—

320

Terminate Exclusiv

Access to Version Data

325

US RE40,989 E
Page 2

OTHER PUBLICATTONS

Lamport, L. “How to Make a Multiprocessor Computer That
Correctly Executes Multiprocess Programs”, IEEE Transac-
tions on Computers, Col. C-28, No. 9, Sep. 1979, pp.
690691 .%

Bernstein, P.A. and N. Goodman “Timestamp—Based Algo-
rithms for Concurrency Control in Distributed Database
Systems”, Proceedings of the 6” International Conference
on Very Large Databases, Oct. 1-3, 1980, pp. 285-300.%
Plotkin, S.A. “Sticky Bits and Umversality of Consensus”,
Proceedings of the 8” Annual ACM Symposium on Prin-
ciples of Distributed Computing, 1989, pp. 159-175.%
Herlihy, M. “Wait-Free Synchronmization”, ACM Transac-
tions on Programming Languages and Systems, vol. 11, No.
1, Jan. 1991, pp. 124-149.%

Herlihy, M. A Methodology for Implementing Highly Con-
current Data Objects, ACM Transactions on Programming
Languages and Systems, vol. 15, No. 5, Nov. 1993, pp.

745-770.%

Valois, J.D. “Lock—Free Data Structures”, Ph. D. Thesis,
Rensselaer Polytechnic Institute, May 1995.%

Valois, 1.D. “Lock—Free Linked Lists Using Compare—and-—
Swap”, Proceedings of the 14” Annual ACM Symposium on

Principles of Distributed Computing, Aug. 20-23, 1995, pp.
214-222.%

Anderson, J., S. Ramamurthy, M. Moir and K. Jeilay
“Lock— Free Transactions for Real-Time Systems”, In Real-

—Time Databases: Issues and Applications, Amsterdam:
Kluwer Academic Publishers, 1997.*

* cited by examiner

US RE40,989 E

Sheet 1 of 6

Nov. 17, 2009

U.S. Patent

L NOEYOnddY STINCON

VIVO | AVHO0¥d | SHWVEIOONd | W3ISAS

RAYHO08d | ¥3HIO | NOUVIMddY | ONUVM3Id0
MAUNDHOO .. ¢, n —

310M3Y LS 9¢ of -

...I..H.ﬂ””nu - .
a.@
... g
SRIOMLIN 55 30 ”I e e

lll J

8Z{=

LC !E mN ._H viva
u%.__< o..mw_uﬁ_ HEEE_ uoﬁmEz_ uu...mm%_z B«% U
YHOMIIN YIMVY OO0 .?...Eo XSIG JIINOYN | | ISI0 GQuVH mm.__._cos
LY 5:5

SKVIO0Yd
g¢ | NOUVYINddY
1IND
ONISSIO0Nd
¥4
YAA

BT ()
O30
8V

.
_
|
.
|
0z~
.
'
|
|
!
'
|

, AJONIN N3ISAS

U.S. Patent Nov. 17, 2009 Sheet 2 of 6 US RE40,989 E

’ I,.. 220
210 Read Unit &1 |

205
225
Read Unit #2

230

]

215 1 Read Unit #3

FIG. 2

U.S. Patent

Nov. 17, 2009 Sheet 3 of 6

Acquire Exclusive
Access to Version Data

Set Version to
INVALID_VALUE

Update Data Entity

Update Version Data

Terminate Exclusive
Access to Version Data

-]

FIG. 3

305

310

315

320

325

US RE40,989 E

U.S. Patent

Nov. 17, 2009 Sheet 4 of 6

Save Versionlo V'

410
Copy Data Entity
A~ 415
Does Version =
Yos

NVALID_VALUE?

NO

420

s V' Still Equal to

. N
version? ¢

Yes

425
Data is Valid

US RE40,989 E

U.S. Patent

Nov. 17, 2009 Sheet Sof 6

905

Acquire Exclusive
Access to Version Data

510
Set Version to
INVALID_VALUE
515
Flush Writes
520
Update Data Entity
525
Flush Writes
530
Update Version Data
XL

Terminate Exclusive
Accass to Version Data

FIG. §

US RE40,989 E

U.S. Patent

Nov. 17, 2009 Sheet 6 of 6

Save Versionto V'

610
Force Reads
615
Copy Data Entity
620
Force Reads
625
Does Version = Yo

NVALID_VALUE?

630

s V' Still Equal to
Version?

l . 6835

NS
I Data is Valid '

FIG. 6

US RE40,989 E

US RE40,989 E

1

ATOMIC OPERATIONS ON DATA
STRUCTURES

Matter enclosed in heavy brackets [] appears in the
original patent but forms no part of this reissue specifica-
tion; matter printed in italics indicates the additions
made by reissue.

FIELD OF THE INVENTION

This invention relates generally to computer systems, and
more particularly to performing atomic operations on a data
structure.

COPYRIGHT NOTICE/PERMISSION

A portion of the disclosure of this patent document con-
tains material which 1s subject to copyright protection. The
copyright owner has no objection to the facsimile reproduc-
tion by anyone of the patent document or the patent disclo-
sure as 1t appears in the Patent and Trademark Office patent
file or records, but otherwise reserves all copyright rights
whatsoever. The following notice applies to the software and
data as described below and in the drawing hereto: Copy-
right 8 1998, 1999, Microsoit Corporation, All Rights

Reserved.

BACKGROUND

It 1s common 1n today’s multiprocessing and multi-
threaded computing environments for various executable
units running on a computer system to share data by reading
and writing data structures residing in shared memory. Shar-
ing data 1n this manner provides an eflicient mechanism for
threads to communicate information with one another.

A common problem associated with using data structures
in shared memory 1s managing multiple simultaneous
requests to access the data structures and ensuring that
accesses to the data are atomic. Guaranteeing atomic access
1s important because 1t ensures that the data structure 1s com-
pletely updated before another thread attempts to use the
data. As an example, consider a data structure that 1s 32
bytes long. Without atomic access, one thread may have
updated 16 bytes of the data structure when a second thread
reads the data structure. The reading thread will read a cor-
rupt version of the data structure, because the first 16 bytes
will be new data while the last 16 bytes will be old data.

Atomic access to a data structure can be guaranteed by the
hardware when the data structure meets size and alignment
restrictions 1mposed by the particular hardware (typically
the size of a machine word or floating point number).
Atomic access cannot be guaranteed by the hardware for
data structures that do not meet these restrictions. For
example, on the Intel TA32 and IA32 compatible
architectures, a data structure can only be read atomically by
the hardware 11 1t 1s 64 bits or smaller. In addition, a 64-bit
data structure must be aligned on a 64 bit memory boundary
and 32 bit data structures must be aligned on a 32 bat
memory boundary to be read atomically.

In order to allow for atomic reads of data structures larger
than that supported by the hardware, previous systems have
provided software mechanisms to guarantee atomic reads of
data structures. One such system 1nvolves the use of a lock
mechanism. In systems using a lock, a thread that requires
access to a shared data structure first acquires a lock on the
data structure, typically using a function provided by the
operating system. The process then updates the data struc-
ture. After the data structure i1s updated, the requesting

10

15

20

25

30

35

40

45

50

55

60

65

2

thread releases the lock. Other threads that require access to
the data structure may also attempt to acquire a lock on the
data structure. If an attempt occurs while another thread has
the data structure locked, the attempt will fail, and the
requesting thread will block or wait until the lock becomes
available.

Two types of locks are typically provided, exclusive locks
and shared locks. An exclusive lock 1s used by threads that
are writing a data structure. The writing thread has exclusive
access during the lock period, no other thread may read from
or write to the data structure. A shared lock 1s typically used
by a thread that 1s reading a data structure. A shared lock
allows other threads to read the data structure, but does not
allow any thread to write to the data structure while the
shared lock 1s 1n effect.

While software locks allow exclusive and atomic access to
data structures, locks are expensive in terms of CPU (Central
Processing Unit) and memory resources. The locking
mechanisms are routines built around simpler data structures
that can be atomically updated via hardware or firmware
mechanisms. In addition to the overhead involved in the soft-
ware used to implement the lock, the accesses to the lock
data structures can cause pipeline stalls, poor memory-bus
utilization, and cache memory misses. The problems listed
above can occur regardless of whether the lock 1s an exclu-
stve or shared lock. In addition, the problems listed above
are compounded when a large number of threads need to
access the same shared data structure.

Therefore there 1s a need 1n the art for a way to atomically
access a data structure that 1s more efficient than the software
lock mechanism used in previous systems.

SUMMARY

The above-mentioned shortcomings, disadvantages and
problems are addressed by the present invention, which will
be understood by reading and studying the following speci-
fication.

The systems and methods presented perform atomic
operations on data enftities having an arbitrary size. This
includes data structures that cannot be atomically read by the
hardware. The operations include read and write operations
on the data entities.

Version data 1s associated with the data entities that are
operated on. The version data 1s generated such that no
simultaneously executing program units can erroneously
determine that two different versions of a data entity are the
same.

In one method, a program unit writes, or updates, the data
entity. The write program unit acquires exclusive access to
the version data associated with a data entity, sets the version
data to a predetermined invalid value, and then updates the
data entity. The write program unit then updates the version
data to a new value and terminates exclusive access to the
version data.

In another method, a program unit reads, or accesses, the
data entity. The read program unit saves the version data
associated with the data entity, reads the data entity, and then
compares the current version data to the saved version data.
If the current version data 1s set to a predetermined nvalid
value, the read program unit determines that a write program
unit 1s 1n the middle of updating the data entity. This causes
the read program unit to restart the attempt to read the data
entity.

I1 the current version data 1s not equal to the saved version
data, the read program umt determines that a write program

US RE40,989 E

3

unit has updated the data entity in the muddle of the read
program unit’s attempt to read the data enfity. This also
causes the read program unit to restart the attempt to read the

data entity.

The systems and methods summarized above, and various
other methods for performing atomic operations on data
entities will be described 1n detail 1n the next section.

The present invention describes systems, clients, servers,
methods, and computer-readable media of varying scope. In
addition to the aspects and advantages of the present mven-
tion described 1n this summary, further aspects and advan-
tages of the mvention will become apparent by reference to
the drawings and by reading the detailed description that
follows.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 shows a diagram of the hardware and operating
environment 1n conjunction with which embodiments of the
invention may be practiced;

FI1G. 2 1s a diagram 1llustrating a system-level overview of
an exemplary embodiment of the invention;

FI1G. 3 15 a flow diagram 1illustrating a method for perform-

ing an atomic update on a data structure according to one
embodiment of the invention;

FI1G. 4 15 a flow diagram 1illustrating a method for perform-

ing an atomic read from a data structure according to an
embodiment of the invention;

FIG. 5 15 a flow diagram 1illustrating a method for perform-
ing an atomic update on a data structure according to an
alternative embodiment of the invention for architectures

that are not strongly ordered; and

FIG. 6 1s a flow diagram 1illustrating a method for perform-
ing an atomic read from a data structure according to an
alternative embodiment of the invention for architectures
that are not strongly ordered.

DETAILED DESCRIPTION

In the following detailed description of exemplary
embodiments of the invention, reference 1s made to the
accompanying drawings which form a part hereof, and 1n
which 1s shown by way of illustration specific exemplary
embodiments in which the invention may be practiced.
These embodiments are described in suflicient detail to
enable those skilled 1n the art to practice the invention, and 1t
1s to be understood that other embodiments may be utilized
and that logical, mechanical, electrical and other changes
may be made without departing from the spirit or scope of
the present invention. The following detailed description 1s,
therefore, not to be taken 1n a limiting sense, and the scope of
the present invention 1s defined only by the appended claims.

The detailed description 1s divided into four sections. In
the first section, the hardware and the operating environment
in conjunction with which embodiments of the invention
may be practiced are described. In the second section, a
system level overview of the mvention 1s presented. In the
third section, methods of an exemplary embodiment of the
invention are provided. Finally, 1in the fourth section, a con-
clusion of the detailed description 1s provided.

HARDWARE AND OPERATING ENVIRONMENT

FIG. 1 1s a diagram of the hardware and operating envi-
ronment 1 conjunction with which embodiments of the
invention may be practiced. The description of FIG. 1 1s
intended to provide a briel, general description of suitable

10

15

20

25

30

35

40

45

50

55

60

65

4

computer hardware and a suitable computing environment 1n
conjunction with which the invention may be implemented.
Although not required, the invention 1s described 1n the gen-
eral context of computer-executable instructions, such as
program modules, being executed by a computer, such as a
personal computer. Generally, program modules include
routines, programs, objects, components, data structures,
etc., that perform particular tasks or implement particular
abstract data types.

Moreover, those skilled in the art will appreciate that the
invention may be practiced with other computer system
configurations, including hand-held devices, multiprocessor
systems, microprocessor-based or programmable consumer
clectronics, network PCS, minicomputers, mainframe
computers, and the like. The invention may also be practiced
in distributed computing environments where tasks are per-
formed by remote processing devices that are linked through
a communications network. In a distributed computing
environment, program modules may be located in both local
and remote memory storage devices.

The exemplary hardware and operating environment of
FIG. 1 for implementing the invention includes a general
purpose computing device in the form of a computer 20,
including a processing unit 21, a system memory 22, and a
system bus 23 that operatively couples various system com-
ponents including the system memory to the processing unit
21. There may be only one or there may be more than one
processing unit 21, such that the processor of computer 20
comprises a single central-processing unit (CPU), or a plu-
rality of processing units, commonly referred to as a parallel
processing environment. The computer 20 may be a conven-
tional computer, a distributed computer, or any other type of
computer; the invention 1s not so limited.

The system bus 23 may be any of several types of bus
structures including a memory bus or memory controller, a
peripheral bus, and a local bus using any of a variety of bus
architectures. The system memory may also be referred to as
simply the memory, and includes read only memory (ROM)
24 and random access memory (RAM) 25, a basic mput/
output system (BIOS) 26, containing the basic routines that
help to transfer information between elements within the
computer 20, such as during start-up, 1s stored in ROM 24.
The computer 20 further includes a hard disk drive 27 for
reading from and writing to a hard disk, not shown, a mag-
netic disk drive 28 for reading from or writing to a remov-
able magnetic disk 29, and an optical disk drive 30 for read-
ing from or writing to a removable optical disk 31 such as a

CD ROM or other optical media.

The hard disk drive 27, magnetic disk drive 28, and opti-
cal disk drive 30 are connected to the system bus 23 by a
hard disk drive interface 32, a magnetic disk drive interface
33, and an optical disk drive interface 34, respectively. The
drives and their associated computer-readable media provide
nonvolatile storage of computer-readable instructions, data
structures, program modules and other data for the computer
20. It should be appreciated by those skilled in the art that
any type ol computer-readable media which can store data
that 1s accessible by a computer, such as magnetic cassettes,
flash memory cards, digital video disks, Bernoull
cartridges, random access memories (RAMs), read only
memories (ROMs), and the like, may be used in the exem-
plary operating environment.

A number of program modules may be stored on the hard
disk, magnetic disk 29, optical disk 31, ROM 24, or RAM
235, including an operating system 35, one or more applica-
tion programs 36, other program modules 37, and program

US RE40,989 E

S

data 38. A user may enter commands and information into
the personal computer 20 through mput devices such as a
keyboard 40 and pointing device 42. Other mput devices
(not shown) may include a microphone, joystick, game pad,
satellite dish, scanner, or the like. These and other input
devices are often connected to the processing unit 21
through a serial port interface 46 that 1s coupled to the sys-
tem bus, but may be connected by other interfaces, such as a
parallel port, game port, or a universal serial bus (USB). A
monitor 47 or other type of display device 1s also connected
to the system bus 23 via an interface, such as a video adapter
48. In addition to the monitor, computers typically include
other peripheral output devices (not shown), such as speak-
ers and printers.

The computer 20 may operate 1n a networked environ-
ment using logical connections to one or more remote
computers, such as remote computer 49. These logical con-
nections are achieved by a communication device coupled to
or a part of the computer 20; the invention 1s not limited to a
particular type of communications device. The remote com-
puter 49 may be another computer, a server, a router, a net-
work PC, a client, a peer device or other common network
node, and typically includes many or all of the elements
described above relative to the computer 20, although only a
memory storage device 50 has been illustrated 1n FIG. 1. The
logical connections depicted 1n FIG. 1 include a local-area
network (LAN) 51 and a wide-area network (WAN) 52.
Such networking environments are commonplace 1n offices,
enterprise-wide computer networks, intranets and the Inter-
net.

When used in a LAN-networking environment, the com-
puter 20 1s connected to the local network 51 through a
network interface or adapter 53, which 1s one type of com-
munications device. When used i a WAN-networking
environment, the computer 20 typically includes a modem
54, a type ol communications device, or any other type of
communications device for establishing communications
over the wide area network 52, such as the Internet. The
modem 54, which may be internal or external, 1s connected
to the system bus 23 via the senial port interface 46. In a
networked environment, program modules depicted relative
to the personal computer 20, or portions thereof, may be
stored 1n the remote memory storage device. It 1s appreciated
that the network connections shown are exemplary and other
means of and communications devices for establishing a
communications link between the computers may be used.

The hardware and operating environment in conjunction
with which embodiments of the invention may be practiced
has been described. The computer 1n conjunction with which
embodiments of the invention may be practiced may be a
conventional computer, a distributed computer, or any other
type of computer; the invention i1s not so limited. Such a
computer typically includes one or more processing units as
its processor, and a computer-readable medium such as a
memory. The computer may also include a communications
device such as a network adapter or a modem, so that 1t 1s
able to communicatively couple other computers.

SYSTEM LEVEL OVERVIEW

A system level overview of the operation of an exemplary
embodiment of the invention 1s described by reference to
FIG. 2. The concepts of the mnvention are described as oper-
ating 1n a multiprocessing, multithreaded operating environ-
ment on a computer, such as computer 20 1n FIG. 1. In this
exemplary environment, multiple execution units 205, 220,
225 and 230 require access to a data entity 215.

10

15

20

25

30

35

40

45

50

55

60

65

6

Data entity 215 1s a data structure contaiming data that 1s to
be shared by multiple program units such as units 205, 220,
225 and 230. Data entity 215 can be any type of data struc-
ture known 1n the art. Examples include arrays, structures,
records, strings, integers, tloating point numbers, and class
objects. Typically data entity 215 will have a size and a
memory alignment that will make 1t incapable of being read
atomically by the hardware on which the program units run.

Version data 210 1s a version identifier associated with
data entity 215. The version data 210 1s modified at the
beginning and end of all updates to the data entity 213. Ver-
sion data 210 can be any data type that can be read and
updated atomically by the hardware in which the data
resides. It 1s desirable that the version data have a suificient
range ol values such that no reading thread could ever con-
fuse two versions. In other words, the value contained in
version data 210 must be unique for each version of data
entity 215 that exists for concurrently executing program
units that access data entity 2135.

In one embodiment of the invention, a 32-bit integer data
type 1s used. The value “wraps around” when a maximum
value has been reached. However, the invention 1s not lim-
ited 32-bit integer version data, and other data types that can

be atomically read and updated can be used for version data
210.

In an embodiment of the invention, a predetermined value
for version data 210 1s chosen to represent an 1invalid version

value (INVALID__ VALUE). In this embodiment, the version
data 210 1s set to INVALID__ VALUE while a program unait
1s updating data entity 215.

Execution units 2035, 220, 225 and 230 are executable pro-
gram units such as threads that are made up of component
modules as described 1n reference to FIG. 1. Write unit 205
1s a program unit that has a component that updates data
entity 215. Read umits 220, 225, and 230 are program units
that have components that read the values comprising data
entity 215. Program umts 203, 220, 225 and 230 may all be
distinct programs, they may be separate instances of the
same program, or they may be a combination of the two.

FIG. 2 shows a single write unit 205 and three read units
220, 225 and 230 for illustration purposes only. No embodi-
ment of the invention 1s limited to a particular number of
read or write units. In addition, a write unit may require both
read and write access to data entity 215, and no embodiment
of the 1invention requires a program unit to perform just one
type of access to the data entity.

In operation, the system works as follows. A program
unit, such as write unit 205, updates a data entity 215. As
part of the update, the write unit 205 acquires exclusive
access to version data 210 and, 1n one embodiment of the
invention, sets 1t to INVALID__ VALUE. After the update to
the data entity 215 1s complete, the write unit 205 modifies
version entity 210 to indicate a new version of the data in
data entity 215 exists. The write unit then terminates exclu-
s1ve access to version data 210.

One or more program umnits, such as read units 220, 225 or
230 read data from data entity 215. As part of the read
access, the read unit first saves the version data 210 associ-
ated with the data entity 215 to a memory location. The read
unit then accesses the data entity 2135.

Next, the read umit compares the current value of the ver-
sion data 210 with the previously saved value of version data
210. If the current value 1s different from the previously
saved value, the read unit determines that a write unit has
updated the data entity 215 in the middle of the read umt’s
access to the data. The read unit can then re-access the data

US RE40,989 E

7

entity 215 to get the current value. It the current value 1s an
invalid value, the read unit determines that a write unit 1s in
the middle of an update to the data entity, and the read unit
needs to re-access the data entity 2135 to get the current
value.

The above-described system thus provides advantages not
found 1n previous systems. Unlike previous systems, the
read units need not acquire exclusive, or even shared, access
to the version data 210 or data entity 215 1n order to deter-
mine that the data has been updated, 1t only needs to com-
pare version data associated with a data entity before and
alter the data entity 1s accessed. Avoiding acquisition of
exclusive or shared access to the version data 210 and data
entity 215 during reads of data entity 213 provides a signifi-
cant reduction in the system resources required to atomically
read data, making the system of the invention more efficient
and less costly than previous systems. The benefits of the
invention are especially significant 1n environments where
there are relatively few write units and many read units.

In one embodiment of the invention, write unit 205 1s a
web server such as Internet Information Server (11IS) avail-
able from Microsoit Corporation. IIS 1s a server providing
Web and directory services and information to client pro-
gram units. In this embodiment, read units 220, 225 and 230
are client programs to the IIS. These clients include web
browsers and other programs desiring web services or direc-
tory services.

In an alternative embodiment of the invention, data entity
215 15 a date and timestamyp data structure maintained by IIS.
Typically the structure 1s updated once per second. Those of
skill 1in the art will appreciate that other data structures and
other update intervals can be used.

This section has provided a system-level description of an
embodiment of the invention. The next section will present
turther details on methods of various embodiments of the
invention.

METHODS OF AN EXEMPLARY EMBODIMENT
OF THE INVENTION

The previous section presented a system level description
of an embodiment of the invention. In this section, methods
within embodiments of the invention will be described with
reference to flowcharts describing tasks to be performed by
computer programs implementing the method using
computer-executable instructions. The computerized
method 1s desirably realized at least in part as one or more
programs running on a computer—that 1s, as a program
executed from a computer-readable medium such as a
memory by a processor of a computer. The programs are
desirably storable on a computer-readable medium such as a
floppy disk, CD-ROM, or Compact Flash (CF) card for
distribution, installation and execution on another (suitably
equipped) computer. The programs may also be stored on
one computer system and transierred to another computer
system via a network connecting the two systems, thus at
least temporarily existing on a carrier wave or some other
form of transmission.

A method of updating data that 1s to be read atomically 1s
shown 1n FIG. 3. In one embodiment of the invention, the
method 1s mvoked by a call to a function “UpdateCached-
Data” with the following C/C++ declaration:

int UpdateCachedData(DataCache *dataCache,

unsigned__int64 newUserStamp,
void *newData,
unsigned__int32 databytes)

10

15

20

25

30

35

40

45

50

55

60

65

8

where:

dataCache 1s a pointer to a data structure such as data
entity 215,

newUserStamp 1s a new value for version data 210,

newData 1s a pointer to a bufler containing new data
which 1s copied into data entity 215 via the dataCache
pointer, and

dataBytes 1s the size of the data structure.

The declaration above has been described using a C/C++
function declaration format, however the invention 1s not so
limited. The methods of the invention can be implemented 1n
any suitable programming language, as those skilled in the
art will appreciate.

The method begins by acquiring exclusive rights to access

the version data 210 associated with the data entity that 1s to
be updated (block 305). The exclusive rights can be acquired
using any of a number of mechanisms, the choice of a par-
ticular mechanism will be determined by the operating sys-
tem 1n which the methods of the invention are implemented.
In one embodiment of the invention, exclusive access 1s
acquired using an exclusive lock mechanism. The lock
mechanism may be provided by the operating system, by an
application, or it may be implemented within the hardware
or firmware of the computer. In an alternative embodiment
of the invention, exclusive access 1s acquired using what 1s
known 1n the art as a critical section of code. Those of skill in
the art will recognize that other mechanisms may be used to
acquire exclusive access to the version data.

In one embodiment of the invention, the version data 1s set
to a predetermined value (INVALID _VALUE) used to indi-
cate that the version data 1s currently not valid (block 310).
The desirability of using such an INVALID VALUE will be
described below 1n reference to FIG. 4.

The method then updates the data entity 215 (block 315).
Unlike the update to the version data, the update to data
entity 215 need not be atomic. That 1s, 1t may take a number
of CPU operations to accomplish the update.

After updating data entity 215, the method then updates
the version data 210. The version data 210 1s set to a value
that diflers from the value when the method started (block
320). In one embodiment of the invention, the version data 1s
incremented. In an alternative embodiment of the invention,
the new value for the version data i1s a timestamp that can be
atomically updated. Those of skill in the art will appreciate
that any method of generating a version number that guaran-
tees not to repeat within a reasonable period of time and that
does not generate the value representing INVALID__
VALUE can be used to generate a version identifier. For
example, a pseudo-random number generator that does not
generate repeated numbers could be used to generate version
identifiers

The method then terminates exclusive access rights to the
version data 210 (block 325). In one embodiment of the
invention, the exclusive access 1s terminated by releasing the
lock acquired on the version data. In an alternative embodi-
ment of the invention, the exclusive access 1s terminated by
leaving a critical section of code.

A method of atomically reading a data entity such as data
entity 215 1s shown 1n FIG. 4. In one embodiment of the
invention, the method 1s invoked by a call to a *“*ReadCached-
Data” function having the following C/C++ declaration:

int ReadCachedData(DataCache *dataCache,
void *butfer,
unsigned_ 1nt32 dataBytes,
unsigned__int64 *userStampFromRead)

US RE40,989 E

9

where:
dataCache 1s a pointer to the data that 1s to be read (1.e.
data entity 215),

buflfer 1s a pointer to a butler to recetve a copy of the data
that 1s read,
dataBytes 1s the number of bytes in the bufler to copy, and

userStampFromRead 1s a pointer to the version data (such
as version data 210) associated with the data structure
in dataCache.

The method begins by saving a copy of the current version
data associated with the data entity that 1s to be read to a
temporary variable or data location (block 405). The tempo-
rary variable will be referred to as V'. It 1s desirable to copy
the current version data, because a later write access by
another thread may update the version data. In one embodi-
ment of the invention, if the current version data 1s set to
INVALID VALUE, the method 1s restarted. In a further
embodiment of the invention, the method employs a delay-
ing or waiting mechanism before restarting the method.
Using such a mechanism 1s desirable, because 1t allows a
writing thread to fimish updating the data entity 215.

The method then reads a desired data entity such as data
entity 215 and copies the data to a user-specified location 1n
memory (block 410). Again, 1t 1s desirable that the data 1s
copied, because a later write access by another thread may
update the data enftity. However, no embodiment of the
invention 1s limited to making a copy of the data entity 215,
and the data entity may be directly accessed.

Next, in one embodiment of the invention, the method
compares the current value of the version data to the prede-
termined INVALID__ VALUE (block 4135). I1 the current ver-
sion data 1s mvalid, it 1s because another thread 1s currently
updating the data entity 215. In this case, the method retries
the read by returning to block 4035 and starting the method
again. In one embodiment of the mnvention where updates to
the data enfity may take a comparatively long time, the
method waits for a predetermined amount of time before
restarting.

I1 the current version 1s not the predetermined INVALID__
VALUE, then the method compares the current version data
to the saved version data (block 420). If the current and
saved version data are different, it 1s because a write thread
has updated the data entity 2135 1n between the time the read
thread started to read the data for data entity 215 and when
the read thread finished reading the data. In this case, the
method retries the read by returning to block 4035 to save
what 1s now the new version data 210.

If the current version 1s not the predetermined INVALID__
VALUE and the current version data 1s the same as the saved
version data in V', the method indicates to the reading thread
that the data entity 1s valid and the method terminates (block
425).

The methods described above 1n reference to FIGS. 4 and
5 are applicable to architectures that are strongly ordered. A
strongly ordered architecture 1s one 1in which operations are
performed, or, from the perspective of the software program,
appear to have been performed, 1in the same order as the
program specifies. An example of such an architecture 1s the
IA32 architecture used on certain processors from Intel Cor-
poration.

In a strongly ordered architecture, the fact that the update
method changes the version data before and after updating
the data enfity guarantees that the read method will notice
the update to the version data 11 it reads the version data
during an update by the write method.

Even if the architecture 1s strongly ordered, 1t 1s possible
that compiler optimizations may be applied that cause

10

15

20

25

30

35

40

45

50

55

60

65

10

mstructions to be re-ordered. In this case, it 1s desirable to
inform the compiler not to reorder operations on the version
data 210. In one embodiment of the mvention implemented
in the C/C++ environment, this 1s accomplished by declaring
the attribute containing the version data to be “volatile.” In
an alternative embodiment of the invention, compiler opti-
mizations are disabled for the section of code that imple-
ments the method.

FIGS. 5 and 6 describe a method of updating and atomi-
cally reading a data structure in architectures that are not
strongly ordered. In these architectures, operations may be
performed 1n a slightly different order than that specified in
the program code. Typically, the reason for the out of order
execution 1s due to hardware or firmware implemented
optimizations, or due to the pipeline architecture of the pro-
cessor or processors executing the program. An example of
such an architecture 1s the Alpha processor, developed by
Digital Equipment Corporation.

FIG. 5 illustrates a method according to an alternative
embodiment that updates a data entity in a manner allowing
it to be read atomically by program units. The method 1llus-
trated in FIG. S 1s similar to the method 1illustrated in FIG. 3
with modifications to account for possible out of order
execution of certain computer instructions used to 1mple-
ment the method.

The method begins by acquiring exclusive access to the
version data 210 associated with a data entity 215 (block
505). As described above, various embodiments of the
invention may use exclusive locks, critical sections, or other
mechanisms known 1n the art for acquiring exclusive access
to data.

Next, 1n one embodiment, the method sets the version data
to a predetermined 1nvalid value (block 510). This 1s fol-
lowed by causing the processor to flush writes (block 515).
This causes pending writes in the processor’s pipeline to be
committed to memory. It 1s desirable to flush writes at this
point, because i1t guarantees that read units accessing data
entity 215 using the method of the mnvention will notice the
change to the version data. In an alternative embodiment of
the invention, a memory barrier, as 1s known 1n the art, 1s
used to guarantee that other threads reading the version data
will recetve the correct data, that 1s, the reading thread will
see the change of the version data to the predetermined
invalid value.

After writes are flushed at block 515, the thread then
updates data entity 215 (block 520). This 1s followed by
another flush of pending writes (block 525).

Next, the version data 210 1s updated to a new value 1ndi-
cating that a new value for data entity 215 has been estab-
lished (block 530). The method then terminates exclusive
access to the version data as described above 1n reference to
FIG. 3 (block 535).

FIG. 6 1llustrates a method for atomically reading a data
entity according to an alternative embodiment of the 1mnven-
tion that operates 1n a non-strongly ordered environment.
The method 1s similar to the method described above 1n
reference to FIG. 4, with adjustments made where desirable
to ensure that updates to significant data are seen by all
relevant program units.

The method begins by saving current version data, such as
version data 210, associated with a data entity 215 (block
605). In one embodiment of the invention, if the current
version data 1s set to INVALID VALUE, the method 1s
restarted. In a further embodiment of the invention, the
method employs a delaying or waiting mechanism before
restarting the method. Using such a mechanism 1s desirable,
because it allows a writing thread to finish updating the data
entity 215.

US RE40,989 E

11

Next, the method forces read order (block 610). Maintain-
ing read order 1s desirable so that all updates to the version
data are reflected in the save version data. In one embodi-
ment of the invention, read ordering 1s forced by clearing the
current mstruction or data pipeline. In an alternative embodi-
ment of the invention, memory barriers are used to order
reads.

The method then copies the data entity 215 (block 615).
As discussed above 1n reference to FI1G. 4, 1t 1s desirable that
the data 1s copied, because a later write access by another
thread may update the data entity. However, no embodiment
ol the invention 1s limited to making a copy of the data entity
215, and the data entity may be directly accessed.

Next, pending reads are ordered (block 620). This ensures
that all updates to the data entity 215 are copied. As dis-
cussed above, the istruction or date pipeline 1s flushed 1n
one embodiment of the invention. In an alternative
embodiment, memory barriers are used to order reads.

In one embodiment of the invention, the method then
compares the current value of the version data to the prede-
termined INVALID__VALUE (block 625). It 1s desirable to
include this comparison in order to detect that another thread
1s currently updating the data entity 215. In this case, the
method retries the read by returning to block 605 and start-
ing the method again. In one embodiment of the invention
where updates to the data entity may take a comparatively
long time, the method waits for a predetermined amount of
time before restarting.

If the current version 1s not the predetermined INVALID__
VALUE, then the method compares the current version data
to the saved version data (block 630). If the current and
saved version data are different, 1t 1s because a write thread
has updated the data entity 2135 1n between the time the read
thread started to read the data for data entity 2135 and when
the read thread finished reading the data. In this case, the
method retries the read by returning to block 603 to save
what 1s now the new version data 210.

I1 the current version 1s not the predetermined INVALID__
VALUE and the current version data 1s the same as the saved
version data 1n V', the method indicates to the reading thread
that the data entity 1s valid and the method terminates (block
635).

CONCLUSION

The particular systems and methods implementing atomic
operations on a data entity having an arbitrary size have been
described. The methods provide an efficient mechanism for
performing atomic operations on data entities.

Although specific embodiments have been illustrated and
described herein, 1t will be appreciated by those of ordinary
skill 1n the art that any arrangement which 1s calculated to
achieve the same purpose may be substituted for the specific
embodiments shown. This application 1s intended to cover
any adaptations or variations of the present invention.

For example, various embodiments have been described
as operating in a multiprocessing environment. This environ-
ment includes both systems 1n which a single processor
manages multiple threads simultaneously, where multiple
processors are connected via a bus, and where multiple sys-
tems are coupled via a wired or wireless network.

In addition, the term “thread” has been used in the
description of various embodiments of the invention. A
thread, as 1s known 1n the art, 1s a schedulable, executable
program unit. However, the invention i1s not limited to
threads, and other executable units such as processor or tasks
may be included instead of, or 1n addition to threads.

10

15

20

25

30

35

40

45

50

55

60

65

12

The terminology used 1n this application with respect to 1s
meant to include all of these environments. Therefore, it 1s
manifestly intended that this invention be limited only by the
tollowing claims and equivalents thereof.

What 1s claimed 1s:

1. A computerized method for performing one or more
atomic operations on a data entity of arbitrary size and char-
acterized by version data, the method comprising the follow-

ing steps:
in a first thread of execution:
acquiring exclusive access to the version data;
setting the version data to a first value indicating that
the data entity 1s invalid and not accessible by other
operations;
moditying the data entity;
updating the version data to a second value 1indicating
that the data entity 1s valid and accessible; and
terminating exclusive access to the version data;
in a second thread of execution, the second thread executing
concurrently with the first thread of execution:

(a) reading [the first value of] the version data;

(b) if [the first value is determined to be an invalid value]
the version data has a value indicating that the data
entry is invalid, repeating steps (a) and (b); and

(¢) upon completion of step (b), reading the data entity.

2. The computerized method of claim 1, wherein acquir-
ing exclusive access to the version data comprises acquiring
a lock on the version data and wherein terminating exclusive
access to the version data releases the lock.

[3. The computerized method of claim 2, wherein the lock
is identified by the version data.}

4. The computerized method of claim 1, further compris-
ing setting the version data to a predetermined nvalid value
alter acquiring the lock on the version data.

5. The computerized method of claim 4, further compris-
ing flushing writes after setting the version data to a prede-
termined 1nvalid value.

6. The computerized method of claim 1, further compris-
ing flushing writes after updating the data entity.

7. The computerized method of claim 1, further compris-
ng:

(d) upon completion of step (c), reading the [second value

of the] version data a second time,

(e) if the [first] value of the version data read in step (a)
does not match the [second] value of the version data
read the second time, repeating steps (a), (b), (c), (d)
and (e).

8. The method of claim 1, wherein the first thread of

execution is executed by one or more [read] write units.

9. The method of claim 1, wherein the second thread of
execution is executed by one or more [write] read units.

10. The method of claim [9] 8, wherein at least one of the
write units 1s a web server.

11. The method of claim 1, wherein the data entity 1s
stored 1n a memory that 1s accessible by both the first and
second threads of execution.

12. The method of claim 1, wherein the updating step
comprises incrementing the version data.

13. The method of claim 1, wherein the version data com-
prises a timestamp, and the updating step comprises updat-
ing a timestamp.

14. The method of claim 1, wherein the data entity com-
prises a timestamp.

15. The method of claim 1, wherein the data entity com-
prises a date.

16. The method of claim 15, wherein the data entity fur-
ther comprises a timestamp.

US RE40,989 E

13

17. The method of claim 1, wherein the setting step com-
prises setting the version data to a value that has been prede-
termined to represent an mvalid version.

18. The method of claim 1, further comprising choosing a
predetermined value to represent an invalid version.

19. The method of claim 1, further comprising:

in the second thread of execution,

saving the [first] value of the version data read in step
(a);

reading [a second value of] the version data a second
time; and

comparing the [first] value [and] of the version data
read in step (a) with the [second] value of the version
data read the second time, wherein step (b) 1s per-
formed based on the comparing step.

20. The method of claim 1, wherein [the step of reading
the first value of the version data] step (a) is performed
during the modifying step.

21. The method of claim 1, wherein [the step of reading
the first value of the version data] step (a) is performed prior
to the updating step.

[22. The method of claim 1, wherein the first version of
execution is executed by one or more read units. |

23. A computer-readable medium: having computer-
executable instructions to cause a computer to perform a
method for performing one or more atomic operations on a
data entity of arbitrary size and characterized by version
data, the method comprising the following steps:

1n a first thread of execution;
acquiring exclusion access to the version data;
setting the version data to a first value indicating that
the data entity 1s mvalid and not accessible by other
operations;
moditying the data entity;
updating the version data to a second value indicating
that the data entry 1s valid and accessible; and
terminating exclusive access to the version data;
in a second thread of execution, the second thread executing
concurrently with the first thread of execution:

(a) reading [the first value of] the version data;

(b) if [the first value is determined to be an invalid value}
the version data has a value indicating that the data
entity is invalid, repeating steps (a) and (b); and

(¢) upon completion of step (b), reading the data entity.

24. The computer-readable medium of claim 23, wherein
acquiring exclusive access to the version data comprises
acquiring a lock on the version data and wherein terminating
exclusive access to the version data releases the lock.

[25. The computer-readable medium of claim 24, wherein
the lock is identified by the version data.}

26. The computer-readable medium of claim 23, further
comprising setting the version data to a predetermined
invalid value after acquiring the lock on the version data.

27. The computer-readable medium of claim 26, further
comprising tlushing writes after setting the version data to a
predetermined 1nvalid value.

28. The computer-readable medium of claim 23, further
comprising flushing writes after updating the data entity.

29. The computer-readable medium of claim 23, wherein
the method further comprises:

(d) upon completion of step (c), reading the [second value
of the] version data a second time,

(e) if the [first] value of the version data vead in step (a)
does not match the [second] value of the version data
read the second time, repeating steps (a), (b), (c), (d)

and (e).

10

15

20

25

30

35

40

45

50

55

60

65

14

30. A computerized method for performing one or more
atomic operations on a data entity of arbitrary size and char-
acterized by version data, the method comprising the follow-
ing steps:

in a first thread of execution:

acquiring exclusion access to the version data;
setting the version data to a first value indicating that
the data entity 1s invalid and not accessible by other
operations;
modifying the data entity;
updating the version data to a second value 1indicating
that the data enfity 1s valid and accessible; and
terminating exclusive access to the version data;
in a second thread of execution, the second thread executing
concurrently with the first thread of execution:

(a) reading [the first value of] the version data a first time;
(b) upon completion of step (a), reading the data entity;

(¢) upon completion of step (b), reading [the second value
of] the version data a second time,

(d) if the [first] value of the version data read the first time
is different from the [second] value of the version data
read the second time, or if the [first] value of the version
data read the first time indicates that the data entry 1s
invalid, repeating steps (a), (b), (¢) and (d).

31. The method of claim 30, wherein the [second] first

thread of execution 1s executed by one or more write units.

32. The method of claim 31, wherein at least one of the
write units 1s a web server.

33. The method of claim 30, wherein the data entity 1s
stored 1n a memory that 1s accessible by both the first and
second threads of execution.

34. The method of claim 30, wherein the updating step
comprises incrementing the version data.

35. The method of claim 30, wherein the version data
comprises a timestamp, and the updating step comprises
updating the timestamp.

36. The method of claim 30, wherein the data entity com-
prises a timestamp.

37. The method of claim 30, wherein the data entity com-
prises a date.

38. The method of claim 37, wherein the data entity fur-
ther comprises a timestamp.

39. The method of claim 30, wherein the setting step com-
prises setting the version data to a value that has been prede-
termined to represent an invalid version.

40. The method of claim 30, further comprising choosing,
a predetermined value to represent an invalid version.

41. The method of claim 30, wherein the step of reading
the [first value of the] version data t/e first time is performed
during the modifying step.

42. The method of claim 30, wherein the step of reading
the [first value of the] version data the first time is performed
prior to the updating step.

43. A computer-readable medium having computer-
executable 1nstructions to cause a computer to perform a
method for performing one or more atomic operations on a
data entity of arbitrary size and characterized by version
data, the method comprising the following steps:

in a first thread of execution:
acquiring exclusive access to the version data;
setting the version data to a first value indicating that
the data entity 1s mvalid and not accessible by other
operations;
moditying the data entity;
updating the version data to a second value 1indicating
that the data entity 1s valid and accessible; and
terminating exclusive access to the version data;
in a second thread of execution, the second thread executing
concurrently with the first thread of execution:

US RE40,989 E

15 16
(a) reading the [first value of the] version data a first time; read the second time, or if the [first] value of the version
(b) upon completion of step (a), reading the data entity; data read the first time indicates that the data entry 1s
(c) upon completion of step (b), reading the [second value invalid, repeating steps (a), (b), (¢) and (d).

of the] version data a second time;

(d) if the [first] value of the version data vead the first time 5
is different from the [second] value of the version data ® k% % ¥

	Front Page
	Drawings
	Specification
	Claims

