USOORE40925E
(19) United States
a2) Reissued Patent (10) Patent Number: US RE40,925 E
Ly et al. 45) Date of Reissued Patent: Sep. 29, 2009
(54) METHODS FOR AUTOMATICALLY OTHER PUBLICATIONS

PIPELINING LOOPS

(75) Inventors: TaiA. Ly, San Jose, CA (US); David W.
Knapp, San Jose, CA (US); Ronald A.
Miller, Cupertino, CA (US); Donald B.
Macmillen, Redwood City, CA (US)

(73) Assignee: Synopsys, Inc., Mountain View, CA

(US)
(21) Appl. No.: 09/590,584
(22) Filed: Jun. 8, 2000

(Under 37 CFR 1.47)

Related U.S. Patent Documents

Reissue of:
(64) Patent No.: 5,764,951
Issued: Jun. 9, 1998
Appl. No.: 09/440,554
Filed: May 12, 1995
(51) Int.CL
GO6F 17/50 (2006.01)
(52) US.ClL .., 716/18; 716/1
(58) Field of Classification Search ...................... 716/1,

716/18
See application file for complete search history.

(56) References Cited

U.S. PATENT DOCUMENTS

4,827,427 A * 5/1989 Hyduke .........c.ccoeeels 364/489
5,111,413 A * 5/1992 Lazansky etal. ............ 364/578
5,128,871 A * 7/1992 Schmitz ...................... 364/490
5,237,513 A * 8/1993 Kaplan .......c.ccceveee.. 364/490
5,274,793 A * 12/1993 Kurodaetal. ............... 395/500
5,437,037 A * 7/1995 Furuichi ..................... 395/700
5,544,066 A * 8/1996 Rostokeretal. ............ 364/489
5,572,437 A * 11/1996 Rostokeretal. ............ 364/489
6,044,023 A * 3/2000 Proebsting ............. 365/189.01

wileenll whilllk G R asbsi sk .. E———

——— A I e "I TSPl PR ey kbl miilly gy emy I A S

Ly et al., Scheduling Using Behavioral Templates, Proceed-
ings of the 32"?ACM/IEEE Conference on Design Automa-
tion, p. 101-106, Jan. 1995.%

Knapp et al., Behavioral Synthesis Methodology for HDL—
Based Spec1ﬁcat10n and Validation, Proceedings of the
ACM/IEEE Conference on Design Automation, pp.

286291, Jan. 19935.%*

A Stoll et al., Flexible Timing Specification in a VHDL Syn-
thesis Subset, EURO-DAC Design Automation Conierence,
pp. 610-615, Sep. 1992.*

Y. Hu et al., Lower Bounds on the Iteration Time and the
Number of Resources for Functional Pipelined Data Flow
Grpahs, IEEE International Conference on Computer

Design: VLSI 1n Computers and Processors, pp. 21-24, Oct.
1993 *

M. Koster et al., ASIC Using the High—Level Synthesis Sys-
tem CALLAS: A Case Study, 1990 IEEE International Con-

terence on Computer Design: VLSI in Computers and Pro-
cessors, pp. 141-146, Sep. 1990.*

R. Camposano et al., VHDL as Input for High-Level Syn-
thesis, IEEE Design & Test of Computers, vol. 8, Issue 1, pp.
4349, Mar. 1991.%

F. Brewer et al., Chippe: A System for Constant Driven
Behavioral Synthesm IEEE Computer—Aided Design of

Integrated Circuits and Systems, vol. 9, Issue 7, pp.
681-693, Jul. 1990.*

(Continued)

Primary Examiner—Leigh Marie Garbowski
(74) Attorney, Agent, or Firm—Park, Vaughan & Fleming
LLP

(57) ABSTRACT

A method and an apparatus for creating a representation of a
circuit with a pipelined loop from an HDL source code
description. It infers a circuit including a pipelined loop
which has cycle level simulation behavior matching that of
the source HDL. Loop carry dependencies and memory and
signal I/O accesses within the loop are scheduled correctly.

40 Claims, 35 Drawing Sheets
iteration i + 1

Inifation
interva

ORONE. .

& &
_® @ Time in




US RE40,925 E
Page 2

OTHER PUBLICATTONS

D.A. Lobo et al., Generating Pipelined Datapaths Using
Reduction Techniques to Shorten Critical Paths, 1992
EURO-DAC Design Automation Conference, pp. 390-395,
Sep. 1992 .*

C.-T. Hwang et al., A Formal Approach to the Scheduling
Problem in High Level Synthesis, IEEE Transactions on
Comput r—Aided Design of Integrated Circuits and Systems,
vol. 10, Issue 4, Apr. 1991.*

K. Kukcakar et al., CHOP: A Constraimnt—Driven System
Level Partioner, Proceedmgs of the 28”Conference on
ACM/IEEE Design Automation, pp. 514-519, Jun. 1991.*
A. Stoll et al., High—Level Synthesis from VHDL with Exact
Timing Constramts Proceedings of the 29”ACM/IEEE
Confer nc on Design Automation, pp. 188—193, Jul. 1992.*
C-T et al., Scheduling for Functional Plpehmng and Loop
Winding, Proceedmgs of the 28th Coniference on ACM/IEE
Design Automation Conference, pp. 764—769, Jun. 1991 .%
N. When et al., Scheduling of Behavioral VHDL by Retim-
ing Techniques, Proceedings of the 1994 Conierence of
Europ an Design Automation, pp. 5463551, Sep. 1994 *

M. Valle et al., A VHDL-based Design Methodology: The
Design Experience of a High Performance ASIC Chip, Pro-
ceedings o the 1994 Conference on Design Automation, pp.
664-669, Sep. 1994 .*

R. Camposano et al., Synthesis Circuits From Behavioral
Descriptions, IEEE Transactions On Computer—Aided
Design, pp. 171-180, Feb. 1989 *

D. Gajska et al., High—Level Synthesis, Introduction to Chip
and System Design, 1992, Kluwer Academic Publishers.*®
W. Glunz et al., VHDL for High—Level Synthesis of Digital
Systems, 1st European Conference on VHDL Models, pp.
1-11, Sep. 1990.*

S. Bakshi et al., Component Selection for High—Perfor-
mance Pipelines, IEEE Transactions on Very Large Integra-
tion (VLSI) Systems, vol. 4, No. 2, pp. 181-194, Jun. 1996.%
D. Wong et al., Designing High—Performance Digital Ciru-
cits Using Wave Pipelining: Algorithms and Practical Expe-
riences, IEE Transactions on Computer Aided Design of
Integrated Circuits and Systems, vol. 12, No. 1, pp. 2546,
Jan. 1993 *

Alexander Aiken et al. “Optimal Loop Parallelization,” Pro-
ceedings of the SIGPLAN ’88 Conference on Programming
Language Design and Implementation, Atlanta, GA, Jun.
1988, pp. 308-317.%

Raul Camposano, “Design Process Model 1n the Yorktown
Silicon Compiler,” Proceedings of the 25th ACM/IEEE
Design Automation Conference, 1988, pp. 489494 *

Brian Ebert et al. “SeeSaw: A Verilog Synthesis Viewer,”
2nd Annual International Verilog HDL Conference. Design
Excellence for Today and Tomorrow; Santa Clara, CA. Mar.
2, 1993, pp. 55-60.%

Phillip B. Gibbons et al., “Efficient Instruction Scheduling
for a Pipelined Architecture,” 1986. pp. 11-16.%

Brent Gregory et al., “ISIS: A System for Performance
Driven Resource Sharing.” Proceedings of the 29th ACM/
IEEE Design Automation Conference, Jun. 1992, pp.
285-290.%

Seongsoo Hong et al., “Compiling Real-Time Programs into
Schedulable Code,” ACM/SIGPLAN, Jun. 1993, pp.
166—176.%

Michael C. McFarland et al., “The High-Level Synthesis of
Digital Systems,” Proceedmgs of the IEEE, vol. 78, No. 2,

Feb. 1990, pp. 301-318.*

Monica Lam, “Software Pipelining: An Effective Schedul-
ing Technique for VLIW Machines,” Proceedings of the
SIGPLAN ’88 Conference on Programming Language
Design and Implementation Altanta, GA, Jun. 1988, pp.
318-328.%

MonicaSin—Ling Lam, “A Systolic Array Optimizing Com-
piler,” May 1987, pp. 1-138.*

Nohbyung Park et al., “SEHWA: A Program for Synthesis of
Pipelines,” 23rd Demgn Automation Conference/IEEE,
1986, pp. 454-460.%

B. R. Rau et al., “Register Allocation for Software Pipelined
Loops,” ACM SIGPLAN, 1992, pp. 283-299.%

Leon Stok, “False Loops through Resource Sharing,” IE.
1992, pp. 345-348.%

“Optimal Loop Parallelization” Alexander Aiken, 1988
ACM, pp. 308-317.%

us
Ll

3

* cited by examiner



US RE40,925 E

Sheet 1 of 35

Sep. 29, 2009

U.S. Patent

papuswy

[ 24n31]




US RE40,925 E

Sheet 2 of 35

Sep. 29, 2009

U.S. Patent

papuswy T dJngLj

B PU3 . puj 8 UEIS } pU3 ¢ VEIS | P&IS

8
5

[eAJSjU| uoqeniu

Hy l0Ud



U.S. Patent Sep. 29, 2009 Sheet 3 of 35 US RE40,925 E

Prior Art Loop Iterations
Cycle 2
O
1 |
2 —
3 %0
4 -
5 —
6
7
8 Data Data
9 Available Required
10 Too Early
11
Figure 3 (a) Amended
Prior Art Loop Iterations
Cycle 1 2
0
1
2 410
3
4
5
6
7
8 Data Data
9 Available Required
10
11 -

Figure 3 (b) Amended



U.S. Patent Sep. 29, 2009 Sheet 4 of 35 US RE40,925 E

Prior Art Loop lterations
Cycle 510 1 2
0 \J read x |
1 510
2 520 ‘ read x 1~
3 \treadx ]
4 e 520
5 | read x4/
6
Improperly Scheduled Loop

Figure 4 (a) Amended

Prior Art Loop lterations
Cycle 510 1 2
0 \J.read x |
1 520 510
2 \read x —»{ read x
3 L 520
4 read x4
o
6
Properly Scheduled Loop

Figure 4 (b) Amended



U.S. Patent Sep. 29, 2009 Sheet 5 of 35 US RE40,925 E

ROM Data Storage

Device
104 106 107

Memory

101

Cursor
Control

123
Processor

109

Sound
Recording and
Playback

Device 105

Video input/
Output
Device 12g

Network Optional

Connector Device
127 128

Computer System 100

Figure S



U.S. Patent Sep. 29, 2009 Sheet 6 of 35 US RE40,925 E

HDL
HDL
Translator Translate
810
Annotated GTech Circuit
Scheduling
Preprocessing 820
(CDFG; Constraint Graph)
Behavioral
Synthesis Schedule 830
CDFG
Netlist Circuit
840
New GTech Circuit
Logic . :
Synthesis Optimize Logic

850

Mapped Circuit

Synthesis with Scheduling

Figure 6



U.S. Patent Sep. 29, 2009 Sheet 7 of 35 US RE40,925 E

Annotated GTech Circuit

Extract control

flow graph 910

Create CDFG
920
Create initial
templates 930
Insert
constraints 840

(CDFG; Constraint Graph)\

999

Scheduling
Preprocessing

Figure 7



U.S. Patent Sep. 29, 2009 Sheet 8 of 35 US RE40,925 E

CDFG; Constraint Graph

Identify LCD's
1110

Constrain LCD's

1120

Identify memory
and I/0O access
dependencies

1130

Constrain memory
and {/O access

dependencies 1140

Insert other

constraints

1150

Inserting Constraints

Figure 8



U.S. Patent

Sep. 29, 2009 Sheet 9 of 35

(CDFG; Constraint Graph) \
999

Calculate ASAP +
ALAP schedule for
each template using
constraint graph

Loop until "good"
schedule obtained 1020

1010

Pick template

to schedule 1030

Schedule template
by putting member
nodes into
control steps

1040

1050
Schedule

- Scheduling Using Templates

Figure 9

US RE40,925 E



U.S. Patent

Sep. 29, 2009

Sheet 10 of 35

US RE40,925 E

Constraint Graph, Event 1 Node,

Event 2 Node, n, ¢

Add placeholder
node H to
event template

Add constraint
from event 2 to
placeholder node H

Figure 10

610

620



U.S. Patent Sep. 29, 2009 Sheet 11 of 35 US RE40,925 E

module loopex8 ( ¢, X, Y, Z, clock);
input [1:0] x, vy, Z;

input clock ;

output [2:0] c;

reg [2:0] c;

reg [2:0] p;

3030
forever begin ﬂ/ 3010

C<=X-P,
@(posedge//cloclq;//— 3020
p=y+z,
@(posedge clock) ;
end
end
endmodule

Figure 11



US RE40,925 E

Sheet 12 of 35

Sep. 29, 2009

U.S. Patent

[0:1]2 <Z

1 2an3iy

=1 [o:2ld
404
<] [0:1]x
000¢
HND2UD YO 19



U.S. Patent Sep. 29, 2009 Sheet 13 of 35 US RE40,925 E

1250
1280
1210
2020
n=>2
Figure 13a
1250
1280
‘ 2020
1 1270
Constraint for LCD

Figure 13b



U.S. Patent Sep. 29, 2009 Sheet 14 of 35 US RE40,925 E

=)
&,
&
—--
ll--
o .
@)
-
)
L
g g =) ¥ o
= N 3 2



U.S. Patent Sep. 29, 2009 Sheet 15 of 35 US RE40,925 E

module writed ( w, x, clock);

input [15:0] x ;
input clock ;
output [31:0] w;
reg {32:0] w;
reg [15:0] x1;
reg [15:0] x2;

always begi% 1530
forever begf:writeloop/ 1530
X1 <=X; I
@(PW 1530
X2 <=X
w<=x1*"x2;
end

end

endmodule




US RE40,925 E

Sheet 16 of 35

Sep. 29, 2009

U.S. Patent

[0:51].ex <

[0:5L) 11X <Z
[0:S1IXx <Z

9] 31nsi]

0154 3%



U.S. Patent Sep. 29, 2009 Sheet 17 of 35 US RE40,925 E

1750
1780
1610
1620
n=1
Figure 17a
1750
1610 1780

1770 h

Constraint for Signal Read

2

1760

Figure 17b



US RE40,925 E

Sheet 18 of 35

Sep. 29, 2009

U.S. Patent

l—
[0:leM <Z “

81 21n31]

<1 [0:S}]x

0 2160

<~ AOOP



U.S. Patent Sep. 29, 2009 Sheet 19 of 35 US RE40,925 E

module after1 ( ¢, x, v, 2, clock);

input [1:0] x, y, 2;
input clock ;
output [2:0] c;
reg [2:0] c;

reg [2:0] p;
always begin

@(posedge clock) ;

forever begin
C<=#24x-p;

@(posedge clock) ;
p=Ey+z,

@(posedge clock) ;
end

end
endmodule

Figure 19 (a)



U.S. Patent Sep. 29, 2009 Sheet 20 of 35 US RE40,925 E

entity after1 is
port(
c : out integer range 0 to 7:
X, ¥, Z:ininteger range O to 3;
clock : in bit
)

end after1:

architecture behavioral of after1 is begin
process
variable p : integer range 0 to 7;
begin
wait until clock'event and clock = "1*;

loop
C <= transport x - p after 24 ns;
wait until clock'event and clock ='1*;
p:=y+z
wait until clock’event and clock ='1";
end loop;

end process;
end behavioral;

Figure 19 (b)



U.S. Patent Sep. 29, 2009 Sheet 21 of 35 US RE40,925 E

2002

Is
current
source code statement
a signal assignment
operation with a

2006

Yes

Normal processing to

build node
Build write operation

node and annotate
delay

2008

More Yes

statements
?

No

2012

Create CDB

Figure 20



U.S. Patent Sep. 29, 2009 Sheet 22 of 35 US RE40,925 E

2100
2102 J
porl = le
X[ > read op 2114 port = "¢”
after = *24°
(= r—Cuteony— >
pL> 2110

2 [>
2112 2116

Data Flow Graph

port ="c" QQQ

2114 -
2202 S delay = 24 f

:"'\. s T e I

\\\ Ol‘l-— X

2204 ™ 2102
“@1

clock = "clock”
edge = "nising"
2206
e
N O™ - 2116
N N ""'--.“_
2208 \ "\\ 2104
\\ ™~ ",
\

clock = "clock” 2106

\
adge = "rising" @
2210 @ 2112

CDB for forever loop
(Control flow graph)

Figure 22



U.S. Patent Sep. 29, 2009 Sheet 23 of 35 US RE40,925 E
Max_wait_count = 0
2302 ax wail.
Build "loop begin" node
Assign cstep = 0
2304
Loop over cdb nodes 5330
2300 Normal
| ‘
b node \Ne e ke
a cnode? CDFG
2308 s ode
2310
Loop over data
2314 Normal 2312 - -
processing to s vzv?“l—m”’t‘h
make COFG { N node a art_coun
node 0 delayed signal
assighment
2316 rym 92322 ?
Y
CDFG node - 2336
to cstep temp_wait_count = Wait_count +
Wait_count (#delay ime units) / clock period Finished \ No
cdb nodes
2318 - - 7
Assign COFG write node fo cstep
temp_wait_count Yes
Wait_count i 2338
No > 2326
Max_wait_count 2324 Loop Iaftency =
7 No temp_wait_count > Max_wait_count;
Max_wait_count Initiation interval =

Yes

M;”w:;l%:ﬁ:tm Max_wait_count =
temp_wait_count

2342

Finished
data ﬂo;: nodes

Yes

Figure 23

Wait_count

2340

Build "loop end"
CDFG node;
Assign cstep =
Wait_count



US RE40,925 E

Sheet 24 of 35

Sep. 29, 2009

U.S. Patent

pT 2An31q

S9PDON 9400 e 7 =09)59




U.S. Patent Sep. 29, 2009 Sheet 25 of 35 US RE40,925 E

Without Delayed Signal With Delayed Signal
Assignment Assignment

Figure 25



US RE40,925 E

Sheet 26 of 35

Sep. 29, 2009

U.S. Patent

| + 1 uonessy




U.S. Patent Sep. 29, 2009 Sheet 27 of 35 US RE40,925 E

Loop |terations
C-Step 3110 1 2
0 - . L
1
2 3120 ] -
s i I IS
4
5
6
Figure 27

Loop lterations

Cycle

3130 e
0 3140~ - read 3130
1 \t read———=-read ' _-3140
2 | read o
X
y _
5
6

Figure 28



U.S. Patent

Sep. 29, 2009 Sheet 28 of 35

— cdfg behavioral = cdfg behavioral —] cdfg behavioral
template template template
O cdfg node O cdfg node O cdfg node
FIG. 29a FIG. 29D FIG. 29¢C
New New New
12
@' T2 T (e
oo ©
esteps csteps ~ /3
-3
/7 ¢ \ rara)
(D 13 ‘(" 13
USes uses
® same S same
(© resource (© resource
LP(T2,T1) =0 LP(T2,T1) =0
FIG. 30a FIG. 30b
New New

US RE40,925 E



U.S. Patent Sep. 29, 2009 Sheet 29 of 35 US RE40,925 E

extract COFG

create templates

hierarchical COFG
— ||II|IIIIIIIIIIIIIIIIIIIIIIIIIIII||
(inline subgraphs X[ hierarchical
scheduling ||| T T
TTITTTTTATCCTCCANNTAN]
schedule templates schedule templates
T

FIG. 31




U.S. Patent Sep. 29, 2009 Sheet 30 of 35 US RE40,925 E

data addr adar
delay=3
FIG. 33a FIG. 33b

New New




U.S. Patent Sep. 29, 2009 Sheet 31 of 35 US RE40,925 E

raddr

(k) constant (k) constant
zero-extend zero-extend
(b bit-extract (b bit-extract
@D U2 logic @)@ logic
operations operations
FIG. 36a New FIG. 36D New

(k) constant (k) constant
zero-extend zero-extend
(Y bit-extract (bX) bit-extract
@hH @ logic @@ logic
operations operations

FIG. 36C New FIG. 36d New



U.S. Patent Sep. 29, 2009 Sheet 32 of 35 US RE40,925 E

OO
By D005
S EOON

I@I'wm

FIG. 370

New




U.S. Patent Sep. 29, 2009 Sheet 33 of 35 US RE40,925 E

FIG. 38

New




U.S. Patent Sep. 29, 2009 Sheet 34 of 35 US RE40,925 E

01 <= v1;
while (c) begin: loop

02 <=V

@(posedge clock);
end
03 <= V3;
@(posedge clock);

Ic/v1, v3

@?@

01 <= Vv1;

while (c) begin: loop
@(posedge clock);
02 <= V2,

end

@(posedge clock),
03 <= V3;

FIG. 41 New

@(posedge clock);

if (input_signal= 1'b1)begin
x= Input_read_1;
y=input _read_2;
tmp = x+ v;//2 cycle addition
@ (posedge clock);//strobe stab regs
@ (posedge clock);//1st cycle of add
@(posedge clock);//2nd cycle of add
out<=tmp;

end

@(posedge clock); F|G 49 New



U.S. Patent Sep. 29, 2009 Sheet 35 of 35 US RE40,925 E

REQUEST
STROBE
DATA

clock
dreg

dray
data

clock
dreg
dray

data

FI1G. 44b New

al=in_porti;

a2=in_port2;

@(posedge clock);
out_port_1<=long_function_1(a1,a2);
@(posedge clock);

b1=in_pon3;

b2=in_port4;

@(posedge clock);
out_port_2<=long_function_2(b1,b2);

FIG. 45 New



US RE40,925 E

1

METHODS FOR AUTOMATICALLY
PIPELINING LOOPS

Matter enclosed in heavy brackets [ ] appears in the
original patent but forms no part of this reissue specifica-
tion; matter printed in italics indicates the additions
made by reissue.

RELATED APPLICATIONS

This application 1s related to U.S. patent application Ser.
No. 08/440,101 entitled “Behavioral Synthesis Links to
Logic Synthesis” with mventors Ronald A. Miller, Donald
B. MacMillen, Ta1 A. Ly and David W. Knapp filed on May

12, 1995, which 1s hereby incorporated by reference.

U.S. patent application Ser. No. 08/440,101 has issued as
U.S. Pat. No. 6,026,219 and 6,505,339, entitled “Behavioral

Synthesis Links to Logic synthesis,” with inventors Ronald A.
Miller, Donald B. MacMillen, Tia A. Ly and David W.

Knapp, with issue dates, vespectively, of Feb. 15, 2000 and
Jan. 7, 2003.

BACKGROUND

Field of the Invention

This invention relates to the field of computer aided
design for digital circuits, particularly to automatically pipe-
lining loops 1n a behavioral synthesis system.

Statement of the Related Art
Behavioral Synthesis

Behavioral vs. Register Transier Level Design

Many of toady’s integrated circuits are described using a
Hardware Description Language (HDL). Two common
HDL’s are VHDL and Verilog. VHDL 1s described 1n the
IEEE Standard VHDL Language Reference Manual avail-
able from the Institute of FElectrical and Electronic Engineers
in Piscataway, New Jersey which 1s hereby incorporated by
reference. Verilog 1s described in The Verilog Hardware
Description Language by Donald E. Thomas and Philip
Moorby. Kluwer Academic Publishers. 1991 which 1s
hereby incorporated by reference.

As 1ntegrated circuits become increasingly complex,
hardware designers are increasingly using synthesis soft-
ware to transform HDL descriptions of digital circuits into
mapped logic. The designer writes a description of a digital
circuit in VHDL, Verilog, or another HDL., and uses synthe-
s1s software to create a digital circuit from the description.
Using synthesis software typically shortens the amount of
time required to create a digital circuit from a design
specification, and allows a designer to create more complex
designs than 1s possible manually.

Many of today’s complex designs are expressed as soft-
ware descriptions and simulated to verily their correctness.
These designs are later translated from software into
hardware, 1n the form of Integrated Circuits (ICs), Applica-
tion Specific Integrated Circuits (ASICs), or Field Program-
mable Gate Arrays (FPGAs), for implementation 1n the final
product. This design description methodology 1s called
algorithmic-level design.

Instead of beginming design at the Register Transier Level
(RTL), behavioral synthesis begins at the algorithmic
(behavioral) level. RTL level design 1s described i Com-
puter Structures: Reading and Examples by C. Gorden Bell
and Allen Newell. McGraw-Hill 1971. A behavioral hard-
ware description language (HDL) specification contains
instructions, operations, variables, and arrays similar to the
original software algorithm.

10

15

20

25

30

35

40

45

50

55

60

65

2

The target architecture of behavioral synthesis 1s a general
computing model that contains datapath, memory, and con-
trol elements. Conventional design techniques currently use
a manual RTL design methodology to build a datapath. A
datapath 1s a sequence of logic consisting of registers, higher
order functional units (such as adders and multipliers), and
multiplexers. The datapath 1 a digital circuit uses the cir-
cuit’s 1nputs to compute output results. Registers are 1-bit
memory elements which hold their value through each clock
cycle.

Conventional design techniques also build a controller at
the RTL to sequence and control the actions of the datapath,
memory, and Input/Output (I/0). Frequency, such control-
lers are implemented using a Finite State Machine (FSM).
Finite state machines are described in Switching and Finite
Automata Theory by Zvi Kohavi, Computer Science Press,
1978 which 1s hereby incorporated by reference. Controllers
may also determine actions such as which branch of a condi-
tional statement 1s executed.

Behavioral synthesis builds this architecture by using
automated methods of scheduling, allocation, register
sharing, memory and control inferencing—all of which are
performed manually 1n an RTL methodology. The designer
1s freed from having to specily the exact architecture of a
design and can automatically explore many implementations
to find the optimal architecture.

Components of Behavioral Synthesis

The High-Level Synthesis of Digital Systems by Michael
McFarland, Alice Parker, and Raul Camposano, 1n Proceed-
ings of the IEEE, February 1990, which 1s hereby incorpo-
rated by reference, provides an excellent overview of High
Level Synthesis, as Behavioral Synthesis 1s often called.

Three components of a behavioral synthesis system are
Scheduling, Allocation, and Resource Sharing.

Scheduling determines 1n which clock cycle each opera-
tion executes. Scheduling extracts the control and data flow
operations of a design specification and assigns these opera-
tions to cycles. A state machine controller 1s synthesized to
sequence the operations and execute them in their assigned
cycle. The typical goal of this process 1s to assign operations
to cycles so as to be able to implement the design with the
fewest resources (registers, multiplexers, and operations)
while at the same time minimizing the number of clock
cycles (latency).

Allocation 1s a behavioral synthesis task that maps the
operations and data of a behavioral HDL specification into
the datapath, which contains memories, registers, functional
units such as adders and multiplexers, and gates. Allocation
determines which type of operation to use for each operator.
For mstance, if an operator performs addition, a ripple carry,
a carry-lookahead, or some other type of adder can be used.

Resource Sharing attempts to share hardware resources
between operators 1n a design. For example, consider two
additions which occur 1n mutually exclusive conditional
branches. Such additions will never be performed at the
same time. Thus, they can be performed on the same piece of
hardware. Resource sharing attempts to minimize the
amount of hardware used by sharing hardware as much as
possible.

Scheduling Modes

There are several modes for automatically scheduling
operations 1nto control steps. Brietly, these modes are cycle-
fixed, superstate-fixed, and free-floating mode. In cycle-
fixed mode, all I/O operations are constrained to occur 1n the
same cycle in the original HDL descriptions and in the syn-
thesized design. In cycle-fixed mode, the cycle level behav-
ior ol the synthesized circuit must match the cycle level
simulation behavior of the source HDL.




US RE40,925 E

3

The other scheduling modes allow behavioral synthesis a
greater degree of freedom 1n assigning states in a schedule.

Scheduling modes are discussed further in Behavioral Syn-
thesis Methodology for HDL-Based Specification and Vali-

dation by D. Knapp, T. Ly, D. MacMillen and R. Miller 1n
Proceedings of the 31st DAC, June 1995, which 1s included

as Appendix B and 1s hereby incorporated by reference.
There are also discussed in Behavioral Compiler User Guide
Version 3.2a available from Synopsys, Inc. In Mountain
View, Calif., which 1s hereby incorporated by reference.
Loop Pipelining

In behavioral HDL, a loop repeatedly executes the opera-
tions 1n the loop body until an exit condition becomes true.
Loop 1terations are usually sequential; operations 1n the first
iteration are executed, operators in the next iteration are
executed, and so on, as shown i FIG. 1. The throughput,
that 1s the amount of data processed per unit time, of the
function implemented by the loop body 1s limited by the
critical path 1n the loop body.

In some loops, data required by an operation in the next
loop 1teration 1s available prior to completion of the current
loop. Under these conditions, the designer can pipeline the
loop—parallelizing execution of iterations to increase
throughput beyond critical path limitations of the loop body.
This process of loop pipelining schedules consecutive loop
iterations to partially overlap in time; a new loop 1teration 1s
initiated before the current 1teration has finished.

FIG. 2 shows an example of loop pipelining where the
data required by operation A in iteration two 1s available
alter operation C 1n the first loop 1teration.

The two timing-related aspects of a loop that affect

throughput are:

Initiation interval: The number of clock cycles between
the start of two consecutive loop 1terations.

Latency: The number of clock cycles required to execute

all operations 1n a single loop 1teration.

For sequential loops that are not pipelined, the mitiation
interval and latency of a loop are the same. For a pipelined
loop, the 1nitiation interval 1s smaller than the latency.

The primary reason for using loop pipelining 1s to
increase the throughput of the design; the trade-oif 1s that the
design area usually 1ncreases.

Many designs have separate specifications on throughput
and mput-to-output delay. The throughput specification con-
strains the initiation interval. The input-to-output delay
specification constrains the loop latency. Loop pipelining
cnables a flexible relationship between the initiation interval
and latency of a loop.

An example of a candidate for loop pipelining 1s a design
that processes a data stream. This type of design often has
tight throughput requirements based on the rate of the data
streams and loose input-to-output delay constraints.

Loop Carry Dependencies

Loop Carry Dependencies (LLCDs) are data values pro-
duced 1n one 1teration of a loop and consumed by operations
in subsequent 1terations.

In loop pipelining, loop iterations that are producers and
consumers of LCDs can happen at the same time. To pre-
serve data dependencies, the operations 1 a loop must be
scheduled so that LCD values are available in time for the

iteration 1n which they will be consumed. Two schedules for
a LCD are shown 1n FIG. 3.

The example of FIG. 3(a) violates the LCD. Operation
410 1s scheduled so that its output i1s not ready 1n time for
operation 420 to use 1t 1n the next iteration of the loop. The
example of FIG. 3(b) 1s scheduled correctly. In this case,
operation 410 1s scheduled so that 1ts output 1s ready 1n time
for operation 420 to execute 1n the next iteration of the loop.

10

15

20

25

30

35

40

45

50

55

60

65

4

Memory and I/O Accesses

Loop Pipelining must preserve the original ordering of all
reads and writes to the same memory, signal, or port. In
addition, the ordering reads and writes 1n one iteration of the
loop may not “cross,” or occur after, reads and writes 1n
subsequent 1terations of the loop. Specifically, all reads and
writes to the same memory, and all writes to the same signal
or port 1n one iteration of the loop must occur before any
reads or writes to the same memory, signal or port 1n a sub-
sequent iteration of the loop. All reads of the same signal or
port must occur simultaneously to or before any read of the
same signal or port in a subsequent iteration of the loop.

For example, FIG. 4 shows two schedules for a loop that
has two reads of signal x. In FIG. 4(a), read 510 and read 520
are improperly scheduled. Read 3520 occurs after read 510
occurs 1n the next iteration of the loop. In FIG. 4(b), read 510
and read 520 are properly scheduled. In this schedule, read
520 occurs after read 510 1n the next iteration of the loop.

A BRIEF DESCRIPTION OF THE DRAWINGS

The accompanying drawings, which are incorporated 1n
and constitute a part of this specification, illustrate several
embodiments of the invention and, together with the
description, serve to explain the principles of the invention.

FIG. 1 shows an example of sequential loop processing.

FIG. 2 shows an example of pipelined loop processing
including the loop latency and initiation interval.

FIG. 3 shows an example of a loop carry dependency.

FIG. 4 shows an example of memory and I/O access
restrictions 1n pipelined loops.

FIG. 5 1s a block diagram showing a computer system.

FIG. 6 1s a flowchart which shows steps 1n a circuit syn-
thesis process.

FIG. 7 1s a flowchart which shows steps for scheduling
preprocessing.

FIG. 8 1s a flowchart which shows steps for inserting con-
straints 1nto a constraint graph.

FIG. 9 1s a flowchart which shows steps for scheduling
templates.

FIG. 10 1s a flowchart which shows steps for creating a
constraint using templates.

FIG. 11 shows HDL source code which contains a loop
with a producer and a consumer.

FIG. 12 shows a circuit before scheduling which is cre-
ated from loop 3030 of FIG. 11.

FIG. 13 shows a constraint created for a producer and
consumer in loop 3030.

FIG. 14 shows a circuit which 1s created atter scheduling
loop 3030 using an 1nitiation 1nterval of 2 and a latency of 4.

FIG. 15 shows Verilog HDL source code which contains a
loop with I/O dependencies.

FIG. 16 shows a circuit before scheduling which is cre-
ated from loop 1530 of FIG. 15.

FIG. 17 shows a constraint created for two reads 1 loop
1530.

FIG. 18 shows a circuit which 1s created after scheduling
loop 1530 using an mnitiation 1nterval of 2 and a latency of 4.

FIG. 19 (a) and FI1G. 19 (b) are examples of HDL source
code 1including a delay clause.

FIG. 20 1s a flowchart showing steps performed during
translation from the source code of FIG. 19 (a) and FI1G. 19
(b) to a circuit design that incorporates a delay specified by
the delay clause.



US RE40,925 E

S

FIG. 21 1s a representation of a data flow graph generated
from the source code of FIG. 19 (a) and (b) 1n accordance

with the steps of FIG. 20.

FI1G. 22 15 a representation of a control flow graph gener-
ated from the source code of FI1G. 19 (a) and (b) and the data
flow graph of FIG. 21.

FIG. 23 1s a flow chart showing steps performed to gener-

ate a control data flow graph from the control flow graph and
data flow graph of FIG. 21 and FIG. 22.

FI1G. 24 1s a representation of a control data flow graph
generated by the steps of FIG. 23.

FIG. 25 1s a diagram showing an example of loop tiling
with and without the delay 1n the HDL.

FIG. 26 1s a diagram showing the e
clause on pipelining.

FIG. 27 shows the operations of FIG. 12 scheduled into
control steps.

FI1G. 28 shows the read operations of FIG. 16 scheduled
into control steps.

FIG. 29 depicts template examples: (a) TI={(a, 0) (b,1)

(¢,2) (d.3) (e5)}, (b) T2=1(10) (h,5)}; (c) I3={(£0) (a, I)
(g2) (b.2) (¢.3) (d4) (h,5) (e,6)}.

FIG. 30 depicts an example of list scheduling failure and
recovery (a) first iteration falls at T2 (b) second iteration

succeeds with T1 relaxed to cstep 1.
FIG. 31 shows overall flow for hievarchical scheduling.

FIG. 32 shows timing constraints (a) n, starts k cycles
after n; starts, (b) n; starts k cycles after n, ends and n, has
:a;'tatw delaJ‘f d, (¢) n;sarts k cycles after n, ends and n,’s delay
In not static.

FIG. 33 shos models for a 3-cvcle RAM write operation.
(a) single node with delay=3; (b) 3 nodes locked in a tem-
plate.

FIG. 34 shows template models for: (a) basic 3-stage
pipelined operation, (b) 3-cvcle pipelined operation with 2
stages and internal feedback, (c¢) 4-cvcle pipelined operation
with 2 stages and sequential inputs, (d) pipelined operation
using a different internal path and output port.

FIG. 35 shows 1emplate Models for RAM (a) 2-cycle
read, and (b) 2-cycle write.

.

‘ect of the delay

FIG. 36 shows pre-chaining examples: (a) constant with
successor; (b) zero-extension with successor, (¢) bit-extract
with predecessor, (d) multi-input logic with predecessor or
multi-output logic with successor.

FIG. 37 shows handshaking for start signal: (a) original
CDFG with timing constraints, (b) final CDFG scheduled.

FiG. 38 shows response to an external event.

FIG. 39 shows comparison of simulation in cycle-fixed
mode, where FIG. 39a shows simulation of specified design
(pre-synthesis) and FIG. 39b shows simulation of synthe-
sized design (post-synthesis).

FIG. 40 shows loop and corresponding state graph.

FIG. 41 shows loop that does not need partial unrolling.

FiIG. 42 shows HDL description for a multicycle addition.

FiIG. 43 shows two-wire handshaking protocol.

FIG. 44a shows simulation before superstate-fixed sched-
uling; FIG. 44b shows simulation after superstate-fixed
scheduling.

FIG. 45 shows writes to out port 1 and out port 2 may be
permiited.

DETAILED DETAILED DESCRIPTION OF TH.
INVENTION

The present invention 1s a method and apparatus for syn-
thesizing a circuit which implements a pipelined loop from a

(Ll

10

15

20

25

30

35

40

45

50

55

60

65

6

Hardware Description Language (HDL) description. The
following description 1s presented to enable any person
skilled 1n the art to make and use the invention, and 1s pro-
vided 1n the context of a particular application and 1its
requirements. Various modifications to the preferred
embodiment will be readily apparent to those skilled 1n the
art, and the generic principles defined herein may be applied
to other embodiments and applications without departing
from the spirit and scope of the invention. Thus, the present
invention 1s not ntended to be limited to the embodiment
shown, but 1s to be accorded the widest scope consistent with
the principles and features disclosed herein.

1.0 Computer System Description

FIG. § illustrates a computer system 100 in accordance
with a preferred embodiment of the present invention. The
computer system 100 includes a bus 101, or other communi-
cations hardware and software, for communicating
information, and a processor 109, coupled with the bus 101,
1s for processing mformation. The processor 109 can be a
single processor or a number of individual processors that
can work together. The computer system 100 further
includes a memory 104. The memory 104 can be random
access memory (RAM), or some other dynamic storage
device. The memory 104 1s coupled to the bus 101 and 1s for
storing information and instructions to be executed by the
processor 109. The memory 104 also may be used for storing
temporary variables or other intermediate information dur-
ing the execution of instructions by the processor 109. The
computer system 100 also includes a ROM 106 (read only
memory), and/or some other static storage device, coupled
to the bus 101. The ROM 106 1s for storing static informa-
tion such as instructions or data.

The computer system 100 can optionally include a data
storage device 107, such as a magnetic disk, a digital tape
system, or an optical disk and a corresponding disk drive.
The data storage device 107 can be coupled to the bus 101.

The computer system 100 can also include a display
device 121 for displaying information to a user. The display
device 121 can be coupled to the bus 101. The display device
121 can include a frame bulfer, specialized graphics render-
ing devices, a cathode ray tube (CRT), and/or a flat panel
display. The bus 101 can include a separate bus for use by
the display device 121 alone.

An 1nput device 122, including alphanumeric and other
keys, 1s typically coupled to the bus 101 for communicating
information, such as command selections, to the processor
109 from a user. Another type of user input device 1s a cursor
control 123, such as a mouse, a trackball, a pen, a touch
screen, a touch pad, a digital tablet, or cursor direction keys,
for communicating direction information to the processor
109, and for controlling the cursor’s movement on the dis-
play device 121. The cursor control 123 typically has two
degrees of freedom, a first axis (e.g., X) and a second axis
(e.g., v), which allows the cursor control 123 to specily posi-
tions 1n a plane. However, the computer system 100 1s not
limited to mnput devices with only two degrees of freedom.

Another device which may be optionally coupled to the
bus 101 1s a hard copy device 124 which may be used for
printing instructions, data, or other information, on a
medium such as paper, film, slides, or other types of media.

A sound recording and/or playback device 125 can
optionally be coupled to the bus 101. For example, the sound
recording and/or playback device 125 can include an audio
digitizer coupled to a microphone for recording sounds.
Further, the sound recording and/or playback device 125
may include speakers which are coupled to digital to analog
(D/A) converter and an amplifier for playing back sounds.



US RE40,925 E

7

A video 1nput/output device 126 can optionally be
coupled to the bus 101. The video mput/output device 126
can be used to digitize video 1images from, for example, a
television signal, a video cassette recorder, and/or a video
camera. The video mput/output device 126 can include a
scanner for scanning printed images. The video mnput/output
device 126 can generate a video signal for, for example,
display by a television.

Also, the computer system 100 can be part of a computer
network (for example, a LAN) using an optional network
connector 127, being coupled to the bus 101. In one embodi-
ment of the invention, an entire network can then also be
considered to be part of the computer system 100.

An optional device 128 can optionally be coupled to the

bus 101. The optional device 128 can include, for example, a
PCMCIA card and a PCMCIA adapter. The optional device

128 can further include an optional device such as modem or
a wireless network connection.

2.0 Definitions

A digital circuit 1n an interconnected collection of parts.
Parts may also be called cells. The digital circuit receives
signals from external sources at points called primary inputs.
The digital circuit produces signals for external destinations
at points called primary outputs. Primary inputs and primary
outputs are also called ports. Each part receives input signals
and computes output signals. Each part has one or more pins
for recerving 1nput signals and producing output signals. In
general, pins have a direction. Most pins are either input
pins, which are called loads, or output pins, which are called
drivers. Some pins may be bidirectional pins, which can be
both drivers and loads.

Iwo or more pins from one or more parts or primary
inputs or primary outputs are connected together with a net.
Each net establishes an electrical connection among the con-
nected pins, and allows the parts to interact electrically with
cach other. Pins are also connected to primary inputs and
primary outputs with nets. For the sake of simplicity, parts
may be said to be “connected” to nets, but 1t 1s actually pins
on the parts which are connected to the nets.

A Circuit Element 1s any component of a circuit. Ports,
pins, nets, and cells are all circuit elements. Any circuit ele-
ment which 1s an 1put to another circuit element 1s said to
drive that circuit element. Any circuit element which 1s an
output of another circuit element 1s said to load that circuit
clement. For example, drivers drive a signal onto a net; loads
load nets with capacitance.

A digital circuit design can be stored 1n memory of a
computer system using data structures which represent the
various components of the circuit. The data structures have
the same name as the physical components. In this
document, parts, cells, sets, pins, and other digital circuit
components refer to the software representation of the physi-
cal digital circuit component.

A digital circuit can be specified hierarchically. Some or
all of the parts in the digital circuit may themselves be digital
circuits composed of more interconnected parts. When a
high level part 1s specified as a digital circuit composed of
other, lower level parts, the pins of the high level part
become the primary 1mputs and primary outputs for the digi-
tal circuit comprising the lower level parts. When a high
level part 1s composed of lower level parts, it 1s called a level
of hierarchy.

Following are additional definitions of terms which are
used 1n this document.

An HDL 1s a Hardware Description Language. HDL s are
used to describe designs for digital circuits.

A Translated Circuit, Generic Technology Circuit, or
GTech Circuit 1s a software representation of a digital circuit

10

15

20

25

30

35

40

45

50

55

60

65

8

which does not include references to a specific technology,
but rather refers to cells that implement generic logic such as
“and”, “or”, and “not”. This soitware representation 1s stored
in memory 104 of computer system 100.

A Mapped Circuit 1s a software representation of a digital
circuit which 1s built from parts available 1n a technology
library which 1s provided by a silicon vendor. This software
representation 1s stored 1 memory 104 of computer system
100. A mapped circuit can be timed using a conventional
timing verifier such as DesignTime, available from Synop-
sys. Inc. in Mountain View, Calif. After 1t 1s built, a netlist
representation ol a mapped circuit can be sent to a silicon
vendor for layout and fabrication. For instance, the mapped
circuit can be written out using LSI netlist format and sent to
LSI Logic 1n Milpitas, Calif. The process of creating a
mapped circuit from a generic technology circuit 1s called
mapping. Because a circuit must be mapped before 1t can be
timed, mapped circuits are also used internally by synthesis
tools.

The Fanout of a circuit element includes any circuit ele-
ments which are driven by that circuit element. The transi-
tive fanout of a circuit element includes all of the circuit
clements 1n the circuit which are driven, either directly or
indirectly, by that circuit element. Thus, the transitive fanout
of a circuit element includes the fanout of that circuait
element, as well as the fanout of each of the circuit elements
in the original fanin, and so on.

The Fanin of a circuit element includes any circuit ele-
ments which drive that circuit element. The transitive fanin
ol a circuit element includes all of the circuit elements 1n the
circuit which drive, either directly or indirectly, that circuit
element. Thus, the transitive fanin of a circuit element
includes the fanin of that circuit element, as well as the fanin
of each of the circuit elements 1n the original fanin, and so
on.

An Operator 1s a function, such as addition. Such func-
tions are used in HDL source code. For example, the plus in
“c=a+b;” 1s an operator.

An Operation 1s a soltware representation of a hardware
functional unit which performs a function such as addition.
For example, a solftware representation of an adder 1s an
operation.

A Clock Cycle 1s a period of time, for example, 10ns,
between pulses of a clocking element 1n a digital circuit. The
clocking element 1s used to synchronize the digital circuait.
3.0 Scheduling

Scheduling 1s a well defined problem which has been
studied extensively. An overview of the scheduling problem
1s available 1n The High-Level Synthesis of Digital Systems
by Michael McFarland, Alice Parker, and Raul Camposano,
in Proceedings of the IEEE, February 1990, which is hereby
incorporated by reference.

The mput to a scheduler 1s typically a set of hardware
operations, a set ol constraints between the hardware
operations, a clock period, and a set of control steps into
which the hardware operations must be mapped. The output
1s a schedule where each hardware operation 1s mapped to a
control step.

Schedulers typically use a number of graphs. For instance,
the constraints for a scheduler are often represented using a
graph. Nodes 1n the graph typically represent events to be
scheduled, such as operations, and edges 1n the graph repre-
sent constraints between the events. The scheduler checks
the constraint graph to ensure that all of the constraints are
met before placing an event into a particular control step.
Schedulers also use control graphs, data tflow graphs, and
combination control data flow graphs (CDFG’s). Control




US RE40,925 E

9

graphs represent the flow of control 1n a circuit. Data flow
graphs represent the flow of data 1n a circuit; that 1s the flow
ol data from the 1nputs to the outputs of the circuit. Control
data flow graphs combine both control flow and data flow
information into a single graph. All of these types of graphs
are described i High-Level Synthesis (subtitled Introduc-
tion to Chip and System Design) by Daniel Gajski, Nikil
Dutt. Allen C-H Wu, and Steve Y-L. Lin, Kluwer Academic

Publishers, 1992 which 1s hereby incorporated by reference
and will subsequently be referred to as High-level Synthesis
by Gajski et al.

An additional technique used for scheduling circuits
involves “templates”. Templates are described 1n Scheduling
using Behavioral Templates by Tai Ly, David Knapp, Ron
Miller, and Don MacMillen i Proceedings of the 31st DAC,
June 1993, which 1s included as Appendix A and 1s hereby
incorporated by reference. Simply speaking, templates are
data structures which specily scheduling constraints among
CDFG nodes. Templates “lock”™ the control step relationship
between 2 or more CDFG nodes. FIG. 13 shows an example
of two templates, template 1250 and template 1280. Each
template contains one or more nodes, some of which may
represent operations. For example, adder node 2020 repre-
sents adder 3120 of FIG. 12.

3.1 Overview of Synthesis with Scheduling

FIG. 6 1s a flowchart showing how scheduling steps fit
into the overall synthesis strategy. This flowchart shows how
a mapped circuit 1s created from a source HDL description.
The 1nput to synthesis 1s an HDL description of a digital
circuit. Such a description may be written 1n VHDL, Verilog,
or some other HDL.

An HDL description 1s translated in step 810 to generic
logic. A conventional HDL translator 1310 such as VHDL
Compiler version 3.2b from Synopsys. Inc. in Mountain
View, Calif. preferably 1s used.

Step 820 performs scheduling preprocessing steps. These
steps are shown 1n FIG. 7 and FIG. 8.

Step 830 schedules the operations 1n the circuit. A method
tor scheduling the operations in the circuit 1s shown 1n FIG.
9.

Step 840 netlists the scheduled circuit. Netlisting creates a
G'Tech circuit from the scheduled CDFG. The CDFG repre-
sentation of the circuit 1n memory 1s transformed into a
G'Tech representation of the circuit in memory.

In step 850, the resulting G'Tech circuit 1s optimized using
conventional logic synthesis such as Design Compiler ver-
sion 3.2 by Synopsys. Inc. in Mountain View, Calif. The
output of logic optimization 1s a mapped circuit description
which can be sent to a silicon vendor for fabrication. For
example, a description of the mapped circuit can be output
using L.SI Netlist format and sent to LSI Logic 1n Milpaitas,
Calif for fabrication.

3.2 Scheduling Preprocessing

FIG. 7 1s a flowchart which shows steps for scheduling
preprocessing. The input to the method 1s an annotated
G'Tech circuit. Annotation on the circuit include delayed sig-
nal assignment information. The use of delayed signal
assignments will be discussed 1n a later section.

Step 910 extracts a control graph from the annotated
G'Tech using conventional techniques. In addition, informa-
tion concerning delayed signal assignments 1s extracted as
described below.

Step 920 extracts a Control Data Flow Graph (CDFG)
from the control graph created 1n step 910 and the data flow
graph represented by the GTech circuit. This 1s also done
using conventional techniques.

Step 930 creates 1nitial templates for the operations 1n the

CDFG as described in Scheduling Using Behavioral Tem-

10

15

20

25

30

35

40

45

50

55

60

65

10

plates in Appendix A. These initial templates form the 1nitial
constraint graph.

Step 940 inserts constraints in the constraint graph. Some
types ol constraints are discussed in Scheduling Using
Behavioral Templates 1n Appendix A. Other types of con-
straints are a part of the present mvention and will be dis-
cussed 1 subsequent sections.

3.3 Inserting Constraints

Step 940 of FIG. 7 1s implemented by FIG. 8 which 1s a
flowchart which shows steps for inserting constraints 1nto a
constraint graph which uses templates. The input to the pro-
cess 1s a CDFG and a constraint graph.

Step 1110 1dentifies Loop Carry Dependency (LCD) pro-
ducer consumer pairs. LCD’s are identified by tracing the

CDFG using conventional techniques. LCD’s are discussed
below 1n connection with FIG. 11, FIG. 12, FIG. 13, FIG.

14, and FIG. 27.

Step 1120 constrains the LCD’s. Constraining LCD’s
involves adding constraints to the constraint graph so that
producer and consumer operations are scheduled so that the
consumer consumes a value produced by the producer
before 1t 1s overwritten 1n a subsequent 1teration of the loop.
A method and apparatus for constraining LCD’s will be dis-
cussed 1n a later section.

Step 1130 identifies memory and I/0 access dependencies
in loops which will be scheduled using pipelines. 1/0
accesses 1include reads and writes to memories, signals, and
ports. Reads and writes 1n one 1teration of the loop may not
“cross,” or occur after, reads and writes 1n subsequent 1tera-
tions of the loop. Specifically, all reads and writes to the
same memory, and all reads and writes to the same signal or
port 1n one 1teration of the loop must occur before any reads
or writes to the same memory, signal or port 1n a subsequent
iteration of the loop. The one exception to this rule 1s that
reads of the same signal or port may occur simultaneously to
a read of the same signal or port in a subsequent 1teration of
the loop. This step finds the first and last accesses for each
memory, signal, or port by tracing through the CDFG using

conventional techniques. Memory and I/O accesses are dis-
cussed below 1n connection with FIG. 15, FIG. 16, FIG. 17,

FIG. 18, and FIG. 28.

Step 1120 constrains the memory and I/O accesses 1n
pipelined loops. Constraining memory and I/O accesses
involves adding constraints to the constraint graph so that
first and last accesses are scheduled so that the last access
occurs before the first access 1n a subsequent iteration of the
loop. A method and apparatus for constraining memory and
I/O accesses will be discussed 1n a later section.

Step 1130 1nserts other types of constraints into the con-
straint graph. Such constraints are discussed in Scheduling
Using Behavioral Templates 1n Appendix A. An example of
another type of constraint 1s a datatlow constraint, which
ensures that data values are produced before they are con-
sumed by subsequent operations.

3.4 Scheduling Templates

FIG. 9 1s a flowchart which shows steps of scheduling
(step 830 of FIG. 6) using templates. The mput to the pro-
cess 1s the CDFG and the constraint graph created by the
steps of FIG. 8. It 1s possible to schedule templates using
many different scheduling techniques. A number of schedul-
ing techniques are described in High-Level Synthesis by
Gajski et al, particularly in Chapter 7. This figure shows a
general method, which 1s provided as an example.

Step 1010 creates the As Soon As Possible (ASAP) and As
Late As Possible (ALAP) schedules for each template while
satisiying the constraints represented 1n the constraint graph.
The ASAP schedule places each template into the earliest



US RE40,925 E

11

possible control step (c-step). The ALAP schedule places
cach template 1nto the latest possible control step. Together,
the earliest and latest control steps define a range into which
cach template may be scheduled. A method for determining
the ASAP and ALAP schedules for templates 1s described in
Scheduling Using Behavioral Templates 1n Appendix A.
Loop 1020 loops until a “good” schedule 1s found. A
“000d” schedule 1s one which fulfills the constraints speci-

fied 1n the constraint graph and optimizes for a specific goal
specified by a human designer, such as fewest number of
control steps. Diflerent scheduling techniques use different
criteria for deciding when to stop trying to improve the

schedule. For example, one technique might stop when the
constraints are all met, or when a certain amount of CPU
time has been spent, whichever comes last.

Step 1030 picks a template 1 the constraint graph to
schedule. Different techniques use different criteria for
deciding what to schedule next. Generally, template schedul-
ing techniques use criteria based upon the operations 1n a
template. For imstance, a list scheduling technique which

uses priorities will assign a priority to a template based on
the priorities of the operations within the template. (List
scheduling 1s described 1n High-Level Synthesis by Gajski et
al in Chapter 7).

Step 1040 schedules the chosen template 1n the control
step chosen by the scheduling technique being used. Tem-
plates are scheduled by placing the first operation within the
template 1into the chosen control step and the remaining
operations within the template into subsequent control steps
as defined by the template.

Arrow 1050 indicates that loop 1020 1terates until a
“000d” schedule 1s found.

4.0 Method for Creating Constraints
This section describes a general technique for constrain-

ing the relationship between two nodes 1n a constraint graph.
Such constraints are added 1n step 940 of FIG. 7. The section
then describes examples of using this technique to constrain
loop carry dependencies and 1/0 dependencies.

4.1 Placeholder Node Method

FIG. 10 shows a general method for creating a scheduling
constraint between two nodes 1n a constraint graph. Such
constraints are created in step 1120 and step 1140 of FIG. 8
to constraint LCD’s and memory and I/0 accesses. This sec-
tion shows a general method and discusses specific
examples. The first example constrains an LCD); the second
example constrains a pair of signal reads. The mput to the
process ol FIG. 10 1s a constraint graph, two templates in the
graph, Event 1 and Event 2, an integer n, and a number of
cycles ¢. “n” 1s the number of cycles within which Event 2
must be scheduled after Event 1. “c” 1s e1ther O or 1. *“c” has
value 0 when Event 2 must be schedule before n cycles after
Event 1, and value 0 when Event 2 may be scheduled exactly
n cycles after Event 1.

Step 610 adds a placeholder node H to the template for
Event 1 1n the constraint graph. A placeholder rode 1s a node
in the constraint graph which 1s only used to create con-
straints. The placeholder node does not represent any portion
of the final circuit. Placeholder node H 1s inserted into the
Event 1’°s template such that it 1s locked n cycles after Event
1.

Step 620 adds a constraint in the constraint graph from
Event 2 to placeholder node H which constrains Event 2 to
occur ¢ cycles before placeholder node H, where c1s O or 1.
The value of ¢ depends on the constraint being added and
will be discussed 1n subsequent sections.

4.2 Using Placeholder Nodes for Loop Carry Dependencies

The following section provides an example of constrain-
ing loop carry dependencies using placeholder nodes. Such

10

15

20

25

30

35

40

45

50

55

60

65

12

constraints are created in step 1120 of FIG. 8. A loop carry
dependency 1s a data value which 1s produced in one 1itera-
tion of a loop and consumed by operations 1 subsequent
iterations of the loop. To use the placeholder node method to
schedule loop carry dependencies. Event 1 1s set to be the
operation which consumes the data. Event 2 1s set to be the
operation which produces the data. Event 2 must be sched-
uled so that the correct data values are driving it when 1t
teeds its outputs to Event 1. If the consumer (Event 1) con-
sumes the data one iteration after the producer (Event 2)
creates 1t, then n 1s set to be the imitiation 1nterval of the loop.
If the consumer consumes the data k iterations after it 1s
created by the producer, then n 1s set to be k * iitiation
interval. For LCD’s, “c” has value “1” because the producer
must be scheduled before the consumer 1n the subsequent
iteration of the loop.

FIG. 11 shows an example of Verilog source code for a
loop 3030 with a loop carry dependency between addition
3020 and subtraction 3010. The output of addition 3020, p,
drives the mnput of subtraction 3010 on the next iteration of
the loop. “p” 1s a Loop Carry Dependency. In this example, a
human designer has specified that loop 3030 will be sched-
uled using an imtiation interval of 2 and a latency of 4.
Although this loop would not usually be pipelined because
pipelining does not increase 1its throughput, this simple
example 1s used for the sake of clarity.

FIG. 12 shows a GTech circuit representation 2000 which
1s created for loop 3030 1n FIG. 11. The GTech circuit repre-
sentation 1s stored in memory 104. G'Tech circuit 2000 1s
output from step 810 of FIG. 6. Addition 3020 1s 1mple-
mented as adder 3120, and subtraction 3010 1s implemented
as subtracter 3110. Port p 2040 drives subtracter 3110. Port
p' 2045 1s driven by adder 3120. Port p 2040 and port p' 2045
are partner ports. Partner ports are ports which represent the
same signal, and thus frequently embody loop carry depen-
dencies. Partner ports contain references to their partners. In
the described embodiment, these references are i1mple-
mented as pointers. Each port which has a partner contains a
pointer to 1ts partner port.

FIG. 13 shows a constraint 1270 between adder node
2020, which 1s the producer for this LCD, and subtracter
node 2010 which 1s the consumer of this LCD. The con-
sumer and producer were 1dentified 1n step 1110 of FIG. 8.
This constraint 1s created using the method of FIG. 10. The
starting templates are shown 1n FIG. 13(a). First step 610 of
FIG. 10 adds placeholder node H 2060 to the template 1250
ol subtracter node 2010. Because the mitiation interval for
the loop 1s 2, placeholder node H 2060 1s constrained to be 2
cycles after subtracter node 2010 by template 1250. Next,
step 620 creates constraint 1270, represented by an arrow,
which constrains adder node 2020 to be at least one cycle
betore placeholder node H 2060. The modified templates
and the new constraint are shown in FIG. 13(b). The new
constraint 1s then used to schedule the loop correctly using a
method such as the one shown 1n FIG. 9.

FIG. 27 shows the add and subtract operations of FIG. 12
scheduled 1nto control steps by step 830 of FIG. 6. For the
sake of clarity, the other operations 1n the circuit are not
shown. Two 1terations of the loop are shown, to demonstrate
how the schedule properly handles the loop carry depen-
dency. Adder 3120 is scheduled so that 1ts result 1s available
betore subtracter 3110 needs 1t 1n the next iteration of the
loop.

FIG. 14 shows the circuit created from the Verilog HDL
source code of FIG. 11 after scheduling. Block 3190 repre-
sents the representation of the FSM controller for this circuit
stored 1n memory 104.




US RE40,925 E

13

4.3 Using Placeholder-Nodes for I/O Dependencies

Loop pipelining must preserve the original order of all
reads and writes to the same memory, signal, or port. The
placeholder node method can be used to create constraints
which ensure that I/O accesses 1s different iterations of the
loop do not cross one another. Such constraints are created 1n
step 1140 of FIG. 8. The last I/O access to the same memory,
signal, or port 1n a loop must occur simultaneously to or
betore the first I/O access to that memory, signal or port in
the next iteration of the loop. Specifically, reads of the same
signal or port may occur simultaneously with reads 1n the
next iteration of the loop, but not after. Writes to the same
signal or port must occur before any read or write to the
same signal or port 1n the next iteration of the loop. Reads
and writes to the same memory must occur before any read
or write to the same memory 1n the next iteration of the loop.

Thus, any last I/O access must occur within the mitiation
interval of the first I/O or memory access. To create this
constraint, Event 1 of FIG. 10 1s set to be the first I/O access
to a given memory, signal or port. Event 2 of FI1G. 10 1s set to
be the last I/O access to a given memory, signal or port. n 1s
set to be the imtiation interval of the loop, and ¢ 1s set to be 0
or 1. Specifically, ¢ 1s set to be 0 1f Event 1 and Event 2 are
signal or port reads, ¢ 1s set to be 1 1f Event 1 or Event 2 are
signal or port writes, or memory reads or writes.

FIG. 15 shows an example of Verilog source code for a
loop 1530 with an I/O dependency between read 1510 and
read 1520. Both read 1510 and read 1520 read the value of
the same signal, x. Thus, read 1520 must be scheduled such
that 1t occurs before read 1510 1n the next iteration of the
loop. In this example, a human designer has specified that
this loop 1530 will be scheduled using an 1nmitiation interval
of 1 and a latency of 3.

FI1G. 16 shows the G'Tech circuit 1500 which 1s created for
loop 1530 of FIG. 15. Circuit 1500 1s output from step 810
of FIG. 6. Read 1510 i1s implemented by read operation
3130. Read 1520 1s implemented by read operation 3140. In
this example, a human designer has specified that this loop
will be pipelined with an 1imitiation 1interval of 1 and a latency
of 3.

FIG. 17 shows a constraint between read node 1610, the
first read of x 1n loop 1530, and read node 1620, the last read
of x 1n loop 1530. Read node 1610 and read node 1620 were
identified 1n step) 1130 of FIG. 8. This constraint 1s created
using the method of FIG. 10. First step 610 adds placeholder
node H 1760 to the template 1750 of read node 1610. Place-
holder node H 1s constrained to be 1 cycle after read node
1610, because the mitiation interval 1s 1, by template 16350.
Next, step 620 creates constraint 1770, represented by an
arrow, which constrains read node 1620 to be at least O

cycles before, that 1s 1n the same cycle or after, placeholder
node H 1760. Read node 1620 1s constrained to be 0 cycles

betore placeholder node H 1760 because read node 1620 and
read node 1610 are both signal reads, and as such are
allowed to occur 1n the same control step. Constraint 1770 1s
then used to schedule the loop correctly using a method such
as the one shown 1n FIG. 9.

FIG. 28 shows read operations on signal x of FIG. 16
scheduled 1nto control steps by step 830 of FIG. 6. For the
sake of clarity, the other operations in the circuit are not
shown. Two 1terations of the loop are shown, to demonstrate
how the schedule properly handles the multiple signal reads.
Read 3130 1s scheduled so that 1t occurs simultaneously with
read 3140 in the next iteration of the loop. Since simulta-
neous signal reads are allowed, this 1s a legal schedule.

FIG. 18 shows the circuit created from the Verilog HDL
source code of FIG. 11 after scheduling.

10

15

20

25

30

35

40

45

50

55

60

65

14

5.0 Circuit Synthesis using Delayed Signal Assignment
Information

Conventional design methodology uses a simulator to
verily the correctness of a design both before and after it 1s
synthesized. Conventional simulation systems, especially
those systems performing behavioral synthesis, do not
always vyield identical cycle timing characteristics when
HDL source code 1s simulated and when a synthesis output
(a representation of a synthesized circuit) 1s simulated. It 1s
advantageous for behavioral synthesis to be able to infer a
circuit which will have the same cycle by cycle behavior
during simulation as the simulation of the source HDL.

The source code of FIG. 19(a) 1s written in the Verilog
circuit specification language. The source code of FIG. 19(b)
1s written 1n the VHDL circuit specification language. Both
Verilog and VHDL are Hardware Description Languages
(HDLs).

In FIG. 19(a), the Verilog source code includes a signal
assignment statement:

C<=H24X-p;

This statement includes a delay clause (“#24”) indicating,
that a delay of twenty-four time units, e€.g., nanoseconds,
should pass before the write operation 1s performed by the
circuit that 1s to be generated. The delay clause 1s an example
of delayed signal assignment information. Note that the
inclusion of the delay clause in the HDL indicates a delay of
the write operation only. The delay clause does not cause a
delay in the performance of the subtraction operation.
Similarly, in FIG. 19(b), the VHDL source code includes a

signal assignment statement:

c<=transports—p after 24 ns;

This statement also contains a delay clause (“after 24 ns™)
indicating that a delay of twenty-four time units should
occur 1n the generated circuit before the write operation 1s
performed. This delay clause 1s a further example of delayed
signal assignment information.

A circuit loop generated from the HDL source code of
FIG. 19(a) and FIG. 19(b) will have an 1nitiation interval of
“2” because each source code example has two “wait” (or
“posedge” or “negedge”) statements within the loop. As dis-
cussed below, the delay clause 1n the source code causes the
resulting loop to have a loop latency of “4”. FIG. 19(a) and
FIG. 19(b) are included for the purpose of example only. The
present 1mvention can use any appropriate type ol source
code (VHDL, Verilog, etc.) to represent a delay clause.

FIG. 20 1s a flowchart showing steps performed during
translation step 810 of FIG. 6 to generate a cdb. The exact
placement of the steps of FIG. 20 are not a part of the present
invention and the steps also can be performed, for example,
in the preprocessing step 820 of FIG. 6. The input to FIG. 20
1s a representation ol one of the source code examples of
FIG. 19(a) and FIG. 19(b), such as a parse tree generated
from the source code. The steps of FIG. 20 are performed for
cach statement in the source code. The output of the transla-
tion step 810 and FIG. 20 1s a data tlow graph (a “Gtech
circuit”) and a control tlow graph (a “control data base”
(cdb)). It will be understood by persons of ordinary skill 1n
the art that the steps of FIG. 20 and FIG. 23 are performed by
processor 109 of FIG. 5, performing instructions stored in
memory 104 of FIG. 5.

In step 2002, the processor determines whether the cur-
rent source code statement 1s a signal assignment statement
(e.g., an assignment to a port using the “<="" operator) that
includes a delay clause (e.g., “#24” 1n Verilog or “after 24



US RE40,925 E

15

ns” i VHDL). If not, 1n step 2002, the processor performs
standard processing for the node to build a node 1n the data
flow graph. I1 the current source code statement includes a
delay clause, then, 1n step 2004, the processor builds a write
operation node 1n the data flow graph and annotates the node
by adding an attribute indicating delayed signal assignment
information to show that the write operation corresponding
to the write operation node has a delay of, e.g., 24 nanosec-
onds (see node 2114 of FIG. 21 and FIG. 22).

FIG. 21 shows an example of a data flow graph 2100
generated from one of the source code examples of FIG.
19(a) and FIG. 19(b) 1n accordance with the steps of FI1G. 20.
A representation of data flow graph 2100 1s stored in
memory 104. Data flow graph 2100 includes as inputs a port
X, a register p, and ports y and z. Each port has zero or more
read operation nodes (“read op™) 2102, 2014, 2106 associ-
ated therewith and each read operation node has an attribute
indicating a port name (e.g., “port="x"""). Respective ones of
the 1inputs are mput to a subtracter node 2110 and an adder
node 2112. Subtracter node 2110 1s connected to a write
operation node 2114. Adder node 2112 i1s connected to a
variable assignment node 2116. Output p' 1s input as p dur-
ing successive iteration of the loop. Thus, the data tlow
graph of FIG. 21 has seven nodes representing the data flow
in the circuit to be synthesized.

In step 2008 of FI1G. 20, 1f there are more statements in the
source code, control returns to step 2002. If all statements
have been processed and a data flow graph (including signal
delay attributes) has been generated for the source code,
control passes to step 2012, where a control flow graph, such
as that in FIG. 22 1s created.

Control graph 2200 of FI1G. 22 adds control information to
nodes 2102, 2104, 2106, 2110, 2112, 2114, and 2116 indi-
cating the order and conditions under which the data flow
nodes are executed 1n the synthesized circuit. A representa-
tion of control graph 2200 1s stored 1n memory 104 of FIG.
5. The present invention preferably operates 1n a “cycle fixed
mode” 1 which each “wait” (or “posedge™ or “negedge’)
statement 1n the source code indicates a new cycle 1n the
synthesized circuit. Various processes for generating of con-
trol flow graphs are known to person of ordinary skill in the
art and are described 1n High-Level Synthesis of Gajski et al.

In FIG. 22, cnodes are used as “placeholder” nodes 1n the
control graph to represent a collection of data flow nodes.
Thus, cnode 2200 1s associated with write operation node
2114 (including the signal delay attribute), read operation
node 2102, and subtracter node 2110. The wait nodes 1n FIG.
22 are used to represent the transitions between each cycle
(or “cstep”). A wait node 2204 1s used to mark the transition
between the first cstep (cstep 0) and the second cstep (cstep
1). Wait node 2204 also has attributes indicating that it 1s
based on a rising clock edge (due to the “posedge” statement
in the source code) “Wait statements” (1in VHDL source
code) are treated similarly. Cnode 2206 (located 1n the sec-
ond cstep) 1s associated with variable assignment node 2116,
read operation node 2104, read operation node 2106, and
adder node 2112. The control graph also includes a second
wait node 2208 and a third cnode 2210.

As shown 1n FIG. 7, the control flow graph 1s input to step
920, where a control data flow graph (CDFG) 1s created. The
general procedure for creating a conventional CDFG 1s
known to person of ordinary skill in the art and 1s described
in High-Level Synthesis by Gajska et al. FIG. 23 shows cer-
tain details of the process of creating a CDFG that relate to
the delay clause of the present invention. An example CDFG
1s shown 1n FIG. 24. The steps of FIG. 23 are performed for

cach loop 1n the control flow graph. In step 2302, the proces-

10

15

20

25

30

35

40

45

50

55

60

65

16

sor sets a Wait__count variable and a Max__wait__count vari-
able 1n the memory 104 to an initial value of “0”. In step
2304 the processor builds a “loop begin” node 1n the CDFG
and assigns to 1t a cstep attribute value equal to “0”.

Step 2306 15 a first step 1n a loop performed by the proces-
sor for each cdb node. In step 2308, 11 the current cdb node 1s
a cnode, control passes to step 2310, which 1s a first step 1n a
loop performed for all data flow nodes associated with the
current cdb node. In step 2312, 11 a current data tflow node 1s
a write operation node having a delay clause (1.e., if the
current data flow node represents a delayed signal
assignment), control passes to step 2322.

In step 2322, a temp__wait__count variable 1s set to the
current value of Wait__count + a number of delay time units
in the delayed signal assignment divided by the clock period
(e.g. 0+*%=4). A CDFG node 1s created and assigned to
cstep temp_ wait__count in step 2324. In step 2326, 1f
temp_ wait__count 1s greater than Max__wait__count, then in
step 2328. Max__wait__count 1s set equal to temp_ wait__
count. Otherwise, control passes to step 2342. If, i step
2342, there are more data flow nodes associated with the
current cdb node, then control passes to step 2310. Other-
wise control passes to step 2336.

I1, 1n step 2312, the current data flow nodes not a delayed
signal assignment, the processor builds a standard CDFG
node 1n step 2314 and assigns the created data flow node to
cstep wait__count 1n step 2316. 11, in step 2318, wait__count
1s greater than Max_ wait_ count, the Max_ wait_ count 1s
assigned to wait__count 1n step 2320. Control next passes to
step 2342.

If, 1n step 2306, the current cdb node 1s not a cnode, then
control passes to step 2330. I 1n step 2330 the current cdb
node 1s a wait node, then wait__count 1s incremented 1n step
2332 and control passes to step 2336. If, 1n step 2330, the
current cdb node 1s not a wait node, then regular processing
1s performed to create a CDFG node 1n step 2334 and control
passes to step 2336.

In step 2336, 11 there are more cdb nodes to process, then
control passes to step 2306. Otherwise, a loop__latency vari-
able in memory 104 for the loop 1s assigned to Max_ wait__
count and an mtiation interval variable for the loop 1is
assigned to wait__count 1n step 2338. In step 2340, the pro-
cessor builds a “loop end” node 1n the CDFG and assigns 1t
to cstep wait__count.

The output of step 920 of FIG. 7 1s input to the scheduler,
which uses the CDFG and the loop imitiation interval and
loop latency to schedule the nodes of the circuit being gener-
ated. In the described embodiment, all nodes except read/
write operation nodes can “float”, 1.e., can be moved
between csteps by the scheduler to allow the scheduler to
create an efficient circuit design. In the CDFG, these nodes
are always assigned a cstep value equal to the 1mitial cteps 1n
which they appear in the HDL as a “suggestion” to the
scheduler. It will be understood by persons of ordinary skill
in the art that the CDFG of FIG. 24 has been simplified for
the sake of example and that the CDFG also includes, e.g.,
data flow arcs connecting the CDFG nodes that represent
data flows 1n a similar manner to the data flows of FIG. 21.

FIG. 14 shows an example circuit synthesized from the
CDFG of FIG. 24. FIG. 25 shows an example of placement
of CDFG nodes 1n csteps without and with use of the delay
clause. In the left column, which represents CDFG without
the delay clause, CDFG nodes corresponding to write opera-
tion node 2114, read operation node 2109, and subtracter
node 2110 are assigned to cstep 0. Similarly, CDFG nodes
corresponding to adder node 2112, read operation node
2104, read operation node 2106, assignment node 2116 (and




US RE40,925 E

17

a CDFG loop__end node) are assigned to a second cstep 1.
Generation of this CDFG representation causes the synthe-
s1zer to generate a circuit that has different timing character-
istics than the characteristics generated by the circuit synthe-
s1zer when the source code includes a delay clause. The rnight
column of FIG. 25 shows the assignment of CDFG nodes to
cycles 1n accordance with the present imvention. In this
example, a write operation node corresponding to write
operation node 2114 1s moved 1nto cstep 4 during the steps
of FIG. 23. This modification of the process to generate the
CDFG (possible because of an addition of a signal delay
attribute to the data graph 2100) allows the synthesis process
to generate a circuit that has cycle level simulation behavior
that 1s substantially 1identical to that of the cycle level simu-
lation behavior of the source HDL.

FIG. 26 shows an example of loop pipelining when the
present mvention 1s used. The figure shows an nth 1teration
of the loop and an n+1st iteration of the loop over time. As
can be seen 1n the figure, the 1mitial mterval of successive
iterations of the loop 1s equal to a number of wait statements
(or “posedge” or “negedge™ statements). The loop latency, 1s
equal to the longest cycle delay from the beginming of the
loop to a latest operation. The throughput of the pipelined
loop 1s not decreased by use of delayed signal assignments.

In general, the scheduler will schedule a circuit having the
CDFG of FIG. 24 as a pipelined circuit because the loop

latency 1s longer than the mitiation interval.

In summary, use ol delayed signal assignments allows
behavioral synthesis to infer circuits with pipelined loops
which have cycle level simulation behavior which matches
that of the source HDL. Pipelined loops may include loop
carry dependencies and/or I/O and/or memory accesses
which must be scheduled correctly. The use of a placeholder
node within a template 1s an efficient representation of such
scheduling constraints.

What 1s claimed 1s:

1. A method performed by a data processing system hav-
Ing a memory, comprising the steps of:

parsing a text description of a circuit, said text description

stored 1n the memory, said text description including a
loop with a delayed signal assignment having a delay
value:

translating said text description 1nto a digital circuit repre-
sentation 1n said memory, said digital circuit represen-
tation including a pipeline; and

setting a latency of said pipeline equal to said delay value.

2. The method of claim 1, wherein said loop further
includes N wait statements, where N 1s greater than zero,
said method further comprising the step of setting an 1nitia-
tion interval of said pipeline equal to N.

3. The method of claim 1, wherein said text description 1s
written 1n Verilog and said delayed signal assignment uses a
Verilog “#” operator.

4. The method of claim [3] 2, wherein said wait state-
ments [use] transition on Verilog “@posedge” statements.

5. The method of claim [3] 2, wherein said wait state-
ments [use] transition on Verilog “(@negedge” statements.

6. The method of claim of claim [1] 2, wherein said text
description 1s written 1n VHDL, said delayed signal assign-
ment uses a VHDL “after” clause, and said wait statements
use VHDL “wait” statements.

7. A method, performed by a data processing system
having, a memory, of building a digital circuit representation
including a pipeline 1n the memory from a textual descrip-
tion of a loop, comprising the steps of:
identifying a loop carry dependency in said loop;
identifying a producer operation of said loop carry depen-

dency;

10

15

20

25

30

35

40

45

50

55

60

65

18

identifving a consumer operation of said loop carry
dependency;

determining a number, n, of cycles within which said pro-
duce operation must be scheduled after said consumer
operation;

instantiating a placeholder node 1n said memory;

node-locking said placeholder node so that it must be
scheduled n cycles after said consumer operation; and

constraining said producer operation to be scheduled
betore said placeholder node.

8. The method of claim 7, wherein the step of node-

locking said placeholder node further comprises the step of

creating a template structure in said memory which includes

said placeholder node and said consumer operation.
9. The method of claim 8,

wherein said producer operation 1s mcluded 1n a second
template structure in said memory, and

wherein the step of constraining said producer operation
further comprises the step of constraining said second
template structure to be scheduled before said template
structure.

10. The method of claim 7, wherein n 1s equal to an 1nitia-
tion 1nterval of said pipeline multiplied by a number of 1tera-
tions of said loop which execute before data produced by
said producer operation 1s consumed by said consumer
operation.

11. A method, performed by a data processing system
having a memory, of building a digital circuit representation
in said memory, said digital circuit representation including
a pipeline dertved from a textual description of a loop, said
method comprising the steps of:

1dentifying an access dependency of said loop;

identifying a first access operation of said access depen-
dency;

identifying a second access operation of said access

dependency;

determining a number, n, of cycles within which said sec-
ond access operation must be scheduled after said first
access operation;

instantiating a placeholder node 1n said memory;

node-locking said placeholder node so that it must be
scheduled n cycles after said first access operation; and

constraining a scheduling order of said second access

operation and said placeholder node.
12. The method of claim 11,

wherein said first access operation is chosen from [the] a
group ol access operations including a memory read, a
memory write, a signal write and a port write,

said second access operation 1s chosen from the group of
access operations including a memory read, a memory
write, a signal read, a signal write, a port read and a port
write, and

the step of constraining said scheduling order of said sec-
ond access operation and said placeholder node turther
includes the step of forcing said second access opera-

tion to be scheduled before said placeholder node.
13. The method of claim 11,

wherein said first access operation is chosen from [the] a
group ol access operations including a memory read, a
memory write, a signal read, a signal write, a port read

and a port write,

said second access operation 1s chosen from the group of
access operations mcluding a memory read, a memory
write, a signal write and a port write, and



US RE40,925 E

19

the step of constraiming said scheduling order of said sec-
ond access operation and said placeholder node further
includes the step of forcing said second access opera-

tion to be scheduled before said placeholder node.
14. The method of claim 11,

wherein said first access operation is chosen from [the] a
group ol access operations including a signal read and a
port read,

said second access operation 1s chosen from the group of
access operations mncluding a signal read and a port
read, and

the step of constraining said scheduling order of said sec-
ond access operation and said placeholder node further
includes the step of forcing said second access opera-
tion to be scheduled simultaneous with, or betore said
placeholder node.

15. The method of claim 11, wherein the step of constrain-
ing said scheduling order of said second access operation
and said placeholder node further includes the step of forc-
ing said second access operation to be scheduled before said
placeholder node.

16. The method of claim 11, wherein the step of node-
locking said placeholder node turther includes the step of
creating a template which includes said placeholder node
and said first access operation.

17. The method of claim 11, wherein n 1s equal to an
initiation nterval of said pipeline multiplied by a number of
iterations of said loop which execute between said first
access operation and said second access operation.

18. A system for building, 1n a memory, a digital circuit
representation which implements the behavior of a text
description 1n said memory, said system having a processor
coupled to a memory unit wherein said processor 1s pro-
grammed to perform logic processing, said system compris-
ng:

parsing logic for parsing said text description into a parsed

text description, said text description including a loop
with a delayed signal assignment having a delay value;

translating logic for translating said parsed text descrip-
tion 1nto said digital circuit representation, said digital
circuit including a pipeline; and

latency setting logic for setting a latency value of said

pipeline to be said delay value of said delayed signal
assignment.

19. A system as described in claim 18, wherein said pipe-
line implements said loop.

20. A system as described in claim 19, wherein said loop
turther includes a number, n, of wait statements, said system
turther comprising initiation interval setting logic for setting
an 1nitiation interval of said pipeline to be equal to n.

21. A computer program product comprising:

a computer usable medium having computer readable
code embodied therein for building a digital circuit rep-
resentation from a text description of a digital circuit,
the computer program product comprising:

computer readable program code devices configured to
cause a computer to elffect parsing said text description,
said text description including a loop with a delayed
signal assignment having a delay value;

computer readable program code devices configured to
cause a computer to effect translating said text descrip-
tion 1nto said digital circuit representation including a
pipeline; and

computer readable program code devices configured to
cause a computer to effect setting a latency of said pipe-
line equal to said delay value.

20

22. The computer program product of claam 1 wherein
said loop further includes N wait statements, where N 1s
greater than zero, said computer program product further
comprising computer readable program code devices config-

5 ured to cause a computer to effect setting an 1nitiation nter-

val of said pipeline equal to N.

23. The method of claim 1, wherein said loop further
includes N clock statements, wherve N is greater than zero,
said method further comprising the step of setting an initia-

10 tion interval of said pipeline equal to N.

24. A system as described in claim 18, wherein said loop
further includes a number, n, of clock statements, said sys-
tem further comprising initiation interval setting logic for
setting an initiation interval of said pipeline to be equal to n.

25. The computer program product of claim 21 wherein
said loop further includes N clock statements, where N is
greater than zevo, said computer program product further
comprising computer readable program code devices con-
figured to cause a computer to effect setting an initiation
20 interval of said pipeline equal to N,

26. A method performed by a data processing system hav-
ing a memory, comprising the steps of.

15

parsing a text description of a circuit, said text description
stored in the memory, said text description including a
loop with N wait statements, wheve N is greater than
zero;

25

translating said text description into a digital civcuit vep-
vesentation in said memory, said digital circuit repre-

sentation including a pipeline; and

>0 setting an initiation interval of said pipeline equal to N.

27. The method of claim 26, wherein the wait statements
are VHDIL wait statements.

28. The method of claim 26, wherein the wait statements
transition on Verilog HDL (@Wposedge statements.

29. The method of claim 26, whervein the wait statements
transition on Verilog HDL (@Wnegedge statements.

30. A system for building, in a memory, a digital circuit
representation which implements the behavior of a text
description in said memory, said system having a processor
coupled to a memory unit whervein said processor is pro-
grammed to perform logic processing, said system compris-
Ing:

parsing logic for parsing said text description into a

parsed text description, said text description including
a loop with N wait statements, where N is greater than
zero;

35

40

45

translating logic for translating said parsed text descrip-
tion into said digital civcuit vepresentation, said digital
50 circuit including a pipeline; and
initiation interval setting logic for setting an initiation
interval of said pipeline equal to N.

31. The system of claim 30, wherein the wait statements
are VHDIL wait statements.

32. The system of claim 30, wherein the wait statements
transition on Verilog HDL (@Wposedge statements.

33. The system of claim 30, wherein the wait statements
transition on Verilog HDL (@Wnegedge statements.

34. A computer program product comprising a compuiter
usable medium having computer readable code embodied
therein for building a digital circuit representation from a
text description of a digital circuit, the computer program

product comprising:

55

60

computer readable program code devices configured to
cause a computer to effect parsing said text description,
said text description including a loop with N wait
statements, where N is greater than zero;

65



US RE40,925 E

21

comptuter readable program code devices configured to
cause a computer to effect translating said text descrip-
tion into said digital circuit vepresentation including a
pipeline; and
comptiter readable program code devices configured to
cause a compuiter to effect setting an initiation interval
of said pipeline equal to N.
35. The method of claim 34, wherein the wait statements
are VHDL wait statements.
36. The method of claim 34, wherein the wait statements
transition on Verilog HDL (@Wposedge statements.
37. The method of claim 34, wherein the wait statements
transition on Verilog HDL (@Wnegedge statements.
38. A method performed by a data processing system hav-
ing a memory, comprising the steps of.
parsing a text description of a circuit, said text description
stored in the memory, said text description including a

loop with N clock statements, wheve N is greater than
zero;

translating said text description into a digital circuit rep-
resentation in said memory, said digital cirvcuit repre-
sentation including a pipeline; and
setting an initiation interval of said pipeline equal to N.
39. A system for building, in a memory, a digital circuit
representation which implements the behavior of a text
description in said memory, said system having a processor
coupled to a memory unit whervein said processor is pro-
grammed to perform logic processing, said system compris-

Ing:

10

22

parsing logic for parsing said text description into a
parsed text description, said text description including
a loop with N clock statements, wheve N is greater than
zero;

translating logic for translating said parsed text descrip-
tion into said digital civcuit vepresentation, said digital
circuit including a pipeline; and
initiation interval setting logic for setting an initiation
interval of said pipeline equal to N.
40. A computer program product comprising a compuiter
usable medium having computer readable code embodied

therein for building a digital circuit representation from a
text description of a digital circuit, the computer program

15 product comprising:

20

25

comptuter rveadable program code devices configured to
cause a computer to effect parsing said text description,
said text description including a loop with N clock
statements, where N is greater than zero,

computer readable program code devices configured to
cause a computer to effect translating said text descrip-
tion into said digital circuit vepresentation including a
pipeline; and

comptuter rveadable program code devices configured to

cause a comptiter to effect setting an initiation interval
of said pipeline equal to N.



	Front Page
	Drawings
	Specification
	Claims

