USO0ORE40877E

(19) United States
a2 Relssued Patent (10) Patent Number: US RE40.877 E
Singhal et al. 45) Date of Reissued Patent: Aug. 18, 2009
(54) METHOD OF COMMUNICATING DATA IN 6,633,958 B1 * 10/2003 Passint etal. 711/141
AN INTERCONNECT SYSTEM 6,973,484 B1 * 12/2005 Singhal etal. 709/216
2001/0044883 Al * 11/2001 Abeetal. 711/150
(75) Inventors: Ashok Singhal, Redwood City, CA 2004/0015657 Al * 1/2004 Humlicek et al. 711/114

(US); David J. Broniarczyk, Mountain OTHER PUBLICATIONS

View, CA (US); George R. Cameron,
Capitola, CA (US); Jeff A. Price,
Pleasanton, CA (US)

(73) Assignee: 3PAR, Inc., Fremont, CA (US)

(21) Appl. No.: 12/171,191

(22) Filed: Jul. 10, 2008

Related U.S. Patent Documents

Reissue of:
(64) Patent No.: 6,973,484
Issued: Dec. 6, 2005
Appl. No.: 09/751,994
Filed: Dec. 29, 2000
(51) Int.ClL
GO6IF 15/167 (2006.01)
(52) US.CL ..., 709/216;711/141;°711/150;
711/113;714/6
(58) Field of Classification Search 709/216;

711/141, 150, 113; 714/6
See application file for complete search history.

(56) References Cited
U.S. PATENT DOCUMENTS
6,353,898 B1 * 3/2002 Wipfeletal. 714/48
6,374,331 Bl * 4/2002 Janakiraman et al. 711/141
6,415,364 B1 * 7/2002 Baumanetal. 711/155
6,513,142 B1 * 1/2003 Noya ...cccoovevviiinininnnnn. 714/803

=
l

Provide new deta for writing
into a line of clusier memory at

a local nede

l

Read out the existing data from

the line of cluster memaory

l

Merge the new data with the
existing data

l

Write merged data back into
line of cluster memaory

|

Transfer merged data over
communication link ko remote
node

Cardoza et al., “Design of the TruCluster Multicomputer
System for the Digital UNIX Environment™, Digital Techni-
cal Journal, vol. 8, No. 1, pp. 5-17 (1996).*

EMC Corporation, “Symmetrix 3000 and 35000 ICDA
Description Guide”, EMC?, pp. 1-48 (1997).*

Network Appliance, “Clustered Failover Solution: Protect-
ing Your Environment”, NetApp Filers, pp. 1-11, Feb. 11,
2000.*

* cited by examiner

Primary Examiner—Jungwon Chang
(74) Attorney, Agent, or Firm—Patent Law Group LLP;
David C. Hsia

(57) ABSTRACT

A method 1s provided for communicating data 1n an inter-
connect system comprising a plurality of nodes. In one
aspect, the method includes: 1ssuing a command packet from
a first node, the command packet comprising a respective
header quadword and at least one respective data quadword
for conveying a command to a second node, wherein the
command 1s selected from a group comprising a direct
memory access (DMA) command, an administrative write
command, a memory copy write command, and a built 1n
self test (BIST) command; receiving the command packet at
the second node; 1ssuing an acknowledgement packet from
the second node, the acknowledgement packet comprising a
respective header quadword for conveying an acknowledge-
ment that the command packet has been recerved at the sec-
ond node.

4 Claims, 4 Drawing Sheets

100

T06

106

110
II,p--.n‘

|

Write merged data into hine of
cluster memory at remote node

112
-

l
<

U.S. Patent Aug. 18, 2009 Sheet 1 of 4 US RE40.877 E

US RE40,877 E

Sheet 2 of 4

Aug. 18, 2009

U.S. Patent

NOPIA
INOAIO
inQelieq

UINOIMd
UIPIA

Hilte
ujereq

¢ 9PON

PPA

8l

A UIOIM _
LT o
R B I Y
N S N e

Bl |

g u

INOPIA
InOAD
nQeleq

N

| SPON

US RE40,877 E

Sheet 3 of 4

Aug. 18, 2009

U.S. Patent

[eloo3 [L1oo3
[8:€9] BieQ

e AlO

_
|
_
_
_
_
_

(21003 ‘[91003
[ze: 2] ereq

¢ AlD

|
_
_
!
)

¢ ‘b4

(11023 '[s]loo3 |

_ (01003 ‘Wwioo3 |

(94:1€] Breq [0:4} ereq |

sk

L]

LA

0O

U.S. Patent Aug. 18, 2009 Sheet 4 of 4 US RE40.877 E

(s

il frallly —

Provide new data for writing | 102
into a line of cluster memory at
a local node

PR —

100

v e

| Read out the existing data from 104
the line of cluster memory |~

Merge the new data with the 106
existing data

Write merged data back into | 108
line of cluster memory

. 2
Transfer merged data over | 110
communication link to remote |~
| node

Write merged data into line of 112
cluster memory at remote node 1~

e e N

Fig. 4

End

US RE40,877 E

1

METHOD OF COMMUNICATING DATA IN
AN INTERCONNECT SYSTEM

Matter enclosed in heavy brackets [] appears in the
original patent but forms no part of this reissue specifica-
tion; matter printed in italics indicates the additions
made by reissue.

CROSS REFERENCE TO RELATED
APPLICATION

This application 1s related to the subject matter disclosed
in U.S. patent application Ser. No. 09/633,088, entitled
“Data Storage System,” filed on Aug. 4, 2000, now U.S. Pat.
No. 6,658,478, and U.S. patent application Ser. No. 09/751,
649, entitled “Communication Link Protocol Optimized for
Storage Architectures”, filed simultaneously herewith on
Dec. 29, 2000, both of which are assigned to the present
Assignee and are incorporated herein by reference.

TECHNICAL FIELD OF THE INVENTION

The present invention relates generally to the field of data
storage and, more particularly, to a method of communicat-
ing data in an 1nterconnect system.

BACKGROUND OF THE INVENTION

In the context ol computer systems, enterprise storage
architectures provide mass electronic storage of large
amounts of data and information. The frenetic pace of tech-
nological advances 1n computing and networking
infrastructure—combined with the rapid, large-scale socio-
logical changes in the way these technologies are used—has
driven the transformation of enterprise storage architectures
faster than perhaps any other aspect of computer systems.
This has resulted 1n various arrangements for storage archi-
tectures which attempt to meet the needs and requirements
of complex computer systems.

A number of these arrangements may utilize a technique
referred to as clustering. With clustering, access for reading/
writing data into and out of mass data storage (e.g., tape or
disk storage) i1s provided by a cluster of computers. Each
computer may be considered a “node.” The nodes are used to
improve performance 1n a storage architecture by performs-
ing various, mndependent tasks in parallel. Furthermore, the
nodes in the cluster provide redundancy. Specifically, 1n the

event that one node fails, another node may take over the
tasks of the failed node.

In a clustering techmque, the various nodes must commu-
nicate with each other to support the functionality described
above. This communication between nodes 1s provided by
cluster mterconnects. Previously developed cluster intercon-
nects include standard network connections (e.g., Ethernet),
storage interconnections (e.g., Fibre Channel), and special-
1zed network connections (e.g., SERVER-NET from
Tandem/Compaq and MEMORY CHANNEL from Digital
Equipment Corporation/Compaq). Such previously devel-
oped cluster interconnects, and the associated protocols, are
suitable for “general purpose” clusters.

However, for high-performance clusters, such as those
implemented with RAID (Redundant Array of Inexpensive/
Independent Disks) controllers, the previously developed
cluster interconnects and associated protocols are inad-
equate or otherwise problematic. For example, these previ-
ously developed cluster interconnects and associated proto-
cols do not provide sufficient bandwidth to fully realize the
potential of high-performance clusters. Furthermore, the

10

15

20

25

30

35

40

45

50

55

60

65

2

previously developed cluster interconnects and associated
protocols require a significant software overhead, which
reduces the processing power otherwise available for
memory storage access.

SUMMARY OF THE INVENTION

In one embodiment, the present invention provides a
method of communication using an associated protocol
which optimizes or improves the performance of a special-
1zed storage system architecture with a cluster configuration.

According to an embodiment of the present invention, a
method 1s provided for communicating data in an intercon-
nect system comprising a plurality of nodes. The method
includes: 1ssuing a command packet from a first node, the
command packet comprising a respective header quadword
and at least one respective data quadword for conveying a
command to a second node, wherein the command 1s
selected from a group comprising a direct memory access
(DMA) command, an administrative write command, a
memory copy write command, and a built 1n self test (BIST)
command; recerving the command packet at the second
node; 1ssuing an acknowledgement packet from the second
node, the acknowledgement packet comprising a respective
header quadword for conveying an acknowledgement that
the command packet has been received at the second node.

According to another embodiment of the present
invention, a method 1s provided for communicating data 1n
an interconnect system which comprises a plurality of
nodes. Each node has a respective memory comprising a
plurality of lines, each line being the same predetermined
size. The method includes: providing new data for writing
into a portion of a particular line of memory located at a
local node; reading out existing data from the particular line
of memory located at the local node; merging the new data
with the existing data; writing the merged data mto the par-
ticular line of memory at the local node; and transtferring the
merged data over a communication link to a remote node for
writing 1nto memory located at the remote node.

According to vet another embodiment of the present
invention, a method 1s provided for communicating data 1n
an 1interconnect system comprising a plurality of nodes, each
node having a respective memory. The method includes: cal-
culating the parity of a local block at a local node; and per-
forming a direct memory access (DMA) operation to write
the calculated parity to the memory of a remote node, with-

out previously writing the calculated parity to the memory of
the local node.

Other aspects and advantages of the present invention will
become apparent from the following descriptions and
accompanying drawings.

BRIEF DESCRIPTION OF THE DRAWINGS

For a more complete understanding of the present inven-
tion and for further features and advantages, reference 1s
now made to the following description taken 1n conjunction
with the accompanying drawings, 1n which:

FIG. 1 1llustrates an interconnect system within which a
communication link protocol and associated methods,
according to embodiments of the present invention, may be
utilized;

FIG. 2 illustrates an exemplary implementation for a com-
munication link between two nodes, according to an
embodiment of the present invention;

FIG. 3 illustrates an exemplary transfer of a quadword
over multiple clock cycles, according to an embodiment of
the present invention; and

US RE40,877 E

3

FIG. 4 1s a flowchart for an exemplary method for com-
municating data, according to an embodiment of the present
invention.

DETAILED DESCRIPTION OF THE PREFERRED
EMBODIMENTS

The preferred embodiments for the present invention and
their advantages are best understood by referring to FIGS. 1
through 4 of the drawings. Like numerals are used for like
and corresponding parts of the various drawings.
Environment for a Data Storage System

FI1G. 1 1llustrates an interconnect system 10 within which
a communication link protocol and associated methods,
according to embodiments of the present invention, may be
utilized. Interconnect system 10 may be incorporated into a
data storage system which provides mass storage for data
and information. Such a data storage system 1s described 1n
U.S. application Ser. No. 09/633,088, entitled “Data Storage
System,” filed on Aug. 4, 2000, now U.S. Pat. No. 6,638,478,
the entirety of which 1s incorporated by reference herein. In
general, interconnect system 10 functions to support com-
munication in the data storage system.

Interconnect system 10 may include a number of process-
ing nodes 14, which are separately labeled as 14a, 14b, 14c,
14d, 14e, 141, 14g, and 14h. Nodes 14 comprise hardware
and software for performing the functionality described
herein. Each node 14 generally functions as a point of
interface/access for one or more host devices (e.g., a server
cluster, a personal computer, a mainirame computer, a
printer, a modem, a router, etc.) and storage devices (e.g.,
tape storage or disk storage). For this purpose, in one
embodiment, each node 14 may include one or more periph-
eral component interconnect (PCI) slots, each of which sup-
ports a respective connection 16. For clarity, only one con-
nection 16 1s labeled 1n FIG. 1. Each connection 16 can
connect a host device or a storage device. Connections 16
can be small computer system interface (SCSI), fibre chan-
nel (FC), fibre channel arbitrated loop (FCAL), Ethernet,
Infiniband, or any other suitable connection.

Each node 14 can be implemented as a system board on
which 1s provided suitable central processing unit (CPU)
devices, memory devices, and application specific integrated
circuit (ASIC) devices for providing the functionality
described herein. This system board can be connected on a
backplane connector which supports communication paths
with other nodes.

Each node 14 may include 1ts own separate cluster
memory 18, which are separately labeled as 18a, 18b, 18c,
18d, 18¢, 181, 18g, and 18h. Each cluster memory 18 butfers
the data and information which 1s transferred through the
respective node 14. Fach cluster memory 18 can also serve
to bufler the data/information transferred through one or
more other nodes 14. Thus, taken together, cluster memory
18 1n the nodes 14 1s used as a cache for reads and writes.
Cluster memory 18 can be implemented as any suitable
cache memory, for example, synchronous dynamic random
access memory (SDRAM).

In one embodiment, each cluster memory 18 may be pro-
grammed or divided into multiple regions. Each region may
comprise one or more lines ol memory. These lines of
memory can each be of the same predetermined size. In one
embodiment, each line can comprise or contain sixty-four
bytes. Each line of memory may hold a predetermined num-
ber ol quadwords (described below). In one embodiment,
cach access of memory occurs over multiple cycles to
retrieve a line of data. Fach region can be associated with
one or more regions at respective remote nodes 14. Each

10

15

20

25

30

35

40

45

50

55

60

65

4

node 14 may be configured so that the writing of data into a
particular region of cluster memory 18 causes the same data,
along with the rest of the line containing the data, to be sent
to a remote node, where the line 1s written to the correspond-
ing region ol the remote node’s cluster memory. In one
implementation, a separate “broadcast” region may be pro-
vided 1n each cluster memory 18. Data 1n each such broad-
cast region 1s copied to all other nodes. However, data 1n
other regions of cluster memory 18 may be copied to exactly
one other node (not multiple nodes). Accordingly, the data 1s
“mirrored” at the cluster memories 18 of remote nodes 14.

Communication links 12 (only one of which 1s labeled for
clanity) convey data/information between nodes 14, thereby
connecting nodes 14 together. As shown, communication
links 12 connect any given node 14 with every other node 14
ol mterconnect system 10. That 1s, for any given two nodes
14, a separate communication link 12 1s provided. As such
communication links 12 may provide a fully-connected
crossbar between all nodes 14 of interconnect system 10.
Control of data/information transfers over each communica-
tion link 12 1s shared between the two respective nodes 14.

Each communication link 12 may be implemented as a
pair ol high-speed, uni-directional links (one in each
direction) having high bandwidth to provide rapid transter of
data and information between nodes 14. In one embodiment,
cach communication link 12 can operate at 133 MHz 1n each
direction with data sampled on both edges of the clock,
thereby ellectively operating at 266 MHz. Each link can be
two-bytes wide, for a total bandwidth of 1,064 MB/s per
link. In one embodiment, transfers of data/information over
communication links 12 are checked by an error-correcting
code (ECC) that can detect a single bit error in a quadword
(described herein) as well as any line error on communica-
tion links 12.

The communication link protocol and associated
methods, according to embodiments ol the present
invention, optimize the communication of data and informa-
tion within interconnect system 10, as described herein. This
communication link protocol may support a variety of com-
munication between nodes 14 via communication links 12.
This may include communication for a direct memory
access (DMA) engine write, a memory copy write, an
administrative write, and a built 1n self test (BIST).

In a communication for DMA engine write, a DMA
engine on a local node 14 may cause a block of data to be
written to the cluster memory at a remote node 14. In one
embodiment, the DMA engine computes a function (e.g.,
“exclustve OR” (XOR) or parity) vielding a result which
identifies a particular data block. The DMA engine then
writes the data block over the appropriate communication
link 12 to the cluster memory 18 of the desired remote node
14. In one embodiment, a pointer in the remote node 14 may
be incremented with the DMA engine write so that the data
may be treated as 1f entered 1n a queue. The local and/or the
remote nodes 14 can be automatically interrupted after the
operation for a DMA engine write 1s performed.

In one embodiment, for a DMA engine write, rather than
copying data from a local memory location to a remote
memory location, the data that 1s written to the remote node
14 can be computed, for example, by computing parity over
multiple blocks of data on the local node 14. This can elimi-
nate one entire operation in some cases. That 1s, 1f the same
function was to be performed 1 previously developed
systems, parity of the local blocks must first be calculated
and then saved 1n local memory. Next, the computed parity
from local memory 1s transierred (as a DMA operation) to
the remote node as a separate operation. With the communi-

US RE40,877 E

S

cation for DMA engine write (in accordance with an
embodiment of the present invention, parity of the local
blocks can be calculated (or computed) and transierred (as a
DMA operation) to the remote node, thus saving an extra
write operation to memory and an extra read operation from
memory.

In a communication for a memory copy write, when data
(e.g., a two-byte word) 1s written mnto a region ol cluster
memory 18 at a local node 14, that data alone 1s not sent to a
remote node for mirroring. Instead, the existing data of an
entire line (e.g., a memory line of sixty-four bytes) 1s read
from the cluster memory, the new data for the word 1is
merged 1nto the existing data, and the merged data 1s written
back to the memory region and also sent over a communica-
tion path 12 to the remote node 14. This 1s described 1n more
detail below.

In a communication for an administrative write, a local
node 14 writes data to registers on a remote node 14 for
administrative purposes. Administrative writes are used for
quick, low-overhead messages that do not require a lot of
data. For example, an administrative write may be used to
handle flow control of messages sent by the normal DMA
engine (to determine how much space 1s available at the
other end). As another example, an administrative write may
be used to signal a remote node to perform some action for
the purpose of debugging. The remote node 14 can be inter-
rupted as well.

In a communication for a built 1n self test (BIST), a local
node 14 may test the functionality of a remote node 14 over a
communication link 12. Data and information may be com-
municated between the nodes to maintain or update the sta-
tus of such functionality. This may occur automatically at
regular intervals. In one embodiment, the BIST communica-
tion tests the functionality of the hardware of the target
remote node 14, as described below.

For each type of communication, a separate inter-node
command may be provided. Thus, there may be commands
for DMA engine write, a memory copy write, an administra-
tive write, and a built 1n self test (BIST). In general, each of
these commands functions to imitiate the associated commu-
nication between nodes 14. Other commands may be pro-
vides as well. One such command can be an 1dle command,
which functions to place the communication link 12 1n an
idle state.

Commands are 1ssued from one node 14 to another node
14. For each command, an acknowledgement may be issued
in return by the node which recerves the command. The node
14 which sends the command may be referred to as the
“master,” and the node 14 that responds with the acknowl-
edgement may be referred to as the “slave.” A slave node 14
1s not required to send acknowledgements in the same order
as the corresponding commands. That 1s, acknowledgements
for a plurality of commands of the same or different type
may arrive 1n a different order than the corresponding com-
mands.

In a link protocol of the present invention, data and con-
trol information 1s transferred over individual communica-
tion links 12 1n the form of packets. There can be two kinds
of packets: command packets and acknowledgement pack-
ets. A command packet 1s sent from a master node 14 to a
slave node 14 to convey a particular command (e.g., DMA
engine write, memory copy write, administrative write, or
built 1 self test (BIST)). An acknowledgment packet 1s sent
from a slave node 14 to a master node 14 to convey an
acknowledgement that a particular command was received.
In one embodiment, all packets of a particular type are a
fixed size. For example, all command packets may have a

10

15

20

25

30

35

40

45

50

55

60

65

6

header (comprising a particular number of bits) and the same
number of bits of information or data. All acknowledgement
packets may have a header (comprising a particular number
of bits) and no bits of data.

Command packets and acknowledgement packets may
carry information for one or more flags which are used dur-
ing communication for respective commands and acknowl-
edgements. In general, these flags can support various fea-
tures. For example, for a DMA engine write, command flags
can support a counter at a remote node 14. This counter can
implement a queue at the remote node 14. The queue func-
tions to keep track of commands that are received at the
remote node 14 so that such commands can be handled
according to the order 1n which they are received. One com-
mand flag can be used to increment the counter, and another
command flag can be used to reset the counter. As another
example, for a memory copy write, a command flag can be
used to indicate that data being written 1nto cluster memory
18 at one node 14 1s to be broadcast to all other nodes 14.
Hardware and/or software at each node 14 interprets these
flags to accomplish the desired operations. Acknowledge-
ment tlags may carry information about the status of a com-
munication link 12 or a remote node 14. An acknowledge-
ment flag can be used to indicate, for example, that a
correctable/uncorrectable ECC error has occurred, that a
protocol error has occurred, that a BIST error has occurred,
that a protection violation has occurred, or that there 1s an
overflow of data/information.

According to the link protocol and associated methods, all
communication over links 12 occurs using pairs of packets.
Each such pair of packets includes a command packet fol-
lowed by an acknowledgment packet. A command packet 1s
considered to be “outstanding” 1f the master node 14 has not
received the corresponding acknowledgement packet from
the slave node 14. The number of outstanding packets on a
link depends on the command type. The number of outstand-
ing packets which may be allowed on a communication link
12 for each type of command 1s given in Table 1 below.

TABL

L1

1

Outstanding Packets

Command Type Number of Outstanding Packets

Bult In Self Test (BIST)
Administrative Write
Memory Copy Write

DMA Engine Write

SN LN N

Each packet may comprise a header, data, and other infor-
mation. Within each packet, bits of data/information may be
grouped 1 umts of a predetermined size. Each umt of a
predetermined size can be referred to as a “quadword.” In
one embodiment, each quadword may comprise sixty-four
bits of data, plus eight bits of error-correcting code (ECC).
The sixty-four bits of data can be readily checked with the
error correction provided by the eight ECC baits, as further
described herein. In one embodiment, each command packet
comprises one quadword for a header followed by either one
or eight quadwords for data. Each acknowledgment packet
may comprise one quadword for a header.

Each header for a command packet or an acknowledge-
ment packet comprises a variety of information and data for
coordinating or completing the desired communication. This
may include, for example, the address of a cluster memory
18 at which data should be written, an offset from a base
address of cluster memory 18, the type of packet (e.g., com-
mand or acknowledgement), the type of command (e.g.,

US RE40,877 E

7

DMA engine write, (BIST)), a tag which allows the associa-
tion between an acknowledgement and corresponding
command, and one or more flags for commands/
acknowledgements. An exemplary transier for information/

data of a packet header 1s described with reference to Tables
4 through 7 below.

With the link protocol and associated methods of the
present invention, the transter of data/information 1n units of
quadwords provides a technical advantage. Because quad-
words have the same predetermined size (e.g., sixty-four bits
of data, plus eight bits of ECC), the link protocol may handle
equal-sized packets for much of the communication between
nodes 14, and thus, there 1s no need to encode data sizes,
byte-enables, and other complexities associated with data/
information which 1s transferred in variable sizes. As such,
cach communication link 12 may provide a low latency
communication channel between nodes 14 without the pro-
tocol overhead of previously developed protocols, such as,
for example, transmission control protocol/internet protocol

(TCP/IP) or Fibre Channel protocol. The link protocol 1s
thus optimized for large block transfer operations, thereby
providing very efficient communication between nodes.

In one embodiment, for a DMA engine write, the data that
1s written to the remote node 14 can be computed (e.g.,
parity over multiple blocks of data 1s computed on the local
node 14), rather than merely copied from some local
memory location to a remote memory location. That 1s, the
parity of the local blocks 1s calculated and the computed
result 1s directly written to the memory (in a DMA
operation) to the remote node. This potentially saves one
extra write to memory and one extra read from memory, 1n
addition to requiring fewer steps to perform, thereby provid-
ing a technmical advantage.

The link protocol supports testing, from a local node 14,
of the functionality of both hardware and software at a
remote node 14. In one embodiment, this 1s accomplished
with two forms of communication: a link hardware test and a
link software test. The link hardware test, which can be
implemented as a built in self test (BIST), tests the hardware
at the remote node 14. The link software test, which can be
implemented as a link “watchdog,” tests the software at the
remote node 14. In an operation for a link BIST, a local node
14 1ssues a BIST communication, via communication link
12, to the hardware at a remote node 14. If such hardware
returns a suitable acknowledgement 1n response, the local
node 14 1s informed that the hardware of the remote node 14
1s Tunctioning properly. In an operation for a link watchdog,
soltware at a remote node 14 1s required to periodically write
or update a particularly flag bit, which may be transmitted
with each acknowledgement 1ssued by the remote node 14.
If this acknowledgement flag does not have a suitable
setting, then a local node 14 recerving the acknowledgment
will know that the software at the remote node 14 1s not
functioning properly.

Furthermore, 1f nodes 14 are implemented as system
boards coupled to a backplane connector, A backplane con-
nector differs from a general network connection in which
packets of data/information are generally expected to be lost
during “normal” operation, thus requiring a significant
amount of protocol complexity (e.g., retransmission and
complex error-handling procedures). In a backplane
connector, the probability of single-bit errors 1s very small,
thus allowing for utilization of an error correcting code
(ECC) which 1s relatively simple. This ECC can be similar to
that 1n utilized 1n memory systems. More serious errors are
not expected during “normal” operation of a backplane
connector, and thus, only need to be addressed generally 11 a
system has failed or 1s broken.

10

15

20

25

30

35

40

45

50

55

60

65

8

Communication Link

FIG. 2 1llustrates an exemplary implementation for a com-
munication link 12 between two nodes 14, according to an
embodiment of the present imnvention. Each node 14 may
send data/information out to and receirve data/information
from the other node 14. Each node 14 has 1ts own clock.
While these clocks are preferably the same, the clocks may
not be synchronous to each other and may have some drift
between them.

As depicted, commumication link 12 may include a pair of
uni-directional links 20. Each uni-directional link 20 sup-
ports communication in one direction between the two nodes
14. Each uni-directional link 20 supports a number of link
signals for communicating information and data from one
node to the other. For each uni-directional link 20, these link
signals include a data (Data) signal, a clock (Clk) signal, and
a valid (V1d) signal.

Because each link 20 1s uni-directional, each data signal
may be constitute a “DataOut” signal for the node 14 at
which the data signal originates and a “Dataln” signal for the
node 14 at which the signal 1s recetved. Likewise, each clock
signal may be constitute a “ClkOut” signal for the node 14 at
which the clock signal originates and a “ClkIn” signal for the
node 14 at which the signal 1s recerved. Similarly, each valid
signal may be constitute a “V1dOut” signal for the node 14 at
which the valid signal originates and a “V1dIn” signal for the
node 14 at which the signal 1s recerved.

-

T'he data signal 1s used for communicating data between
nodes 14. Each uni-directional link 20 provides an e1ghteen-
bit wide data path for the data signal. In one embodiment,
two bytes (sixteen bits) may be provided for data, and two
bits may be provided for an error-correcting code (ECC).
Thus, to transier a quadword comprising sixty-four bits of
data and eight bits of ECC between nodes 14, four clock
cycles are required, as shown and described below 1n more
detail with reference to FIG. 3.

The clock signal 1s used to carry the clock of the transmit-
ting node 14 to a recewving node 14. This 1s done because
cach uni-directional link 20 may be source-synchronous.
That 1s, data 1s sampled at the recerving node 14 using the
clock of the transmitting node 14, and thereafter,
re-synchronized with the clock of the recerving node.
Because 1t 1s possible for the clock of a transmitting node to
be faster than the clock of a receiving node, in one
embodiment, padding cycles may be occasionally inserted
into the transierred data, thus allowing the receiving node to
catch up. Each uni-directional link 20 may provide a two-bit
wide data path for the clock signal.

-

T'he valid signal 1s used to distinguish between the differ-
ent parts (e.g., header, data, or padding) 1n a command or
acknowledgement packet. Parity may be encoded i the
valid signal. Each uni-directional link 20 may provide a one-
bit wide data path for the valid signal. The valid signal may
use both edges of the clock signal (for each clock cycle) to
convey meaning. Exemplary values for the valid signal, as
used to convey meaning, are provided in Table 2 below.

TABL.

L1l

2

Cvcle Identification

VId (rising, falling) Cycle Meaning

(0, 0) Padding cycle, dropped by recerving
node.

First cycle of packet, loaded by
recelving node.

(0, 1)

US RE40,877 E

9

TABLE 2-continued

Cycle Identification

VId (rising, falling)
(1, 0)

(1, 1)

Cycle Meaning

Valid cycle, with running INV
parity = 0, loaded by recerving node.
Valid cycle, with running INV
parity = 1, loaded by recerving node.

An exemplary signal protocol for the link signals (1.e.,
data signal, clock signal, and valid signal) 1s provided in
Table 3 below.

TABL

(L]

3

Signal Protocol

Name Width Direction Description

Dataln 18 Input Data + ECC in from communication
link.

ClkIn 2 Input Differential clock in from
communication link.

VidIn 1 Input Valid signal for incoming data
used for re-synchronization with
clock of receiving node.

Invin 1 Input If ““1”°, the Dataln should be
inverted to obtain the actual
value of data. Data may be
inverted to minimize the number of
signals that are switching in any
given cycle.

PowerOK 2 Input Indicates that the other end of
the communication link has power.

DataOut 18 Output Data + ECC to communication link.

ClkOut 2 Output Differential clock out to
communication link.

VIdOut 1 Output Valid signal for outgoing data.

InvOut 1 Output Indicates whether DataOut is

inverted.

With this signal protocol, each edge of the clock transters
eighteen bits of mnformation. Sixteen of these bits can be for
data, and two bits can be for error-correcting code (ECC).
Four clock edges can transier a total of sixty-four bits of data
and eight ECC bats.

The ECC can be a correction scheme using single error
correct- double error detect- single four-bit nibble error
detect (SEC-DED-S4ED). A nibble 1s four consecutive bits.
Eighteen nibbles may be provided 1n a 72-bit quantity cov-
ered by the SEC-DED-S4ED scheme. For each such 72-bit
quantity, the SEC-DED-S4ED scheme can correct any
single bit error, detect any double-bit error, and detect any
nibble error. That 1s, the scheme can detect any error within a
nibble. Since a nibble 1s four bits, the scheme can detect all
1-bit, 2-bit, 3-bit and 4-bit errors within a single nibble. An
advantage of the SEC-DED-S4ED scheme in memory sys-
tems 1s that 1t can be used to detect entire 4-bit wide DRAM
part failures. In one implementation, four bits of data trans-
terred on four consecutive clock edges over any given data
link are treated as a “nibble.” The SEC-DED-S4ED scheme
1s applied to detect any failure of a data link.

Transter of Quadword Over Multiple Clock Cycles

FIG. 3 illustrates an exemplary transfer of a quadword
over multiple clock cycles, according to an embodiment of
the present mvention. The quadword comprises sixty-four
bits of data (Data| 63:0]) and eight bits of error-correcting,
code (ECC[7:0]). As described herein, all transfers of data
and information over communication links 12 are in units of
quadwords and are covered by error-correcting code (ECC).

As depicted, these bits of data and error-correcting code
are transierred in equal-sized blocks over four clock cycles.

10

15

20

25

30

35

40

45

50

55

60

65

10

The bits of data may be sent in order of increasing address,
whereas the bits of error-correcting code may alternate.

Thus, at the edge of a first clock cycle (Clk 0), Datal 15:0],
ECC[4], and ECC| 0] are transmitted. At the edge of a second
clock cycle (Clk 1), Data|31:16], ECC| 5], and ECC|L] are
transmitted. At the edge of a third clock cycle (Clk 2), Data
[47:32], ECC| 6], and ECC|[2] are transmitted. At the edge of
a fourth clock cycle (Clk 3), Data| 63:48], ECC| 7], and ECC
|3] are transmitted. Because each edge of the clock transfers
cighteen bits of information (1.e., sixteen bits of data and two

bits of ECC), four clock edges transfer a total of sixty-four
bits of data and eight bits of ECC, which 1s a quadword.

Under the exemplary transier technique depicted 1n FIG.
3, a packet header for a command or acknowledgement
packet can be transferred over multiple clock cycles accord-

ing to Table 4 below.

TABLE 4
Packet Header
FEdge Bits Field Description
0 5:0 Resvd Reserved. Bits 1:0 should be zero.
0 15:6 ADDR|15:6:] TheADDR field is used for header
packets only and is reserved for
1 15:0 ADDR|[31:16] acknowledgement packets.
The ADDR field contains different data
depending on the type of command. For
2 5:0 ADDR]|37:32] DMA engine writes, the ADDR field

contains the address of the

destination location. For memory copy
writes, the ADDR field contains an
offset from the base address of the
sending node’s send range, which is
used as an offset from the base of the
recerving node’s receive range for the
respective communication link. For
administrative writes, the ADDR field

1s mmvalid and not used.

Reserved.

Identifies type of packet: 1 = Command
packet, O = acknowledgement packet.
Command type. See Table 5 for
encoding and command descriptions

A sequence tag that allows association
of an acknowledgement with a command.
Reserved.

Command Flags/Acknowledgement Flags.
The meaning of the FLAG field differs
depending on whether the packet is
command packet or a acknowledgement
packet. See Table 6 and Table 7.

2 15:6 Resvd
3 15 TYP

3 14:12 CMD
3 11:10 TAG

3 9:8 Resvd
3 7:0 FLAGS

Exemplary values for various fields of a packet header are

provided 1n Tables 5—7 below. Table 5 provides values for a
command (CMD) field of the packet header. Tables 6 and 7

provide values for a command flag (CMD FLAG) field and
an acknowledge flag (ACK FLAG) field of the packet

header, respectively.

TABLE 5
Commands
CMD Command Description
000 Idle.
001 DMA engine write: 64 bytes (8 quadwords) of data.
010 Administrative write: 8 bytes (1 quadword) of data.
011 Memory copy write: 64 bytes (8 quadwords) of data.
100 BIST: 64 bytes (8 quadwords) of data.
101-111 Reserved.

US RE40,877 E

11

TABL.

L1l

6

Command Flags

CMD
FLAG Field Description
7 INTDST/ This command flag has different meanings for
BRCST different types of commands. For DMA engine
write command, this field functions as a flag to
interrupt the destination node (INTDST). This
flag will be set for the last link DMA write packet
for a XCB that has INTDST set. Note that the
Admuinistrative write command does not set
INTDST field since the command itself encodes
this.
For memory copy write command, this field
functions as a flag to broadcast (BRCST) and
write to a particular broadcast receive range at
the destination.
6:5 Reserved Reserved.
4 RSTCNT Reset the Remote Recerve Counter.

3:0 INCCNT Count (1n 64 byte units) to increment the Remote
Receive Counter. Used only for the DMA engine
write command; reserved for all other commands.

TABLE 7
Acknowledgement Flags
ACK
FLAG Field Description

7 ECCUERR ECC uncorrectable error.

6 ECCCERR ECC correctable error.

5 PROTERR Protocol error.

4 OVF Overflow.

3 PRCTVIOL Protection violation.

2 BTSTERR BIST error.

1 SOFTWD Software watchdog.

0 ADMNACK/ This acknowledgement flag has different

LNK__EN meanings for different types of commands.
For administrative writes, this field functions as
an administrative acknowledgement
(ADMNACK) for admin packets.
For BIST, this field functions as a LNK__EN
flag for BIST packets. The LNK__EN bitis 1
has a value of *“1” 1f the LNK__EN bitis 1
in a link configuration register.
Reserved for all other commands.
Memory Copy Write

FIG. 4 1s a flowchart for an exemplary method 100 for
communicating data, according to an embodiment of the
present mnvention. Method 100 may correspond to the opera-
tion within interconnect system 10 when there 1s a commu-
nication for a memory copy write.

Method 100 begins at step 102 where new data 1s provided
for writing into a particular line of cluster memory 18 at a
local node 14. As described herein, each cluster memory 18
may comprise a plurality of lines of memory of the same
predetermined size (e.g., sixty-four bytes). The new data
may be smaller than an entire line of memory, and thus, only
be desirably written 1nto a portion of the target line. Other
data may already exist or be stored within the target line.

At step 104, the existing data from the enfire line of
memory 1s read from cluster memory. At step 106, the new
data 1s merged with the existing data. That 1s, the new data
may replace some of existing data, but other existing data
remains intact. At step 108, the merged data (comprising
new data and portions of the previously existing data) 1s
written back into the particular line of cluster memory.

10

15

20

25

30

35

40

45

50

55

60

12

At step 110, the merged data 1s transferred from the local
node to a remote node via a communication link 12 using the
link protocol. In one embodiment, step 110 may be per-
formed 1n parallel with step 108. Communication 1s 1n the
form of quadwords, each of which can be of the same prede-
termined sized (e.g., sixty-four bits of data and eight bits of
ECC). In one embodiment, for the merged data, eight quad-
words can be used for transfer, with each quadword being
sent 1n a separate clock cycle.

At step 112, the merged data 1s written mnto a line of
cluster memory 18 at the remote node 14, thus mirroring the
new data at the remote node. Afterwards, method 100 ends.

Accordingly, embodiments of the present invention pro-
vide a communication link and associated link protocol
which are especially suitable for a specialized storage sys-
tem architecture with a cluster configuration. That 1s, the
communication link and associated protocol optimize and
improve the performance of the specialized storage system
architecture.

Although particular embodiments of the present invention
have been shown and described, 1t will be obvious to those
skilled 1n the art that changes or modifications may be made
without departing from the present invention in 1ts broader
aspects, and therefore, the appended claims are to encom-
pass within their scope all such changes and modifications
that fall within the true scope of the present invention.

What 1s claimed 1s:

1. A method for communicating data in a data storage
system, the data storage system comprising a plurality of
interconnected nodes, each node having a respective cache
memory comprising a plurality of cache lines, each cache
line having the same predetermined size, the method com-
prising:

providing new data for writing into a portion of a particu-
lar cache line in a memory region of a cache memory
located at a local node, wherein data written to the
memory region are mirrored to at least another memory
region 1n at least another cache memory located at a
remote node;

reading out existing data from the particular cache line 1n
the memory region of the cache memory located at the
local node:

merging the new data with the existing data;

writing the merged data into the particular cache line 1n
the memory region of the cache memory at the local
node; and

transierring the merged data over a communication link to
the remote node for writing nto said another memory
region 1n said another cache memory located at the
remote node.

2. The method of claim 1, wherein said transferring com-
prises 1ssuing a memory copy write command over the com-
munication link.

3. The method of claim 1, wherein said transierring com-
prises 1ssuing a command packet from the local node to the
remote node over the communication link, the command
packet containing the merged data.

4. The method of claim 1, further comprising writing the
merged data into a corresponding cache line of said another
cache memory at the remote node.

	Front Page
	Drawings
	Specification
	Claims

