(19) United States

12y Reissued Patent
Krivoshein et al.

(10) Patent Number:
45) Date of Reissued Patent:

USOORE40817E

US RE40,817 E
Jun. 30, 2009

(54) PROCESS CONTROL SYSTEM INCLUDING
AUTOMATIC SENSING AND AUTOMATIC
CONFIGURATION OF DEVICES

(75) Inventors: Ken D. Krivoshein, Elgin, TX (US);
Dan D. Christensen, Austin, TX (US)

(73) Assignee: Fisher-Rosemount Systems, Inc.,
Austin, TX (US)
(21) Appl. No.: 10/037,019

(22) Filed: Nov. 9, 2001

Related U.S. Patent Documents
Reissue of:

(64) Patent No.: 5,980,078
Issued: Nov. 9, 1999
Appl. No.: 08/799,966
Filed: Feb. 14, 1997
(51) Imt. CL.
GO6N 5/00 (2006.01)
(52) US.CL e, 700/1; 706/45
(58) Field of Classification Search 700/1,

700/2, 4, 83;710/104, 105; 713/1
See application file for complete search history.

(56) References Cited

U.S. PATENT DOCUMENTS
4,302,820 A 11/1981 Strugeretal. 395/598

(Continued)

FOREIGN PATENT DOCUMENTS

DE 0522 590 1/1993 ...l 19/417
GB 2 208 553 4/1989 e, 19/18
WO WO 95/04314 2/1995 e, 19/42

J

OTHER PUBLICATIONS

Blackwell, The benefits won’t kick—in immediately
(Microsoit Windows 935 operating system’s multimedia ben-
efits), Computing Canada, v21, nl8, p. 36(2), Sep. 1995.
Baldasserini, Denmac delivers LAN stats (Denmac Systems
Inc’s TrenData 2.0), Computer Shopper, v13, n6, p.613(1),
Jun. 1995.

(Continued)

Primary Examiner—Wilbert L Starks, Ir.
(74) Attorney, Agent, or Firm—Marshall, Gerstein & Borun
LLP

(57) ABSTRACT

A digital control system with a predetermined configuration
automatically senses the connection to a network of a digital
device that 1s not included 1n the predetermined configura-
tion. The digital device 1s assigned temporary address infor-
mation and placed 1n a temporary state, called a standby
state, 1n which the digital device supplies information to the
digital control system allowing a user to access the digital
device including access of device mnformation and configu-
ration parameters. Using the device information and con-
figuration parameters, a user selectively commissions the
digital device by assigning a physical device tag, a device
address, and a device i1dentification, and installing a control
strategy to the digital device, thereby placing the digital
device 1n an operational state in communication with the
digital control system. In the standby state, a user interro-
gates to determine the type of device that 1s attached, deter-
mines the role of the device i the context of the digital
control system, assigns a physical device tag that assigns the
determined role to the device, and verifies connection of the
device to the network. Also 1n the standby state, the user
initiates other applications applied to the device, including
calibration of the device and configuring the device within
the overall control scheme of the digital control system.

22 Claims, 18 Drawing Sheets

DEVICE IN LIVE OEVICE IN LIVE QUERY DEVICE
LIST AT TEMP LIST AT STANDBY FOR DEVICE ID
ADDR 302 ﬂr&_ 326

I "QUERY FIELD READ REVISION CLEAR PHYSICAL

OEVICE STATE INFORMATION DEVICE TAG

__3134_ 316 328
ALLOCATE STANDBY DISPLAY DEVICE SEND ASSIGNED
ADDRESS FOR (IS STANDSY DEVICE TAG TO DEVICE
DEVICE 306 | 18 330
DEVICE ASSIGNlDEVICE SEND ASSIGNED
PREVIOUSLY TAG TO DEVICE ADDRESS TO
- 4

SET DEVICE TAG | | DEVICE TO | DEVICE N LIVE

10 DEVICE ID INITIALIZED LIST AT ASSIGNED
310 STATE 322 ADDR 334
— 1

SEND STANDBY DEVICE IN LIVE BIND DEVICE

ADDR TO FIELD LIST AT TEMP ID TO DEWICE

| DEVICE 312 | || __ADDR 324 336)

US RE40,817 E

Page 2
U.S. PATENT DOCUMENTS 5,768,119 A * 6/1998 Havekostetal. 700/4
5801942 A * 9/1998 Nixon et al. ...ovvevevernn.. 700/83
4,663,704 A 5/1987 Jonesetal. 364/188 5.828.851 A * 10/1998 Nixonetal.couvn...... 710/105
4,672,530 A 6/1987 Schuss ...oocvvvviiiniinnn.n.. 364/133 5,862,052 A * 1/1999 Nixonetal. ...coovvvrvvneenn. 713/1
4,689,786 A 8/1987 Sidhu etal. .oovvvevveenn, 370/255 5009368 A * 6/1999 Nixon et al. ..oovevvevvevnn.. 700/2
4916610 A 4/1990 Bapat ..ooeeveeeeeeerenen.. 395/708
5,006,992 A 4/1991 SKEIriK weveveveeeesoeevoenn, 706/58 OLTHER PUBLICATIONS
5,063,523 A 11/1991 Vrenjakoeov..... 395/200.53 PCT/US98/01573 International Search Report, dated Nov.
5.129.087 A 7/1992 WALl oo 395/704 25. 1998,
gﬂ 22 gzg i lgi igg; Eei‘t’emt“k etal. X ;2%1/ ?j S.N. Chau, et al., “A Multi-Mission Space Avionics Archi-
LIDIIL oniriiiieieistennnonans 29 1 . .

5307346 A 4/1994 FieldhOUSe ...o.ovovvo.. 37054 tecture,” Proc. 1996 IEEE Acrospace Applications Conler-
5311,562 A 5/1994 Palusamy etal. 76/215 once, vol. 1, pp. 165176, Feb. 1956,
5371.895 A 12/1994 BIiStOl wovoooooooon 395/705 John R. Gyorki, “PLC’s drive standard buses”, Machine
5432711 A 7/1995 Jackson et al. ...oooo...... 364/131 Designs, May 11, 1995, pp. 33-90.
5.442,639 A 8/1995 Crowderetal. 371/20.1 Moore Products Co., “Control System”, Power Apr. 1995,
5444.851 A /1995 WOESt weovvveeeeoeeroenenn. 709/222 +—p. 11 4, vol. 139, No. 4, Copyright 1995, McGraw—Hill,
5471,190 A 11/1995 Zimmermann 340/310.01 Inc.
5471461 A 11/1995 Engdahletal. 370/252 Moore Products Co., “apacs Control System”, Power Jun.
5475856 A 12/1995 KOZEE wevovvereeeeererrerennn, 712/20 1995, p. 81, vol. 139, No. 6, Copyright 1995 McGraw-Hill.
5481741 A 1/1996 McKaskle etal. 345/522 1.
S491791 A 20199 Glownyetal - 71426 RobertR. Lyons, “New Telemecanique Programmable Con
5493534 A 2/1996 MOK wrovrovoeoeeoornn, 365226 tollers Feature Multiple Programming —Languages”,
5.504,.902 A 4/1996 McGrathetal. ..o......... 395/707 lelemacanique, Arlington Heights, IL, Feb. 11, 1995.
5,513,095 A 4/1996 Pajonkcceceeen.... 364/131 Clifford J. Peshek et al., “Recent Developments and Future
5,519,706 A 5/1996 Bantzetal. 455/435 Trends 1n PLC Programmmg Languages and Programming
5,519.878 A 5/1996 Dolin, Jr.cc........ 395/200.5 Tools for Real-Time Control”, IEEE Cement Industry Tech-
5,524,269 A 6/1996 H.‘:lHllltOIl etal.ooenel . 710/9 nical Conference May 1993 Toronto Canada pp. 219-_23().
2,920,489 A 6/1996 Nilakantan ot al. 395/200.58 C. K. Dufter et al. “ngh—Level Control Language Custom-
5.530.643 A 6/1996 Hodorowski 364/191 ized Application Programs”, Power Technologies, Inc..
5549.137 A 8/1996 Lenzetal. woovvvevoeevnn, 137/486 FEE O tor Annleat b © Anr 1001
5,550,980 A 8/1996 Pascuccietal. 709/223 E Computer Applications in Power, pr. > PP-
5566320 A 10/1996 HUbEIt .v.ovovreveven 711147 19718 | |
5566346 A 10/1996 Andert etal. 364/146 H.J. Beestermoller et al., “An online programmable Multi-
5,576,946 A 11/1996 Benderetal. 364/146 ple—Loop Controller for Distributed Systems”, © 1994
5596723 A 1/1997 ROMONT wovevveeeernn.., 395/200.52 IEEE, pp. 15-20.
5,623,592 A 4/1997 Carlson et al. 345/348 Foundation Fieldbus, FF-001, Communications Technical
5,675,748 A 10/1997 ROSS cciviviniiiiiiiiininnnnn, 710/104 Specifications, © 1994—1996.
gﬂggiﬂggg’ i ig;{ igg; Ea[:ﬁ)er;on etal. ... 39;}?2; 23? Foundation Fieldbus, FF-002, Communications Technical
694, ollenberg : : B
5701411 A 12/1997 Tranetal. wovooovn... 3052008 peciications, © 1994-1996.
5.706,007 A 1/1998 Fragnitoocoeeme.... 341/155 * cited by examiner

U.S. Patent

=

Network
Neighborhaod

N

Recycle Bin

<

Shorteut to
Services

File Edit View Qbjects Applications Jools Help

My Computer Decommissioned Conlrollers D:D D D HER

Jun. 30, 2009 Sheet 1 of 18 US RE40.817 E

+ B
- Module [emplcttes 100
B e onauroton 10 J
Alarm Preferences
Ti Security

o Nomec Sets

Licences /.-104
8 Control Strotegies
a7 Unasained I O References

ik AREA

& ALARMMODO
-4 FIC-101

& LIC-549

‘ LOOP

B-& 7IC~205
. “‘?: MlXER TANKS

é i OPC-TEST 0/105
A Physical Netwdtk s
gle
s.ontrol Network

FRUFF ~—108
Operotor
Event Chronicle
AR CTLR48
B—4@& Assigned Madule
= |/0

CO2
CO3

£3
-
= ¢ 9OlA
~
7P,
-
0 Pm/\
- I.......J....._/.
Q3INOISSINNOD Aazaomz: v
- 6.1 S
: {£1'91'G1} .
m 807 AN
§1°21° 118
X 202
= 902
< Stri'otL!
E a1 trLLcLd
AGANVIS
1

14874

U.S. Patent

U.S. Patent Jun. 30, 2009 Sheet 3 of 18 US RE40.817 E

QEO

DEVICE IN LIVE DEVICE IN LIVE QUERY DEVICE
LIST AT TEMP LIST AT STANDBY FOR DEVICE ID
ADDR 302 ADOR 314 326
QUERY FIELD READ REVISION CLEAR PHYSICAL
DEVICE STATE INFORMATION DEVICE TAG

304 316 328
ALLOCATE STANDBY DISPLAY DEVICE SEND ASSIGNED

ADDRESS FOR S STANDBY DEVICE TAG TO DEVICE

DEVICE 306 318 330

DEVICE ASSIGN DEVICE SEND ASSIGNED
PREVIQUSLY TAG TO DEVICE ADDRESS T0
UNINITIALIZED? 390 DEVICE 332
308
SET DEVICE TAG DEVICE TO DEVICE IN LIVE
70 DEVICE ID INITIALIZED LIST AT ASSIGNED
310 STATE 322 ADDR 334
SEND STANDBY DEVICE IN LIVE BIND DEVICE
ADDR TO FIELD LUST AT TEMP ID TO DEVICE
DEVICE 312 ADDR 324 336

FIG. 3

U.S. Patent Jun. 30, 2009 Sheet 4 of 18 US RE40.817 E

iOO

DEVICE IN LIVE DEVICE IN LIVE QUERY DEVICE
LIST AT TEMP LIST AT STANDBY FOR DEVICE 1D
ADDR 402 ADDR 414 426
QUERY FIELD READ REVISION CLEAR PHYSICAL
DEVICE STAIL INFORMATION DEVICE TAG
404 416 428
ALLOCATE STANDBY DISPLAY DLVICE SEND ASSIGNED
ADDRESS FOR IS STANDBY DEVICE TAG TO DEVICE
DEVICE 406 418 430

PREVEI‘QCESY ASSIGN DEVICE SEND ASSIGNED
' UStl TAG TO PRE-CONFIG ADDRESS TO
N DEVICE 420 DEVICE 432
SET DEVICE TAG DEVICE 10 DEVICE IN LIVE

TO DEVICE IO INITIALIZED LIST AT ASSIGNED

410 STATE 422 ADDR 434

SEND STANDBY DEVICE IN LIVE BIND DEVICE
ADDR TO FIELD LIST AT TEMP ID TO DEVICE

DEVICE 412 ADDR 424 436

FIG. 4

U.S. Patent Jun. 30, 2009 Sheet 5 of 18 US RE40.817 E

Q?O

SELECT CLEAR PHYSICAL

DECOMMISSION DEVICE TAG
502 510
DEVICE TO UNBOUND DEVICE
INITIALIZED STATE DISPLAY STATUS
504 512

DEVICE IN LIVE DISPLAY OFFLINE
LIST AT TEMP DEVICE STATUS
ADDR 306 014

QUERY DEVICE FOR STORE
DEVICE TAG AND DECOMMISSION
DEVICE ID 508 STATUS 516

FIG. O

U.S. Patent Jun. 30, 2009 Sheet 6 of 18 US RE40.817 E

KGEO

DEVICE IN LIVt
LIST AT TEMP
ADDR 602

QUERY DEVICE FOR
DEVICE TAG AND
DEVICE ID 604

SEND ASSIGNED

ADDR TO DEVICE
606

DEVICE IN LIVE
LIST AT ASSIGNED
ADDR 608

FIG. 6

U.S. Patent Jun. 30, 2009 Sheet 7 of 18 US RE40.817 E

e

- DECOMMISSION
CURRENT DEVICE
702

COMMISSION
REPLACEMENT TO

UNBOUND DEVICE
704

-G,/

U.S. Patent Jun. 30, 2009 Sheet 8 of 18 US RE40.817 E

00

DEVICE IN

LIVELIST
3802

QUERY FOR NON-
MATCHING DEVICE
ID AND TAG 804

U.S. Patent Jun. 30, 2009 Sheet 9 of 18 US RE40.817 E

900

QUERY DEVICE FOR
DEVICE TAG AND
DEVICE 1D 910

SELECT
DECOMMISSION

FOR DEVICE S02

CLEAR PHYSICAL

INITIALIZED STATE? DEVICE TAG
912
N
DEVICE TO DISPLAY OFFLINE
INITIALIZED STAIL DEVICE STATUS
906 914
DEVICE IN LIVE STORE
LIST AT TEMP DECOMMISSION
ADDR 908 STATUS 916

FIG. S

U.S. Patent Jun. 30, 2009 Sheet 10 of 18 US RE40.817 E

QEOO

SELECT DEVICE IN LIVE
STANDBY FOR LIST AT STANDBY
DEVICE 1002 ADDR 1012

ISSUE STANDBY READ REVISION
COMMAND TQ INFORMATION FROM

CONTROLLER 1004 RESOURCE 1014

ALLOCATE STANDBY DISPLAY STANDBY
ADDRESS TO DEVICE STATUS
DEVICE 1006 1016
DEVICE STATE COMMISSION
TO INITIALIZED DEVICE
1008 1018
DEVICE TO
OPERATIONAL
STATE 1010

-G, 10

U.S. Patent Jun. 30, 2009 Sheet 11 of 18 US RE40.817 E

14

T1A

F1G

U.S. Patent Jun. 30, 2009 Sheet 12 of 18 US RE40.817 E

O N
-
<{| QL
O

118

ROM.
CPU
FIG

{11}

U.S. Patent Jun. 30, 2009 Sheet 13 of 18 US RE40.817 E

1136 1134 1132
5w Gkt ~a
1112 : . l l[l :
= o
S — s

1110

CONTROLLER/ CONTROLLER/ 1110
1100 | MULTIPLEXER MULTIPLEXER
1108
OPERATOR LAB 110
1 16o| WORKSTATION WORKSTATION

-———

4
I
1120
Yo

I
|
]

|
|
S B 11116 ‘
MEMORY
| TEMPLATE TEMPLATE RRLEAS I
SYSTEM
' 193 LIBRARY | | IDISPLAY] |
b /0 |
e 111118
) | | L"'—“—,;"—J
1| ATTRIBUTES/METHODS GRAPHICS MN! 1106
H LANGUAGE GENERATOR GENERATCR : |
|| TEMPLATE GENERATOR 1126 e
L._.\"LI"::::::::::::::::__J
1124

U.S. Patent Jun. 30, 2009 Sheet 14 of 18 US RE40.817 E

LOCAL
DATABASE
1262 PROCESS
INTERSUBSYSTEM GRAPHIC
INTERFACE

VIEWER

DEFINITION

AND INTERSUBSYSTEM RUN-TIME
MODULE INTERFACE CONTROLLER
EDITOR

|
- 1246 |
LOCAL
1242 DATABASE 1267

U WD L A
L e e e e e — - -
&
l |
I I
) l
I |
| |
L]
N
1270 1260

¢l "9l yeel
09C1 | 3ISVEVLVQ A 00CH

103rgo

US RE40,817 E

SJAILINISd

9G¢l 12%1 9! ¢Gel 061

TARN! 0¢et

S301IAdd ALIFNIIS

SAV1dSId SYISN

'Ol 'S0 | | » ILNGINLLY
o 'SNOILVLS | | NOILONN .mm\wﬁ%_m 'SAdAL SLAVHO SYH01S
- —M40M | | 'S001g Ola NNV IV NOLLUNMS NOILONN S
S . : IVILNINO3S
- 'NOV 'STTINAON 'S310d
@ 34| PPe | 74 | 9zZ¢c | pIeL
7 P,
MYOML3N MIIA LSIT MIIA
- WOISAHA | | Advaan w_m_w_;,m NILSAS ONINOILIANOI | | 3 ngiyi1y NHLINOOTY
z
= . ZZ8 1
«: OveEl |
.
—
p—
3OLIQ3
OLE L NOILINI43Q
SER[ORE) € INNCOW

02¢ L

U.S. Patent

U.S. Patent Jun. 30, 2009 Sheet 16 of 18 US RE40.817 E

1400

SITE ‘)

1410

AREA
1420
1430
EQUIPMENT
MODULE
1440

CONTROL
MODULE

FIG. 14

U.S. Patent Jun. 30, 2009

REQUEST
RECEIVED

BY
PLUG&PLAY
2212

SEARCH
DEVICE
CONFIG
TABLE FOR
MATCH
2214

2218

NO MATCH-—
MATCH- GENERATE
DATA FROM DEFAULT
TABLE DEVICE
2216 NAME

-1G.

Sheet 17 of 18

10

ADD

DEVICE
TO

DATABASLE
2220

SELECT

CONTROLLER
2222

AUTOMATIC-

US RE40,817 E

MANUAL—

USER

SET NEXT PROMPTED

DEVICE DATA
2226

FOR DATA

2228

U.S. Patent

DETERMINE
CARD

TYPE
2310

TYPL
MISMATCH
2514

CHANGE
CARD
TYPE ON
REQUEST

2316

Jun. 30, 2009

Sheet 18 0of 18

DEVICES
2320

NOTIFY
PORT
MISMATCH
2322

REQUEST

DATABASE
CHANGE

PORT
2324

CHANGE
PORT
TYPE ON
REQUEST
2326

REQUEST
DEVICE
TYPE
2328

FIG. 16

US RE40,817 E

NOT
DEFINED-
DEFINE

DEVICE
TYPE

2330

NOTIFY
DEVICE
TYPE

MISMATCH
2332

REQUEST
DATABASE
CHANGE

DEVICE
2334

US RE40,817 E

1

PROCESS CONTROL SYSTEM INCLUDING
AUTOMATIC SENSING AND AUTOMATIC
CONFIGURATION OF DEVICES

Matter enclosed in heavy brackets [] appears in the
original patent but forms no part of this reissue specifica-
tion; matter printed in italics indicates the additions
made by reissue.

CROSS-REFERENCE TO RELATED
APPLICATIONS

This application 1s related to of copending application by
Nixon et al., entitled “Process Control System Including
Automatic Sensing and Automatic Configuration of
Devices™, filed on Apr. 12, 1996, U.S. patent application Ser.
No. 08/631,519, which application 1s hereby incorporated by
reference 1n its entirety, including any appendices and refer-
ences thereto.

This application 1s related to copending application by
Nixon et al., entitled “A Process Control System Using Stan-
dard Protocol Control of Standard Devices and Non-
standard Devices”, filed on Apr. 12, 1996, U.S. patent appli-
cation Ser. No. 08/631,862, which application 1s hereby
incorporated by reference in its entirety, including any
appendices and references thereto.

This application 1s related to copending application by
Nixon et al., entitled “A Process Control System for Versatile
Control of Multiple Process Devices of Various Device
Types”, filed on Apr. 12, 1996, U.S. patent application Ser.
No. 08/631,521, which application 1s hereby incorporated by
reference 1n 1ts entirety, including any appendices and refer-
ences thereto.

This application 1s related to copending application by
Nixon et al., entitled “Process Control System for Monitor-
ing and Displaying Diagnostic Information of Multiple Dis-
tributed Devices™, filed on Apr. 12, 1996, U.S. patent appli-
cation Ser. No. 08/631,557, which application i1s hereby
incorporated by reference in its entirety, including any
appendices and references thereto.

This application 1s related to copending application by
Nixon et al., entitled “A Process Control System User Inter-
face Including Selection of Multiple Control Languages”,
filed on Apr. 12, 1996, U.S. patent application Ser. No.
08/631,5177, which application 1s hereby incorporated by ret-
erence 1n 1its entirety, including any appendices and refer-
ences thereto.

This application 1s related to copending application by
Dove, entitled “System for Assisting Configuring a Process
Control Environment™, filed on Apr. 12, 1996, U.S. patent
application Ser. No. 08/631,458, which application 1s hereby
incorporated by reference in its entirety, including any
appendices and references thereto.

This application 1s related to copending application by
Nixon et al., entitled “Process Control System Using a Con-
trol Strategy Implemented 1n a Layered Hierarchy of Control
Modules”, filed on Apr. 12, 1996, U.S. patent application
Ser. No. 08/631,520, which application 1s hereby 1ncorpo-
rated by reference 1n 1ts entirety, including any appendices
and references thereto.

This application 1s related to copending application by
Dove et al., entitled “System for Configuring a Process Con-
trol Environment”, filed on Apr. 12, 1996, U.S. patent appli-
cation Ser. No. 08/631,863, which application i1s hereby
incorporated by reference in its entirety, including any
appendices and references thereto.

10

20

25

30

35

40

45

50

55

60

65

2

This application 1s related to copending application by
Nixon et al., entitled “A Process Control System Using a
Process Control Strategy Distributed Among Multiple Con-
trol Elements”, filed on Apr. 12, 1996, U.S. patent applica-
tion Ser. No. 08/631,518, which application 1s hereby incor-
porated by reference 1n 1ts entirety, including any appendices
and references thereto.

This application 1s related to copending application by
Nixon et al., entitled “Improved Process System”, filed on
Apr. 12, 1996, U.S. Provisional patent application Ser. No.

60/017,700, which application 1s hereby incorporated by rei-
erence 1n 1ts entirety, including any appendices and refer-
ences thereto.

BACKGROUND OF THE INVENTION

1. Field of the Invention

This invention relates to process control systems. More
specifically, the present invention relates to a process control
system which automatically senses connection of process
devices and automatically configures the devices when
sensed.

2. Description of the Related Art

Present-day process control systems use istruments, con-
trol devices and communication systems to monitor and
mamipulate control elements, such as valves and switches, to
maintain at selected target values one or more process
variables, including temperature, pressure, flow and the Eke.
The process variables are selected and controlled to achieve
a desired process objective, such as attaining the sate and
eificient operation of machines and equipment utilized 1n the
process. Process control systems have widespread applica-
tion 1n the automation of industrial processes such as the
processes used 1n chemical, petroleum, and manufacturing
industries, for example.

Control of the process 1s often implemented using
microprocessor-based controllers, computers or worksta-
tions which monitor the process by sending and receiving
commands and data to hardware devices to control either a
particular aspect of the process or the entire process as a
whole. The specific process control functions that are imple-
mented by software programs in these microprocessors,
computers or workstations may be individually designed,
modified or changed through programming while requiring
no modifications to the hardware. For example, an engineer
might cause a program to be written to have the controller
read a fluid level from a level sensor 1n a tank, compare the
tank level with a predetermined desired level, and then open
or close a feed valve based on whether the read level was
lower or higher than the predetermined, desired level. The
parameters are easily changed by displaying a selected view
of the process and then by modifying the program using the
selected view. The engineer typically would change param-
cters by displaying and modifying an engineer’s view of the
process.

Many process control systems include local field devices
such as valves, motors, regulators and the like which are
responsive to specific control protocols, such as Profibus,
Fieldbus, CAN and the like, to implement various control
function routines. Accordingly, these controllers are respon-
stve to certain standard control protocols to implement con-
trol functionality 1n the field. The use of such standard con-
trol signal protocols can reduce the time and effort of
developing a control system because a designer can use the
same types ol control signals from all devices responsive to
the control protocol.

In a conventional process control system, the local field
devices are typically configured 1n the field, often by 1ndi-

US RE40,817 E

3

vidually programming the local field devices using a hand-
held field programmer. Individual programming of the field
devices 1s time consuming and ineflicient and often leads to
incompatibilities between the device configuration and the
configuration of other devices and controllers 1n the process
control system since a global view of the system 1s more
difficult to sustain when individual devices are programmed
independently. Usage of individual programming devices 1s
inconvenient since multiple different programming devices
typically must be used to program respective ditferent field
devices.

Furthermore, local device failures, including temporary
failures or local power disruptions, interrupt operations of
the entire control system, sometimes causing extended
downtime since each failing device must be reconfigured
locally.

What 1s needed 1s a process control system that allows
individual field devices to be configured without local, inde-
pendent programming. What 1s also needed 1s a process con-
trol system allowing configuration of the global system from
a location remote from the local field devices so that a com-
patible global configuration 1s achieved while allowing
peripheral elements which are configured 1n a suitable global

manner, to operate independently to achieve control func-
tionality.

Configuration of the global system 1s based on parameters
that describe the particular field devices that make up the
system. However, the control protocols for communicating
with the field devices may be insufficient to convey param-
cters that are sulilicient to configure the system. For example,
the system management specification of the Fieldbus proto-

col defines three states for a device including an INITIAL-
IZED state, an UNINITIALIZED state, and a system man-

agement operational (SM OPERATIONAL) state. The three
defined states are suificient to describe the behavior of a
device from the perspective of the system management, but
are not adequate for describing a device from the perspective
of eirther the fieldbus interface or software engineering tools
for analyzing, controlling, or displaying the status of a
device. This msuificiency 1s highly notable when configura-

tion mvolves the operation of commissioning a device that 1s
attached to the Fieldbus link 1n an UNINITIALIZED state.

What 1s further needed 1s a process control system that
differentiates between Fieldbus device states to support
automatic sensing of devices and online address assignment
of devices.

SUMMARY OF THE INVENTION

In accordance with an aspect of the present invention, a
control system controls one or more interconnected devices
according to a defined control configuration. The control
system automatically senses a device that 1s connected to the
control system but not included in the control configuration
definition. The control system supplies 1mitial interconnect
information to the connected device suilicient to upload con-
figuration parameters from the device to the control system.

In accordance with a further aspect of the present
invention, a digital control system with a predetermined con-
figuration automatically senses the connection to a network
of a digital device that 1s not included 1n the predetermined
configuration. The digital device 1s assigned temporary
address mnformation and placed 1n a temporary state, called a
standby state, in which the digital device supplies informa-
tion to the digital control system allowing a user to access
the digital device including access of device information and
configuration parameters. Using the device information and

10

15

20

25

30

35

40

45

50

55

60

65

4

configuration parameters, a user selectively commissions the
digital device by assigning a physical device tag, and a
device address, and installing a control strategy to the digital
device, thereby placing the digital device i an operational
state 1n communication with the digital control system. In
the standby state, a user interrogates to determine the type of
device that 1s attached, determines the rule of the device 1n
the context of the digital control system assigns a physical
device tag that assigns the determined role to the device, and
veriflies connection of the device to the network. Also in the
standby state, the user initiates other applications applied to
the device, including calibration of the device and configur-
ing the device within the overall control scheme of the digi-
tal control system.

In accordance with another aspect of the present
invention, a control system differentiates between Fieldbus
device states beyond the states defined according to the
Fieldbus standard specification. The control system sets a
physical device tag equal to the device 1dentification (ID) for
the devices that do not have tags, while the device 1is
autosensed. A device attached to the Fieldbus link with the
physical device tag set equal to the device ID 1s controlled in

the manner of an UNINITIALIZED device.

In accordance with an aspect of the present invention,
automatic sensing of field devices 1s extended beyond a con-
ventional mput/output level to the configuration of Fieldbus
devices by a digital control system.

In accordance with an embodiment of the present
invention, a digital control system with a predetermined con-
figuration automatically senses the connection to a network
of a digital device that 1s not included 1n the predetermined
configuration. The digital device 1s placed 1n a temporary
state, called a standby state, in which the digital device sup-
plies information to the digital control system allowing a
user to access the digital device, including access of device
information and configuration parameters. The digital con-
trol system formats and displays the device information
upon request by a user. The digital control system program
also includes an automatic configuration program that
responds to sensing of a new controller by automatically
configuring the mput/output (I/0) subsystem. The user adds
a new controller without setting any physical switches or
nodes. A user optionally supplies configuration information
for a device 1nto a database, prior to connection of a device.
Upon connection of the device, the device 1s automatically
sensed and configured using the database configuration
information, without setting of physical switches on the
devices.

In accordance with another embodiment of the present
invention, a process control system includes a process, a
plurality of controllers connected to the process, a worksta-
tion connected to the plurality of controllers and including a
user 1nterface, and a software system including a network
operating system, a user interface, and implementing an
automatic sensing routine. The automatic sensing routine
includes an executable logic for automatically sensing a con-
nection of a device to a network and placing the device in a
state accessible for communication by a user via a user inter-
face. In the accessible state, a user commissions the device
and selectively imtiates device-related applications.

Many advantages are achieved by the described system
and method. One advantage 1s that configuration of a control
system 1s greatly facilitated. The physical connection of a
device to the network automatically mitiates inclusion of the
connected device into the control system. The described sys-
tem and method advantageously facilitates conformity

US RE40,817 E

S

between the configuration of a network and the physical
interconnections of the network that serves as the basis for
the configuration. The described system and method assist
programming of field devices from a remote location so that
individual field setting of the devices, using a local setting
device, 1s not necessary. The system and method support
central programmability 1s highly useful to reduce system
management costs and for reducing downtime of a process
control system. A further advantage 1s that configuration of
the entire system, rather setting of individual devices, leads
to a system in which mdividual system settings are highly
compatible.

BRIEF DESCRIPTION OF THE DRAWINGS

The features of the invention believed to be novel are
specifically set forth in the appended claims. However, the
invention itself, both as to its structure and method of

operation, may best be understood by referring to the follow-
ing description and accompanying drawings.

FI1G. 1 1s a pictorial view of a front-oi-screen display for a
graphical user interface (GUI) displaying a system configu-
ration.

FIG. 2 1s a state transition diagram illustrating various
states of a field device.

FIG. 3 1s a flow chart illustrating a first operation of com-
missioning a new device.

FIG. 4 1s a flow chart illustrating a second operation of
commissioning an unbound.

FIG. 5 1s a flow chart illustrating a third operation of
decommissioning a device.

FIG. 6 1s a flow chart illustrating a fourth operation of
attaching a commissioned device without enablement of
operational powerup.

FIG. 7 1s a flow chart illustrating a fifth operation of
replacing a device.

FIG. 8 1s a flow chart illustrating a sixth operation of
attaching an UNRECOGNIZED device.

FIG. 9 1s a flow chart illustrating a seventh operation of
decommissioning an unrecognized device.

FIG. 10 1s a flow chart 1llustrating an eighth operation of
placing a decommissioned device 1n a standby condition.

FIGS. 11A, 11B and 11C 1illustrate a screen display, a first
schematic block diagram and a second schematic block dia-
gram respectively, process control systems in accordance
with a generalized embodiment of the present invention
which furnishes a capability to create a new control template
and a capability to modify an existing control template for

only one view, such as an engineering view.

FIG. 12 1s a schematic block diagram showing the process
control environment in a configuration implementation and a
run-time 1mplementation.

FIG. 13 1s a block diagram 1illustrating a user interface for
usage with both configuration and run-time models of the
process control environment.

FIG. 14 1s a schematic block diagram which depicts a
hierarchical relationship among system objects of a configu-
ration model in accordance with an embodiment of the
present invention.

FIG. 15 illustrates a method for automatically sensing and
incorporating a controllerymultiplexer into a run-time sys-
tem.

FIG. 16 1s a flow chart 1illustrates steps of an automatic
configuration routine for configuring a physical I/O device.

DETAILED DESCRIPTION OF THE PREFERRED
EMBODIMENTS

Referring to FIG. 1, a front-of-screen display, also called a
“screen” 100, for a graphical user interface (GUI) depicts a

15

20

25

30

35

40

45

50

55

60

65

6

display of a system configuration. The screen 100 depicts
navigation selections which are operated by a user to select,
construct and operate a process control configuration. The
navigation program supplies an 1initial state for navigating
across various tools and processors 1 a network. A user
controls the navigation program to access libraries, areas,
process control equipment and security operations.

The illustrative system configuration 1s described and
controlled with respect to a control system setup 102, control
strategies 104, and a physical setup 106. The functions of
automatically sensing and automatically configuring a con-
trol system relate to the physical setup 106. In particular, the
functions of automatically sensing and automatically config-
uring physical devices 1n a control system relate to the com-
mission and activation of devices 1n the control network 108,
and the decommissioning of controllers 110.

In an illustrative embodiment, a process control system
controls various devices attached to a process control net-
work 1n accordance with a Fieldbus standard protocol. In the
Fieldbus protocol, a standard user application 1s defined
based on blocks. A block 1s a representation of various dif-
ferent types ol application functions. Types of blocks
include resource blocks, function blocks, and transducer

blocks.

A resource block describes characteristics of a fieldbus
device such as a device name, manufacturer, and serial num-
ber. A device includes only a single resource block.

A Tunction block defines the control system behavior.
Input and output parameters of function blocks may be
linked over the fieldbus. The execution of each function
block 1s precisely scheduled. A user application may include
numerous function blocks. Examples of standard function
blocks include analog input (Al), analog output (AO), bias
(B), Control Selector (CS), Discrete Input (DI), Discrete
Output (DO), Manual Loader (ML), Proportional/Derivative
(PD), Proportional/Integral/Derivative (PID) and ratio (RA).
Function blocks are built into fieldbus devices to define a
selected device functionality. In one example, a simple tem-
perature transmitter may contain an Al function block. A
control valve often includes a PID function block and an AO

block.

A transducer block decouples function blocks from local
input and output functions for reading sensors and com-
manding output hardware. Transducer blocks contain infor-
mation such as calibration data and sensor type. Typically a
user application uses one transducer block for each mput or
output function block.

Another object defined 1n the user application includes
link objects for defimng the links between function block
inputs and outputs internal to the device and across the field-
bus network. Trend objects allow local trending of function
block parameters for access by other devices. Alert objects
are used to allow reporting of alarms and events on the field-
bus. View objects are predefined groupings of block param-
cter sets that are used 1n the human/machine interface. The

function block specification defines four views for each type
of block.

Referring to FIG. 2, a state transition diagram 1llustrates
the various states of a field device. The field device states
include an oitline state 202, an unrecognized state 204, a
standby state 206, a commissioned state 208, and an
unbound state 210. The state of a field device 1s determined
by several parameters including a system management state
(SM-State), a physical device tag (PD-Tag), a device
address, device revision information (Rev*®), and a device
identification (Device-1D). In the 1llustrative embodiment, a

US RE40,817 E

7

device 1n the commissioned state 208 1s a Fieldbus device
that 1s available for control strategy configuration and 1nstal-
lation. A decommissioned device 1s a device that has been
removed from the commissioned state 208.

Several events occur that generate a state transition of a
plurality of state transitions 11 through T14. One or more
actions are performed during each state transition.

A state transition T1 1s caused by the event 1n which a field
device residing at a temporary address 1s queried with a
system management i1dentity service (SM-IDENTIFY) and
the query determines that the device has a cleared physical
device tag. The state transition T1 changes from a NULL
state to an OFFLINE state by allocating a standby address
tfor the field device. Executing logic, typically in the form of
firmware, software, or hardware, executes a set physical
device tag service (SET-PD-TAG) to set the physical device
tag 1dentical to the device identification of the field device.

Executing logic also uses a set device address service (SET-
ADDRESS) to send a standby address to the field device.

A state transition T2 1s caused by the event 1n which a field
device residing at a temporary address 1s queried with a
system management identity service (SM-IDENTIFY) and
the query determines that the device has a physical device
tag that 1s 1dentical to the device identification of the device.
The state transition T2 changes from a NULL state to an
OFFLINE state by allocating a standby address for the field
device. Executing logic uses a set device address service

(SET-ADDRESS) to send a standby address to the field
device.

A state transition T3 1s caused by the event in which a field
device residing at a temporary address 1s queried with a
system management identity service (SM-IDENTIFY) and
the query determines that the device has a physical device
tag and a device identification configured for the current
process control system network link. The state transition T3
changes from a NULL state to an OFFLINE state using

executing logic that employs the set device address service
(SE'T-ADDRESS) to send an assigned address to the field

device.

A state transition T4 1s caused by the event in which a field
device residing at a temporary address 1s queried with a
system management identity service (SM-IDENTIFY) and
the query determines that the device has a physical device
tag and a device 1identification not configured for the current

process control system network link. The state transition T4
changes from a NULL state to an UNRECOGNIZED state.

A state transition 15 1s caused by an event 1n which the
device appears at a temporary address and the device 1is
being commissioned by a user. The state transition T3S
changes from an OFFLINE state to an OFFLINE state using
executing logic, typically 1n the form of firmware, software,
or hardware, that executes a set physical device tag service
(SE'T-PD-TAG) to clear the physical device tag of the field
device. Executing logic also executes a set physical device
tag service (SET-PD-TAG) to send an assigned physical
device tag to the field device. Executing logic further uses a

set device address service (SET-ADDRESS) to send an
assigned address to the field device.

A state transition T6 1s caused by an event in which the
device appears at a temporary address and the device 1s
being decommissioned by a user. The state transition T6
changes from an OFFLINE state to an OFFLINE state using
executing logic that executes a set physical device tag ser-
vice (SET-PD-TAG) to clear the physical device tag of the
field device.

A state transition T7 1s caused by an event in which a user
requests to place a decommaissioned device in standby. The

10

15

20

25

30

35

40

45

50

55

60

65

8

state transition 17 changes from an OFFLINE state to an
OFFLINE state by allocating a standby address for the field
device. Executing logic executes a set physical device tag
service (SE'T-PD-TAG) to set the physical device tag 1denti-
cal to the device 1dentification of the field device. Executing

logic also uses a set device address service (SET-
ADDRESS) to send a standby address to the field device.

A state transition T8 1s caused by an event 1n which the
field device appears at the standby address. The state transi-
tion T8 changes from an OFFLINE state to a STANDBY
state through executing logic that reads device revision
information from the resource block.

A state transition T9 1s caused by an event 1n which the

field device appears at the assigned address. The state transi-
tion T9 changes from an OFFLINE state to a COMMIS-

SIONED.

A state transition T10 1s caused by a user requesting to
commission a device 1in the STANDBY state. The state tran-
sition T10 changes from the STANDBY state to the
OFFLINE state through executing logic that uses a clear
address service (CLEAR-ADDRESS) to clear the device

address.

A state transition T11 1s caused by a user requesting to
decommission a device in the STANDBY state. The state
transition 111 changes from the STANDBY state to the
OFFLINE state through executing logic that uses a clear

address service (CLEAR-ADDRESS) to clear the device
address.

A state transition T12 1s caused by a user requesting to
decommuission a device in the COMMISSIONED state. The
state transition T12 changes from the COMMISSIONED
state to the OFFLINE state through executing logic that uses
a clear address service (CLEAR-ADDRESS) to clear the

device address.

A state transition 113 1s caused by a user requesting to
decommission a device 1n the INITIALIZED state of the
Fieldbus system management states. The state transition T13
changes from the UNRECOGNIZED state to the OFFLINE
state through executing logic that executes a set physical
device tag service (SET-PD-TAG) to clear the physical
device tag of the field device.

A state transition T14 1s caused by a user requesting to
decommission a device i the SM-OPERATIONAL state of
the Fieldbus system management states. The state transition
114 changes from the UNRECOGNIZED state to the
OFFLINE state through executing logic that uses a clear

address service (CLEAR-ADDRESS) to clear the device
address.

In accordance with the Fieldbus standard, to operate prop-
erly a Fieldbus device has a umique device address (network
address) and a unique physical device tag. Each device con-
nected to the process control system network link has a
unique node designator. A data link specification specifies a
range of allowable values for node designators including a
range for permanent devices, a range for temporary
addresses, and a range for visitor devices. The temporary
addresses are used by devices that are not presently 1n the
SM-OPERATIONAL state. The Fieldbus interface main-
tains partitioning of the address space for permanent devices
into three sets. One set, called “assigned addresses”,
includes addresses assigned to devices with a specific physi-
cal device tag, regardless of whether the device 1s present on
the bus. The assigned addresses 1s assigned using a software
engineering tool on the basis of information mnput by a user
relating to Link-Active-Scheduler takeover preference. A
second set, termed “standby addresses™, describes devices 1n

US RE40,817 E

9

the SM-OPERATTONAL state but have no device addresses
assigned. The standby addresses are managed by the Field-
bus interface. The third set of addresses are addresses out-
side the first and second sets and refer to unused addresses.

The small number of temporary addresses complicates
autosensing and online address assignment. Standby
addresses are defined and utilized to support functionality of
the autosensing and online address assignment operations.
The assigned address set and the standby address set are
defined to be equal to the number of potential devices con-
nected to the process control system network link. For
example, 1f sixteen devices may be potentially connected to
the process control system network, then sixteen assigned

addresses are defined and sixteen standby addresses are
defined.

The device revision information includes a manufactur-
er’s 1denfification (MANUFAC-ID), a device type (DEV-

TYPE), a device revision (DEV-REV), and a device descrip-
tion revision (DD-REV).

In the offline state 202 a field device 1s recently attached to
a process control system network or 1s 1n the process of
being commissioned or decommissioned. The offline state
202 includes device states having a plurality of parameter
combinations. In a first oftline state 202, the system manage-
ment state 1s UNINITIALIZED and the physical device tag
1s cleared. In a second ofthine state 202, the system manage-
ment state 1s INITIALIZED and the physical device tag 1s
read from the physical device and displayable on a screen. In
cither of the offline states 202, the device address 1s a tempo-
rary address, the revision information 1s not available, and
the device 1dentification 1s read from the device and display-
able on the screen.

In the unrecognized state 204, the field device physical
device tag and the device i1dentification do not match the
values that are commissioned for a device that 1s connected
to the process control system network. The unrecognized
state 204 includes device states having a plurality of param-
cter combinations. In a first unrecognized state 204, the sys-
tem management state 1s INITIALIZED with a device
address that 1s a temporary address. In a second unrecog-
nized state 204, the system management state 1s
SM-OPERATIONAL with a device address that 1s a standby
address or an assigned address. In either unrecognized state
204, the physical device tag i1s read from the device and
displayable on the screen, the device revision 1s not
available, and the device identification 1s read from the
device and displayable on the screen.

In the standby state 206, the field device 1s not vyet
autosensed and 1s therefore not available for configuration 1n
the control strategy or included in Link-Active-Scheduler
(LAS) schedules of the system management configuration.
In the standby state 206, function block execution and link
communications are disabled. Note that a Link-Active-
Scheduler 1s a deterministic centralized bus scheduler that
includes a list of transmit times for all data buifers in all
devices that are to be cyclically transmitted. When a device
1s due to send a data buffer, the Link-Active-Scheduler
issues a compel data (CD) message to the device. Upon
receipt of the CD message, the device broadcasts or “pub-
lishes™ the data 1n the butler to all devices on a field device
bus and the broadcasting device i1s defined to be a “pub-
lisher”. Any device that 1s configured to receive the data 1s
defined to be a *“‘subscriber”. Scheduled data transfers are
typically used for the regular, cyclic transier of control loop
data between devices on the fieldbus.

In the standby state 206, the system management state 1s
SM-OPERATIONAL, the physical device tag 1s equal to the

10

15

20

25

30

35

40

45

50

55

60

65

10

device 1dentification, and the device address 1s a standby
address. The device revision information 1s read from the
field device and displayable. The device 1dentification 1s read
from the device and displayable on the screen.

The unbound state 210 1s a configuration placeholder for a
field device that 1s to be physically attached subsequently.
The unbound state 210 supports configuration of control
strategies utilizing the function blocks 1n a field device that
1s not yet connected. In the unbound state 210, the system
management state 1s not yet applicable but the physical
device tag 1s specified by a user and the device address 1s
assigned by the user. The device revision information set
according to the most recent commission or configuration.
The device 1dentification 1s cleared.

In the commissioned state 208, the field device 1s avail-
able for control strategy configuration and installation. The
system management state 1s SM-OPERATIONAL, the
physical device tag 1s specified by a user, and the device
address 1s assigned by the user. The device revision informa-
tion 1s read from the field device and displayable on the
screen. The device identification 1s read from the field
device, stored 1n a field configuration database, and display-
able on a display screen.

Several operations or “use cases” are defined for control-
ling commissioning and decommaissioning of field devices.

Retferring to FIG. 3, a flow chart illustrates a first opera-
tion or “use case” which describes an operation of commis-
sioning a new device 300. Prior to the commaissioning of the
new device, the Fieldbus interface 1s operational. A device 1s
connected to the process control system network. The device
either has no physical device tag or has a physical device tag
that 1s equal to the device 1dentification.

The operation of commissioning a new device 300 results
in a condition 1n which the device 1s assigned a new physical
device tag and a device address, and the device 1s ready for
function block configuration. The new field device 1s entered
into the process control system network database with the
device identification bound and the device revision informa-
tion set. An engineering software tool that displays the pro-

cess control system network status displays the new device
as a COMMISSIONED device.

In a first step 302, the field device appears 1n the “live list”
at a temporary address. A “live l1st” 1s a list of all devices that
are properly responding to a pass token (P1) message. All
devices on a fieldbus are allowed to send unscheduled mes-
sages between the transmission of scheduled messages. The
Link-Active-Scheduler grants permission to a device to use
the fieldbus by issuing a pass token (PT) message to the
device. When the device receives the PT, 1t 1s allowed to send
messages until the messages are complete or until a maxi-
mum allotted token hold time has expired. As a highest pri-
ority activity, the Link-Active-Scheduler accesses a CD
schedule containing a list of actions that are set to occur on a
cyclic basis. At a scheduled time, the Link-Active-Scheduler
sends a compel data (CD) message to a specific data buffer
in the fieldbus device. The device immediately broadcasts a
message to all devices on the fieldbus. The Link-Active-
Scheduler performs remaining operations between sched-
uled transiers. The Link-Active-Scheduler continually adds
new devices to the field bus by periodically sending probe
node (PN) messages to addresses that are not on the live list.
IT a device 1s present at the address and recetves the PN, the
device immediately returns a probe response (PR) message.
IT a device responds with the PR message, the Link-Active-
Scheduler adds the device to the live list and confirms by
sending the device a node activation (NA) message. A device

US RE40,817 E

11

remains on the live list so long as the device responds prop-
erly to PTs. When a device 1s added or removed from the live
list, the Link-Active-Scheduler broadcasts changes to the
live list to all devices to allow each device to maintain a
current copy of the live list.

In a second step 304, the interface queries the field device

using a system management identily service (SM-
IDENTIFY) and determines whether the field device 1s 1n

the UNINITIALIZED state with no physical device tag set
or 1n the INITIALIZED state having a physical device tag

that 1s equal to the device identification. The interface then
allocates 306 a standby address for the field device.

A logical step 308 directs that a previously UNINITIAL-
IZED device, 1n step 310, sets the physical device tag of the
field device 1dentical to the device 1dentification using a set
physical device tag service (SET-PD-TAG), thereby placing,
the field device 1n the INITIALIZED state. The standby
address 1s sent to the field device 312 using a set address
service (SET-ADDRESS), advancing the field device from
the INITIALIZED state to the SM-OPERATIONAL state.
At this point the field device appears 1n the “live list” at a
standby address 314. Device revision information is read
from the resource block 316. In step 318, an executing sofit-

ware engineering tool displays the field device as a
STANDBY device.

In step 320, a new user assigns a new physical device tag
to the field device. The physical device tag 1s constrained to
be unique and not the same as the device identification. Dur-
ing the assignment of the physical device tag, a device
address 1s assigned to the field device using a software engi-
neering tool and the Link-Active-Scheduler takeover preter-
ence 1s set to “selectable”. The device revision information 1s
read from the field device and written to the process control

system network database. The interface changes the state of
the field device 322 to the INITIALIZED state using a clear

address service (CLEAR-ADDRESS). The field device
appears 1n the “live list” at a temporary address 324.

In a step 326, the interface queries the field device using a
system management i1dentity service (SM-IDENTIFY) and
recognizes the field device by the device identification. The
interface uses the set physical device tag service (SET-PD-
TAG) to clear the physical device tag 328, thereby changing
the field device state to the UNINITIALIZED state. The set
physical device tag service (SET-PD-TAG) 1s then used to
send the assigned physical device tag to the field device 330,
changing the field device state to the INITIALIZED state.
The set address service (SET-ADDRESS) 1s called to send
the assigned address to the field device 332, placing the field
device 1n the system management operational state (SM-
OPERATIONAL). The field device appears 1n the “live list”
at the assigned address 334. In the process control system
network database, the device 1dentification 1s bound 336 to

the device. The soltware engineering tool displays the field
device as a COMMISSIONED device.

Retferring to FIG. 4, a flow chart illustrates a second
operation or “use case” which describes an operation of
commissioning an unbound device 400. Prior to the commis-
sioning of the unbound device, the Fieldbus interface 1s
operational. A field device has been created 1n the process
control system network database and a physical device tag
and a device address are assigned to the field device.
However, the field device 1s not bound to a device identifica-
tion. The process control system network database has also
been mitialized to contain device revision information read
from the field device. A software engineering tool displays

the field device as an UNBOUND device. The UNBOUND

10

15

20

25

30

35

40

45

50

55

60

65

12

device to be commissioned 1s either a field device with no
physical device tag or a field device having a physical device
tag that 1s i1dentical to the device identification. The

UNBOUND field device 1s commissioned to place the field
device on the process control system network link.

The operation of commissioning an UNBOUND device
400 results 1n a condition 1n which the device 1s configured
with a physical device tag and an assigned device address,
and the device 1s ready for function block configuration. The
new field device 1s entered into the process control system
network database with the device 1dentification bound. An
engineering software tool that displays the process control

system network status displays the device as a COMMIS-
SIONED device.

In a first step 402, the field device appears 1n the “live list”
at a temporary address. In a second step 404, the interface

queries the field device using a system management 1dentify
service (SM-IDENTIFY) and determines whether the field

device 1s 1n the UNINITIALIZED state with no physical
device tag set or 1n the INITIALIZED state having a physical
device tag that 1s equal to the device identification. The inter-
face then allocates 406 a standby address for the field device.

A logical step 408 directs that a previously UNINITIAL-

IZED device, 1n step 410, sets the physical device tag of the
field device 1dentical to the device 1dentification using a set
physical device tag service (SET-PD-TAG), thereby placing
the field device 1n the INITIALIZED state. The standby
address 1s sent to the field device 412 using a set address
service (SE'T-ADDRESS), advancing the field device from
the INITIALIZED state to the SM-OPERATIONAL state.
At this point the field device appears 1n the “live list” at a
standby address 414. Device revision information 1s read
from the resource block 416. In step 418, an executing sofit-

ware engineering tool displays the field device as a
STANDBY device.

In step 420, a user assigns a physical device tag to the field
device by associating the field device with the pre-
configured device. The device revision information 1s read
from the field device to ascertain that the information
matches the device revision information 1n the process con-
trol system network database for the preconfigured device. It
the device revision information of the device does not match
the database, the user may override the database, reading the
device revision information from the field device and writing
the information to the process control system network data-
base. Alternatively, the device revision information for an
UNBOUND device may be made blank, allowing any physi-
cal device to be bound with the UNBOUND device. The
interface changes the state of the field device 422 to the
INITIALIZED state using a clear address service (CLEAR -

ADDRESS). The field device appears 1n the “live list” at a
temporary address 424.

In a step 426, the interface queries the field device using a
system management identily service (SM-IDENTIFY) and
recognizes the field device by the device 1dentification. The
interface uses the set physical device tag service (SET-PD-
TAG) to clear the physical device tag 428, thereby changing
the field device state to the UNINITIALIZED state. The set
physical device tag service (SET-PD-TAG) 1s then used to
send the assigned physical device tag to the field device 430,
changing the field device state to the INITIALIZED state.
The set address service (SET-ADDRESS) 1s called to send
the assigned address to the field device 432, placing the field
device 1n the system management operational state (SM-
OPERATIONAL). The field device appears 1n the “live list”

at the assigned address 434. In the process control system

US RE40,817 E

13

network database, the device identification 1s bound 436 to
the device. The software engineering tool displays the field

device as a COMMISSIONED device.

Referring to FIG. 5, a flow chart illustrates a third opera-
tion or “use case” which describes an operation of decom-
missioning a device 500. A field device 1s decommissioned
for several reasons. For example, when a Fieldbus device 1s
obsolete, a user may wish to clear a network interconnection
structure of nonfunctioning branches so that the process con-
trol system no longer expends resources on the obsolete
device. Also, a user may suspect that a Fieldbus device 1s
malfunctioning and degrading operations of a segment of a
network interconnection structure. The user may diagnose
the problem by having the process control system 1gnore the
suspected Fieldbus device temporarily to determine whether
the remaining devices 1n the segment operate properly.

Prior to the operation of decommissioning a device, the
Fieldbus interface and the field device are operational and
the field device appears in the live list at the assigned or
standby address. A software engineering tool displays the
field device as a COMMISSIONED or STANDBY device.
The software engineering tool executes a routine that pre-
pares the field device for decommissioning, for example by

clearing function block tags and clearing an
OPERATIONAL-POWERUP flag.

The operation of decommissioning a device results 1 a
condition 1n which the physical device tag of the field device
1s cleared and the field device 1s prepared to be removed
from the process control system network link. The process
control system network database entry for the field device
designates the device 1dentification as 1 an unbound condi-
tion. The software engineering tool displays the device i1den-
tification as an UNBOUND device and displays the physical
device as an OFFLINE device.

The operation of decommissioning a device 500 begins
when a user selects a “Decommission” operation for the
field device 502. A graphic user mterface includes a software
engineering tool that 1ssues a “Decommission” command to
an appropriate controller within the process control system.
The decommission command specifies a target 1/0
subsystem, card and port 1dentifiers, and the device 1dentifi-
cation of the field device to be decommissioned. The device
identification 1s specified since another device with the same
physical device tag may be present in an UNRECOGNIZED
state. The interface changes the state of the field device 504
to the INITIALIZED state using a clear address service
(CLEAR-ADDRESS). The field device appears in the “live

list” at a temporary address 506.

In a step 508, the interface queries the field device using a
system management i1dentity service (SM-IDENTIFY) and
recognizes the field device by the physical device tag and the
device identification. The interface uses the set physical
device tag service (SE'T-PD-TAG) to clear the physical
device tag 510, thereby changing the field device state to the
UNINITIALIZED state.

In the process control system network database, the
device 1dentification 1s unbound and the software engineer-
ing tool displays the field device as an UNBOUND device

512. In a next step 514, the software engineering tool dis-
plays the field device as an OFFLINE device.

A network mterface card stores a designation that the field
device has been decommissioned 516 and does not move the
field device to a STANDBY address unless directed by the
user. If the decommissioned device 1s not move to a
STANDBY address, the interface card tracks the field device

until the field device advances oft the live list.

10

15

20

25

30

35

40

45

50

55

60

65

14

Reterring to FIG. 6, a flow chart illustrates a fourth opera-
tion or “use case” which describes an operation of attaching
a commissioned device without enablement of operational
powerup 600. Prior to the operation of attaching a commis-
sioned device 600, the Fieldbus interface 1s operational. The
configuration of the Fieldbus interface includes the field
device 1n an attached condition. The physical device tag and
the device identification of the field device are matched. Fol-
lowing the operation of attaching a commissioned device
600, the field device has an assigned address.

The field device appears 1n the “live list” at a temporary
address 602. In a step 604, the interface queries the field
device using a system management identify service (SM-
IDENTIFY) and recognizes the field device by the physical
device tag and the device 1dentification as part of the Field-
bus interface configuration. "

The set address service (SE'1-
ADDRESS) 1s called to send the assigned address to the field
device 606, placing the field device 1n the system manage-
ment operational state (SM-OPERATIONAL). The field

device appears 1n the “live list” at the assigned address 608.

Referring to FIG. 7, a flow chart illustrates a fifth opera-
tion or “use case” which describes an operation of replacing,
a device 700. A device 1s replaced by decommissioning the
current field device 702 connected to the process control
system network link, 1f possible, and commissioning a
replacement to the UNBOUND device 704. The step of
decommissioning the current field device 702 1s described 1n
detail with reference to FIG. 5. The step of commuissioning a
replacement to the UNBOUND device 704 1s described with
reference to FIG. 4.

Retferring to FIG. 8, a flow chart illustrates a sixth opera-
tion or “use case” which describes an operation of attaching
an UNRECOGNIZED device 800. Prior to the operation of
attaching a commissioned device 600, the Fieldbus interface
1s operational. A field device 1s attached which has a physical
device tag and a device identification that 1s not configured
for the current process control system network link. Follow-
ing the operation of attaching an UNRECOGNIZED device
800, the field device 1s 1dentified and the software engineer-
ing tool displays the device as n UNRECOGNIZED device.
The operation of attaching an UNRECOGNIZED device
800 may be performed without use of the software engineer-
ing tool.

The field device appears 1in the “live list” 802. In a step
804, the interface quenes the field device using a system
management 1dentily service (SM-IDENTIFY) and deter-
mines that the physical device tag and the device identifica-
tion do not match a field device 1n the present configuration.

Referring to FIG. 9, a flow chart illustrates a seventh
operation or “use case” which describes an operation of
decommissioning an unrecognized device 900. Prior to the
operation of decommissioning an unrecognized device, the
Fieldbus interface i1s operational. The field device 1s 1dent-
fied which has a physical device tag and a device 1dentifica-
tion that are not configured for the present process control

system network link. A software engineering tool displays
the field device as an UNRECOGNIZED device.

The operation of decommissioning an unrecognized
device 900 results in a condition 1n which the physical
device tag of the field device 1s cleared and the field device 1s
prepared to be removed from the process control system
network link. The software engineering tool displays the

field device as an OFFLINE device.

The operation of decommissioning an unrecognized
device 900 begins when a user selects a “Decommission”
operation for the field device 902. A graphic user interface

US RE40,817 E

15

includes a software engineering tool that issues a “Decom-
mission” command to an appropriate controller within the
process control system. The decommission command speci-
fies a target I/O subsystem, card and port identifiers, and the
device 1dentification of the field device to be decommis-
s1oned.

If the field device 1s 1n the INITTALIZED state, logic step
904 directs the decommissioning operation 900 to a clear the

physical device tag step 912. Otherwise, the interface
changes the state of the field device 906 to the INITIAL-

IZED state using a clear address service (CLEAR-
ADDRESS). The field device appears 1n the “live list” at a

temporary address 908.

In a step 910, the interface queries the field device using a
system management i1dentity service (SM-IDENTIFY) and
recognizes the field device by the physical device tag and the
device identification. The interface uses the set physical

device tag service (SET-PD-TAG) to clear the physical
device tag 912, thereby changing the field device state to the
UNINITIALIZED state. In a next step 914, the software
engineering tool displays the field device as an OFFLINE
device.

A network interface card stores a designation that the field
device has been decommissioned 916 and does not move the
field device to a STANDBY address unless directed by the
user. If the decommissioned device 1s not move to a
STANDBY address, the interface card tracks the field device

until the field device advances off the live list.

Referring to FIG. 10, a flow chart illustrates an eighth
operation or “use case” which describes an operation of
placing a decommissioned device in a standby condition
1000. Prior to the operation of placing a decommaissioned
device 1n a standby condition 1000, the Fieldbus interface 1s
operational. A field device 1s decommissioned and in the

OFFLINE state.

The operation of placing a decommissioned device in
standby 1000 results 1n a condition in which the field device
1s placed at a standby address with the physical device tag of
the field device set 1dentical to the device i1dentification. The

software engineering tool displays the field device as a
STANDBY device.

The operation of placing a decommissioned device in
standby 1000 begins when a user selects a “Place in
Standby” operation for the field device 1002. A graphic user
interface mcludes a software engineering tool that issues a
“Place 1n Standby” command to an appropriate controller
within the process control system 1004. The decommission
command specifies a target I/O subsystem, card and port
identifiers, and the device 1dentification of the field device to
be placed 1n standby.

The interface allocates a standby address 1006 for the
field device. The set physical device tag service (SET-PD-
TAG) 15 then used to set the physical device tag 1dentical to
the device identification 1008, changing the field device
state to the INITIALIZED state. The set address service
(SE'T-ADDRESS) 15 called to send the standby address to
the field device 1010, placing the field device 1n the system
management operational state (SM-OPERATIONAL). The
field device appears 1n the “live list” at the standby address
1012. Device revision information 1s read from the resource
block 1014. In step 1016, an executing software engineering,

tool displays the field device as a STANDBY device.

A user may subsequently commission the field device
1018, either by creating a new device or binding the field
device to an UNBOUND device in the process control sys-
tem network database. The techniques for commissioning a
device are described with respect to FIGS. 3 and 4.

10

15

20

25

30

35

40

45

50

55

60

65

16

Retferring to FIG. 11A, a control system 1s shown. In
general, the system 1 includes a main processing device,
such as personal computer 2, that 1s connected to a local area
network (“LLAN’") 3 via a local area network card. Although
any local area network protocol may be used, a non-
proprietary ethernet protocol 1s beneficial 1n many applica-
tions because it allows for communications with the local
area network 3. The local area network 3 1s dedicated to
carrying control parameters, control data and other relevant
information concerned in the process control system. As
such, the LAN 3 may be referred to as an area controlled
network or ACN 3. The ACN 3 may be connected to other
[LANSs for sharing information and data via a hub or gateway
without affecting the dedicated nature of ACN 3.

In accordance with standard ethernet protocol, a plurality
of physical devices may be connected to the ACN 3 at vari-
ous “nodes.” Each physical device connected to the ACN 3 1s
connected at a node and each node 1s separately addressable
according the LAN protocol used to implement ACN 3.

To establish a redundant system, 1t may be desirable to
construct ACN 3 from two or more ethernet systems such
that the failure of a single ethernet or LAN system will not
result 1n the failure of the entire system. When such “redun-
dant ethernets™ are used the failure of one ethernet LAN can
be detected and an alternate ethernet LAN can be mapped in
to provide for the desired functionality of ACN 3.

The main personal computer (“PC”) A forms a node on
the ACN 3. The PC 2 may, for example, be a standard per-
sonal computer running a standard operating system such as
Microsolit’s Window NT system. Main PC 2 1s configured to
generate, 1 response to user mput commands, various con-
trol routines that are provided via the ACN 3 to one or more
local controllers 1dentified as element 4 and 5 which 1mple-
ment the control strategy defined by the control routines
selected and established 1n main PC 2. Main PC 2 may also
be configured to implement direct control routines on field
devices such as pumps, valves, motors and the like via trans-
mission across the ACN 3, rather than through a local con-
troller 4 or 5.

Local controllers 4 and 5 receirve control routines and
other configuration data through the ACN 3 from PC 2. The
local controllers then generate signals of various types to
various field devices (such as pumps, motors, regulator
valves, etc.) 6 through 15 which actually implement and
perform physical steps 1n the field to implement the control
system established by the routines provided by PC 2.

Two types of field devices may be connected to local con-
troller 4 and 5 1including field devices 6 through 10 which are
responsive to specific control protocol such as FieldBus,
Profibus and the like. As those 1n the art will appreciate,
there are standard control protocols (e.g. FieldBus) accord-
ing to which specific protocol instructions are provided to a
protocol-Iriendly field devices (e.g., a Fieldbus field devices)
will cause a controller located within the field device to
implement a specific function corresponding to the protocol
function. Accordingly, field devices 6 through 11 recerve
protocol specific (e.g., FieldBus) control commands from
either the local controllers 4 and 5 or the personal computer
2 to implement a field device-specific function.

Also connected to local controllers 4 and 5 are non-
protocol field devices 12 through 15, which are referred to as
non-protocol because they do not include any local process-
ing power and can respond to direct control signals.
Accordingly, field devices 12 through 15 are not capable of
implementing functions that would be defined by specific
control protocol such as the FieldBus control protocol.

US RE40,817 E

17

Functionality 1s supplied to allow the non-protocol field
devices 12 through 15 to operate as protocol-irnendly (e.g.,
FieldBus specific) devices 6 through 11. Additionally, this
same functionality allows for the implementation of the
protocol-specific control routines to be distributed between 5
the local field devices 6 through 11, the local controllers 4
and 5 and the personal computer 2.

The distribution of protocol-specific control routines 1s
illustrated 1n more detail 1n FIG. 11B. FIG. 11B refers to one
portion of the system shown in FIG. 11A, specifically the 10
personal computer 2, the ethernet 3, local controller 4, a
smart field device 6 and a dumb device 12, in greater detail.

Personal computer 2 includes program software routines
for implementing standard functional routines of a standard
control protocol such as the FieldBus protocol. Accordingly,
personal computer 2 1s programmed to receive FieldBus
commands and to implement all of the functional routines
for which a local field device having Fieldbus capabilities
could implement. The ability and steps required to program
personal computer 2 to implement FieldBus block function-
ality will be clearly apparent to one of ordinary skill 1n the
art.

Connected to personal computer 2 by the ethernet 3 1s
local controller 4. Local controller 4 includes a central pro-
cessing unit connected to a random access memory which
provides control signals to configure the central processing
unit to implement appropriate operational functions. A read
only memory 1s connected to the random access memory.
The read only memory 1s programmed to include control
routines which can configure the central processing unit to
implement all of the functional routines of a standard control
protocol such as FieldBus. Personal computer 2 sends sig-
nals through ethernet 3 to the local controller 4 which causes
one, more or all of the programmer routines 1n the read only
memory to be transferred to the random access memory to
configure the CPU to implement one, more or all of the
standard control protocol routines such as the FieldBus rou-
tines.

15

20

25

30

35

The smart field device 6 includes a central processing unit
which implements certain control functions. If the devices
1s, for example, a FieldBus device then the central process-
ing unit associated with the smart field device 6 1s capable of
implementing all of the FieldBus functionality requirements.

Because the local controller 4 has the ability to implement 45
FieldBus specific controls, controller 4 operates so that non-
protocol device 12 acts and 1s operated as a FieldBus device.
For example, 1f a control routine 1s running either in personal
computer 2 or on the CPU of local controller 4, that control
routine can implement and provide FieldBus commands to s
FieldBus device 6 and non-protocol device 12, operating as a
FieldBus device. Since field device 6 1s a FieldBus device,
device 6 recetves these commands and thereby implements
the control functionality dictated by those commands. Non-
protocol device 12, however, works i conjunction with the ss
central processing unit of local controller 4 to implement the
FieldBus requirements such that the local controller 1n com-
bination with the field device implements and operates
FieldBus commands.

In addition to allowing non-FieldBus device 12 to act and 60
operate as a FieldBus device, the described aspect allows for
distribution of FieldBus control routines throughout the sys-
tem 1 shown 1 FIG. 11A. For example, to the extent that a
control routine 1imitially requests field device 6 to implement
more than one FieldBus control routine, the system 1 allows 65
for control to be divided between the local controller 4 and
the local controller 5 such that a portion of the FieldBus

18

control routines are being implemented by local controller 5
and other FieldBus routines are implemented by the use of
the FieldBus routines stored on local controller 4. The divi-
s1on of FieldBus routine implementation may allow for more
sophisticated and faster control and more efficient utilization
ol the overall processing power of the system. Still further,
the fact that personal computer 2 has the ability to 1imple-
ment FieldBus control routines, the FieldBus routines are
further distributed between the local controller 4 and the
personal computer 2. In this manner, the system allows per-
sonal computer 2 to implement one or all of the FieldBus

routines for a particular control algorithm.

Still further, the system allows for the implementation of
FieldBus controls to a non-FieldBus device connected
directly to the ethernet 3 through use of the FieldBus control
routines stored on personal computer 2 1n the same manner
that FieldBus routines are implemented on non-FieldBus
device 12 through use on the FieldBus routines stored on
local controller 4.

A process control environment 1100 1s shown 1n FIG. 11C
and 1llustrates a control environment for implementing a
digital control system, process controller or the like. The
process control environment 1100 includes an operator
workstation 1102, a laboratory workstation 1104, and an
engineering workstation 1106 electrically interconnected by
a local area network (“LAN”) 1108 for transferring and
receiving data and control signals among the various work-
stations and a plurality of controller/multiplexers 1110. The
workstations 1102, 1104, 1106 are shown connected by the
LAN 1108 to a plurahty of the controller/multiplexers 1110
that electrically interface between the workstations and a
plurality of processes 1112. In multiple various
embodiments, the LAN 1108 includes a single workstation
connected directly to a controller/multiplexer 1110 or alter-
natively includes a plurality of workstations, for example
three workstations 1102, 1104, 1106, and many controller/
multiplexers 1110 depending upon the purposes and require-
ments of the process control environment 1100. In some
embodiments, a single process controller/multiplexer 1110
controls several different processes 1112 or alternatively
controls a portion of a single process.

In the process control environment 1100, a process con-
trol strategy 1s developed by creating a software control solu-
tion on the engineering workstation 1106, for example, and
transtferring the solution via the LAN 1108 to the operator
workstation 1102, lab workstation 1104, and to controller/
multiplexer 1110 for execution. The operator workstation
1102 and lab workstation 1104 supply interface displays to
the control/monitor strategy implemented 1n the controller/
multiplexer 1110 and communicates to one or more of the
controller/multiplexers 1110 to view the processes 1112 and
change control attribute values according to the require-
ments ol the designed solution. The processes 1112 are
formed from one or more field devices, which may be smart
field devices or conventional (non-smart) field devices. The
process 1112 1s illustratively depicted as two Fieldbus
devices 1132, a HART (highway addressable remote
transducer) device 1134 and a conventional field device
1136.

In addition, the operator workstation 1102 and lab work-
station 1104 communicate visual and audio feedback to the
operator regarding the status and conditions of the controlled
processes 1112. The engineering workstation 1106 includes
a central processing unit (CPU) 1116 and a display and
input/output or user-interface device 1118 such as a
keyboard, light pen and the like. The CPU 1116 typically

includes a dedicated memory 1117. The dedicated memory

US RE40,817 E

19

1117 mcludes a digital control system program (not shown)
that executes on the CPU 1116 to implement control opera-
tions and functions of the process control environment 1100.
The operator workstation 1102, the lab workstation 1104
and other workstations (not shown) within the process con-
trol environment 1100 1include at least one central processing
unit (not shown) which 1s electrically connected to a display
(not shown) and a user-interface device (not shown) to allow
interaction between a user and the CPU. In one embodiment,
the process control environment 1100 1includes workstations
implemented using a Motorola 68040 processor and a
Motorola 68360 communications processor running in com-
panion mode with the 68040 with primary and secondary
cthernet ports driven by the 68360 processor (SCC1 and
SCC3 respectively).

The process control environment 1100 also includes a
template generator 1124 and a control template library 1123
which, 1n combination, form a control template system
1120. A control template 1s defined as the grouping of
attribute functions that are used to control a process and the
methodology used for a particular process control function,
the control attributes, variables, mputs, and outputs for the
particular function and the graphical views of the function as
needed such as an engineer view and an operator view.

The control template system 1120 includes the control
template library 1123 that communicates with the template
generator 1124. The control template library 1123 contains
data representing sets of predefined or existing control tem-
plate functions for use 1n process control programs. The con-
trol template functions are the templates that generally come
with the system from the system designer to the user. The
template generator 1124 1s an interface that advantageously
allows a user to create new control template functions or
modily existing control template functions. The created and
modified template functions are selectively stored 1n the con-

trol template library 1123.

The template generator 1124 includes an attributes and
methods language generator 1126 and a graphics generator
1128. The attributes and methods language generator 1126
supplies display screens that allow the user to define a plu-
rality of attribute functions associated with the creation of a
new control template function or modification of a particular
existing control template function, such as inputs, outputs,
and other attributes, as well as providing display screens for
enabling the user to select methods or programs that perform
the new or modified function for the particular control tem-
plate. The graphics generator 1128 furnishes a user capabil-
ity to design graphical views to be associated with particular
control templates. A user utilizes the data stored by the
attributes and methods language generator 1126 and the
graphics generator 1128 to completely define the attributes,
methods, and graphical views for a control template. The
data representing the created control template function is
generally stored 1n the control template library 1123 and 1s
subsequently available for selection and usage by an engi-
neer for the design of process control solutions.

The process control environment 1100 1s implemented
using an object-oriented framework. An object-oriented
framework uses object-oriented concepts such as class
hierarchies, object states and object behavior. These
concepts, which are briefly discussed below, are well known
in the art. Additionally, an object-oriented framework may
be written using object-oriented programming languages,
such as the C++ programming language, which are well-
known 1n the art, or may be written, as 1s the case with the
preferred embodiment, using a non-object programming lan-
guage such as C and implementing an object-oriented frame-
work 1n that language.

10

15

20

25

30

35

40

45

50

55

60

65

20

The building block of an object-oriented framework 1s an
object. The object 1s defined by a state and a behavior. The
state ol an object 1s set forth by fields of the object. The
behavior of an object 1s set forth by methods of the object.
Each object 1s an mstance of a class, which provides a tem-
plate for the object. A class defines zero or more fields and
zero or more methods.

Fields are data structures which contain information
defining a portion of the state of an object. Objects which are
instances of the same class have the same fields. However,
the particular information contained within the fields of the
objects can vary from object to object. Each field can contain
information that 1s direct, such as an integer value, or
indirect, such as a reference to another object.

A method 1s a collection by computer instructions which
can be executed 1n CPU 1116 by computer system software.
The 1nstructions of a method are executed, 1.e., the method 1s
performed, when soltware requests that the object for which
the method 1s defined perform the method. A method can be
performed by any object that 1s a member of the class that
includes the method. The particular object performing the
method 1s the responder or the responding object. When per-
forming the method, the responder consumes one or more
arguments, 1.¢., iput data, and produces zero or one result,
1.e., an object returned as output data. The methods for a
particular object define the behavior of that object.

Classes of an object-oriented framework are organized 1n
a class hierarchy. In a class hierarchy, a class inherits the
fields and methods which are defined by the superclasses of
that class. Additionally, the fields and methods defined by a
class are inherited by any subclasses of the class, 1.e., an
instance of a subclass includes the fields defined by the
superclass and can perform the methods defined by the
superclass. Accordingly, when a method of an object 1s
called, the method that 1s accessed may be defined 1n the
class of which the object 1s a member or in any one of the
superclasses of the class of which the object 1s a member.
When a method of an object 1s called, process control envi-
ronment 1100 selects the method to run by examining the
class of the object and, 1f necessary, any superclasses of the
object.

A subclass may override or supersede a method definition
which 1s inherited from a superclass to enhance or change
the behavior of the subclass. However, a subclass may not
supersede the signature of the method. The signature of a
method includes the method’s identifier, the number and
type ol arguments, whether a result 1s returned, and, 11 so, the
type of the result. The subclass supersedes an inherited
method defimtion by redefining the computer instructions
which are carried out in performance of the method.

Classes which are capable of having instances are con-
crete classes. Classes which cannot have instances are
abstract classes. Abstract classes may define fields and meth-
ods which are inherited by subclasses of the abstract classes.
The subclasses of an abstract class may be other abstract
classes; however, ultimately, withuin the class hierarchy, the
subclasses are concrete classes.

All classes defined i1n the disclosed preferred
embodiment, except for mix-in classes which are described
below, are subclasses of a class, Object. Thus, each class that

1s described herein and which 1s not a mix-in class inherits
the methods and fields of class Object.

The process control environment 1100 exists 1n a configu-
ration model or configuration implementation 1210 and a
run-time model or run-time 1mplementation 1220 shown in
FIG. 12. In the configuration implementation 1210, the com-

US RE40,817 E

21

ponent devices, objects, interconnections and interrelation-
ships within the process control environment 1100 are
defined. In the run-time implementation 1220, operations of
the various component devices, objects, interconnections
and interrelationships are performed. The configuration
implementation 1210 and the run-time implementation 1220
are interconnected by downloading. The download language
creates system objects according to definitions supplied by a
user and creates instances from the supplied definitions.
Specifically, a completely configured Device Table relating
to each device 1s downloaded to all Workstations on startup
and when the Device Table 1s changed. For controller/

multiplexers 1110, a downloaded Device Table only
includes data for devices for which the controller/

multiplexer 1110 1s to initiate communications based on
remote module data configured and used in the specific
controller/multiplexer 1110. The Device Table 1s down-
loaded to the controller/multiplexer 1110 when other con-
figuration data 1s downloaded. In addition to downloading
definitions, the download language also uploads instances
and instance values. The configuration implementation 1210
1s activated to execute in the run-time implementation 1220
using an installation procedure. Also, network communica-
tions parameters are downloaded to each device when con-
figuration data are downloaded and when a value 1s changed.
The process control environment 1100 includes multiple
subsystems with several of the subsystems having both a
configuration and a run-time implementation. For example,
a process graphic subsystem 1230 supplies user-defined
views and operator interfacing to the architecture of the pro-
cess control environment 1100. The process graphic sub-
system 1230 has a process graphic editor 1232, a part of the
configuration implementation 1210, and a process graphic
viewer 1234, a portion of the run-time 1implementation 1220.
The process graphic editor 1232 i1s connected to the process
graphic viewer 1234 by an intersubsystem interface 1236 1n
the downloaded language. The process control environment
1100 also includes a control subsystem 1240 which config-
ures and 1nstalls control modules and equipment modules in
a definition and module editor 1242 and which executes the
control modules and the equipment modules 1n a run-time
controller 1244. The definition and module editor 1242 oper-
ates within the configuration implementation 1210 and the
run-time controller 1244 operates within the run-time 1mple-
mentation 1220 to supply continuous and sequencing con-
trol functions. The definition and module editor 1242 1s con-
nected to the run-time controller 1244 by an intersubsystem
interface 1246 in the download language. The multiple sub-
systems are interconnected by a subsystem interface 1250.

The configuration implementation 1210 and the run-time
implementation 1220 interface to a master database 1260 to
support access to common data structures. Various local
(non-master) databases 1262 interface to the master database
1260, for example, to transier configuration data from the
master database 1260 to the local databases 1262 as directed
by a user. Part of the master database 1260 1s a persistent
database 1270. The persistent database 1270 1s an object
which transcends time so that the database continues to exist
alter the creator of the database no longer exists and tran-
scends space so that the database 1s removable to an address
space that 1s different from the address space at which the
database was created. The entire configuration implementa-
tion 1210 1s stored in the persistent database 1270.

The master database 1260 and local databases 1262 are

accessible so that documentation of configurations, statistics
and diagnostics are available for documentation purposes.

The run-time 1mplementation 1220 interfaces to the per-
sistent database 1270 and to local databases 1262 to access

10

15

20

25

30

35

40

45

50

55

60

65

22

data structures formed by the configuration implementation
1210. In particular, the run-time 1mplementation 1220
fetches selected equipment modules, displays and the like
from the local databases 1262 and the persistent database
1270. The run-time 1mplementation 1220 interfaces to other
subsystems to install definitions, thereby installing objects
that are used to create instances, when the definitions do not
yet exist, instantiating run-time instances, and transierring
information from various source to destination objects.

Device Tables are elements of the configuration database
that are local to devices and, in combination, define part of
the configuration implementation 1210. A Device Table con-
tains information regarding a device in the process control
environment 1100. Information items 1 a Device Table
include a device 1D, a device name, a device type, a PCN
network number, an ACN segment number, a simplex/
redundant communication flag, a controller MAC address, a
comment field, a primary internet protocol (IP) address, a
primary subnet mask, a secondary IP address and a second-
ary subnet mask.

Referring to FIG. 13, a block diagram illustrates a user
interface 1300 for usage with both the configuration and
run-time models of the process control environment 1100
shown 1n FIG. 11C. Part of the user interface 1300 1s the
Explorer™ 1310, an interfacing program defined under the
Windows NT™ operating system which features a device-
based configuration approach. Another part of the user inter-
face 1300 1s a module definition editor 1320 for interfacing
to the process control environment 1100 using a control-
based configuration approach.

The Explorers 1310 1s operated by a user to select, con-
struct and operate a configuration. In addition, the
Explorer™ 1310 supplies an initial state for navigating
across various tools and processors 1 a network. A user
controls the Explorer™ 1310 to access libraries, areas, pro-
cess control equipment and security operations. FIG. 13
illustrates the relationship between various tools that may be
accessed by a task operating within the process control envi-
ronment 1100 and the relationship between components of
the process control environment 1100 such as libraries,
areas, process control equipment and security. For example,
when a user selects a “show tags” function from within an
area, a “tag list builder” 1s displayed, showing a list of con-
trol and I/0 flags. From the tag list builder, the user can use
an “add tag” function to add a module to a list, thereby
invoking a “module editor”.

Referring to FIG. 14, a schematic block diagram 1llus-
trates a hierarchical relationship among system objects of a
configuration model 1400. The configuration model 1400
includes many configuration aspects including control, 1/0,
process graphics, process equipment, alarms, history and
events. The configuration model 1400 also includes a device
description and network topology layout.

The configuration model hierarchy 1400 1s defined for
usage by a particular set of users for visualizing system
object relationships and locations and for communicating or
navigating maintenance information among various system
objects. For example, one configuration model hierarchy
1400, specifically a physical plant lierarchy, 1s defined for
usage by maintenance engineers and technicians for visual-
1zing physical plant relationships and locations and for com-
municating or navigating maintenance information among
various instruments and equipment in a physical plant. An
embodiment of a configuration model hierarchy 1400 that
forms a physical plant hierarchy supports a subset of the
SP88 physical equipment standard hierarchy and includes a

US RE40,817 E

23

configuration model site 1410, one or more physical plant
areas 1420, equipment modules 1430 and control modules

1440.

The configuration model hierarchy 1400 1s defined for a
single process site 1410 which 1s divided into one or more
named physical plant areas 1420 that are defined within the
configuration model hierarchy 1400. The physical plant

arcas 1420 optionally contain tagged modules, each of
which 1s umiquely 1instantiated within the configuration
model hierarchy 1400. A physical plant area 1420 optionally
contains one or more equipment modules 1430. An equip-
ment module 1430 optionally contains other equipment
modules 1430, control modules 1440 and function blocks.
An equipment module 1430 includes and 1s controlled by a
control template that 1s created according to one of a number
of different graphical process control programming lan-
guages including continuous function block, ladder logic, or
sequential function charting (“SFC”). The configuration
model hierarchy 1400 optionally contains one or more con-
trol modules 1440. A control module 1440 1s contained 1n an
object such as a physical plant area 1420, an equipment
module 1430 or another control module 1440. A control
module 1440 optionally contains objects such as other con-
trol modules 1440 or function blocks. The control module
1440 1s thus a container class, having instances which are
collections of other objects. The control module 444 1is
encapsulated so that all of the contents and the implementa-
tion of the methods of the control module are hidden.

A controller/multiplexer 1s automatically sensed and
incorporated 1nto a run-time system as shown in FIG. 15. In
step 2210, a controllerymultiplexer, upon connection to the
ACN and application of power, automatically sends a
request for identification or verity IP address assignment.
The request message includes the MAC address of the
controller/multiplexer. The request 1s handled by a
“Plug&Play Network Configuration Service”, which 1s
known 1n the operating system art, at a master configuration
controller/multiplexer in step 2212. In step 2214, the
“Plug&Play Network Configuration Service” receives the
request from the network to assign/verity an IP address,
searches a table of configured devices for a MAC address
match. If a match 1s found, 1n step 2216 the “Plug&Play
Network Configuration Service” responds with the Device
Name, Device ID, IP Address Information, Subnet Mask
Information, ACN Segment Number and other items
included 1n the Device Table. If no match 1s found, in step
2218 the “Plug&Play Network Configuration Service™ auto-
matically generates a default name for the device based on
the controller/multiplexer MAC address (for example,
Controller-000001) The new device 1s added to the database
in a Device Scratch area in step 2220.

In step 2222, using the Explorer™ a user selects each
unassigned controller/multiplexer in the Device Scratch
area, drags the selection to the appropriate ACN segment
and, and either adds the selection to the system as a new
device or drops the selection to a pre-existing device con-
figuration. If the unassigned controller/multiplexer 1s added
as a new device, the configuration processing proceeds 1n the
manner of manual mncorporation of the device. In step 2224,
a user 1s prompted for the real device name using the previ-
ously assigned name ‘Controller-000001° as a default. If
automatic address assignment 1s set, the new device 1is
assigned the next Device ID and associated IP addresses and
Subnet masks are automatically assigned in step 2226. It
manual address assignment 1s set, the device 1s automatically
assigned the next Device ID and the user 1s prompted to

enter the IP Addresses and Subnet Masks 1n step 2228. The

5

10

15

20

25

30

35

40

45

50

55

60

65

24

MAC address for the controller/multiplexer 1s set to the
MAC address of the ‘Controller-000001" as dragged 1nto the
ACN segment. The new controller/multiplexer Name,
Device ID, IP Address, Subnet Masks and ACN number are
added to the device table in the database. The next request by
an unconfigured controller/multiplexer 1s answered by the
“Plug&Play Network Configuration Service™.

If a new controller/multiplexer 1s dragged and dropped
over an existing device, that device must be a controller/
multiplexer type device and have an unassigned MAC
address. Accordingly, the MAC address of the previously
entered controller/multiplexer 1s set to the MAC address of
the ‘Controller-000001” device which was dropped. The new
controller/multiplexer Name, Device 1D, IP Addresses, Sub-
net Masks and ACN number are available for sending to the
requesting controller/multiplexer by the “Plug&Play Net-
work Configuration Service”.

The digital control system program 113 includes an auto-
configure routine for automatically configuring the mput/
output (I/0) subsystem 1n response either to an “auto-
configure” command by a user or 1n response to detection of
a new controller/multiplexer.

Retferring to FIG. 16, a tlow chart illustrates steps of an
automatic configuration routine for configuring a physical
I/0O device. An auto-configure command may be directed to
a Controller/Multiplexer 1110, causing each I/O subsystem
in the Controller/Multiplexer 1110 to auto-configure. An
auto-configure command may be directed to an 1/O
subsystem, causing each I/O Card 1n the I/O subsystem to
auto-configure. An auto-configure command may also be

directed to an I/O Card.

The auto-configure operation for an I/O Card first interro-
gates the I/O Card at a particular card position to determine a
Card Type 1 step 2310 and, implicitly for some I/O Cards,
the number of I/O Ports 1n the I/O Card. If no I/O Card 1s
previously created in the engineering database for that card
position, an I/O Card of the appropriate type 1s defined and
the appropriate number of I/O Ports are created in step 2312.
If an I/O Card does exist in the engineering database for that
card position, but the Card Type 1n the engineering database
does not match the Card Type sensed at the card position, the
auto-configure operation generates a graphic notification of
the mismatch 1n step 2314 and interrogates a user to deter-
mine whether the engineering database 1s to be changed to
include the sensed Card Type. The Card Type in the engi-
neering database 1s changed to the sensed Card Type 1n step
2316 1f requested by the user.

Once the Card Type 1s known, the auto-configuration pro-
gram 1nterrogates each 1/0 Port in accordance with the Card
Type 1n step 2318 to determine the Port Type and, 1f informa-
tion 1s available, the number of I/O Devices on the I/O Port.
If no I/O Port 1s previously created in the engineering data-
base for that port address, an I/O Port of the appropriate type
1s defined and the appropriate number of I/O Devices are
created 1n step 2320. If an I/0 Port exists 1n the engineering
database for the Port address, but the Port Type does not
match the type of the sensed 1/0 Port, the user 1s notified of
the mismatch 1n step 2322, and asked whether the engineer-
ing database 1s to be changed to match the sensed I/O Port 1n
step 2324. The Port Type 1n the engineering database 1s
changed to the sensed Port Type 1n step 2326 1f requested by
the user.

Once the Port Type 1s known, the auto-configuration pro-
gram 1nterrogates each 1/O Device 1 accordance with the
Port Type 1n step 2328 to determine the Device Type. If no
I/0O Device 1s previously created 1n the engineering database

US RE40,817 E

25

for that device address, an I/O Device of the appropriate type
1s defined 1n step 2330. If an I/O Device exists 1in the engi-
neering database for the Device address, but the Device Type
does not match the type of the sensed I/O Device, the user 1s
notified of the mismatch in step 2332, and asked whether the

engineering database 1s to be changed to match the sensed
I/0 Device 1n step 2334. The Device Type 1n the engineering
database 1s changed to the sensed Device Type 1n step 2336
if requested by the user.

In step 2338, instrument signal tags (ISTs) are automati-
cally created for primary signal sources on the 1/O Ports and
I/0 Devices, unless an IST already exists with the 1dentical
signal source path.

While the invention has been described with reference to
various embodiments, 1t will be understood that these
embodiments are 1llustrative and that the scope of the mven-
tion 1s not limited to them. Many variations, modifications,
additions and improvements of the embodiments described
are possible. For example, the control logic for performing
operations may be implemented as executable program code
at any levels including high level languages, assembler
languages, and object codes. The control logic may also be
implemented as state machines, electronic logic, and the
like.

What 1s claimed 1s:

1. A process control system comprising:

a Process;
a plurality of devices coupled to the process;
a communication network coupled to the devices;

a workstation coupled to the plurality of devices via the
network and including a user interface; and

a solftware system executable on the network and imple-
menting a routine for automatically sensing a connec-
tion of a device to a network and placing the connected
device in [an accessible] a standby state for communi-
cating with a user via the user interface prior to com-
missioning the connected device into a predefined con-
trol configuration including:

a routine for configuring the connected device 1n a net-
work control configuration of the plurality of
devices, wherein the routine for configuring the con-
nected device turther includes:

a user-interactive routine for determining a device
type of the connected device;

a user-interactive routine for determining a role of
the connected device with respect to the process
control system;

a user-interactive routine for assigning a physical
device tag the determined role; and

a user-interactive routine for verifying connection of
the device to the network.

2. A process control system comprising:

a Process;
a plurality of devices coupled to the process;
a communication network coupled to the devices;

a workstation coupled to the plurality of devices via the
network and including a user interface; and

a software system executable on the network and imple-
menting a routine for automatically sensing a connec-
tion of a device to a network and placing the connected
device in [an accessible] a standby state for communi-
cating with a user via the user interface prior to com-
missioning the connected device into a predefined con-
trol configuration including:

a routine for configuring the connected device 1n a net-
work control configuration of the plurality of

10

15

20

25

30

35

40

45

50

55

60

65

26

devices, wherein the routine for configuring the con-

nected device further includes:

a user-interactive routine for mitiating calibration of
the connected device; and

a user-interactive routine for configuring the device
within an overall control scheme of the process
control system.

3. A process control system comprising:

a Process;
a plurality of devices coupled to the process;
a communication network coupled to the devices;

a workstation coupled to the plurality of devices via the
network and including a user interface; and

a soltware system executable on the network and 1mple-
menting a routine for automatically sensing a connec-
tion of a device to a network and placing the connected
device in [an accessible] a standby state for communi-
cating with a user via the user interface prior to com-
missioning the connected device into a predefined con-
trol configuration, the software system including:

a routine for commissioning the connected device
including:

a user-interactive routine for assigning a physical
device tag, a device address, and a device 1dentifi-
cation to the connected device; and

a user-interactive routine for installing a control
strategy to the digital device.

4. A control system comprising;:

a network:

a plurality of devices coupled to the network;

a distributed controller coupled to the plurality of devices
and controlling the plurality of devices according to a
defined control configuration, the distributed controller
having standby control logic including:

a control logic for sensing a device that 1s connected to
the network but not included 1n the defined control
configuration;

a control logic for supplying imitial mterconnect infor-
mation to the connected device;

a control logic for uploading configuration parameters
from the connected device to the distributed control-
ler; and

a control logic for configuring the connected device 1n
the defined control configuration including:

a user-interactive control logic for determining a
device type of the connected device;

a user-interactive control logic for determining a role
of the connected device with respect to the process
control system;

a user-interactive control logic for assigning a physi-
cal device tag the determined role; and

a user-interactive control logic for veriiying connec-
tion of the device to the network.

5. A control system comprising;:

a network:
a plurality of devices coupled to the network;

a distributed controller coupled to the plurality of devices
and controlling the plurality of devices according to a
defined control configuration, the distributed controller
having standby control logic including:

a control logic for sensing a device that 1s connected to
the network but not included 1n the defined control
confliguration;

a control logic for supplying imitial interconnect infor-
mation to the connected device;

US RE40,817 E

27

a control logic for uploading configuration parameters
from the connected device to the distributed control-
ler; and

a control logic for configuring the connected device 1n
the defined control configuration including:

a user-interactive control logic for initiating calibra-
tion of the connected device; and
a user-interactive control logic for configuring the
device within an overall control scheme of the pro-
cess control system.
6. A control system comprising:

a network;
a plurality of devices coupled to the network;

a distributed controller coupled to the plurality of devices
and controlling the plurality of devices according to a
defined control configuration, the distributed controller
having standby control logic including:

a control logic for sensing a device that 1s connected to
the network but not included 1n the defined control
configuration;

a control logic for supplying imitial interconnect infor-
mation to the connected device;

a control logic for uploading configuration parameters
from the connected device to the distributed control-
ler; and

a control logic for commissioning the connected device
including:

a user-interactive control logic for assigning a physi-
cal device tag, a device address, and a device 1den-
tification to the connected device; and

a user-interactive control logic for installing a control
strategy to the digital device.

7. A method of configuring a control system comprising:

predetermining a configuration of devices coupled to a
network:

sensing a connection to the network of a device that 1s not
included in the predetermined configuration;

assigning the connected device a standby address which
allows access to device information and configuration
parameters of the connected device;

commissioning the connected device into an operational
state 1n communication with the control system, includ-
ng:
assigning to the connected device a physical device tag,
a device address, and a device 1dentification;
installing a control strategy to the connected device;
and

placing the connected device i an operational state 1n
communication with the network; and

configuring the connected device in combination with the

predetermined configuration of devices.

8. An executable program code for performing the method
according to claim 7.

9. An article of manufacture comprising a storage storing,
an executable program code for performing the method
according to claim 7.

10. A method of configuring a control system comprising:

predetermining a configuration of devices coupled to a
network;

sensing a connection to the network of a device that 1s not,
included in the predetermined configuration;

assigning the connected device a standby address which
allows access to device information and configuration
parameters of the connected device;

commissioning the connected device into an operational
state 1n communication with the control system; and

10

15

20

25

30

35

40

45

50

55

60

65

28

configuring the connected device 1n combination with the

predetermined configuration of devices, including:

interrogating the connected device to determine a
device type;

determining a role of the connected device 1n the con-
text of the predetermined configuration; and

assigning a physical device tag so that the determined
role 1s set.

11. An executable program code for performing the
method according to claim 10.

12. An article of manufacture comprising a storage storing
an executable program code for performing the method
according to claim 10.

13. A method of configuring a control system comprising;:

predetermining a configuration of devices coupled to a
network:

sensing a connection to the network of a device that 1s not
included in the predetermined configuration;

assigning the connected device a standby address which
allows access to device information and configuration
parameters of the connected device;

commissionmng the connected device into an operational
state 1n communication with the control system; and

configuring the connected device 1n combination with the
predetermined configuration of devices, including:
calibrating the connected device.
14. An executable program code for performing the
method according to claim 13.
15. An article of manufacture comprising a storage storing

an executable program code for performing the method
according to claim 13.

16. An executable logic operating 1n a network for config-
uring a control system comprising:

means lfor predetermining a configuration of devices
coupled to a network;

means for sensing a connection to the network of a device
that 1s not included 1n the predetermined configuration;

means for assigning the connected device a standby
address which allows access to device information and
conflguration parameters of the connected device;

means for commissioning the connected device mto an

operational state 1n communication with the control

system, including:

means for assigning to the connected device a physical
device tag, a device address, and a device 1dentifica-
tion;

means for installing a control strategy to the connected
device; and

means for placing the connected device 1n an opera-
tional state i1n communication with the network; and

means for configuring the connected device 1n combina-
tion with the predetermined configuration of devices.
17. An article of manufacture comprising a storage storing
an 1mplementation of the executable logic according to
claim 16.
18. An executable logic operating 1n a network for config-
uring a control system comprising:

means for predetermining a configuration of devices
coupled to a network;

means for sensing a connection to the network of a device
that 1s not 1included 1n the predetermined configuration;

means for assigning the connected device a standby
address which allows access to device information and

configuration parameters ol the connected device;

means for commissioning the connected device into an
operational state 1 communication with the control
system; and

US RE40,817 E

29

means for configuring the connected device in combina-

tion with the predetermined configuration of devices

including:

means for iterrogating the connected device to deter-
mine a device type;

means for determining a role of the connected device 1n
the context of the predetermined configuration; and

means for assigning a physical device tag so that the
determined role 1s set.

19. An article of manufacture comprising a storage storing
an i1mplementation of the executable logic according to
claim 18.

20. An executable logic operating 1n a network for config-
uring a control system comprising:

means for predetermining a configuration of devices
coupled to a network;

means for sensing a connection to the network of a device
that 1s not included 1n the predetermined configuration;

means for assigning the connected device a standby
address which allows access to device information and
conflguration parameters of the connected device;

means for commissioning the connected device into an
operational state 1n communication with the control
system; and

10

15

20

30

means for configuring the connected device 1n combina-
tion with the predetermined configuration of devices
including:
means for calibrating the connected device.

21. An article of manufacture comprising a storage storing,
an 1mplementation of the executable logic according to
claim 20.

22. A process control system comprising;

a process;
a plurality of devices coupled to the process;
a communication network coupled to the devices;

a workstation coupled to the plurality of devices via the
network and including a user interface; and

a soltware system executable on the network and imple-
menting a routine for automatically sensing a connec-
tion of a device to a network and placing the connected
device in [an accessible] a standby state for communi-
cating with a user via the user interface,

wherein the devices are field devices selected from
devices including pumps, valves, and motors.

UNITED STATES PATENT AND TRADEMARK OFFICE
CERTIFICATE OF CORRECTION

PATENT NO. . RE 40,817 E Page 1 of 1
APPLICATION NO. :10/037019

DATED . June 30, 2009

INVENTOR(S) . Kenneth D. Krivoshein et al.

It is certified that error appears in the above-identified patent and that said Letters Patent is
hereby corrected as shown below:

At Column 9, line 3, “are” should be -- includes --.
At Column 9, line 4, “refer” should be -- refers --.
At Column 16, line 54, first instance, “devices” should be -- device --.

At Column 16, line 54, second instance, “devices” should be -- device --.
At Column 16, line 55, “will” should be -- that will --.

At Column 17, line 40, “devices” should be -- device --.
At Column 18, line 7, “the fact” should be -- because --.

At Column 18, line 50, “communicates” should be -- communicate --.

Signed and Sealed this

Fifteenth Day of December, 2009

Dot 3T s

David J. Kappos
Director of the United States Patent and Trademark Office

	Front Page
	Drawings
	Specification
	Claims
	Corrections/Annotated Pages

