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DATA CONVERTER FOR PERFORMING
EXPONENTIATION IN POLYNOMIAL
RESIDUE CLASS RING WITH VALUE IN
FINITE FIELD AS COEFFICIENT

Matter enclosed in heavy brackets [ ] appears in the
original patent but forms no part of this reissue specifica-
tion; matter printed in italics indicates the additions
made by reissue.

This is a reissue application of U.S. Pat. No. 6,995,692,
issued Feb. 7, 2006.

BACKGROUND OF THE INVENTION

(1) Field of the Invention

The present imnvention relates to a data converter that real-
1zes a data conversion system used for an authentication sys-
tem and to a method thereol, 1n particular to a data converter
that can be realized 1n an especially small size of implemen-
tation scale and has a high data confusion and to a method
thereof.

(2) Description of the Related Art

In a challenge-response authentication system which 1s
one of a method for examining a validity of a communica-
tion partner and the like, a secret conversion system 1s neces-
sary for both authenticating and authenticated sides. As
requirements for the secret conversion system, it 1s wished
not only to have high data confusion performance
(avalanche performance) but also to mount the method onto
an apparatus at low cost.

As a conventional example of a data conversion system,
there 1s a system of using a secret key encryption system. For
example, 1n the case of where the challenge-response
authentication system 1s realized by a data conversion sys-
tem using a 56 bits key length Data Encryption Standard
(DES) encryption system (for details about the DES encryp-
tion system, refer to Menezes, Alired I., et al., “HAND-
BOOK of APPLIED CRYPTOGRAPHY”, CRC Press,
1997: 252-256), both of the authenticating side and the
authenticated side secretly store a 356 bits key of the DES
encryption system as an authentication key. Also, a plaintext
and encrypted text of the DES encryption system are respec-
tively determined as an mput and an output for the data
converting system. Accordingly, the DES encryption method
can be used for a secret data converting system for an

authentication (for details about the authentication system,
refer to Menezes, Alired J., et al., “HANDBOOK of

APPLIED CRYPTOGRAPHY”, CRC Press, 1997: 400-
403).

However, the secret key encryption system such as the
DES encryption system 1s not constructed considering for
sharing a circuit with other circuits that are mounted
together with an encryption circuit in an apparatus.
Therefore, 1t needs to be mounted as a circuit independent
from other circuits. Accordingly, 1n a data conversion system
using the conventional secret key encryption system, an
encryption circuit 1s independently mounted separately from
other circuits 1n the apparatus so that a scale of the circuit in
the apparatus as a whole becomes large. That 1s, 1n order to
realize an apparatus at a low cost, 1t 1s generally required to
make a total scale of the circuit mounted in the apparatus
smaller as possible. Therefore, 1t 1s desirable for the encryp-
tion circuit mounted in the apparatus to share the circuit with
other circuits. However, 1t 1s not realized 1in the conventional
structure.

Considering the above mentioned problem, the present
invention aims to provide a data converter capable of reduc-
ing the total size of the implementation scale in an apparatus.
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2
SUMMARY OF THE INVENTION

A data converter by the present invention comprises: a
splitting unit operable to split input data mto a plurality of
data blocks; a conversion performing unit operable to per-
form conversion on each one of the plurality of data blocks,
the conversion being based on an exponentiation to a prede-
termined exponent 1n a polynomial residue class ring with a
value 1n a finite field GF (27), the n being a natural number,
as a coellicient; and an output data generating unit operable
to generate output data based on the plurality of data blocks
converted by the conversion performing unit, wherein the
predetermined exponent 1s a value that 1s 3 or larger and
other than 2™, the m being an integer which 1s 1 or larger.

According to this structure, 1n the exponentiation, the
multiplication 1n the polynomial residue class ring 1s per-
formed. By performing an operation in the polynomaial resi-
due class ring, even 1 a part of the input data 1s changed as
described later, the change affects all bits in the output data.
Therefore, the data confusion can be improved. Also, when a
multiplication with two or more varnables 1s performed, 1T
any one ol the variables 1s 0, a result of the multiplication
becomes O regardless of values of other variables and a bet-
ter data confusion performance 1s not shown. On the other
hand, when an exponentiation of the input data 1s performed,
the data confusion performance can be improved without
causing such problems. Furthermore, 1n the exponentiation,
an operation in the polynomial residue class ring with a
value 1n the finite field GF (27) (n 1s a natural number) as a
coellicient 1s performed. Additionally, a circuit can be shared
with the operational circuit in the finite field GF (2”) used 1n
an error-correction coding circuit such as a Reed-Solomon
coding and a Bose-Chaudhuri-Hocgenghem (BCH) coding.
Consequently, the size of implementation scale of an appara-
tus as a whole can be reduced and an apparatus implemented
in a compact circuit scale 1s realized.

As further mnformation about technical background to this
application, the disclosure of Japanese Patent Application
No. 2003-353439 filed on Oct. 14, 2003 1including
specification, drawings and claims 1s incorporated herein by
reference 1n its entirety.

BRIEF DESCRIPTION OF THE DRAWINGS

These and other objects, advantages and features of the
invention will become apparent from the following descrip-
tion thereol taken in conjunction with the accompanying
drawings that 1llustrate a specific embodiment of the mven-
tion. In the Drawings:

FIG. 1 15 a block diagram showing an authentication sys-
tem according to an embodiment of the present invention.

FIG. 2 1s a block diagram showing an example of a con-
figuration of a data converter according to the embodiment
of the present invention.

FIG. 3 1s a block diagram showing an example of a con-
figuration of a finite field cubing unit according to the
embodiment of the present invention.

FIG. 4 1s a block diagram showing an example of a con-
figuration of a finite field polynomial multiplying unit
according to the embodiment of the present invention.

FIG. 5 1s a block diagram showing an example of a con-
figuration of a first converter according to the embodiment
of the present invention.

FIG. 6 1s a block diagram showing an example of a con-
figuration of a second converter according to the embodi-
ment of the present invention.

FIG. 7 1s a block diagram showing an example of a con-
figuration of a finite field multiplying unit according to the
embodiment of the present invention.
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FIG. 8 1s a block diagram showing an example of a con-
figuration of a finite field doubling unit according to the
embodiment of the present invention.

FI1G. 9 1s a block diagram showing an example of a system
configuration in the case where the converter by the present
invention 1s applied to a content distribution system.

FIG. 10 1s an outside drawing of an LSI of an error-
correction/data converter.

FIG. 11 1s a block diagram showing an example of a con-
figuration of the error-correction/data converter.

DESCRIPTION OF THE PREFERRED
EMBODIMENT(S)

The following explains about an embodiment of the
present invention with references to diagrams.

(Configuration of Authentication System with Data
Converter)

FIG. 1 1s a block diagram showing a configuration of an
authentication system according to an embodiment of the
present invention. In the authentication system, an authenti-
cating apparatus 3 authenticates an authenticated apparatus 4
by a challenge-response authentication system. As a specific
example of the present authentication system, for example, 1t
1s represented by a keyless entry system for a car in which
the authenticating apparatus 3 i1s an on-vehicle equipment
for controlling open and close of a door of the car and the
authenticated apparatus 4 1s a portable terminal held by a
user for opening and closing the door of the car.

The authenticating apparatus 3 generates random data
with 64 bits 1n a random number generation apparatus 3 and
sends 1t to the authenticated apparatus 4 as challenge data.
The authenticated apparatus 4 converts received challenge
data in the data converter 2 and sends 64 bits converted data
which 1s a result of the conversion to the authenticating
apparatus 3 as response data. The authenticating apparatus 3
converts the random number data in the data converter 1
while the authenticated apparatus 4 1s performing the above
mentioned processing and generates 64 bits converted data
as the result of the conversion. The authenticating apparatus
3 then compares, 1n a data comparison device 6, the response
data recerved from the authenticated apparatus 4 with the
converted data and authenticates the authenticated apparatus
4 as valid only when both data correspond to each other.
Here, the data converter 1 1n the authenticating apparatus 3
and the data converter 2 in the authenticated apparatus 4
perform the same conversion processing and content of the
processing 1s shared secretly between the authenticating
apparatus 3 and the authenticated apparatus 4.

(Configuration of Data Converter 1 and 2)

Whereas the data converters 1 and 2 have a same
configuration, the following explains only about an internal
configuration of the data converter 1.

FIG. 2 1s a diagram showing an internal configuration of
the data converter 1. The data converter 1 1s a processing
apparatus that performs a predetermined secret converting
processing on nput data with 64 bits and generates output
data with 64 bits. It has a finite field polynomial cubing unit
10, a data integrating units 11a—11d, 12 and 13, a first con-
verter 14, a second converter 15, data splitting umit 16, and a
data integrating umt 17. The following explains about inter-
nal performances when input data with 64 bits i1s iputted
into the data converter 1.

Firstly, the data splitting unit 16 split, from high-ordered
bits, the 64 bit input data into two data blocks each having 32
bits. Here, the high-ordered 32 bit data block 1s called data A
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4

and the low-ordered 32 bit data block 1s called data B. The
data A 1s inputted into the data integrating units 11a and 11c¢
and the data B 1s inputted into the data integrating units 11b
and 11d. The data integrating units 11a and 11c respectively
perform exclusive OR operation (XOR), for each bit, on the
inputted 32 bit data A with a fixed 32 bits data K1 and K3
and output 32 bit data A0 and Al. Further, the data integrat-
ing units 11b and 11d respectively perform the exclusive OR
operation (XOR), for each bit, on the 32 bit data B with fixed
bit data K2 and K4 and output 32 bit data B0 and B1. Here,
the 32 bit data K1 to K4 are fixed values determined in
predetermined values.

Next, the finite field polynomaial cubing unit 10 cubes each
of the 32 bit data A0, B0, A1 and B1 1n a polynomial residue
class ring with a value in a finite field GF (2°) as a coefficient
which 1s described later and calculates respectively 32 bit
data of (A0)°, (B0)°, (A1)°, and (B1)’. The detail about pro-
cesses of the finite field polynomial cubing unit 10 1s
explained later.

Next, the 32 bit data (A0)” and (B0)’ are inputted to the
data integrating unit 12 and the 32 bit data (A1) and (B1)’
are mputted to the data integrating unit 13.

The data integrating unit 12 and the data integrating unit
13 perform an exclusive OR operation for each bit respec-
tively on two 1nputted 32 bit data and output 32 bit data of
(A0)’(+)(B0)® and (A1)°(+)(B1)’. Here, “X(+Y” means the
exclusive OR operation (XOR), for each bit, between X and
Y.

The first converter 14 then performs a predetermined con-
version on the 32 bit data of (A0)°(+)(B0)° based on an
operation in a finite field GF (2°) which is explained later
and outputs 32 bit data GO0. Also, the second converter 15
performs a predetermined conversion on the (A1) (+)(B1)”

based on an operation in the finite field GF (2°) and outputs
32 bit data G1.

After the above processes, the data integrating unit 17
connects the 32 bit data G0 as the high-ordered 32 bits and
the 32 bit data G1 as the low-ordered 32 bits and outputs the
result as 64 bit data. The 64 bit data 1s output data of the data
converter 1. Next, it 1s explained about an internal configura-

tion and performances of the finite field polynomial cubing
unit 10.

(Internal Configuration of Finite Field Polynomial Cubing
Unit 10)

FIG. 3 1s a diagram showing an example of the internal
configuration of the finite field polynomial cubing unit 10.
The finite field polynomial cubing unit 10 1s a processing
unit of cubing in the polynomial residue class ring with a
value in the finite field GF (2%) as a coefficient. It is com-
posed of an mput control unit 101, a finite field polynomal
multiplying unit 100 and an output controlling unit 102.

The mput controlling unit 101 performs a control so that
one of the two blocks of input data i1s outputted. The finite
field polynomial multiplying unit 100 multiplies the two
blocks of input data in the polynomial residue class ring with
a value in the finite field GF (2%) as a coefficient. The output
controlling unit 102 performs a control so that the input data
1s outputted to one of the two output destinations.

Hereafter, 1t 1s explained about internal performances
when 32 bit input data X 1s mputted to the finite field poly-
nomial cubing unit 10. The 1nput data X 1s mputted to the
input controlling unit 101 and the finite field polynomial
multiplying unit 100. The mput control unit 101 nputs the
input data X directly to the finite field polynomaial multiply-
ing unit 100. The finite field polynomial multiplying unit
100 multiplies the 32 bit data X mputted from outside and
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the 32 bit data X mputted from the input controlling unit 101
in the polynomial residue class ring with a value 1n the finite
field GF (2°) as a coefficient (details are explained later),
outputs the multiplication result X, and inputs it to the out-
put controlling unit 102. It 1s explained later about the 5

detailed processes of the finite field polynomial multiplying
unit 100.

The output controlling unit 102 inputs the input data X*
directly to the mput controlling unit 101. The mput control-
ling unit 101 then inputs the input data X* to the finite field 10
polynomial multiplying unit 100.

The finite field polynomial multiplying unit 100 multi-
plies the input data X* and the input data X and inputs the
product X to the output controlling unit 102. The multipli-

cation herein 1s a multiplication in the polynomial residue 15
class ring as described above.

The output controlling unit 102 outputs the input data X°
as output data of the finite field polynomial cubing unit 10.
Next, 1t 1s explained about an 1nternal configuration and per-

formances of the finite field polynomial multiplying unit 20
100.

(Internal Configuration of Finite Field Polynomial Multi-
plying Unit 100)

FIG. 4 1s a diagram showing an example of the internal
structure of the finite field polynomial multiplying unit 100. 25
The fimite field polynomial multiplying unit 100 multiplies
the 32 bat first input data X and the 32 bit second mnput data’Y
in the polynomial residue class ring with a value 1n the finite
field GF (2%) as a coefficient and outputs an output data D
with 32 biats. A residual polynomial of the polynomial resi- 3¢
due class ring herein is denoted L(X)=X"*-1 and a primitive
polynomial m(x) of the finite field GF (2%) is denoted m(x)=
X"+X +X +x+1. Prior to an explanation about performances
of the finite field polynomial multiplying unit 100, 1t is
explained brietly about an operation in the finite field GF

35
(2%) and an operation in the polynomial residue class ring.

Firstly, 1t 1s explained about the operation 1n the finite field
GF (2°). For the operation in the finite field GF (2%), if a
value of each bit of the 8 bit data A 1s denoted a7, a6, . . ., a0
from a high-ordered bit, a polynomial of the seventh order
a(X)=aTxx’+a6xx°+ . . . +alxx+a0 is considered by associat-
ing with the values. Similarly, denoting a value of each bit of
the 8 bit data b7, b6, . . . , b0 from a high-ordered bit, a
polynomial of the seventh order b(x)=b7xx’+b6+x°+ . . .
+b1xx+b0 1s considered by associating with the values.
Herein, the sum C of A and B in the finite field GF (2%)isa *
result of which the sum c(x) calculated c(x)=a(x)+b(x) in the
finite field GF (2) 1s converted into 8 bit data by associating
the 8 bit data with the polynomial of the seventh order which
is described above. That is, taking c(X)=c7xx’+c6+x°+
clxx+c0, 1t 1s obtained as follow: 50

40

c7=a7+b7
cO=a20+b0
55
cl=al+bl
c0=a20+b0
60

Here, an addition “+” between the 1 bit data and the 1 bit
data 1s all performed 1n the finite field GF (2). That 1s, 0+0=
1+1=0 and therefore calculated as 0+1=1+0=1.

From the above, the addition in the finite field (2°) is
nothing but performing an exclusive OR operation for each 65
bit. In other words, the result C of the sum of A and B 1s
denoted C=A(+)B.

6

Next, a multiplication in the finite field GF (2%) is
explained. As described above, when 8 bit data A, B and C
are denoted as the seventh order polynomials a(x), b(x) and
c(x), the result C of multiplying 8 bit data A and B 1s
obtained by following equation using corresponding seventh
order polynomials a(x), b(x) and c(x).

c(X)=a(x)xb(x)mod m(x)

Here, “1(x) mod g(x)” 1s a residual calculation result of
residual calculation 1(x) modulo g(x) and m(x) 1s, as
described before, a primitive polynomial m(x)=x"+X"+x"+
x+1 in the finite field GF(2%). Also, the polynomial multipli-
cation herein, an addition and a multiplication of coellicients
by residual calculation, are calculated 1n the finite field GF
(2). The addition 1n the finite field GF (2) 1s as described and
the multiplication 1s given Ox0=0x1=1x0=0, 1x1=1.

An example of the multiplication 1s explained. Gwen
A=57 (hexadecima) and B=83 (hexademma]) a(x)—x +X
x“+x+1 and b(x)=x"+x+1. Then, a(x)xb(x)=x L x” +x +
x°+x°+x*+x°+1 and so a(x)xb(x) mod m(x)—x +x°+1.
Therefore, the result C of multiplying A and B 1s hexadeci-
mal C1.

Next, 1t 1s explained about an operation 1n the polynomial
residue class ring with a value in the finite field GF (2%) as a
coellicient. In an operation in the polynomial residue class
ring, when each byte of the 32 bit data A 1s denoted A0, Al,
A2 and A3 from the high-ordered byte, 1 byte data A0 to A3
are applied to the third order polynomial A(X)=A0+A1xX+
A2xX*+A3xX">. Similarly, when each byte of 32 bit data B
and C are respectively denoted B0, B1, B2, B3 and C0, C1,
C2 and C3, the 1 byte data B0 to B3 and CO0 to C3 are
respectively applied to the following polynomials of B(X)=
B0+B1xX+B2xX*+B3xX" and C(X)=C0+C1xX+C2xX*+
C3xX°. Herein, the addition in the polynomial residue class
ring 1s obtained by C(X)=A(X)+B(X). The addition of poly-
nomial coetlicients herein 1s an addition 1n the fimite field GF
(2%) as explained above. In other words, the addition of 32
bit data A and B can be obtained only performing an exclu-
stve OR operation for each bit.

Next, the multiplication 1n the polynomial residual class
ring 1s explained. Given 32 bit data C as the result of multi-
plying the 32 bit data A and B, as explained above, when
cach data 1s applied to the third order polynomials A(X),
B(X) and C(X), the multiplication 1n the polynomial residue
class ring 1s expressed as the following polynomial opera-
tion:

C(X)=AX)xB(X)mod L(X)

Here, L(X) is, as explained, L(X)=X"-1 and the addition
and multiplication of the polynomial coelficients are calcu-
lated in the finite field GF (2®). Therefore, the above equa-
tion 1s calculated as follows:

C(X)=A0xB0+(A0xB1+A1xB0)xX+(A0xB2+A2xB0+A1xB1)x
X?+(A0xB3+A1xB2+A2xB1+A3xB0)xX>+(A1xB3+A3xB1+
A2xB2)xX*+(A2xB3+A3xB2)x X" +(A3xB3)xX° (mod X*-1)

Herein, X4=1(mod X*-1) so that the above equation can
be modified further as follows:

C(X)=(A0xBO+A3xB1+A2xB2+A1xB3)+(A1xB0+A0xB1+A3x
B2+A2xB3)xX+(A2xB0+A1xB1+A0xB2+A3xB3)xX2+(A3x
B0+A2xB1+A1xB2+A0xB3)xX>
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Therefore, C can be calculated as follows:

CO0=A0xB0+A3xB1+A2xB2+A1xB3

C1=Al1xB0+A0xB1+A3xB2+A2xB3
C2=A2xB0+A1xB1+A0xB2+A3xB3

C3=A3xB0+A2xB1+A1xB2+A0xB3

The addition “+” and the multiplication “x™ herein are oper-
ated in the finite field GF (2%).

With that, the explanation about the operations 1n the
polynomial residue class ring and in the finite field GF (2°) is
closed. Then, 1t 1s now explained about a performance of the
finite field polynomial multiplying unit 100.

The finite field polynomial multiplying unit 100 1s a pro-
cessing unit which multiplies two blocks of input data in the
polynomial residue class ring with a value 1n the finite field
GF (2%) as a coefficient. It is composed of a finite field mul-
tiplying umt 110, data splitting umits 111 to 112, data adding,
units 113 to 115, a data itegrating unit 116, and an opera-
tion controlling unit 117.

The fimite field multiplying unit 110 performs multiplica-
tion in the finite field GF (2%). Each of the data splitting units
111 and 112 splits 32 bit input data into four blocks of data
cach having 8 bits. Each of the data adding units 113 to 115
adds two input data in the finite field GF (2°). The data
integrating unit 116 integrates four blocks of 8 bit data and
outputs them as 32 bit data. The operation controlling unit
117 performs 1nput control of multiplicands and multipliers
inputted from the data splitting unit 111 and the data split-
ting unit 112 to the finite field multiplying umt 110 and
output destination control of data outputted from the finite
field multiplying umit 110. Hereatter, 1t 1s explained about
performances of the finite field polynomial multiplying unit
100.

The data splitting umit 111 splits the first input data with
32 bits, from a high-ordered byte, mto four blocks of data
having 8 bits each. Here, the four data blocks are denoted,
from the high order byte, X0, X1, X2 and X3. The data
splitting unit 112 similarly splits the second input data with
32 bits, from the high-ordered byte, into four blocks of data
having 8 bits each. Here, the four blocks of data are denoted,
from the high-ordered byte, Y0, Y1, Y2 and Y3. Hereafter,
the operation controlling unit 117 controls 1input and output
data when necessary and the finite field multiplying unit 110
and the data adding units 113 to 115 are calculates the bit
data D0, D1, D2 and D3 according to the following equa-
tions (1) to (4).

DO=X0xY0+X3xY1+X2xY2+X1xY3 (1)
(2)
(3)

(4)

DI=X1xY0+X0xY1+X3xY2+X2xY3
D2=X2xY0+X1IxY1+X0xY2+X3xY3

D3=X3xY0+X2xY1+X1xY2+X0xY3

Note that all of the multiplications “x” and the additions
“4” are operated in the finite field GF (2°). The reason why
the above equations indicate the product of data X and data
Y 1s as explained above.

It 1s now explained only about performances of the finite
polynomial multiplying unit 100 for calculating the data DO.
The data D1 to D3 are calculated by the similar perfor-
mances.

The operation controlling unit 117 selects, as inputs to the
finite field multiplying unit 110, data X0 from the data X0 to
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X3 and data YO0 from the 8 bit data YO to Y3. The finite field
multiplying unit 110 multiplies data X0 and data YO0 1n the

finite field GF (2%) and outputs the multiplication result as
data Z0. That 1s,

Z0=X0xY0

1s calculated.
Next, by similar performances, the finite field multiplying
unit 110 multiplies data X3 and Y1 in the finite field GF (2°)

and outputs the calculation result as data Z1. That 1s,

Z1=X3xY1

1s calculated. Similarly,

/2=X2xY2

/3=X1xY3

are calculated.
After outputting the Z0 to Z3, the data adding units 113 to
115 add data Z0 to Z3 in the finite field GF (2%). That is,

D0=/0+/1+/2+/3

is calculated. Note that the addition in the finite field GF (2%)
1s no other than the exclusive OR operation for each bit
itself. Therefore, the above calculations equal to perform the
exclusive OR operation on the data Z0 to Z3 for each bit
value. Similarly, the data adding units 113 to 1135 are
obtained by calculating the following equations:

DI=X1IxY0+X0xY1+X3xY2+X2xY3

D2=X2xYO0+X1IxY1+X0xY2+X3xY3

D3=X3xY0+X2xY1+X1xY2+X0xY3

The data integrating unit 116 connects data D0, D1, D2 and
D3 from the high-ordered byte and outputs the 32 bit data D
as output data of the finite field polynomial multiplying unit
100.

Next, it 1s explained about an internal configuration and
performances of the first converter 14.

(Internal Structure of First Converter 14)

FIG. 5 15 a diagram showing an example of the internal
configuration of the first converter 14.

The first converter 14 1s a processing unit which performs
a predetermined conversion on the 32 bit mnput data X using
an operation in the finite field GF (2°) and outputs the 32 bit
output data Y. It 1s composed of a data splitting unit 20, a
data mtegrating unit 21, a constant storing unit 22 and a
finite field multiplying unit 210. The data splitting unit 20
splits the 32 bit imnput data into four blocks of 8 bit data. The
data integrating unit 21 integrates the four blocks of 8 bit
data and outputs them as the 32 bit data. The constant storing
unit 22 stores four 8 bit constants C1 to C4. The fimite field
multiplying unit 210 multiplies the two blocks of 8 bit input
data in the finite field GF (2%) and outputs 8 bit output data.
Hereaftter, 1t 1s explained about performances of the first con-
verter 14 are explained.

The data splitting unit 20 splits the 32 bit mnput data, from
the high-ordered byte, into blocks of data having 8 bits each.
Here, 8 bit data after the split 1s denoted data X0, X1, X2 and
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X3 from the high-ordered byte. The finite field multiplying
unit 210 multiplies the data X0 and the 8 bit constant C1
stored 1n the constant storing unit 22 1n the finite field GF
(2%) and outputs the result as output data Y0. Similarly, the
finite field multiplying unit 210 1) multiplies the data X1 and
the constant C2 and outputs as data Y1, 11) multiplies the data
X2 and the constant C3 and outputs as data Y2, and 1)
multiplies the data X3 and the constant C4 and outputs as
data Y3. According to the series of performances following
equations are calculated:

Y0=C1xX0
Y1=C2xX1
Y2=C3xX2
Y3=C4xX3

Note that all of the multiplications “x” are calculated 1n the
finite field GF (2°).

After the processing, the data integrating unit 21 connects
data Y0, Y1, Y2 and Y3 from the high-ordered byte and
outputs the 32 bit data 'Y as output data of the first converter
14.

(Internal Configuration of Second Converter 15)

As shown 1 FIG. 6, for the imnternal configuration of the
second converter 15, the constants stored in the constant
storing unit 32 C1, C2, C3 and C4 in the first converter 14
are respectively changed to C5, C6, C7 and C8 1n the second
converter 15. Otherwise, other imternal configurations and
performances of the second converter 15 are same as of the
first converter 14. Therefore, the explanations for the details
are not repeated 1n here.

Next, with reference to FIG. 7, 1t 1s explained about the
internal configurations and performances of the finite field
multiplying units 110, 210 and 310.

(Internal Configurations of the Fimite Field Multiplying
Units 110, 210 and 310)

The finite field multiplying units 110, 210 and 310 have
same 1nternal configuration and perform same performance.
Therefore, the performance of the finite field multiplying
unit 110 1s only explained 1n here. Whereas the multiplica-
tion method in the finite field GF (2°) is as explained above,
the configuration for realizing the calculation 1n a circuit
compact 1n size 1s explained 1n here.

The fimite field multiplying unit 110 1s a processing unit
which multiplies the first 8 bit input data X and the second 8
bit input data Y in the finite field GF (2%) and outputs 8 bit
output data Z. It 1s composed of a first input controlling unit
411, a second input controlling unit 414, an output control-
ling umit 412, a fimite field doubling unit 410, a data integrat-
ing unit 413, and a data splitting unit 4135.

Each of the first input controlling unit 411 and the second
input controlling unit 414 performs control for selecting
either one of the two mput data blocks and outputting the
selected data block. The finite field doubling unit 410
doubles the input data in the finite field GF (2°). The data
integrating unit 413 integrates two mput data. The data split-
ting unit 415 splits the mput data into a plurality of data.
Hereafter, 1t 1s explained about performances of the finite
field multiplying unit 110.

First, the data splitting unit 415 splits 8 bit second input
data Y into one bit each from the high-ordered bit and each
value 1s denoted Y7, Y6, . . ., and Y0. Then, the following
processes (1) to (5) are repeated 1n the order of 1=7, 6, 5, 4, 3,
2,1 and 0.

(1) The first mput controlling unit 411 nputs, nto the
finite field doubling unit 410, an 1nitial value=0 of the 8 bits
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when 1=7 and inputs 8 bit data to be outputted from the
output controlling unit 412 when 1=7.

(2) The finite field doubling unit 410 doubles the 8 bit data
inputted from the first input controlling unit 411 1n the finite
field GF (2°) and inputs the 8 bit data which is the result into
the data integrating unit 413.

(3) The second input controlling unit 414 inputs, into the
data integrating unit 413, 8 bit constant O when Y1 (1=7,
6, ..., 0) or the first input data X for other cases.

(4) The data integrating unit 413 performs exclusive OR
operation for each bit on the 8 bit data mputted from the
finite field doubling unit 410 and the 8 bit data inputted from
the second input controlling unit 414 and inputs the 8 bit
data resulting from the operation into the output controlling
unit 412.

(5) The output controlling unit 412 inputs, for given 120,
the 8 bit data inputted from the data integrating unit 413 1nto
the first input controlling unit 411. After that, the value of'11s
reduced only 1 and the processing 1s restarted from the pro-
cess (1). For given 1=0, the output controlling unit 412 out-
puts the 8 bit data iputted from the data integrating unit 413
as output data of the finite field multiplying unit 110. Then,
the block of processes 1s terminated.

It 1s briefly explained about the reason why the multiplica-
tion of the first input data X and the second input data Y can
be calculated through the above mentioned processes.

Taking valuesY7,Y6, . . ., and YO for each bit, the second
input data 1s denoted:

Y=Y7x2'+Y6x2%+ ... +Yix2+ ... +Y0
SO,

XY =Xx (Y72 +Y6x2°+ ...+ Yix2' +...YD)

= ... ((D+X+YHIX2+XXYOO)X2Z+XXYI)X
2+X+Y4HX2+X+Y3) ... )IX2+X+Y0

This equation 1s a basis of the above mentioned processes.

Next, 1t 1s explained about an internal configuration and
performances of the finite field doubling unit 410.

(Internal Configuration of Finite Field Doubling Unait
410)

FIG. 8 1s a diagram showing the internal configuration of
the finite field doubling unit 410.

The fimite field doubling unit 410 doubles the mnputted 8
bit data X in the finite field GF (2°) and outputs the 8 bit data
Y as the result. It 1s composed of a data splitting umt 511, a
data integrating unit 512 and data integrating units 313 to
515.

The data splitting unit 511 splits the input data into data
for each 1 bit. The data integrating umt 512 integrates a
plurality of input data into single data and outputs the inte-
grated data. Fach of the data integrating units 513 to 515
integrates two blocks of input data. Herealter performances
of the finite field doubling unit 410 are explained.

Firstly, the data splitting unit 511 splits the 8 bit input data
X 1nto one bit each from the high-ordered bit and outputs as
data X7, X6, . . ., X0 from the high-ordered bit. Next, the
data integrating unit 513 performs exclusive OR operation
between the data X7 and data X3 and outputs the result as
data Y4. The data integrating unit 514 performs exclusive
OR operation between the data X7 and data X2 and outputs
the result data Y3. The data integrating unit 315 performs
exclusive OR operation between the data X7 and data X0
and outputs the result as data Y1. Also, the data X6, X5, X4,
X1 and X7 are respectively denoted dataY7,Y6,YS, Y2 and
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Y 0. The data integrating unit 512 outputs, as output data of
the finite field doubling unit 410, 8 bit data which data Y7,

Y6,YS,...,Y0 are integrated 1n this order from the high-

ordered bit.
By denoting, for each bit X7, X6, . . ., and X0 composed 5

of the 8 bit input data X:

Y7=X6
X6=X5 10
Y5-X4

Y4=X3(30 )X7

Y3=X2(30 )X7 15
Y2=X1

Y1=X0(30 )X7

Y0=X7 20

the fimte field doubling unit 410 calculates values of each bit
Y7,Y6, ...,and YO composed of the 8 bit output data Y. The
output data Y herein indicates a result of doubling the mnput
data X in the finite field GF (2°). It is explained in the follow-
ing.

The mput data X 1s denoted by a following polynomial of
o. whose coellicient 1s the value 1n the finite field GF (2).

25

X7xo +6x0l+ . . . +X1xa+X0 30

Herein, doubling in the finite field GF (2%) means to mul-
tiply a to the above polynomial. Therefore,

35
XTxoS+X6xa '+ . . . +X1xo’+X0x0

Here, the primitive polynomial is X*+x*+x°+x+1 so holds
a*=0*+a’ +a+1. Therefore, the above polynomial is recon-

structed to,
40

X6xat +X8x 0+ Xdx > +H(X3+X T )x 0+ (X 2+ X T)x >+ X 1 x o+
(X0 +X7)

This polynomial corresponds to: 45

Y7xa +Y8xal+ . . . +Y1xa+Y0

Thus, the reason why the processes by the fimite field dou-
bling unit 410 are performed 1s explained. 50
The data converters 1 and 2 perform following processes

on the 64 bit imnput data X.

(1) Split the mput data X into the high-ordered 32 bits and
the low-ordered 32 bits and denote respectively data X0 and
X1. 55

(2) Calculate T0=(X0+K1)’+(X1+K2)® and T1=(X0+
K3)’+(X1+K4)’. Note that the addition and multiplication
herein are all calculated in the polynomial residue class ring
which determines a value in the finite field GF (2%) as a
coellicient. 60

(3) Split the 32 bits data T0 1nto 8 bits data from the high
ordered byte. The split data are respectively denoted data a0,
al, a2 and a3. Also, split the 32 bit data T1 into data blocks
with 8 bits each from the high ordered byte. The split data
are respectively denoted data b0, b1, b2 and b3. 65

(4) Calculate G0=Cl1xa0 |C2|al |C3xa2|C4|a3 and
G1=C5xb0|C6xb1|C7xb2|C8xb3 and output G0|G1 as out-

12

put data. Note that *|” indicates data concatenation and the
above multiplications are all calculated 1n the finite field GF

(2°).

As clear from the equations (1) to (4), 1n the multiplica-
tion 1n the polynomial residue class ring with a value 1n the
finite field GF (2°) as a coeflicient, even if a part of the input
data 1s changed, the change influences all of the output data.
For example, assume that the value of data X0 1s changed 1n

the equations (1) to (4). The data X0 1s used 1n all of the
equations (1) to (4). Therefore, the change influences all of

the output data DO to D3. The same thing applies to other
values (X1 to X3, YO0 to Y3). Accordingly, in the present
embodiment, a high probability of data confusion can be
realized using the above multiplications for the converting
processing. Next, in the present embodiment, an exponentia-
tion 1s used instead of the multiplication of two or more
variables (e.g. XxY, XxYxZ). This 1s because that, in the
case of the multiplication of two or more variables, the result
of the multiplication becomes always 0 if the value of any
one of the variables 1s 0, that 1s, that there are many combi-
nations of the value of input variables which lead the value
of the multiplication result 0. Thus, a good confusion prob-
ability 1s not shown. On the other hand, in the case of the
exponentiation, the calculation result only becomes 0 when
the value of the input variable 1s 0. Therefore, a high prob-
ability of data 1s guaranteed without lowering the probability
ol data confusion as described above.

Furthermore, in the present embodiment, the calculation
raised to cube 1s used. This results in the following reasons.
First, when given a conversion such as Y=X" using the cal-
culation 1n square, an output value for the mnput value o 1s
a”. Next, an output value when a difference A is added to the
input value a is (a+A)*=0*+axA+Axa+A>. Here, axA=Axa
and oaxA+axA=0 (both are obvious from the calculation
method in the finite field GF (2%)). So, (0+A)*=0”+A".
Theretfore, a change value of the output value by adding the
difference A to the input value is A”. That is, the change
value of the output value become a constant output change
value A® regardless of the input value o so that it is not a
preferred characteristic in terms of the data confusion.
Consequently, 1t 1s necessary to use exponentiation at least 1n
the cube or more. In the present embodiment, the exponen-
tiation 1n cube 1s used since a converting processing load
becomes higher as the exponentiation processing 1s more as
the exponent 1s higher. Herein,

(@+AY = (@+A)X(@+A)X(@+A)

(@ +axA+Axa+ AN X(a+ A)
= (@* +A)X(@+A)

—a” FAXF+A Ko+ A

Theretfore, in the case of the cubing operation, the output
difference 1s not constant regardless of the mnput value a as
in the squaring operation. Note that in the case where the
exponent N for exponentiation is N=2% (k is an integer of 1
or more), the output value is (a+A) (29)=a"(25)+A"(29),
being obtained by adding the input difference A to the input
value a in exponentiation X" as the data converting process-
ing. The following explains about that the output value
becomes constant regardless of the input value. Here, “X o
indicates X raised to the ath exponent.

When k=1, the exponent=2, therefore the output value
based on the above explanation is (a+A)*=a’+A”. Next,
when k=m and the exponent=2", if (a+A) (2™)=a (2"")+A
(27) is hold, (a+A)" (2" H={(a+A) (2™} *={a " (2™)+A"
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(2"} =a (27 H+A (27" is hold. Therefore, the above
equation 1s hold when k=m+1. Accordingly, it 1s 1ndicated
that, by the mathematical induction, for an arbitral integer k
which is one or larger, the equation (0+A) (25)=a"(2)+A"
(2%) is hold. Consequently, it is shown that the exponent can
be a value other than 2 (k is an integer of 1 or larger). That
1s, whereas 3 1s used of the exponent in the present
embodiment, the value may be the value of 3 or larger other
than 2° (k is an integer of 1 or larger) unless it does not mind
to take some time for the processing 1n the data converter.

Also, 1 the present embodiment, an addition (exclusive
OR operation) by a constant K 1s calculated before the expo-
nentiation such as (X+K)’. Here, by changing the constant
K, many variations can be given to the converting processing
in the data converter. For example, different converting pro-
cessing can be used for authenticating each subject to be
authenticated by using different constant K depending on the
subject to be authenticated.

Herein, when the value of (X+K)> is 0 is only when X=Y.
Therefore, a merit of guaranteeing high probability of data
confusion 1s not lost by using the exponentiation as
described.

Also, 1n the present embodiment, the same exponentiation
in cube 1s performed on four data blocks of A0 to A3.
However, it 1s not necessary to be 1n the same exponent but
the exponent may be different from one another.

Further, the data converter according to the present
embodiment uses an operation processing 1n the finite field
GF (2°) for the processing which becomes a core for the data
confusion. Therefore, a circuit can be shared with the opera-
tion circuit in the finite field GF (2%), being used for the
error-correcting code circuit such as Reed-Solomon codes
and Bose-Chaudhuri-Hocquenghem (BCH) codes. As the
consequence, an implementation size 1 an appliance as a
whole can be reduced and the appliance implementation 1n a
compact circuit size 1s realized.

Note that each data size of the present invention 1s just an
example and 1t can be beyond the data size. Also, the primi-
tive polynomial and the residue polynomial according to the
present embodiment are just examples. Therefore, the size 1s
not limited to this.

Furthermore, the present embodiment describes about the
case where the data converter 1s used 1n the authentication
system. However, the data converter of the present embodi-
ment can be used unless i1t uses a secret data converter. As
other applied examples of using the data converter 1s that, for
example, 1t can be applied to a content distribution system as
shown 1 FIG. 9. The content distribution system 1s com-
posed on a content distribution device 7 which distributes
encrypted content via broadcasting or a network, and a
reproduction device 8 which recerves, decodes and repro-
duces the distributed encrypted content. The content distri-
bution device 7 converts key seed data (data to be a seed for
generating a content key) in the data converter 70 and gener-
ates the content key. The content encryption device 71 then
encrypts the content data in plaintext and generates the
encrypted content data. After the above processing, the con-
tent distribution device 7 sends the key seed data and the
encrypted content data to the reproduction device 8. The
reproduction device 8 which received the data firstly, 1n the
data converter 8, converts the key seed data and generates the
content key. Then, the content decoding unit 81 decodes the
encrypted content data and obtains the content 1n plaintext.
Only the reproduction device allowed to reproduce the con-
tent can prevent the content reproduction by an 1llegal repro-
duction device by mounting the same data converter which
the content distribution device has.
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Also, 1n the present embodiment, whereas fixed values K1
to K4 for integrating data 1n the data integration units 11a to
11d are previously fixed values, these fixed values may be
inputted from outside of the data converter so that a user can
treely set the values. Further, the constants C1 to C4 are also
previously fixed values to be stored in the constant storing
unmt 22. However, these values may be also mputted from
outside of the data converter so that the user can freely set
the values.

Furthermore in the present embodiment, whereas the

finite field GF (2°) is used as a finite field, other finite fields
may be applied. For example, it may be the finite field GF
(2") (n 1s a natural number).

Note that each functional block in the block diagrams
(FIG. 2 etc.) 1s typically realized as an LSI which 1s an
integrated circuit. It may be separately constructed as one
chip or may be constructed as one chip including a part or
the whole of the integrated circuit.

FIG. 10 1s an outside drawing of the LSI of the error
correction/data converter including a data converter having a
similar Tunction as that of the data converter shown in FIG.
2. FIG. 11 1s a functional block diagram showing a configu-
ration of the LSI of the error correction/data converter.

As shown 1n FIG. 11, the error correction/data converter
600 1s an apparatus which performs data conversion after
performing error correction coding on the data. It has a
Reed-Solomon error correction coding unit 601 and a data
converter 604.

The Reed-Solomon error correction coding unit 601 1s a
processing unit which performs Reed-Solomon error correc-
tion coding on the inputted data and output the coded data. It
has a data recerving unit 602 and a coding unit 603. The data
receiving unit 602 1s a processing unit operable to receive
data to be mputted from outside. The coding unit 603 1s a
processing unit which, responding to the data receiving unit
602, performs the Reed-Solomon error correction coding by
performing the multiplication in the finite field GF (2") on
the data recerved at the data recerving unit 602. The coding
unit 603 has a finite field multiplying unit 110 which per-
forms multiplication in the finite field GF (2”) on the data. A
configuration of the fimte field multiplying unit 110 1s as
described above.

While the data converter 604 has a configuration similar
to that of the data converter 1(2), 1t uses a finite field polyno-
mial multiplying unit 605 1n place of the finite field polyno-
mial multiplying unit 100, a first converter 606 in place of
the first converter 14, and a second converter 607 1n place of
the second converter 15. The finite field polynomial multi-
plying unit 605 differs from the finite field polynomlal mul-
tiplying unit 100 in that it performs multiplication 1n the
finite field GF (2”) using the finite field polynomial multiply-
ing unit 110 set 1n the coding unit 603. Other configurations
of the finite field polynomial multiplying unit 603 are same
as those of the finite field polynomial multiplying unit 110.
The first converter 606 ditlers from the first converter 14 1n
that 1t performs multiplication 1n the fimite field GF (2%)
using the finite field multiplying unit 110 set 1n the coding
umt 603. Other configurations of the first converter 606 are
same as those of the first converter 14. The second converter
607 differs from the second converter 15 1n that 1t performs
multiplication 1n the fimite field GF (2") using the finite field
multiplying unit 110 set in the coding umt 603. Other con-
figurations of the second converter 607 are same as those of
the second converter 15.

Accordingly, the Reed-Solomon error correction coding
unit 601 and the data converter 604 can share the fimite field
multiplying unit 110. Therefore, a circuit scale of the LSI
can be reduced.
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Here, the error correction/data converter 600 1s realized by
the LSI. However, 1t may be called as I1C, system LSI, super
[LSI and ultra LSI depending on the difference of the integra-
tion density.

In addition, a method of constructing the integrated circuit
1s not limited to the LSI. It can be realized by a special
circuit or a general processor. A Field Programmable Gate
Array (FPGA) capable of programming and a reconfigurable
processor capable of reconfiguring a connection and a set-
ting of the circuit cell mside the LSI after manufacturing the
L.SI may be used.

Furthermore, 1f a technique of constructing the integrated
circuit which can be replaced of the LSI according to the
development of the semiconductor technology and an
emerging technology 1s introduced, the functional block
may be of course integrated using the newly introduced tech-
nique. As another technology, 1t 1s possible that a biotechnol-
ogy and the like may be used.

Although only an exemplary embodiment of this iven-
tion has been described 1n detail above, those skilled 1n the
art will readily appreciate that many modifications are pos-
sible 1n the exemplary embodiment without materially
departing from the novel teachings and advantages of this
invention. Accordingly, all such modifications are intended
to be included within the scope of this invention.

INDUSTRIAL APPLICABILITY

The data converter according to the present invention can
reduce a scale of a circuit as a whole including a data con-
verter by sharing a data conversion with an error correction
coding circuit. Therefore, for example, 1t 1s usetul for an
apparatus having a function of authenticating a communica-
tion partner via a communication channel. Also, not only
limited to this example, this invention applies to any appara-
tuses unless they need to mount any kind of a data conver-
5101 circuit.

What 1s claimed 1s:

1. A data converter comprising:

[a splitting] ar obtaining unit operable to [split input data

into] obtain a plurality of data blocks:

a conversion performing unit operable to perform conver-
sion on each one of the plurality of data blocks, the
conversion being based on an exponentiation [to a pre-
determined exponent] in a polynomial residue class
ring with a value 1n a finite field GF (27) as a coefficient,
the n being a natural number, [as a coefficient;] and the

exponentiation using a predetermined value as an
exponent; and

an output data generating unit operable to generate output
data based on the plurality of data blocks converted by
the conversion performing unit,

wherein the predetermined [exponent] value is a value
that 1s 3 or larger and other than 2™, the m being an
integer which 1s 1 or larger.
2. The data converter according to claim 1, further com-
Prising
a finite field multiplying unit operable to perform multi-
plication in the finite field GF (27),

wherein the conversion performing unit performs expo-
nentiation using the finite field multiplying unait.
3. The data converter according to claim 1,

wherein the conversion performing unit includes:

an adding subunit operable to add, 1n the polynomial resi-
due class ring, a predetermined constant and each one
of the plurality of data blocks [split by the splitting
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unit,] obtained by the obtaining unit, the predetermined
constant being the same or variable depending on said

each data block; and

a conversion performing subunit operable to perform con-
version on said each one of the plurality of data blocks
to which the constant 1s added by the adding subunit,
the conversion being based on the exponentiation [to
the predetermined exponent] in the polynomial residue
class ring.

4. The data converter according to claim 1,

wherein the output data generating unit includes:

an adding subunit operable to perform addition in the
polynomial residue class ring among the plurality of
data blocks converted by the conversion performing
unit; and

a multiplying subunit operable to multiply, 1n the finite
field GF (27), a result of the addition by the adding

subunit by a predetermined constant.
5. The data converter according to claim 4, further com-
pPrising
a finite field multiplying unit operable to perform multi-
plication in the finite field GF (27),

wherein the conversion performing unit performs expo-
nentiation using the finite field multiplying unit, and

the multiplying subunit performs multiplication using the
finite field multiplying unat.

6. A data conversion/method comprising:

[splitting input data into] obtaining a plurality of data
blocks:

performing conversion on each one of the plurality of data
blocks, the conversion being based on an exponentia-
tion [by a predetermined exponent] in a polynomial
residue class ring with a value 1n a finite field GF (27) as
a coefficient, the n being a natural number, [as a coeffi-
cient;] and the exponentiation using a predetermined
value as an exponent; and

generating output data based on the plurality of data
blocks converted by the conversion performance,

wherein the predetermined [exponent] value is a value
that 1s 3 or larger and except 2™, the m being an integer
which 1s 1 or larger.

7. The data conversion method according to claim 6,

wherein 1n the conversion performance, the exponentia-
tion 1s performed using a finite field multiplying unit
operable to perform multiplication 1n the finite field GF

(27).
8. The data conversion method according to claim 6,
wherein the conversion performance includes:

adding, 1n the polynomial residue class ring, a predeter-
mined constant and each one of the plurality of [split]
data blocks, the predetermined constant being the same
or variable depending on said each data block; and

performing conversion on said each one of the plurality of
data blocks to which the constant 1s added by the
addition, the conversion being based on [an] #42e expo-
nentiation [to a predetermined exponent] in the polyno-
mial residue class ring.

9. The data conversion method according to claim 6,

wherein the output data generation includes:

performing addition 1n the polynomial residue class ring
among the plurality of data blocks converted by the
conversion performance; and

multiplying, in the finite field GF (27), a result of the
addition by a predetermined constant.
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10. The data conversion method according to claim 9,

wherein 1n the conversion performance, the exponentia-
tion 1s performed using a finite field multiplying umit
operable to perform multiplication 1n the finite field GF
(2"); and

in the multiplication, the multiplication 1s performed
using the finite field multiplying unit operable to per-

form multiplication 1n the fimite field GF (27).
11. An integrated circuit comprising:

a finite field multiplying unit operable to perform multi-
plication 1n a finite field GF (27), the n being a natural
number;

an error-correction coding unit operable to perform error-
correction coding on input data by performing multipli-
cation in the finite field GF (2”) using the finite field
multiplying unit;

a splitting unit operable to split the input data 1nto a plu-
rality of data blocks;

a conversion performing unit operable to perform conver-
sion on each one of the plurality of data blocks, the
conversion being based on an exponentiation [to a pre-
determined exponent] in a polynomial residue class
ring with a value in the finite field GF (2”) as a [coeffi-
cient;] coefficient, and the exponentiation using a pre-
determined value as an exponent; and

[generating] an output data generating unit operable to
generate output data Junit] based on the plurality of
data blocks converted by the conversion performing
unit,

wherein the predetermined [exponent] value is a value
that 1s 3 or larger and other than 2™, the m being an
integer that 1s 1 or larger.

12. The ntegrated circuit according to claim 11,

wherein the conversion performing unit includes:

an adding subunit operable to add, 1n the polynomial resi-
due class ring, a predetermined constant and each one
of the plurality of data blocks split by the splitting unat,
the predetermined constant being the same or variable
depending on said each data block; and

a conversion performing subunit operable to perform
conversion, using the finite field multiplying unit, on
said each one of the plurality of data blocks to which
the constant 1s added by the adding subunit, the conver-
sion being based on the exponentiation [to a predeter-
mined exponent] in the polynomial residue class ring.

13. The integrated circuit according to claim 11,

wherein the output data generating unit includes:

an adding subunit operable to perform addition in the
polynomial residue class ring among the plurality of
data blocks converted by the conversion performing
unit; and
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a multiplying subumt operable to multiply, 1n the finite
field GF (27), the result of the addition by the adding
subunit by a predetermined constant using the finite
field multiplying unat.

14. A program recorded on a computer readable medium

that causes a computer to execute a method comprising:

[splitting input data into] obtaining a plurality of data
blocks;

performing conversion on each one of the plurality of data
blocks using a finite field multiplying unit operable to
perform multiplication 1n a finite field GF (27), the n
being a natural number, the conversion being based on
an exponentiation [to a predetermined exponent] in a
polynomial residue class ring with a value 1n the finite
field GF (2”) as a [coeflicient;] coefficient, and the
exponentiation using a predetermined value as an
exponent; and

generating output data based on the plurality of data
blocks converted by the conversion performance,

wherein the predetermined [exponent] value is a value
that 1s 3 or larger and other than 2™, the m being an
integer which 1s 1 or larger.

15. The program according to claim 14,

wherein the conversion performance includes:

adding, 1n the polynomial residue class ring, a predeter-
mined constant and each one of the plurality of [the
split] data blocks, the predetermined constant being the
same or variable depending on said each data block;
and

performing conversion on said each one of the plurality of
data blocks added by the addition using the finite field

multiplying unit, the conversion being based on [an] t¢
exponentiation [to a predetermined exponent] in the
polynomial residue class ring.

16. The program according to claim 14,

wherein the output data generation includes:

performing addition in the polynomial residue class ring
among the plurality of data blocks converted by the
conversion performance; and

multiplying, in the finite field GF (27), a result of the
addition by a predetermined constant using the finite
field multiplying unit.
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