(19) United States

12y Reissued Patent
Pizano et al.

(10) Patent Number:
45) Date of Reissued Patent:

USOORE40702E

US RE40,702 E
Apr. 21, 2009

(54) METHOD FOR SECURING VIDEO IMAGES

(75) Inventors: Carlos Pizano, Mountain View, CA
(US); Gregory Heileman, Albuquerque,
NM (US)

(73) Assignee: Visual Advances LLC, Las Vegas, NV
(US)

(21) Appl. No.: 11/418,555

(22) Filed: May 4, 2006
Related U.S. Patent Documents
Reissue of:
(64) Patent No.: 6,731,756
Issued: May 4, 2004
Appl. No.: 09/337,718
Filed: Jun. 21, 1999
(51) Int.CL
HO4N 7/167 (2006.01)
HO4N 7/16 (2006.01)
(52) US.CL ..., 380/201; 380/202; 713/189;
713/193
(58) Field of Classification Search None
See application file for complete search history.
(56) References Cited
U.S. PATENT DOCUMENTS
5471675 A 11/1995 Zias
5,881,287 A 3/1999 Mast
5,930,515 A 7/1999 Ducharme et al.
6,098,171 A 8/2000 Johnson et al.
6,195474 Bl 2/2001 Snyder et al.
6,516,416 B2 2/2003 Gregg et al.

OTHER PUBLICATIONS

Adam Perer: “What 1s DirectX? The DirectX Experience”,
articlel online], [retrieved on Oct. 10, 2002]. Retrieved from
the 1nternet<URLhttp://www.geocities.com/SiliconValley/
Way/3390/whatisdirectx.html>dated 1998.

Amir Herzberg: “Safeguarding Digital Library Contents™
IBM Haifa Research Laboratory Tel Aviv, Israel D-Lib
Magazine Jan. 1998.

H. Snyder/David P. Maher: “Music on the Internet & the
Intellectual Property Protection Problem™ Jack Lacy/James
Published 1n Proc. ISIE, Guimares, Portugal Jul. 1997.

Matt Blaze/Joan Feigenbaum/Jack Lacy: “Decentralized
Trust Management” Published 1n Proc. IEEE coni. on secu-
rity & privacy Oakland, CA May 1996.

Artistscope: “Artistscope” Problem areas http:/www.artist-
scope.com/__info/problemareas.htm; Copyright Artistscope
strategies 1998-99.

Primary Examiner—Benjamin E. Lamer

(57) ABSTRACT

A method for protecting the video memory on a computer
system from being 1llicitly copied. The invention decrypts a
previously encrypted image and displays it on the video
screen. During the time the 1mage 1s displayed, the invention
protects 1t from being copied by other running applications.
This 1s accomplished 1n multithreaded operating systems by
first 1ssuing a multithreaded locking primitive to the video
memory resource, and then inserting a pending video hard-
ware request that will take precedence over any subsequent
video memory access requests. The pending request serves
the purpose of destroying the contents of video memory. The
pending request 1s passive 1n that it does not execute unless a
malicious program has removed the video memory lock.

29 Claims, 3 Drawing Sheets

U.S. Patent Apr. 21, 2009 Sheet 1 of 3 US RE40,702 E

monitoring all

memory requests

BitBit from source Yos
region to
destination region

Hap[aca protectec
region with €l
pattermn

Fig. 1

U.S. Patent Apr. 21, 2009 Sheet 2 of 3 US RE40,702 E

Read SIV hile
information &
authenticate flilo

30 28 25

accelerated) Issue a Page Flip
pending videc command

Accept
Uuser
input

Fig. 2

U.S. Patent Apr. 21, 2009 Sheet 3 of 3 US RE40,702 E

40 42
image is being Accept user input
displayed w/in (SecureViewer
SecureViewer

46

Exacute another
application

(concurrently)

43
Appilication
attempts o unioc
primary surface

50

Paending Page Flip &
other pending
operations executed

Primary Surface -
now accessidble

Fig. 3

US RE40,702 E

1
METHOD FOR SECURING VIDEO IMAGES

Matter enclosed in heavy brackets [] appears in the
original patent but forms no part of this reissue specifica-
tion; matter printed in italics indicates the additions
made by reissue.

BACKGROUND OF THE INVENTION

1. Field of the Invention (Technical Field)

The present ivention relates to the field of displaying
digital images on a computer, and 1n particular to the protec-
tion of these 1images from unauthorized copying.

2. Background Art

One of the fundamental problems associated with making,
multimedia content (e.g., digital images, digital video, and
digital audio) publicly available over the global internet 1s
the mability of stopping anyone who accesses the content
from copying it, and subsequently distributing 1t to others.
For example, using the Microsoit Internet Explorer® or the
Netscape Navigator® browsers, a user can press the right
mouse button while a multimedia object 1n the browser 1s
selected, and they are then given the option of saving this
object. Furthermore, 1n the case of the digital images, the
Microsoit Windows® 95, 98, or NT operating systems gen-
erally allow a user to perform a “screen capture”, saving a
copy of whatever 1s displayed on the screen. In these operat-
ing systems, this 1s accomplished by pressing the “Print
Screen” button on the computer keyboard, thereby saving a
bit-mapped 1image of the computer screen 1n a “clipboard”.
The clipboard can then be “passed” into 1mage processing
applications that can manipulate the bit-mapped image,
allowing one to save selected regions of the bit-map. In
addition, there are a number of software applications that
provide more sophisticated 1mage capture capabilities,
including “HyperSnap-Dx”, G. Koshamiak, and “Capture
Professional”. Recently, a number of products related to the
idea of a “secure container” have been proposed, including
DigiBox™ by InterTrust Technologies Corporation, “The
DigiBox: A Self-Protecting Container for Electronic
Commerce”, O. Sibert, Dbernstein, and D. Van Wie,
USENIX 1995 Electronic Commerce Workshop, and Cryp-
tolopes® by the IBM Corporation, “Cryptolope Contain-
ers”’. The generic 1dea involves encapsulating encrypted
digital content, along with a set of rules for decrypting the
content, within the secure container. Users are only allowed
to decrypt specific pieces of the content, as specified by the
rules, once they have obtained authority for doing so.
Typically, access to the encrypted content 1s controlled via a
“key exchange” over a separate channel to each user (e.g.,
Cryptolope® uses RSA public key encryption). I the proper
authority 1s granted to a user, then that user 1s able to use
their specific key to “unlock™ portions of the content,
thereby obtaining a “clear view” of the content. This same
concept can be extended to groups of users.

With respect to 1mages, secure containers prevent a pro-
tected 1mage from being viewed until a user 1s given the
proper authority. Once the 1mage 1s viewable; however,
secure containers do not specifically prevent the image from
being copied using screen capture programs. To address this
problem, a number of “countermeasures” have been
employed by content providers in order to discourage illicit
copying of images once they are i “clear view”. These
include placing visible watermarks 1n an image, or only
making a “low resolution” version of the image available for
viewing. However, each of these approaches 1s lacking in
one way or another. For example, visible watermarks are 1n

10

15

20

25

30

35

40

45

50

55

60

65

2

general easily removed using simple 1mage processing
operations, and 1n both of the cases cited above, the prospec-
tive buyer does not get to view the image they may wish to
buy. Ideally, a consumer should be able to view the actual
content they are contemplating purchasing, but they should
not be able to download this content unless the owner of the
content has granted permission to do so.

An example of the present methodology for securing
video 1mages 1s 1 U.S. Pat. No. 5,881,287 to Mast, entitled

Method and Apparatus for Copy Protection of Images in a
Computer System. However, as can be seen, there are sev-
eral deficiencies in the Mast patent. The embodiment 1n
Mast discloses a library, plus a set of 1nstalled services to be
used by other applications. The present invention 1s an appli-
cation. The copy protection 1s provided to the image files,
not as a run-time service to other applications. Additionally,
The present invention does not require the presence or instal-
lation of services or other applications other than provided
by the operating system-level components.

In the Mast patent, the sole mode of copy protection once
the 1mage has been decrypted, requires the use of windows
hooks as means to protect the images in disk and video
memory. The present invention does not rely or require any
kind of hook mechanism. Hook global mechanisms are not
favored in environments where process security 1s important.
The present mvention uses direct manipulation of video
memory that will bypass hook mechamisms. Mast requires
that the applications that use the protection provided by said
invention, be modified to link and make calls into the protec-
tion DLL (BITBLOCK.DLL). In addition, the protection
DLL must make the calls to the protected applications. The
present invention does not require other programs to be
modified to accommodate the means of protection. In
addition, the present invention does not rely on calls to other
applications to provide the means of protection. The means
of protection relies solely on calls to operating system-level
SErvices.

Mast also requires the protection DLL
(BITBLOCK.DLL) to mnstall a callback function into the

Microsoit Windows 3.1® BitBlt() GDI function hook chain.
The present mvention does not make use of protection
DLLs, nor does 1t use callback functions to provide means of
protection. The Mast mnvention requires a device driver and a
means for mtercepting memory read requests. The present
invention does not rely or require device drivers or other
standalone decryption services, although it can be 1imple-
mented using them. Decryption 1s provided as a routine
embedded 1n the application.

The general goal of the present invention 1s to allow mul-
timedia content providers to make their intellectual property
(1.e., their images) publicly available, while at the same time
preventing those who view these images from copying them.
Specifically, during the time an image 1s viewable, the
present ivention prevents the 1image from being copied or
screen captured. Thus, i users attempt to view the 1mage
from “outside” the secure viewer, they will only see the
noise-like encrypted content. Under specific conditions, the
secure viewer will allow a user to copy an 1image, but only 11
the user possesses a secret key necessary to decrypt the
image. This gives content owners the ability to control who
1s able to save their images. Note that this approach 1s quite
different from the manner in which secure containers are
used. In particular, under a specific viewing mode (and
assuming the image 1s encrypted for this mode) a user can
always view the 1image; however, they are never able to copy
it. This security 1s accomplished in the secure viewer by
directly controlling the client system output devices.

US RE40,702 E

3

Specifically, the present invention details how operating sys-
tem services or custom device drivers can be used to gain
direct control of video hardware. In 1ts present embodiment
in the Microsoit Windows® 95/98/NT platiorms, it uses the
services ol DirectX® to directly manipulate and control the

video hardware. Other embodiments are possible, as
described below.

SUMMARY OF THE INVENTION (DISCLOSUR.
OF THE INVENTION)

In accordance with the present invention, there 1s provided
a method of securing video 1mages 1n computer systems.
The mvention provides a method of allowing copies of
images to be made only with authorization. The preferred
method of preventing illicit copying of a displayed image
from a computer video memory comprises the steps of
decoding a proprietary image format into video memory,
controlling video hardware and locking video memory and
displaying the image. The preferred step of decoding a pro-
prietary 1mage format into video memory comprises
decrypting a previously encrypted image using a secret key.
The preferred step of controlling video hardware and lock-
ing video memory comprises the substeps ol obtaining
exclusive cooperative control of the video hardware, allocat-
ing video memory, locking video hardware and issuing
pending video hardware operations, and destroying an
image displayed 1n video memory via pending video hard-
ware operations 1f an attempt 1s made to unlock video
memory. The preferred substep of obtaining exclusive coop-
erative control of the video hardware comprises issuing
video hardware control DirectX® calls. An alternative sub-
step of obtaining exclusive cooperative control of the video
hardware comprises a first set of calls to a video device
driver. The preferred substep of allocating video memory
comprises creating at least one display surface. The pre-
terred substep of locking video hardware and 1ssuing pend-
ing video hardware operations comprises 1ssuing video hard-
ware locking and 1ssuing pending hardware operation
DirectX® calls. The alternative substep of locking video
hardware and 1ssuing pending video hardware operations
comprises a second set of calls to a video device driver. The
preferred substep of destroying the image via pending video
hardware operations 1f an attempt 1s made to unlock video
memory comprises execution of pending video hardware
operations. The preferred step of displaying the image com-
prises the steps of decoding a native image file format, veri-
tying an 1image file using a check sum method, i the image
file 1s valid, reading decrypting information from the image
file and decrypting the image nto video memory.

The preferred method of preventing illicit copying of
images from a computer video memory comprises the steps
of decoding a proprietary image format into video memory,
controlling video hardware and locking video memory com-
prising the substeps of executing the following DirectX®
calls:

LPDIRECTDRAW DirectXhandlel, DirectXhandle2:
DirectDrawCreate(VideolD, &DirectXhandle, 0);

DirectXhandlel—Queryinterface(11D__ IDirectDraw2,
(void**)DirectXhandle2);

DirectXhandle2—SetCooperativeLevel(WindowHandle,
DDSCL__ EXCLUSIVEDDSCL__ FULLSCREEN);
obtaining exclusive cooperative control of the video
hardware, allocating video memory comprising the substeps
of executing the following DirectX® calls:

LPDIRECTDRAWSURFACE primary__surface, back__
surface, blank surface:

(L]

10

15

20

25

30

35

40

45

50

55

60

65

4
DDSURFACEDESC surtace__descriptor;
DDSCAPS surface__capabilities;

surface__descriptor.ddsCaps.dwCaps=DDSCAPS__
PRIMARYSURFACE

DDSCAPS__ FLIP|DDSCAPS__ COMPLEX;
surface__descriptor.dwBackbuiferCount=1;

DirectXhandle2—CreateSurface(&surface_descriptor,
&primary__surface, 0);

primary__surface—GetAftachedSurface(&surface__
capabilities, &back_surface);
locking video hardware and 1ssuing pending video hardware

operations comprising the substeps of executing the follow-
ing DirectX® call:

primary_ surface—Lock(0, &surface__descriptor,
DDLOCK_WAIT]

DDLOCK_WRITEONLY, 0)
destroying an image via pending video hardware operations
iI an attempt 1s made to unlock video memory comprising
the substeps of 1ssuing the following DirectX® calls:

primary__surtace—Flip(0, DDFLIP__ WATT);

back__surface—=BItFast(0, 0, blank_surface, 0,
DDBLTFAST _WAIT).
The preferred method further comprises the step of creat-
ing a blank surface. The preferred step of creating a blank
surface comprises executing the following DirectX® calls:

LPDIRECTDRAWSURFACE blank surface:

DDSURFACEDESC surface__descriptor;

surface__descriptor.ddsCaps.dwCaps=DDSCAPS
PRIMARYSURFACE;

DirectXhandle2—=CreateSurface(&surface__
descriptor, ._ surface, 0);

A primary objective of the present imnvention 1s to allow
multimedia content providers to make i1mages publicly
available, while at the same time preventing those who view
these 1images from copying them without authority.

Another object of the present invention 1s to allow multi-
media content providers to make selected 1mages available
to designated user groups. In this case, images will be
encrypted according to a key associated with the user group.,
and therefore only members of the user group will be able to
view the selected 1mages. A second key can be provided to
the user for the purpose of downloading (i.e., copying) the
image 1f the content provider wishes to do so.

A primary advantage of the present mvention 1s that 1t
allows content providers to explicitly control not only who 1s
able to view their 1images, but more importantly, who 1s able
to copy them.

Another advantage of the present invention is that it can
be used to make potentially offensive images “non-
viewable” to certain users. For example, the required view-
ing key can be supplied to a user once he has indicated that
he would like to view the matenal, the content provider has
verified some claim (e.g., proof of age), etc. Such protocols
are easily incorporated into the present invention. In
addition, the present invention can be used to protect the
confidentially of sensitive or personal information, such as
medical x-rays, or classified images.

Yet another advantage 1s that the ivention can allow the
viewing of images to be time-locked, allowing the image to
be viewed for a prescribed period of time.

Other objects, advantages, and novel features, and further
scope of applicability of the present mvention will be set
forth 1n part in the detailed description to follow, taken 1n
conjunction with the accompanying drawings, and in part
will become apparent to those skilled 1n the art upon examai-

US RE40,702 E

S

nation of the following, or may be learned by practice of the
invention. The objects and advantages of the invention may
be realized and attained by means of the mstrumentalities
and combinations particularly pointed out in the appended
claims.

BRIEF DESCRIPTION OF THE DRAWINGS

The accompanying drawings, which are incorporated into
and form a part of the specification, illustrate several
embodiments of the present invention and, together with the
description, serve to explain the principles of the invention.
The drawings are only for the purpose of illustrating a pre-
terred embodiment of the mvention and are not to be con-
strued as limiting the invention. In the drawings:

FIG. 1 1s a flowchart describing a prior art image protec-
tion system;

FIG. 2 1s a flowchart describing the processes used to
display an 1image; and

FI1G. 3 1s a flowchart depicting how the invention prevents
image capture.

DESCRIPTION OF THE PREFERRED
EMBODIMENTS (BEST MODES FOR
CARRYING OUT THE INVENTION)

The basic capabilities offered by the secure viewer are
that (1) viewing of an 1mage can be restricted to specific
users, (2) 1t 1s screen capture resistant, and (3) users are only
allowed to save an 1mage after they have ben given explicit
permission to do so.

All modern computer operating systems are memory
protected, and offer true multitasking capabilities (e.g.,
Microsolt Windows® 95/98/NT or any of the modern
UNIX® derivative). In these operating systems, computing,
resources such as printers, serial ports, and the video screen
are administered so as to ensure “fair” access by all user-
level applications. In the particular case of Windows®
95/98/NT, normal programs output data to the screen using
an operating system-level service called the Graphics Device
Intertace (GUI); direct access to the video memory by user-
level applications 1s not allowed. Any application that tries to
access memory outside of 1ts own Windows® assigned
memory region 1s terminated immediately by Windows®.
Theretfore, every single pixel rendered on the screen must
result from commands 1ssued to the GDI through an object
called the Device Context (DC). Using the DC, an applica-
tion 1s able to 1ssue draw commands, text commands, bitmap
commands, along with many other display-related functions.
There are several types of DCs. Normal applications use a
DC that 1s restricted to their own window area, but nothing
prevents an application from asking for a special type of DC
that encompasses the whole screen. For example, the follow-
ing C function call, which can conceivably be executed by

any application, requests a display screen handler from the
GDI:

hdcScreen=CreateDC(“DISPLAY”, NULL, NULL,
NULL);

If the GDI returns a valid handler (which will be stored in
the variable hdcScreen in this example), the application 1s
able to copy the entire screen contents using the appropriate
code. The relevant C code fragment for accomplishing this
1S:

hdcCompatible=CreateCompatibleDC(hdcScreen);

BitBIt (hdcCompatible, 0,0, MaxX, MaxY, hdcScreen,

0,0, SRCCOPY));

Specifically, this code will copy the entire screen contents

(1.e., video memory) into an application-owned memory

5

10

15

20

25

30

35

40

45

50

55

60

65

6

region pointed to by the variable hdcCompatible. Once this
1s accomplished, the application can proceed to save to disk
the memory region containing the screen contents as a bit-
map or 1n any other image file format.

There are two known ways to protect the contents of the
video memory from being “screen captured” by an applica-
tion program.

The first 1s to monitor all running applications, itercept-

ing any read requests that attempt to access video memory
(as 1s disclosed 1n Mast, U.S. Pat. No. 5,881,287). This 1s a

cumbersome solution to the problem. For example, Mast
involves intercepting all memory transiers, an then evaluat-
ing if the requesting application has the right to access the
memory. This will adversely atfect the running time of any
program, and would significantly slow down a data intensive
program (even 1f 1t does not access video memory). A second
approach 1s the present invention.

A flowchart describing the *287/ patent 1s shown 1n FIG. 1.
Start “enabled”program 60 indicates that all application pro-
grams wishing to protect the contents of video memory must
be enabled. That 1s, the program must be instrumented with
code that enables 1t to call the BITBLOCK dynamic link
library. The application programs must provide a callback
function, and register 1t with the BITBLOCK dynamic link

library. The regions of memory that an application program

wishes to protect are specified in this callback function. The

BITBLOCK dynamic link library monitors all memory

requests 62, checking to determine whether any of them are

BITBLT operations 64 attempting to access video memory.

If a BITBLT operation 64 i1s detected, the BITBLOCK

dynamic link library checks to see 1t has any registered call-

back functions 66. If there are no registered callback

functions, the video memory transier 1s allowed to perform a

BITBLT from source region to destination region 68;

otherwise, the BITBLOCK dynamic link library calls all

callback functions to determine the protected regions 70 1n
video memory. If the required video memory access falls in
the protected region 70, the BITBLOCK replaces the desti-

nation memory with a fill pattern 72.

Specific differences between the present invention and

U.S. Pat. No. 5,881,287 (Mast) are given below.

1) In the 287 patent, the preferred embodiment 1s a library
and a set of installed services (a service 1s a running appli-
cation in the same machine that provides some
functionality) to be used by the 1image applications.

a) In the present invention, the preferred embodiment 1s an
application. The copy protection 1s provided to the
image files via encryption, and to video memory using
pending video hardware operations via direct hardware
control. The Mast patent provides protection to video
memory as a run-time service to other applications.

b) The present mvention does not require the presence or
installation of services or other applications other than
those provided by the operating system itself.
(DirectX® 1s part of the operating system).

2) In the *287 patent, the sole mode of copy protection
(besides encryption) requires the use of Windows 3.1®
hooks as a means to protect the images 1n disk and video
memory.

a) The present invention does not rely or require any kind
of hook mechanism. Hook global mechanisms are not
favored 1n environments where process security 1s
important. A global hook as required 1n the Mast patent
needs to inspect memory transactions that do not
belong to the application. This will allow a given appli-
cation to snoop into data associated with other
applications, thereby compromising system security as
a whole.

US RE40,702 E

7

b) The present invention uses direct manipulation of video
memory that will bypass hook mechanisms. The idea
behind DirectX® 1s accelerated graphics by allowing
the application “direct” interaction with the hardware.

3) The ’287 patent requires that the applications that use the
protection provided by said invention must be modified to

link and make calls 1nto the protection DLL

(BITBLOCKDLL). In addition, the protection of DLL

must make calls to the protected applications.

a) Present invention does not require other programs to be
modified to accommodate the means of protection.

b) Present invention does not rely on calls to other appli-
cations to provide the means of protection. The means

for protection relies solely on calls to operating system-
level services.

4) The ’287 patent requires the protection dynamic link
library (BITBLOCKDLL) that installs a callback function

into the Windows 3.1® BitBIt() GDI function hook chain.
This implementation 1s not allowed in true multi-user
computing environments (e.g., Windows NT®) as 1t
would allow users to “snoop” 1n other users’” applications.

a) The present invention does not make use of protection
dynamic link libraries.

b) The present mnvention does not use callback functions
to provide a means of protection.

5) The *287 patent provides a similar mechanism for protect-
ing files that requires a decrypting device driver and
means for intercepting file reads. The present mvention
does not rely or require virtual device drivers or other

standalone decryption services. Decryption 1s provided as

a routine embedded 1n the application.

The present embodiment of the invention takes advantage
of the DirectX® extensions to get full and exclusive control
of the video memory. Measures are taken by the invention to
display 1images, and at the same time block any other appli-
cation from performing a screen capture. The specific details
of how this 1s accomplished are described below, but first a
discussion 1s required on defimitional terminology related to
DirectX®:

Surface: A rectangular portion of memory, usually con-
taining 1mage data. The memory used to represent a surface
can exist either in display RAM or 1n system RAM.

Flippable surface: These are surfaces that allow page
tlipping, a technique where the contents of an entire surface
are made visible instantaneously through a hardware opera-
tion. A flippable surface 1s actually two surfaces, one that 1s
visible and once that 1s not. The non-visible surface 1s called
back buffer. When a page flip occurs, the surface that was
previously a back buller becomes visible, and the surface
that was previously visible becomes the back butfer.

Primary Surface: The portion of video RAM that 1s visible
on the screen. Primary surfaces must reside on video RAM
Primary surfaces are usually flippable surfaces.

Lock: A lock exists when a program 1s granted unre-
stricted direct access to a primary surface as if 1t were a local
memory block. During a lock, no other program or even the
operating system can access the locked surtace.

Page th The action of swapping the pnmary and the
back builer surfaces. This 1s accomplished using video hard-
ware and 1s therefore very fast. Only surfaces that are not
locked can be swapped.

Cooperative Level: Generic term for the level of control
that the application has over the video or display hardware.
Exclusive cooperative level means that the application has
tull control of the display hardware, and can change display
modes as well as the system-wide palette.

The flowchart shown 1 FIG. 2 describes the processes
used by the secure viewer in order to display an image. First,

10

15

20

25

30

35

40

45

50

55

60

65

8

the secure viewer program 10 1s executed. A secure 1image
viewable (SIV) image 1s selected for viewing. At least some
portion of a SIV 1mage 1s encrypted, and all information
necessary to decrypt the image (except the secret key) 1s
encoded 1n the SIV 1mage. In addition, all SIV 1mages con-
tain authentication information that i1s used to determine it
an 1mage has been modified since 1ts creation. The secure
viewer application first requests exclusive cooperative con-
trol of the video hardware 12. Specifically, the program
determines whether or not it can take control of the video
hardware. If this cannot be obtained, the secure viewer appli-
cation terminates, without displaying the image 14. If;
however, exclusive cooperative control can be obtained, then
the program attempts to read the approprniate information
from the SIV image 16 necessary to decrypt it. This step
includes the authentication information. If the decrypting
information can be obtained from the image, and the SIV file
passes the authentication 18, then the file 1s decrypted 20;
otherwise, 1t 1s not (this allows non-SIV 1mages to be viewed
using the secure viewer) and commands are 1ssued to create
primary and back buffer surfaces 22 in the video card
memory, and video display hardware 1s adjusted for viewing
24. Next, the image 1s copied into the back buffer surface,
and the local memory copy of the image 1s destroyed 26.
After this a page thp command 1s 1ssued to the video hard-
ware 28, which moves the image to the primary surface and
makes the 1mage viewable on the display device. A com-
mand 1s 1ssued to lock the primary surface, along with an
additional command that access the video hardware 30
(more than one command can be 1ssued). Since the primary
surface 1s locked, the command will not be immediately
executed, but will remain pending in a queue. The choice of
the command 1s very 1mp0rtant In the present embodiment,
the BLTFAST command 1s used, which acts to clear the
video memory containing the image. This command 1s hard-
ware accelerated, so that the clearing of video memory
occurs very fast, in particular, faster than any software pro-
gram that might try to capture the encrypted image (the spe-
cific sequence of steps are described in FIG. 3). Finally, user
input 1s accepted 32. The details of this step are expanded 1n
FIG. 3.

In FIG. 3, the specific steps used by the secure viewers 1n
order to provide security to an 1mage as it 1s being displayed
are shown. Initially, an image 1s displayed using the secure
viewer 40. The user 1s able to interact with the secure viewer
program via a user interface 42, the program will then pro-
cess the input 44 that allows the user to perform various
functions such as changing the image resolution, reading
information about the author of the 1image, saving the image
(11 they possess the correct key), etc. Note that other applica-
tions may be executed 46 concurrently while the secure
viewer 1s displaying an image (these programs, as well as the
secure viewer, are managed by the operating system). The
secure viewer does not interfere with these other
applications, unless they attempt to unlock the primary sur-
face 48. IT an application does unlock the primary surface
48, the pending page flip command 1s executed followed by
the BLTFAST command, clearing the contents of video
memory 50. During these operations, all other access to
video memory 1s preempted. Only after the pending com-
mands are executed will the primary surface be made avail-
able to the requesting application 52.

The present mvention involves securing a queued (or
suspended) video hardware operation nto a list of pending
video operations. This 1s done 1n such a way that when
another running program tries to read the video memory, the
queued operation executes and destroys the information con-

US RE40,702 E

9

tained 1n the video memory, thereby stopping the application
from coping the displayed image. Notice that a program
running concurrently with the present mvention 1s not
alfected unless 1t tries to access video memory. In this sense,
the present invention 1s “passive”, unlike the prior art.

In addition to the possibility of screen captures by
application-level programs, one has to be concerned with
screen capture via operating system-level mechanisms.
Specifically, Windows® 95,98, and N'T all provide the abil-
ity to perform screen capture by simply pressing the “Print
Screen” key. In this case, the operating system itsell captures
the screen and convenmiently places it 1n the clipboard where
the user may access and copy it.

The present invention can effectively protect from both
operating system-level and application-level screen captures
by means ol queuing operations to the video card. If the
operating system allows direct access to video memory, the
preferred embodiment 1s a user-level program. If it does not,
the preferred embodiment 1s by a combination of a kernel-
mode device driver and a user level program. The present
embodiment uses Microsolt DirectX® to obtain user-level
direct video memory access. Thus, 1t does not require the use
of a device driver other than the standard ones available 1n
Windows® 95/98/NT operating environments.

In the preferred embodiment, exclusive control of video
hardware 1s obtained by executing the following DirectX®
calls using Windows® 95/98/NT (or any system supporting
DirectX®):

1. LPDIRECTDRAW DirectXhandlel, DirectXhandle2:

2. DirectDrawCreate(VideolD, &DirectXhandle, 0);

3. DirectXhandlel—Queryinterface(1ID__IDirectDraw?2,
(void**)DirectXhandle2);

4, DirectXhandle2—=SectCooperativelLevel
(WindowHandle, DDSCL__ EXCLUSIVE|DDSCL__
FULLSCREEN);

Line 1 declares two pointer variables to the DirectDraw (a
subsystem of DirectX®) interface called DirectXhandlel
and DirectXhandle2. In line 2, the DirectXhandlel pointer 1s
initialized with respect to a specific video driver (VideolD 1n
this case). If a DirectXhandlel 1s a valid pointer, then the call
to the Queryinterface function 1n line 3 will mitialize the

pointer DirectXhandle2 to the address of the DirectDraw?2
interface. Next, in line 4, exclusive control of the video hard-
ware 1s requested, along with full screen viewing. If another
application currently has exclusive control of the video
hardware, this call will fail. If for this reason, or any other
reason, the SetCooperativeLevel call fails to obtain exclusive
control of the hardware, the secure viewer application will
terminate without displaying the said image.

In the preferred embodiment, video memory 1s allocated
by executing the following DirectX® calls:

1. LPDIRECTDRAWSURFACE primary__surface,
back surface, blank surface;

2. DDSURFACEDESC surface__descriptor;

3. DDSCAPSsurface__capabilities;

4. surface__descriptor.ddsCaps=DDSCAPS__
PRIMARYSURFACEDDSCAPS_FLIP|DDSCAPS__
COM

5. surface.dwBackBuiterCount=1;

6. DirectXhandle2—CreateSurface(&surface__descriptor,
&primary__surface, 0);

7. primary__surface—=GetAttachedSurface(&surface__
capabilities, &back_surface);

In lmmes 1-3, DirectX® specific pointers variables are

declared. In line 4, a specific type of surface 1s specified. The

10

15

20

25

30

35

40

45

50

55

60

65

10

flag DDSCAPS_ PRIMARYSURFACE indicates that the
created surface will be displayed, the flag DDSCAPS__ FLIP
indicates that this surface may be flipped, and the flag
DDSCAPS__ COMPLEX indicates that one or more back
surfaces can be attached to the primary surface. In line 5 a
request for one back surface 1s specified. In line 6, surfaces
are created according to the specifications given in lines 4
and 5. Finally 1n line 7, the primary surface 1s used to obtain
a pointer to the back surface.

In the preferred embodiment, an 1mage 1s displayed by
performing the following steps:

1. Depending the native image file format.

2. Verilying the itegrity of the image file using a check
sum method.

3. I the file 1s valid, reading information stored in the
image file that 1s necessary to decrypt the image
(assuming the secret key has been supplied).

4. Decrypting of the said image into video memory.
In the preferred embodiment, video hardware 1s locked by
executing the following DirectX® call:

primary_ surface—Lock(0, &surface__descriptor,
DDLOCK__WAIT|DDLOCK__WRITEONLY, 0);

This call will lock the primary surface preventing any
other running thread from accessing this surface until a com-
mand 1s 1ssued to unlock the surface.

In the preferred embodiment, pending video hardware
operations are 1ssued using the following DirectX® calls:

1. primary__surfaceV Flip(0, DDFLIP__ WAIT);

2. back__surface—BlItFast(0, 0, blank_ surface, 0,
DDBLAST__WAIT);

Where the first pending request 1 line 1 will move the
contents of the primary surface, which 1s currently being
displayed, to the back surface, and the second pending
operation 1n line 2 will overwrite, the contents of the back
surface, effectively destroying the previously displayed
image. The DDFLIP_ WAIT and DDBLTFAST__WAIT
parameters will cause the operations to remain pending in
the queue. The blank_surface variable 1n line 2 points to a
blank surface containing all zeros (black) or an alternative
image. This surface 1s created 1n a manner similar to the way
that the primary and back surfaces when created. Note that
these operations will not be executed until the primary sur-
face 1s unlocked (e.g., by a screen capture program).

Although the 1nvention has been described in detail with
particular reference to these preferred embodiments, other
embodiments can achieve the same results. Variations and
modifications of the present invention will be obvious to
those skilled i1n the art and 1t 1s mntended to cover in the
appended claims all such modifications and equivalents. The
entire disclosure of all references, applications, patents, and
publications cited above are hereby incorporated by refer-
ence.

What 1s claimed 1s:

1. A method of preventing copying of [a displayed] ar
image from a computer video memory comprising the steps

of:
[a. decoding an] storing the image [into] iz the video
memory:

[b. controlling video hardware and protecting the video
memory, wherein the protecting step comprises] lock-
ing the video memory [and],

issuing [at least one pending operation comprising] a sus-
pended video operation in a queue [for destroying],
whevrein the suspended video operation is executable to
destroy the contents of the video memory;

US RE40,702 E

11

[c. displaying the image;] and

[d.] destroying the image displayed in the video memory
via said at least one pending operation 1f an attempt 1s
made to unlock the video memory.

2. The method of claim 1 wherein the step of [decoding 5
an] storing the image [into] in the video memory comprises
decrypting a previously encrypted image using a secret key.

3. The method of claim 1 further comprising the step of
obtaining exclusive cooperative control of the video hard-
ware comprising 1ssuing video hardware control DirectX
calls.

4. The method of claim 1 further comprising the step of
obtaining exclusive cooperative control of the video hard-
ware comprising a first set of calls to a video device driver.

5. The method of claim 1 further comprising the step of
allocating video memory comprising creating at least one
display surface.

6. The method of claim 1 wherein the [step] steps of lock-
ing the video memory and 1ssuing at least one pending hard-
ware operation [comprises] comprise issuing video hard-
ware locking and issuing pending operations using 2Y
DirectX® calls.

7. The method of claim 1 wherein the [step] steps of lock-
ing the video memory and issuing at least one pending
operation [comprises] comprise issuing a second set of calls
to a video device driver. 23

8. The method of claim 1 wherein the step of destroying
the image displayed 1n the video memory comprises destroy-
ing the image displayed in the video memory when another
application unlocks the video memory for reading the video
memory. 30

9. The method of claim 1 [whereby] further comprising
the step of displaying the image [comprises] comprising the
steps of:

a. decoding a native image file format;

b. verifying an 1image file using a check sum method;

c. 1f the image file 1s valid, reading decrypting information
from the 1mage file; and

d. decrypting the image 1into video memory.
10. A method of preventing copying ol images from a
computer video memory, the method comprising the steps

of:

a) decoding a proprietary 1mage format into video
memory;

b) controlling video hardware and locking video memory, 45
wherein the locking step comprises locking a video sur-
face and 1ssuing at least one pending operation wherein
the pending operation comprises a pending video hard-
ware operation 1ssued via a DirectX® call, comprising

the substeps of executing the following DirectX® calls; 5
LPDIRECTDRAW DirectXhandlel, DirectXhandle2;

DirectDrawCreate(VideolD, &DirectXhandle, 0);
DirectXhandlel—QueryInterface(I1ID__ IDirectDraw?2,

(void™**)Directxhandle2);
DirectXhandle2—=SetCooperativelLevel 55
(WindowHandle, DDSCL__ EXCLUSIVE|DDSCL__
FULLSCREEN);

¢) obtaining exclusive cooperative control of the video
hardware;

d) allocating video memory comprising the substeps ol 60
executing the following DirectX® calls:
LPDIRECTDRAWSURFACE primary_ surface,

back surface, blank surface;:
DDSURFACEDESC surface _descriptor;
DDSCAPS surface__capabilities; 65
surface__descriptor.ddsCaps.dwCaps=DDSCAPS__
PRIMARYSURFACE

10

15

35

40

12

DDSCAPS__FLIP IDDSCAPS__ COMPLEX;

surface descriptor.dwBackBuilerCount=1;

DirectXhandle2—CreateSurface(&surface__descriptor,
&primary__surface, 0);

primary__surface—GetAttachedSurface(&surface__
capabilities, &back__surface);

¢) locking video hardware comprising the substeps of
executing the following DirectX® call;
primary__surface—Lock(0, &surface__descriptor,

DDLOCK__ WAIT|DDLOCK__WRITEONLY, 0)

1) destroying an 1image via pending video operations 1f an
attempt 1s made to unlock video memory comprising,
the substeps of 1ssuing the following DirectX® calls:
primary__surface—Flip(0, DDFLIP_ WAIT);
back_ surface—BItFast(0, 0, blank_ surface, 0,

DDBLTFAST__WAIT).

11. The method of claim 10 further comprising the step of

creating a blank surface.

12. The method of claim 11 wherein the step of creating a

blank surface comprises executing the following DirectX®
calls:

LPDIRECTDRAWSURFACE blank__ surface;
DDSURFACEDESC surface descriptor;

surface__descriptor.ddsCaps.dwCaps=DDSCAPS__
PRIMARYSURFACE;

DirectXhandle2—=CreateSurface(&surface__
descriptor, _.__ surface, 0).

13. The method of claim 1 [wherein the step of controlling
video hardware and protecting the video memory comprises]
Jurther comprising the step of executing a hardware acceler-
ated Bit-Blt (bit-boundary block transfer) instruction.

14. A method for preventing copying of an image from a
compuiter video memory of a computer running a multi-
threaded operating system, said method comprising:

issuing a multithreaded locking primitive associated with
the computer video memory;,

issuing a passive video hardware operation executable
upon said multithreaded locking primitive being
removed.;

displaying the image; and

executing said passive video harvdware operation in
response to said multithreaded locking primitive being
removed, wherein said executing said passive video
hardware operation destroys the displayed image.

15. The method of claim 14 further comprising:

generating the image by decrypting an encrypted image;
and

storing the image in the computer video memory.

16. The method of claim 14 further comprising:

obtaining exclusive cooperative control of the computer

video memory.

17. The method of claim 16 wherein obtaining exclusive
cooperative control of the computer video memory com-
prises issuing one or more video havdware control Direct X®
calls.

18. A system comprising.

a video memory configured to store an image;

a processor coupled to the video memory, wherein the
processor is configured to execute program instructions
lo:
lock the video memory;
issue a suspended video operation executable to
destroy the contents of the video memory; and

destroy the image in the video memory by executing the
suspended video operation if an attempt is made to
unlock the video memory.

US RE40,702 E

13

19. The system of claim 18 wherein the processor is fur-
ther configured to execute the program instructions to:

generate the image by decrypting an encrypted image;
and

stove the image in the video memory.
20. The system of claim 18 wherein the processor is fur-
ther configured to execute the program instructions to:

obtain exclusive cooperative control of the video memory.

21. The system of claim 20 wherein in obtaining exclusive
cooperative control of the video memory, the processor is
further configured to execute the program instructions to
issue one or movre video havdware control DirextX® calls.

22. The system of claim 18 wherein in locking the video
memory, the processor is further configured to execute the
program instructions to issue a multithreaded locking primi-
tive associated with the video memory.

23. The system of claim 22 wherein the attempt to unlock

the video memory comprises an attempt to remove the multi-
threaded locking primitive.

24. A computer-readable storage medium comprising pro-
gram instructions for preventing copving of an image from a
video memory, wherein the program instructions arve execut-
able to implement:

storing the image in the video memory;,
locking the video memory;,

issuing a suspended video operation executable to destroy
the contents of the video memory,; and

10

15

20

25

14

destroving the image in the video memory by executing the
suspended video operation if an attempt is made to
unlock the video memory.
25. The computer-readable storage medium of claim 24
wherein the program instructions ave further executable to
implement:

generating the image by decrypting an encrypted image.

26. The computer-readable storage medium of claim 24
wherein the program instructions ave further executable to
implement:

obtaining exclusive cooperative control of the video
Memory.

27. The computer-readable storage medium of claim 26

wherein in obtaining exclusive cooperative control of the

video memory, the program instructions ave further execut-
able to implement issuing one or more video havdware con-
trol DivectX® calls.

28. The computer-readable storage medium of claim 24
wherein in locking the video memory, the program instric-
tions are further executable to implement issuing a multi-
threaded locking primitive associated with the video
Memory.

29. The computer-readable storage medium of claim 28
wherein the attempt to unlock the video memory comprises
an attempt to remove the multithreaded locking primitive.

	Front Page
	Drawings
	Specification
	Claims

