(19) United States

12y Reissued Patent
Doktor

(10) Patent Number:
45) Date of Reissued Patent:

USOORE40526E

US RE40,526 E
Sep. 30, 2008

(54) DATA PROCESSING SYSTEM AND METHOD
FOR RETRIEVING AND ENTITY SPECIFIED
IN ASEARCH PATH RECORD FROM A

RELATIONAL DATABASE
(75) Inventor: Karol Doktor, Wheelers Hill (AU)

(73) Assignee: Financial Systems Technology
(Intellectual Property) Pty Ltd,
Malvern, Victoria (AU)

(21) Appl. No.: 11/152,833

(22) Filed: Jun. 14, 2005
Related U.S. Patent Documents
Reissue of:
(64) Patent No.: 5,617,567
Issued: Apr. 1,1997
Appl. No.: 08/439,013
Filed: May 11, 1995

U.S. Applications:

(62) Division of application No. 08/083,861, filed on Jun. 28,
1993, now Pat. No. 5,604,899, which 1s a continuation of
application No. 07/526,424, filed on May 21, 1990, now

abandoned.
(51) Int.CL

GO6F 17/30 (2006.01)

Go6rl’ 7/00 (2006.01)
(52) US.Cl e, 707/2
(58) Field of Classification Search None

See application file for complete search history.

(56) References Cited

U.S. PATENT DOCUMENTS

3,618,027 A 1171971 Feng ..coovvvivininiininnnnn. 364/900

3,670,310 A 6/1972 Bharwanietal. 395/603

4,068,300 A 1/1978 Bachman 707/1
(Continued)

FOREIGN PATENT DOCUMENTS

WO WO 00/07354 2/2000
WO WO 01/15811 8/2001
OTHER PUBLICATIONS

Tsichritzis, D. “LSL: A Link and Selector Language”, Pro-
ceedings of the ACM-SIGMOD International Conference
on Management of Data, Jun. 2-4, 1976, pp. 123-133.%

Munz, R. “The Well System: A Multi—User Database Sys-
tem Based on Binary Relationships and Graph—Pattern—
Matching”, Information Systems, vol. 3, 1978, pp. 99—-113.%
Munz, R. “Design of the Well System™, 1n Entity—Relation-
ship Approach to Systems Analysis and Design, Proceedings

of the 1°° International Conference on the Entity—Relation-
ship Approach, Chen, P. ed., 1979, pp. 502-3522.%

Rybinski, H. “On First-Order-Logic Databases”, ACM
Transactions on Database Systems (TODS), vol. 12, No. 3,
Sep. 1997, pp. 325-349.%

Stonebraker, M. and J.M. Hellerstein “What Goes Around
Comes Around”, in Readings in Database Systems 47 Edi-
tion, Caimbnidge:MIT Press, Jan. 2005, ISBN
0-262-69314-3.%*

Curran, T. “EE221—Database Systems & Software Analysis
and Design™, course notes, Dublin City University, School
of Electronic Engineering, downloaded from www.eeng.d-

cu.ie/—ee221/EE221-DB-2.pdf, 2007.*
(Continued)

Primary Examiner—Luke S Wassum
(74) Attorney, Agent, or Firm—Allen, Dyer, Doppelt,
Milbrath & Gilchrist, P.A.

(57) ABSTRACT

A relationships processing computing system provides for
the recording and extraction of data objects (entities) and for
development data representing a queried relationship
between data objects (entities). The set of entities and rela-
tionships may be expanded at any time during the life of the
system without reprogramming or compiling computer code
and without disrupting concurrent use of the system. Com-
plex inquiries, normally requiring multiple nested queries,
may be performed without code level programming.

16 Claims, 19 Drawing Sheets

BO.DEF
Entty- -Aelation- Leval

E
+|| EN I HE NI]
2[m)7 Heell 2 1]
2B 4 HEw[7] 1)

Bob'y Baoks Inc.

Computer Center Lid,

[~ = - .-

Expesl Elecirortics

i

2

3 1

4| Dr.Dogeod PG,
) :

5

a—-' Lys
Freds Fumbum
. L744
EN Ei ,
!
1

A 220 Lieraiure St

2| 445Wedical Plaxa

gl 106 Car Comer

—&- 4| 566 Transistor Lang

| 386 Business Machine Dv.

5| 1000 Oflica Pleza

BN B

US RE40,526 E
Page 2

U.S. PATENT DOCUMENTS

4,128,891 A 12/1978 Linetal. 364/900
4,497,039 A 1/1985 Kitakamietal. 364/900
4,498,145 A 2/1985 Bakeretal. 364/900
4,506,326 A 3/1985 Shaw etal. 364/300
4,575,798 A 3/1986 Lindstrometal. 364/300
4,631,664 A 12/1986 Bachman 364/200
4,670,848 A 6/1987 Schramm 364/513
4,774,661 A 0/1988 Kumpatlccovnenenen.e. 364/300
4,791,561 A 12/1988 Huberoeovvvvenien.n. 364/300
4,807,122 A 2/1989 Babaccvvvivninninnnnn. 364/200
4,829,427 A 5/1989 Greencovvevvivvinvinnns 364/300
4,855,908 A /1989 Shimodaetal. 705/20
4,893,232 A 1/1990 Saimaokaetal. 364/200
4,901,229 A 2/1990 Tashiro et al. 364/200
4,918,593 A 4/1990 Huberccovveunnn..... 364/200
4,930,071 A 5/1990 Touetal. ..ccoovvvennennenn. 364/300
4,930,072 A 5/1990 Agrawal etal. 364/300
4,933,848 A 6/1990 Haderleet al. 364/300
4,947,320 A 8/1990 Crusetal.coovevvenn.nn. 364/200
4,967,341 A 10/1990 Yamamoto etal. 364/200
5,133,068 A 7/1992 Crusetal. 365/600
5,168,565 A 12/1992 Mortta ..ovevvvinviniinninnns 365/600
5,193,183 A 3/1993 Bachmanc..c.ee..... 707/1
5,197,005 A 3/1993 Shwartz etal. 707/2
5,226,158 A 7/1993 Hornetal. 395/600
5,239,663 A 8/1993 Faudemayetal. 365/800
5,247,575 A 9/1993 Sprague etal. 705/53
5,262,942 A 11/1993 Earle ..ovvvvvvnvinianinn.nn. 705/37
5,297,279 A 3/1994 Bannonetal. 707/103 R
5,369,761 A 11/1994 Conley etal. 707/2
5.379.419 A 1/1995 Heffernan et al. 707/4
5,386,557 A 1/1995 Boykinetal. 395/600
5,386,559 A 1/1995 Eisenberg etal. 395/600
5,408,657 A 4/1995 Bigelow et al. 395/600
5,459,860 A 10/1995 Burnettetal. 707/101
5,488,722 A * 1/1996 Potokcovvviiiiiiinnnn... 395/600
5,504,885 A 4/1996 Alashqur 717/141
5,539,870 A 7/1996 Conrad etal. 710/810
5,542,073 A 7/1996 Schieferetal. 707/2
5,548,749 A 8/1996 Kroenkeetal. 707/102
5,581,785 A 12/1996 Nakamuraetal. 710/8
5,664,177 A /1997 LOWIY ciivviiiiiiiiiininnen. 707/100
5,826,259 A 10/1998 Doktoroovvivviviiiiinninnns 707/4
5,893,108 A 4/1999 Srinrvasan et al. 707/103 R
6,105,035 A 8/2000 Mongeetal. 707/103 R
OTHER PUBLICATIONS

Microsoit Corporation, “Relational Database Components™,

tutorial, downloaded {from msdn.microsoft.com/en—us/li-
brary/aal’74501(SQL.80).aspx, 2007.%

Microsolt “Microsoit Press Computer Dictionary, Third
Edition”, Redmond:Microsoit Press, pp. 403-404, 1997.
ISBN 1-57231-446-X, QA76.15.M34 1997.*

Daniel R. Dolk, et. al., A Relational Information Resource

Dictionary System, Computing Practices, Communications
of the ADM (Jan. 1987).

M.M. Zloof, Query—by—Example: A Data Base Language,
IBM Systems Journal, No. 4 (1977).

Ashok Malhotra, Yakov Tsalalikhin, Donald P. Pazel,
Luanne M. Burns and Harry M. Markowitz, Implementing

an Entity—Relationship Language on a Relational Data Base,
IBM Research Report RC 12134 (#354499) (Aug. 277, 1986)
(“Malhotra™).

Rudolph Munz, “Das WEB—Modell” (translated pages), pp.
155-156, Fig. 10.2.1, (1976). (“Munz 111”), with English
translation. Document Provided Doesn’t Match.

(10 Wiederhold, “Database Design Second Edition”, Dis-
closes Definition Tables, Sections 7-3-1, 7-3-7, 7-4-4,
7-4-5, and 9-7-6 and Figs. 85, 87, 89 (1993).
Pin—Shan Chen, The entity—relationship model—A basis for
the enterprise view of data 77 (1977).

Mark L. Gillenson, Database Step—by—step 141-42, 2d Ed.
(1990).

The IBM Dictionary of Computing Terms (8th Ed. 1987), p.
107.

Webster’s New World Dictionary of Computer Terms (3d
Ed. 1988), pp. 87-88.

Rudolph Munz, “Das WEB-Modell” (English translated
pages), Chapter 10 (1976), 18 pages.

Introduction to NonStop SQL, Tandem Computers, May
1988, pp. —3-19.

Fishman et al., “Overview of the Iris DBMS”, Association
for Computing Machinery, Inc., pp. 219-2350.

Halper et al., “An OODB “Part” Relationship Model”, 10
pages.

Kim et al., “Features of the ORION Object—Oriented Data-
base System”, pp. 251-282.

Kim et al., “Evaluation of the Object—relational DBMS Post-
gres .I. Administrative Data”, Computing Science, Oct.

1994, pp. 1-52.

Banerjee et al., “Data Model Issues for Object—Oriented
Applications”, ACM Transactions on Ofifice Information

Systems, vol. 5, No. 1, Jan. 1987, pp. 3-26.

Blakely et al., “Experience Buildig the Open OODB Query
Optimizer”, 1993, pp. 287-296.

Markowitz et al., “Representing Extended Entity—Relation-
ship Structures 1 Relational Databases: A Modular

Approach”, ACM Transactions on Office Information Sys-
tems, vol. 17, No. 3, Sep. 1992, pp. 423-464.

Teorey et al., “A Logical Design Methodology for Relational
Databases Using the Extended Entity—Relationship Model”,
Computing Surveys, vol. 18, No. 2, Jun. 1986, pp. 197-222.

Chen, Peter, “Entity—Relationship Approach to Systems

Analysis and Design”, Proceedings of the International Con-
terence 1 Los Angeles, Dec. 10-12, 1979, pp. 237-2357.

Blakeley et al., “Experiences Building the Open OODB
Query Optimizer”, 1993, pp. 287-296.
Zand et al., “A Survey of Current Object—Oriented Data-

bases™, Data Base Advances, Feb. 1995, vol. 26, No. 1, pp.
14-29.

Straube et al., “Queries and Query Processing in Object—0O-

riented Database Systems”, ACM Transactions on Informa-
tion Systems, vol. 8, No. 4, Oct. 1990, pp. 387-430.

Kim et al., “Semantics and Implementation of Schema Evo-
lution 1n Object—Ornented Databases™, 1987, pp. 311-322.

Kim et al., “Composite Object Support 1n an Object—Ori-

ented Database System”, OOPSLA ’87 Proceedings, Oct.
4-8, 1987, pp. 118-125.

Hull et al., “Semantic Database Modeling: Survey, Applica-

tions, and Research Issues”, ACM Computing Survey, vol.
19, No. 3, Sep. 1987, pp. 201-260.

Nixon et al., “Implementation of a Compiler for a Semantic
Data Model: Experiences with Taxis”, 1987, pp. 118-131.

Codd, E., “Extending the Database Relational Model to
Capture More Meaning”’, ACM Transactions on Database

Systems, vol. 4, No. 4, Dec. 1979, pp. 397-434.

Peckham et al., “Semantic Data Models”, Acm Computing
Surveys, vol. 20, No. 3, Sep. 1988, pp. 153—-189.

US RE40,526 E
Page 3

Tsurt et al., “An Implementation of GEM—supporting a
semantic data model on a relational back—end.”, 1984, pp.
286-295.

Wilkinson et al., “The Inis Architecture and Implementa-
tion”, IEEE Transactlons on Knowledge and Data Engineer-
ing, vol. 2, No. 1, Mar. 1990, 277 pages.

(Gamache et al. “Addressmg Techniques Used 1n Database
Object managers O, and Orion”, SIGMOD Record, vol. 24,
No. 3, Sep. 1993, pp. 50-53.

Kim et al., “Arcthecture of the Orion Next—Generation
Database System”’ IEEE, 1990, pp. 109-124.

Klimbie et al., “Data Base Management”, North—Holland
Publishing Company, 1974, pp. 1-39.

Hudson et al., “Cactis: A Self—Adaptive, Concurrent Imple-
mentation of an Object—Oriented Database Management

System”, ACM Transactions on Database Systems, vol. 14,
No. 3, Sep. 1989, pp. 291-321.

Annevelink et al., “Object SQL—A Language for the

Design and Implementation of Object Databases”, Jan. 3,
1994, pp. 1-21.
Chen, P., “Entity—Relationship Approach to Information

Modeling and Analysis”, International Conference in Wash-
ington, D.C., Oct. 12—-14. 1981, pp. 49-72.
Wiederhold, G., “Database Design
McGraw—Hill, 2001, pp. 689—698.

Cattell, R. and Rogers, T., “Combiming Object—Oriented and
Relational Models of Data”, 1986 International Workshop
on Sep. 26, 1986, pp. 212-213.

Rumbaugh, J., “Relations as Semantic Constructs i an
Object—Ornented Language”, OOPSLA *87 Proceedings,
Oct. 4-8, 1987, pp. 466-481.

Dewan et al. “Engineering the Object—Relation Database
Model in O-Raid”, Lecture Notes in Computer Science, 3%
International Conference—Paris, Jun. 21-23, 1989, pp.
389-403.

Blaha et al., “Relational Database Design using an Objec-
t—Oriented Methodology”, Communications of the ACM,
Apr. 1988, vol. 31, No. 4, pp. 414-427.

Wiederhold, G., “Views, Objects, and Databases” Computer
Database Architecture, Dec. 1986, pp. 37-44.

Mark et al., “Metadata Management”, Computer Database
Architecture, Dec. 1986, pp. 26-36.

Osborn et al., “The Design of a relational Database System
with Abstract Data Types for Domains™, ACM Transactions

on Database Systems, vol. 11, No. 3, Sep. 1986, pp.
357-373.

Whang et al., “Query Optimization 1n a Memory—Resident
Domain Relational Calculus Database System™, ACM
Transactions on Database Systems, vol. 15, No. 1, Mar.
1990, pp. 67-95.

Finkelstein et al., “Physical Database Design for Relational
Databases”, ACM Transactions on Database Systems, vol.
13, No. 1, Mar. 1988, pp. 91-128.

Takahashi, J., “Hybrid Relations for Database Schema Evo-
lution”, Ij.,;E 1990, pp. 465—470.

Khoshatlan, S. and Copeland, G., “Object Identity”, Micro-
clectronics and Computer Technology Corporation, pp.
37-46.

Rowe, L. and Stonebraker, M. “The POSTGRES Data
Model”, Computer Science Division, EECS Department,
University of California, pp. 1-21.

Appendix B”,

Stonebraker, M. and Moore, D., “Object—Relational DBMSs
The Next Great Wave”, Morgan Kaufman Publishers, Inc.,
1996, pp. 56-61.

Howcroft, “Contemporary 1ssues 1n UK bank delivery sys-
tems”, Inter. Jour. of Service Industry Management, vol. 3,

No. 1, pp. 39-56, ISBN 0964223, 1992.

“The Smart Card’s Chief Advocate”, Credit Card Manage-
ment, vol. 10, No. 1, p. 26+, ISBN: 0896-9329, 1992.
Bharadwaj et al., Determinants of success in service mdus-
tries: a PIMS—based empirical investigation, Journal of Ser-
vice Marketing, v7/n4, pp. 19-40, 1993, 23 pages from Dia-
log file 135, acc. # 00813287.

Rose, Peter S., et al. Financial Institution, Understanding
and Managing Financial Services, 4th Edition, Richard D.
Irwin, Inc., 1993, pp. 1-217; 328-356; 423446, 654-792.
Parsaye, Kamran & Chignell, Mark. Expert Systems For
Experts. John Wiley & Sons. 1988. pp. 35-60, 177-178,
191-210 and 295-309.

Hendler, James A. Expert Systems: The User Interface.
Albex Publishuing Corporation. Norwood, NJ. 1988. pp. 31,
4647, 109-110, 113 and 132-134.

Hanks, D.R., “The Payoil of Modest Price Adjustments,”
(Abstract only), Bank Marketing, vol. 12, No. 9, p. 13,, Sep.
1980.

Stuchfield, N., et al., “Modeling of Profitability of Customer
Relationships: Development and Impact of Barclays de
Zoete Wedd’s Beatrice,” Journal of Management Informa-
tion Systems, vol. 9, No. 2, p. 53, Fall 1992,

Korth and Silberschatz, Database System Concepts,
McGraw—Hill Book Company (New York, 1986), pp.
45-103; pp. 301-323.

“Extended Disjunctive Normal Form for Efficient Process-
ing of Recursive Logic Queries™, IBM Technical Disclosure
Bulletin, vol. 30, No. 1, Jun. 1987 pp. 360-366.

Yu et al, “Automatic Knowledge Acquisition and Mainte-
nance For Semantic Query Optimization™, IEEE Transac-
tions on Knowledge and Data Engrm, V:1, No. 3 Sep. 1989,
pp. 362-375.

Kifer et al, “Sygraf: Implementing Logic Programs in a
Database Style” IEEE Transactions on Software Engnm.
v:14, N7, Jul. 1988 pp. 92-935.

El-Sharkawi et al, ““The Architecture and Implementation of
Enli: An Example—Based Natural Language Assisted Inter-
face”, Parbase 90 Intl. Conf. on Databases, Parallel Architec-
tures & Their Applications, Mar. 7-9 1990.

Wilschut et al, “Pipelining 1n Query Execution” Parbase—90
Intl. Conf. on Databases, Parallel Architectures and Their
Applications, Mar. 7-9, 1990 p. 562.

Adiba et al., “Database Snapshots™, Proceedings of the 1980
International Conference on Very Large Data Bases, IEEE
1980, pp. 86-91.

Blakeley et al., “Join Index, Materialized View, and
Hybrid—Hash Jom A Performance Analysis”, Technical
Report No. 280, Indiana Umniversity Computer Science
Department, IEEE 1990, pp. 256-263.

Elmasri et al., “Fundamentals Of Database Systems”, 1989.
Hainaut, J. L “Theoretical And Practical Tools For Data
Base Design”, Proceedings of the Seventh International
Conference on Very Large Data Bases, IEEE 1981, pp.

215-224.

* cited by examiner

U.S. Patent Sep. 30, 2008 Sheet 1 of 19 US RE40.,526 E

BULK STORAGE
(Binary Code Strings)

110

L 3 K I «F G 4N W (Y ¥ 1 ¥ ¥ % I

"Please find 40
all books
having x0¢

(SQL)

‘Please add 460 FIG. 1A

"3;"??2'58 (Prior Art)

US RE40,526 E

Sheet 2 0f 19

Sep. 30, 2008

U.S. Patent

SZe!
|eubig ejeq

SIEL
[eubjS ssaippy

S|9AST
01607

US RE40,526 E

Sheet 3 0f 19

Sep. 30, 2008

U.S. Patent

J8YUI04
bupeaiy}
UCHjeaoy

181UI0g

Buipeaiy

L

II'EIII!'III‘I!'I

(OSH)

00¢

US RE40,526 E

Sheet 4 0of 19

Sep. 30, 2008

U.S. Patent

19)ui04
Bupeany |
tioneso

13juI04
bujpeaiy)
uoijed01

(Wy Joud)

¢cVé 9l

Jajuiod
Guipeaiy]

olIL

191U10d
Buipeanyt
oliL

IauIod
Buipesiy)

J9)ui04
buipeaiy]
BWEN

ol et i ——— lIIIIl_r

Ove

US RE40,526 E

Sheet S 0of 19

Sep. 30, 2008

U.S. Patent

Glé

(Wy Jolid)

-dé Ol

(OLY)
:NOLLVZINVOHO 318v1i-3AlLv13Y

ctl

IE1

qot}

US RE40,526 E

Sheet 6 0of 19

Sep. 30, 2008

U.S. Patent

(Wy Joud)

¢-d¢ Ol

uoHeI0
sjoog

US RE40,526 E

Sheet 7 0f 19

Sep. 30, 2008

U.S. Patent

(uy Joud)

1-€ Ol

<

SO S I A S S G T D Y S G G G s O AR -

LLE

Z

el

US RE40,526 E

Sheet 8 0f 19

Sep. 30, 2008

U.S. Patent

-ﬂ------'-------------------J

(WY Joud)

¢-£ Old

<
-
N
-1

' 4

- ¥ R 1 ¥ L X R R K _ L I & A R4 L 1 b -——1

L

U.S. Patent Sep. 30, 2008 Sheet 9 of 19 US RE40.,526 E

FIG. 4A

400

RELATION R-1

Head Attribute + Tail Attnbute
rdinality = one fo many }

-Mandatory Coupling = Yes/No

Meanlnaa

INSTANCE ’
/e plas
- *Customer-B"* Address e C)

I

U.S. Patent Sep. 30, 2008 Sheet 10 of 19 US RE40.,526 E

FIG. 4B

| Telephone
!

U.S. Patent Sep. 30, 2008 Sheet 11 of 19 US RE40,526 E

FIG. 5

131 132

130-RP

200

L'_ F -;__l :

Entity Name of
Class Name Single Table
Abbreviation where I:tstaléces

Qo No (Full Name) are store

=
(Customer)

(T Addresses
(Address)
(Account)

.

(Supplier)

| oa |
N
*

500a

U.S. Patent Sep. 30, 2008 Sheet 12 of 19 US RE40,526 E

FIG. 6A
130-RP
131 32
200
RTO EEkQEE..{ahIﬁ
Relation Name of |
Relation Single Table First ardinal
TNyge Class Name wherg instances Head Enfity Tail Entity LBONOI‘_M

Abbreviation of Relation 1YPe NumberT Number
gt (FulName) arestored (Full Name) (Full Name)

No. -BU-
m N 2
: (‘'s Business) (Customer) | (Address) "" |(1 mj} Y
@) 3 1 |
(‘s Owning) g l (Account) | (Customer (1:1) YI
-SM-
Masﬂﬁé) e (Awount) (Address) {1 1] N
(s Mam \._—' (Customsr) (Address) 1:1} Y|
Hsadqtrs) N’
RTN| -RA AT I EN, | EW,, ||||I l
/r J m)) Mandatory
600a Hand
Coupling
Optional &
Secon% thru Fifth 00
Tail Entity
Names

(type)
600e

U.S. Patent Sep. 30, 2008 Sheet 13 of 19 US RE40.,526 E

130-RP

RTO
Optional
Second thru Fifth
Tail Entity
Names
Region Tail-Activation
e0e \ 12 13 T4 T5 Mask
602) (603) (604) (605 (606)
b
4 5 1
(Supplier] (Area) (Ph"“e Aooount) 0000
(Branch) l 0000
3 (Branch) Ceorgtoatgt ©0000
b 8
4 (Phone |(Contact | -2
No.) |Person) [(Account)
SIS
T Elgltity b
e Number
and Name) n T2 T8 T4 T5
Relation
Type

No.

US RE40,526 E

Sheet 14 0of 19

Sep. 30, 2008

U.S. Patent

lillJIlIll

| [FoSsanVL % ik
. 430°IN3
n,,
_m 8dA L _ul
(1)lel ed pesy
[SERI e
][¢ Imo- :djySuONE| By}
N me v [avle . oo
O e ongeusad
alepan (o
) (e R e) . funbul
. ' yaiess§ (e
|oAD" :o_E_wc- -Alju3- 40}
1S3n03Y

QE.

US RE40,526 E

Sheet 15 0f 19

Sep. 30, 2008

U.S. Patent

——-l----------------ﬁ-n——---H-ﬁ—-——_--—-—_——--—ﬂ-----—----ﬁ-

lIII'IIIL '' .y W W W

BZe|d 80O 0001 |9

10 eulyIR Sseusng 98¢ | ¢

O[O (el

L----------- W N .-

Uy 3 3% ¥ ¥ T N

L2 1 L B L '—-—q

¢-L Ol

U.S

e Yy T r~*"1 ¥ » ¥ * ¥y * ¥ Fr ¥ N § ¥ F§ _B X |

. Patent Sep. 30, 2008 Sheet 16 of 19

130-REk

Eif-1

*Please find
all books

having 0" 190

(SQL)

Schema;

"Please add
new books Plasondd |8
YYY-ZZZ new REL

Rnn-Rmm*

BULK STORAGE
(Binary Code Strings)

REL.DEF HELrDEF

|
VAV

ENT.DEF ENT.DEF ENT.lDEF

US RE40,526 E

R

|

EiT-2 EiT-3

FIG. 8

US RE40,526 E

Sheet 17 0of 19

Sep. 30, 2008

U.S. Patent

£qctd INn_
¢ qce13
T I'Gee-i3| Gcl3

geze 3| - ——
1'82e-13 N_&Hm

: SNV 3QIND ALINDNI
AH3ND Bupers 06

-6 9Ol 016 (WHO4 LNdNI AHINONI

106

US RE40,526 E

Sheet 18 0f 19

Sep. 30, 2008

U.S. Patent

¢6 Old

joals aumelal 0ge--—-"3u| $3009 S,q0g
BUET] 10}SISUBI| GGG---SO{UOI0BT S8aX3
Jeui0Q Jed 90| ——-—-SOINY ,Susily

o3

60-3
o3
SUBO 117
SIOMSUY djeipatuidiu
i) 116

US RE40,526 E

Sheet 19 0f 19

Sep. 30, 2008

U.S. Patent

PI\;_Z:_
DT
uedw
.|I||Iv_m_u_ﬁ.I ... g
L 3/MAN

LHA'S'S
n_

13A'S' ~

qm% 9 mm% o
Tl.|f Auedwo)
10 AeIpisqns -
b3/q)
Nma_m_
cuf’®)

"} 9A9T

Ol Ol

‘JUNC3JJL JO BIUEBISU}
mc_csm m_nc_m Aug 10} BANOR S
‘61 ‘21 ‘1L 'sjies jo 8uo Aup

US RE40,5260 E

1

DATA PROCESSING SYSTEM AND METHOD
FOR RETRIEVING AND ENTITY SPECIFIED
IN A SEARCH PATH RECORD FROM A
RELATIONAL DATABASE

Matter enclosed in heavy brackets [] appears in the
original patent but forms no part of this reissue specifica-
tion; matter printed in italics indicates the additions
made by reissue.

This application is a division of application Ser. No. [08/
083,361)08/083,861, filed Jun. 28, 1993, now

[abandoned]U.S. Pat. No. 5,604,899, which issued on Feb.
18, 1997 which 1s a continuation of Ser. No. 07/526,424,
filed May 21, 1990, now abandoned.

BACKGROUND OF THE INVENTION
1. Cross Reference to Microfiche Appendix

This application includes a plurality of computer program
listings (modules) 1n the form of a Microfiche Appendix
which 1s being filed concurrently herewith as 1162 frames
(not counting target and title frames) distributed over 20
sheets of microfiche 1n accordance with 37 C.F.R. §1.96. The
disclosed computer program listings are incorporated into
this specification by reference but 1t should be noted that the
source code and/or the resultant object code of the disclosed
program modules are subject to copyright protection, The
copyright owner has no objection to the facsimile reproduc-
tion by anyone of the patent document (or the patent disclo-
sure as 1t appears 1n the files or records of the U.S. Patent and
Trademark Office) for the sole purpose of studying the dis-
closure but otherwise reserves all other rights to the dis-
closed computer program modules including the right to
reproduce said computer program modules 1n machine-
executable form.

2. Field of Invention

The present mnvention relates generally to computer data-
base management systems and more specifically to appara-
tus and methods for modifying and searching through large
scale databases at high speed. 3. Description of Related Art

Modern computer systems are capable of storing volumi-
nous amounts of information 1n bulk storage means such as
magnetic disk banks. The volume of stored information can
be many times that of the textual information stored in a
conventional encyclopedia or 1n the telephone directory of a
large city. Moreover, modern computer systems can siit
through the contents of their built storage means at
extremely high speed, accessing as many as one million
bytes of information or more per second (a byte 1s a string of
eight bits, equivalent to approximately one character of text
in layman’s terms). Despite this capabaility, it may take an
undesirably long time (1.e., hours or days) to retrieve desired
pieces ol information. In commercial settings such as finan-
cial data store facilities, there will be literally billions of
pieces of mformation that could be sifted through betore the
right one or more pieces of mformation are found. Thus,
even at speeds of one million examinations per second, 1t can
take thousands of seconds (many hours) to retrieve a desired
piece ol information. Efficient organization of the stored
information 1s needed 1n order to minimize retrieval time.

The methods by which pieces of information are orga-
nized within a computer, searched through or reorganized,
often parallel techniques used by older types of manual
information processing systems. A well known example of a
manual system 1s the imndex card catalog found in public
libraries. Such as card catalog consists of a large number of

10

15

20

25

30

35

40

45

50

55

60

65

2

uniformly dimensioned paper cards which are serially
stacked 1n one or more trays. The cards are physically posi-
tioned such that each card 1s directly adjacent to no more
than two others (for each typical examination there 1s a pre-
ceding card, the card under examination and a following
card 1n the stack). On the front surface of each index card a
librarian enters, 1n left to right sequence; the last name of an
author, the first name of the author, the title of a single book
which the author wrote and a shelf number indicating the
physical location within the library where the one book may
be found. Each of these four entries may be referred to as a
“column” entry. Sufficient surface area must be available on
cach card to contain the largest of concervable entries.

After the entries are made, the index cards are stacked one
after the next in alphabetical order, according to the author’s
last name and then according to the author’s first name and
then by title. This defines a “key-sequenced” type of data-
base whose primary sort key i1s the author’s name. The
examination position of each card 1s defined relative to the
contents of preceding and following cards 1n the stack. That
1s, when cards are examined, each intermediate card 1s
examined immediately after its alphabetically preceding
card and immediately before 1ts alphabetically succeeding
card. When a new book 1s acquired, the key-sequenced data-
base 1s easily “updated” by inserting a new card between two
previously created cards. Similarly, 11 a book 1s removed
from the collection, 1ts card 1s simply pulled from the card
stack to reflect the change.

If a library user has an inquiry respecting the location of a
particular book or the titles of several books written by a
named author, the librarian may quickly search through the
alphabetically ordered set of index cards and retrieve the
requested information. However, 1 a library user has an
inquiry which 1s not keyed to an author’s name, the search
and retrieval process can require substantially more time; the
worst case scenario being that for each mquiry the librarian
has to physically sift through and examine each card in the
entire catalog. As an example of such a scenario, suppose
that an inquiring reader asks for all books in the library
where the author’s first name 1s John and the title of the book
contains the word “neighbor” or a synonym thereof.
Although 1t 1s conceptually possible to answer this inquiry
using the information within the catalog, the time for such a
search may be impractically long, and hence, while the

information 1s theoretically available, it 1s not realistically
accessible.

To handle the more common types of inquires, libraries
often keep redundant sets of index cards. One set of cared 1s
sorted according to author names and another set 1s sorted
according to the subject matter of each book. This form of
redundant storage 1s disadvantageous because the size of the
card catalog 1s doubled and hence, the cost of information
storage 1s doubled. Also, because two index cards must be
generated for each new book added to the collection the cost
of updating the catalog 1s also doubled.

The size of a library collection tends to grow over time as
more and more books are acquired. During the same time,
more and more index cards are added to the catalog. The
resulting stack of cards, which may be viewed as a kind of
“database”, therefore grows both in size and in worth. The
“worth” of the card-based system may be defined 1n part as
the accumulated cost of all work that 1s expended 1n creating
cach new index card and 1n inserting the card into an appro-
priate spot in the stack.

As time goes by, not only does the worth and size of the
database grow, but new technologies, new rules, new

US RE40,5260 E

3

services, etc., begin to emerge and the mformation require-
ments placed on the system change. Some of these changes
may call for a radical reorganization of the card catalog sys-
tem. In such cases, a great deal of work previously expended
to create the catalog system may have to be discarded and
replaced with new work.

For the sake of example, let it be supposed that the library
acquires a new microfilm machine which stores copies of a
large number ol autobiographies. The autobiographies dis-
cuss the life and literary works of many authors whose books
are kept in the library. Let 1t further be supposed that the
original, first card catalog system 1s now required to cross
reference each book to the microfilm location (or plural
locations) of 1ts author’s (or plural authors’) autobiogra-
phies. In such a case, the card catalog system needs to be
modified by adding at least one additional column of 1nfor-
mation to each index card to indicate the microfilm storage
locations of the relevant one or more autobiographies.

We will assume here that there 1s not enough surface area
available on the current index cards for adding the new infor-
mation. Larger cards are therefore purchased, the informa-
tion from the old cards 1s copied to the new cards, and
finally, the new microfilm cross referencing information 1s
added to the larger cards. This type of activity will be
referred to here as “restructuring’” the database.

Now let us suppose, that as more time goes by, an addi-
tional but previously unanticipated, cross indexing category
1s required because of the introduction of a newer technol-
ogy or a new government regulation. It might be that the just
revised and enlarged second card system does not have the
capacity to handle the demands of the newer technology or
regulation. In such a situation, a third card system has to be
constructed from scratch. The value of work put into the
creation of the just-revised second system 1s lost. As more
time passes and further changes emerge in technology,
regulations, etc., 1t 1s possible that more major organiza-
tional changes will have to be made to the catalog system.
Time after time, a system will be built up only to be later
scrapped because it fails to anticipate a new type of informa-
tion storage and retrieval operation. This 1s quite wasteful.

Although computerized database systems are 1 many
ways different from manual systems, the computerized
information storage and retrieval systems of the prior art are
analogous to manual systems 1n that the computerized data-
bases require similar restructuring every time a new category
of mnformation relationships or a new type of inquiry 1s cre-
ated.

At a fTundamental level, separate pieces of information are
stored within a computerized database system as a large
number of relatively short strings of binary bits where each
string has finite length. The bit stings are distributed spa-
cially within a tangible medium of data storage such as an
array ol magnetic disks, optical devices or other information
representing means capable of providing mass storage. Each
bit 1s represented by a magnetic flux reversal, an optical
perturbation and/or more other variance in the physical
attributes of a data storage medium. A transducer or ampli-
fler means converts these variances nto signals (e.g.,
clectrical, magnetic, or optical) which can be processed on a
digital data processing machine. Each string of bits 1s often
uniquely 1dentified by its physical location or by a logical
storage address. Some bit strings may function as address
pointers, rather than as the final pieces of “real” information
which a database user wishes to obtain. The address pointers
are used to create so-called “threaded list” organizations of
data wherein logical links between a first informational

5

10

15

20

25

30

35

40

45

50

55

60

65

4

“object” (first piece of real data) and a second informational
“object” (second piece of real data) are established by a
chain of direct or indirect address pointers. The user-desired
objects of real information themselves can be represented by
a collection of one or more physically or logically connected
strings.

Typically, “tables” of information are created within the
mass storage means of the computerized system. A horizon-
tal “row” of related objects, which 1s analogous to a single
card 1n a card catalog system, may be defined by placing the
corresponding bit strings of the objects in physical or
address proximity with each other. Logical interconnections
may be defined between different rows by using ancillary
pointers (which are not considered here as the “real” data
sought by a database user). A serial sequence of “rows”
(analogous to a stack of cards) 1s then defined by linking one
row to another according to a predefined sorting algorithm
using threaded list techniques.

A vast number of different linking “threads” may be
defined 1n this way through a database table having maillions
or billions of binary information bits. Unlike manual
systems, the same collection of rows (which replaces the
manual stack of cards) can be simultaneously ordered in
many different ways by utilizing a multiplicity of threaded
paths so that redundant data storage 1s not necessary.
Searches and updates may be performed by following a pre-
specified thread from one row to the next until a sought piece
of information (or its address) 1s found within a table. A
threaded-list type of table can be “updated” in a manner
similar to manual card system by breaking open a logical
thread within the list, at a desired point, and 1nserting a new
row (card) or removing an obsolete row at the opened spot.

Tables are often constructed according to a “key-
sequenced” approach. One column of a threaded-list table 1s
designated as the sort-key column and the entries 1n that
column are designated as “sort keys”. Address pointers are
used to link one row of the table to another row according to
a predefined sequencing algorithm which orders the entries
(sort-keys) of the sort column as desired (1.e., alphabetically,
numerically or otherwise). Once a table 1s so sorted accord-
ing to the entries of its sort column, 1t becomes a simple task
to search down the sort column looking for an
alphabetically, numerically or otherwise ordered piece of
data. Other pieces of data which are located within the row
of each sort key can then be examined in the same sequence
that each sort key 1s examined. Any column can serve as the
sort column and its entries as the sort keys. Thus a table
having a large plurality of columns can be sorted according
to a large number of sorting algorithms.

The key-sequencing method gives tremendous tlexibility
to a computerized database but not without a price. Each
access to the memory location of a list-threading address
pointer or to the memory location of a sort-key or to the
memory area ol “real” data which 1s located adjacent to a
sort-key takes time. As more and more accesses are required
to fetch pointers and keys leading to the memory location of
a piece ol sought-after information (“real data™), the
response time to an inquiry increases and system perfor-
mance suifers.

There 15 certain class of computerized databases which
are referred to as “relational databases”. Such database sys-
tems normally use threaded list techniques to define a plural-
ity of key-sequenced “tables”. Each table contains at least
two columns. One column serves as the sort column while a
second or further columns of the table store either the real
data that 1s being sought or additional sort-key data which

US RE40,5260 E

S

will ultimately lead to a sought-after piece of real data. The
rows of the table are examined 1n an ordered fashion accord-
ing to the contents of the sort column. Target data 1s located
by first threading down the sort column and thus moving
through the chain of rows within a table according to a pre- 4
specified sort algorithm until a specific sort-key 1s found.
Then the corresponding row 1s examined horizontally and
the target data (real data or the next key) 1s extracted from
that row.

An example of “real” data would be the tull-legal names
of unique persons such as in the character strings, “Mr.
Harry W. Jones™, “Mrs. Barbara R. Smith”, etc. The sort-key
can be a number which 1s stored adjacent to the full name
and which sequences the names (real data) according to any
of a wide variety of ordering patterns including by age, by
height, by residential address, alphabetically, etc. Because
the real data (e.g., full name of a person) 1s stored 1n a sepa-
rate column, 1t 1s independent from the sort key data. A large
varicty ol different relations can therefore be established
between a first piece of real data (e.g., a first person’s name) ,,
and a second piece of real data (e.g., a second person’s
name) simply by changing the sort keys that are stored in the
separate sort column (e.g., who 1s older than whom, who 1s
taller, etc.). Plural orderings of the real data can be obtained
at one time by providing many columns in one table, by
storing alternate keys 1n the columns and by choosing one or
more of these columns as the primary sort key column.

Relational database systems often include tables that do
not store real data in a column adjacent to their sort-key
column, but rather store a secondary key number which ;,
directs a searcher to a row in another key-sequenced table
where a matching key number 1s held together with either a
piece of sought-after real data or yet another forward refer-
encing key number (e.g., an entry which 1n effect says “find
the row which holds key number x of yet another table for ;5
turther details™). With this indirect key-sequenced approach,

a large number of tables can be simultaneously updated by
changing one entry 1n a “base” table.

Relational database tables are normally organized to cre-
ate implied set and subset “relations” between their respec- 40
tive items of pre-stored information. The elements of the
lowest level subsets are stored 1n base tables and higher level
sets are built by defining, 1n other tables, combinations of
keys which point to the base tables. The implied relations
between elements cannot be discerned by simply mspecting 45
the raw data of each table. Instead, relations are flushed out
only with the aid of an access control program which deter-
mines 1n 1ts randomly-distributed object code, which table to
examine first and what column to look at before beginning to
search down the table’s column for a key number and, when 50
that key number 1s found, what other column to look at for
the real data or a next key number. Relations between vari-
ous “‘enfities” of a relational database are implied by the
sequence 1n which the computer accesses them.

By way of a concrete example, consider a first relational 55
table (Names-Table) which lists the names of a large number
of people 1n telephone directory style. Each name (each
separate 1tem of real data) 1s paired to a unique key number
and the rows of this Names-Table are stored sequentially
according to the key number. A second relational table may 60
be provided 1n the database (Cars-Table) which lists automo-
bile (vehicle) identification numbers (VIN) each paired 1n its
row with a second key number. 11 the second key number 1s
matched by a corresponding key number 1n the first table,
then a relationship might be implied between the entries of 65
the two separate tables (Names-"Table and Cars-Table). The
“mmplied” relationship might be one of an 1nfinite set of pos-

6

sibilities. The relationship could be, for example, that the car
listed 1n the second table 1s “owned” by the person whose
name 1s found next to a matching key in the first table. On
the other hand, 1t might be implied that the matched person
in the first table “drives” the car, or “cleans” the car or has
some other relation to the car. It 1s left to the access control
program to define what the relationship 1s between entities in
the first table and entities in the second table.

It can be seen that relational database systems offer users
a great deal of flexibility since an infinite number of relations
may be defined (1implied). Economy 1n maintaining
(updating) the database 1s also provided since a change to a
base table propagates through all other tables which refer-
ence the base table. The access control program of the data-
base system can include information-updating modules
which, for example, change the key number 1n the second
table (Cars-Table) whenever ownership of a car changes. IT
the name of the new owner 1s already 1n the first table
(Names-Table), 1t does not have to be typed a second time
into a new storage area and thus, extra work and storage
redundancy are avoided. The vehicle identification number
(VIN) remains unchanged. Minimal work 1s thus expended
on updating the database.

Despite these advantages, relational database systems sui-
fer from expandability and restructuring problems similar to
those of the above-described manual system. Sometimes the
rows within a particular table have to be altered to add addi-
tional columns. This 1s not easily done. Suppose for
example, that a new government regulation came 1nto being,
mandating that vehicles are to always be 1dentified not only
by a vehicle identification number (VIN) but also by the
name and location of the factory where the vehicle was
assembled. I spare columns are not available 1n the Cars-
Table, the entire database may have to be restructured to
create extra room 1n the storage means (i.e. the disk bank)
for adding the newly required columns. New key numbers
will have to be entered into the new columns of each row
(e.g., a new “factory of assembly” key number) and sorted 1n
order to comply with the newly mandated regulation. New
search and inquiry routines will have to be written for han-
dling the newly structured tables.

In the past, much of this restructuring work was done by
reprogramming the computer at the object code or source
code level. This process relied heavily on an expert program-
ming staff. It was time consuming, costly and prone to pro-
gramming errors. Worst of all, it had to be redone time and
again as new 1nformational requirements emerged just after
a last restructuring project was completed. There 1s a need 1n
the industry for a database management system which pro-
vides quick responses to inquires and which can also be
continuously updated or restructured without reprogram-
ming at the source or object code level.

SUMMARY OF THE INVENTION

It 1s an objective of the present invention to provide a
database system which 1s capable of storing voluminous
amounts of information, sifting through the information at
high speed, and 1s at the same time easily expandable or
restructurable to take on new forms of entities and relation-
ships.

In accordance with a first aspect of the invention, an entity
definition table (ENT.DEF) 1s defined within the memory
means of a computer system to store the name of an allowed
entity type (class) and the name of a single other table
(Entity-instances Table or “E11”” for short) where istances
of the allowed entity type may be stored. A separate relation-

US RE40,5260 E

7

ships definition table (REL.DEF) 1s defined in the memory
means to list 1n each row of the table: (a) the name of an
allowed relations type, (b) the name of a single Relation-
instances Table (R1T) where instances of the allowed rela-
tionship type may be stored, (¢) the name of a primary (head)
entity type to which the relation type may apply and (d) the
names of one or more secondary (tail) entity types to which
the named relationship may apply. Each row of the Relation-
instances Table (Ri1T) 1s provided with at least one primary
pointer which points to the storage location of a first instance
of the primary entity type and at least one secondary pointer
which points to the storage location of a corresponding first
instance ol the secondary entity type. Each row of the
Relation-1nstances Table (R1T) further includes a pointer to a
relationship-defining row in the REL.DEF table. The pointer
can be the name of an applicable relation type as recorded 1n
the REL.DEF table. Relationships between instances of a
primary entity and a secondary enftity are thus expressly
defined by entries in the Relation-instances Table (RiT).
Adding new rows to this Relation-instances Table (RiT)
allows for the addition of new relations. Adding new rows to
the REL.DEF table allows for the creation of new classes
(types) of relationships. Since relation-defining table can be
updated using a fixed set of update modules, reprogramming,
at the source or assembly level 1s not needed for restructur-
ing the schema of the database.

BRIEF DESCRIPTION OF THE DRAWINGS

The invention will be described with reterence to the fol-
lowing figures 1n which:

FIG. 1A 1s a block diagram of a conventional database
system.

FIG. 1B 1s a timing diagram showing the delay between
the addressing and the delivery of storage data.

FIG. 2A 1s a block diagram of a conventional key-
sequenced table organization.

FIG. 2B 1s a block diagram of a conventional relative-
record table orgamization.

FIG. 3 diagrams a multiple table system which 1s based on
a conventional relational database approach and which has
key-sequence organized tables.

FIG. 4A 1s a conceptual diagram illustrating an enfity-
relation schema 1n accordance with the 1nvention.

FIG. 4B 1s a further conceptual diagram of an entity-
relation schema according to the invention.

FIG. 5 1s a block diagram of an entity definition
(ENT.DEF) table 1n accordance with the mnvention.

FIGS. 6 A and 6B are block diagrams of a relationship

definition (REL.DEF) table in accordance with the mven-
tion.

FIG. 7 1s a connection diagram showing how relations
may be explicitly defined 1n a Relation-instances Table (R1T)
so that unique relations between instances of a first entity
class and instances of a second entity class can be 1dentified.

FIG. 8 15 a block diagram of a database system according,
to the ivention.

FIG. 9 1s a block diagram of a relations processing engine
according to the mvention.

FIG. 10 graphs a variety of sample inquiry paths that may
be followed by the engine of FIG. 9.

DETAILED DESCRIPTION

The following includes a detailed description of the best
mode or modes presently contemplated by the mventor for

10

15

20

25

30

35

40

45

50

55

60

65

8

carrying out the mvention. It 1s to be understood that these
modes are merely exemplary of the invention. The detailed
description 1s not intended to be taken 1n a limiting sense.

Referring to FIG. 1A, the block diagram of a conventional
database system 100 1s shown. The database system 100
comprises a central processing unit (CPU) 110 which 1s
operatively coupled so as to be controlled by an access con-
trol program (object code) 120d stored 1n a first memory
means 120 (1.e., read-only-memory, ROM, or random access
memory, RAM). The CPU 110 in combination with the first
memory means 120 can be viewed as one or more machine
means for performing functions specified by the object code
120d. The CPU 110 1s further operatively coupled to access
the data 130d of a “bulk storage” second memory means 130
also 1included in the database system 100. Individual strings
of digital information are represented by wiggled lines (e.g.,
120d, 130d) in FIG. 1A. The bulk storage means 130 typi-
cally takes the form of a large array of magnetic disk drives,
tape drives, or other mass storage devices (e.g., arrays of
Dynamic Random Access Memory [DRAM] chips). The

first (control) memory means 120 usually takes the form of
high speed RAM and/or ROM.

To access a particular string of data 130d stored within the
bulk storage means 130, the CPU 110 must provide a corre-
sponding address signal 131s (FIG. 1B) in the form of logic
highs (H) and lows (L) to the bulk storage means 130 over an
address bus 131. As seen 1n the time versus logic-level graph
of FIG. 1B, the address signal 131s (usually an electrical
signal) comprises a set of logic high and logic low levels (H
and L) transmitted 1n a first time period t,-t,. There follows a
second time period, t,-t,, which 1s often referred to as an
“access delay”, during which addressing circuits attempt to
access the addressed memory location. Depending on
whether a memory read or memory write operation 1s
occurring, data signals 132s are then transferred over a data
bus 132 (FIG. 1A) from the addressed location within the
bulk storage means 130 to the CPU 110 or vice versa during
a following third time period t,-t,.

Referring still to FIG. 1A, the object code 120d of the
access control program determines when and how the CPU
110 will access mnformation 130d stored 1n the bulk storage
means 130. The CPU 110 1ssues address signals 121s (not
shown) over an address bus 121 to the first memory means
120, and 1n response, the first memory means 120 supplies
instruction signals 122s (not shown) over a data bus 122 to
the CPU 110. Information signals 122s can be exchanged
bidirectionally over data bus 122 between the CPU 110 and
the first memory means 120. FIG. 1B may represent the
timing relation between address signals 121s and first
memory 1nformation signals 122s by replacing reference
numerals 131s and 132s with 121s and 122s, respectively.

It should be understood that neither the object code 120d
of the first memory means 120 nor the data code 130d of the
mass storage means 130 1s 1n human-readable form. A trans-
lation machine 1s needed to convert the binary bit strings of
either memory means (120 or 130) 1into a form which might
be understandable to an experienced computer programmer
or to a lay computer user.

The object code 120d of the access control program 1s
produced by first generating (e.g., manually writing and
encoding) a source code listing 112 whose lines of informa-
tion 112d are usually understandable only to a highly trained
computer programmer. The source code listing 112 which 1s
written 1n an assembly level or higher level language (e.g.,
C, COBOL, FORTRAN, PASCAL, etc.) 1s transformed into

machine-readable form, and passed through a first transla-

US RE40,5260 E

9

tion machine which may be referred to as a compiler (or
assembler) means 114. The compiler means 114 produces
the machine-readable object code 120d according to mnstruc-
tions provided by a machine readable version of the source
code listing 112. After 1t 1s stored 1n the first memory means
120, the object code 120d 1s expressed as machine detectable
alternations (ones and zeros) in a physical attribute (e.g.,
voltage) of the medium which makes up the first memory
means 120. In this form, the object code 120d 1s more
readily convertible into data signals 122s which are under-
standable to the CPU 110 than into information which 1s
understandable to a lay (non-programmer) person. It 1s
highly improbable that a lay person will ever wish to access
or understand or modify the object code 120d stored within
the first memory means 120.

The information strings 130d within the bulk storage
means 130 are similarly expressed as alternations in the
physical property of the storage medium making up the sec-
ond memory means 130. Some of the data strings 130d rep-
resent “real” data which a lay-user may wish to access while
others of the strings 130d represent “ancillary” data such as
sequencing keys, threading pointers or control codes which a
lay-user 1s not interested in. The object code 120d of the
control program defines which 1s which.

When “real” data 1s to be extracted from the data strings
130d within the bulk storage means 130, read and under-
stood by a lay person, a translation process similar to compi-
lation (or more correctly de-complication) needs to take
place. Just like the compiler means 114 functions as a man-
to-machine translator, the combination of the first memory
means 120 and the CPU 110 defines a second man-to-
machine search-and-translate machine 1135 which 1s used to
search through parts of the bulk stored data 130d, extract
relevant pieces of “real” data and convert the extracted data
from machine-readable form into human-readable form. The
human-readable output of the second translation machine
115 may be produced in the form of a query output listing

150 (e.g., on paper or on a video screen) as indicated in FIG.
1A.

If a lay user (defined here as someone other than a person
who 1s an expert programmer familiar with details of the
source listing 112) wishes to obtain usetul (*real”) informa-
tion from the bulk storage means 130, the lay user will nor-
mally supply a query input 140, in a form dictated by a
so-called “‘structured query language” (SQL) to the CPU
110. (In the illustrated example the user inputs the request
string “Please find all books having attribute xxx,” where
xxX could be the relations “author’s last name=Jones™.) The
combination of the CPU 110 and first memory means 120
(which combination forms the second search-and-translate
machine 115) process this query iput 140 and 1n response,
produces a series of address signals 131s which are sent to
the bulk storage means 130 and processes a series of data
retrievals 132s which eventually lead to the production of a
corresponding query output listing 150. (In the example, 1t
would be a listing of all books whose author’s name 1s
“Jones™.) The access control program 120d 1s charged with
the task of enabling various types of queries 140 and making,
sure that the queries do not violate basic rules of logic.

When the information 130d within the bulk storage means
130 needs to be updated, by for example adding new books,
a similar exchange occurs between the translating machine
115 and a lay user. The lay user supplies an update input 160,
again as dictated by a pre-specified structured query lan-
guage (SQL), and 1n response, the translating machine 1135
rearranges the data 130d within the bulk storage means 130
to achieve the requested update.

10

15

20

25

30

35

40

45

50

55

60

65

10

Referring to FIG. 2A, a first embodiment 200 of the data
base system 100 will be described in more detail. FIG. 2A
schematically 1llustrates a section 130a of the bulk storage
means 130 according to embodiment 200 wherein some of
the stored data strings 130d are arranged to define a key-
sequenced type of table. In a first record region (Record No.
1) of the table 130a there 1s provided a first continuous data
string 230 which 1s subdivided to have a first string portion
231 representing an author’s name (illustrated as the con-
tents of a rectangular box), a second string portion 232 con-
tiguous thereto for representing a name threading pointer
(1llustrated as a second rectangular box coupled to the first
rectangular box by an address proximity link P,,), a third
data string portion 233 representing the book’s title (which
1s linked to the second portion 232 by proximity link P, ,), a
fourth subsection 234 representing a title threading pointer
(linked to box 233 by address proximity link P,,), a fifth
subsection 233 representing the book’s location (linked to
box 234 by proximity link P,,) and a sixth subsection 236
representing a location threading pointer (linked to box 2335
by proximity link P,).

The name threading pointer 232 1s located directly adja-
cent to the author’s name subsection 231 within the address
space of Record No. 1, as indicated by address proximity
link P,, and thus, there 1s an “implied” logical connection
between the data contents of boxes 231 and 232. The book’s
title subsection 233 i1s located directly adjacent to the name
threading pointer 232 as indicated by address proximaity link
P,,. The combined, proximity linkage, P, ,-P,,, “implies” a
relationship between the contents of boxes 231 and 233,
namely that they apply to various attributes of a common
book. This format repeats for data subportions 234-236.
Only boxes 231, 233 and 235 contain “real” data which 1s
uselul to a lay person. The other boxes 232, 234 and 236 of
Record No. 1 contain “ancillary” data which 1s usetul to the
search machine 115 but does not provide the kind of “real”
information sought by an inquiring lay person.

The implied relations between the “real” data boxes, 231,
233 and 2335 of Record No. 1, arise only after “meaning™ 1s
assigned to all the boxes 231-236. Such “meaning” comes
from the operation of the search-and-translation machine
115 (FIG. 1). To understand this concept, assume that an
automated “searching” machine (computer) 115/200 of
embodiment 200 1s examining the data string 230 held
within the single Record No. 1. Assume further that this
searching machine 115/200 includes means for assigning
appropriate “meanings’” to each of the data subportions con-
taimned 1n each of subsections 231-236 to thereby designate
some as containing “real” data and others as containing
“ancillary” (e.g., pointer) data. In that case the search
machine 115/200 can scan horizontally across the record,
parse the data string 230 1nto subsections of appropriate size
and extract the name of the book’s author, the book’s title
and the location of the book within the library, as desired. On
the other hand, 1f the searching machine 115/200 does not
possess mformation which tells it that box 232 1s a threading
pointer, box 233 1s a title, etc., then all boxes will look alike
to the search machine, there will be no “meaning” assigned
and the search machine 115/200 will not be able to extract a
desired piece of data. Thus, while not shown 1n FIG. 2A, 1t 1s
to be understood that there 1s a cooperative relation between
how the object code 120d of the search machine 115/200
causes that search machine to access the parts of bit string
230 via the signal busses, 131 and 132, how subportions of
bit string 230 become designated as “real” or “ancillary”
data, and how relations are implied between separate pieces
of real data. The structure, meanings interrelations between

US RE40,5260 E

11

the parts of bit string 230 are intimately linked to the struc-
turing of the object code 120d.

In FIG. 2A, the bulk memory means section 130a 1s
shown to include additional record areas (Record No. 2,
Record No. 3, etc.) each having the same data structure
(represented respectively as string 240 which comprises data
subsections 241-246 and string 250 which comprises data
subsections 251-256). Although Record No. 1 1s 1n physical
proximity with Record No. 2, as indicated by physical (or
address) proximity link PR, ,, and Record No. 2 1s in physi-
cal proximity with Record No. 3 as indicated by physical
proximity link PR, ,, the data items (231-236, 241-246, 251 -
256) within each record do not need to be examined accord-
ing to this physical ordering. Instead, the name threading
pointer 232 of Record No. 1 can represent the address of any
other arbitrary record area within the bulk storage means
section 130a whose author’s-name will serially follow the
author’s-name of box 231 during a search process. This 1s
represented in FIG. 2A by the dashed logical link L, ; which
points to some arbitrary record area, Record.Addr.,, of sec-
tion 130a. The name threading pointer of the referenced
record, Record.Addr.,,, can point to yet another arbitrary
record. With this mechanism, a list which 1s sorted
(alphabetically for example) according to author’s last name
may be formed even though the records are not physically
ordered 1n any specific sequence. The list 1s referred to as a
“key-sequenced” list in cases where, as here, the sequencing
key (or sort key) 1s data stored in the boxes e.g., 231, 241,
251, etc., of a table column.

The title threading pointers (234, 244, 254) of each record
may be used to form a different key-sequenced path in which
books are examined according to subject matter or alpha-
betically according to the book’s title or according to some
other ordering algorithm. The location threading pointers
(236, 246, 256) can be similarly used to create a key-
sequenced list which will identity what book 1s physically
located next to what other book on the library’s shelves.

For the sake of illustrative simplicity, only one threading
pointer (1.e., 232) 1s shown attached to each real data item
(1.e. 231) of each record, but it should be apparent that the
author’s name 231 may have many threading pointers, one
tor threading alphabetically according to last name, and oth-
ers for threading according to additional relations such as
geographic location, age, number of published books and so
forth. It 1s up to the computer programmer and the access
control program 120d to assign “meaning” to each box and
thus determine whether that box will function as a storage
area for real data or for ancillary data such as pointer data.

The records of FIG. 2A may be visualized as being seri-
ally stacked one on the next according to a sequence defined
by a preselected one of the threading pointers (e.g. 232 or
234 or 236) to thereby create a displayable table which has
as entries 1n the columns of each row, the real data items:
author’s name 231, book’s title 233 and book’s location 235.
The ancillary threading pointers 232, 234, 236 are hidden
from the lay user’s view. New rows are added to the table by
breaking a logical link (e.g., L,;) between a preceding
pointer (e.g. 232) and a next pointer (e.g. 252) to insert a new
record 1n the search path. The rows can be of variable length
since the linking address pointers can point to any arbitrary
location in the bulk memory means 130. To get to the N*
item ol a threaded list, one normally sequences from the
beginning of the list (table) through all the treading pointers
until the N access is performed, at which point the contents
of the addressed record area can then be read. For relatively
large tables (e.g. those having thousands of rows), this pro-
cess of sequencing through all the threading pointers to
reach the N” row of a table can take a significant amount of
time.

10

15

20

25

30

35

40

45

50

55

60

65

12

Referring to a second embodiment 260 shown 1n FIG. 2B,
the structure of an older and less sophisticated data organiz-
ing system will be described. In a bulk memory section 130b
of this older system 260, data 1s organized according to what
1s commonly referred to as “relative table” addressing.
Threading pointers are not used for logically linking one
record (row) to the next. Instead, each data string (e.g., 270)
can be shrunk to contain only the essential target

information, such as 1n this example, author’s name (271),
book’s title (273) and book’s location (275), with one 1tem

of real data being physically located adjacent to the next.
The examination of all recorded i1tems in this structure 260

may be performed according to the physical location of each
record (270) within the address space of bulk storage area
130b (the next adjacent string 280 follows first string 270
and so forth). Unlike the purely key-sequenced organization

of FIG. 2A, the physical proximity links PR,,,, PRg-s.
PR, ., etc., of FIG. 2B do indicate a particular ordering of
the stored information.

The relative-table organization 1s somewhat similar to the
way that index cards are physically ordered 1n a manual
library system according to author’s last name, except that
the library catalog tray should now be visualized as having
sequentially arranged grooves define on their bottom-inner
surfaces. Each groove 1s numbered according to 1ts absolute
position and only one card can be slotted mto each groove.
With this system, each card can be immediately located by
its groove number rather than by thumbing through the
information of all previous cards. If a groove number 1is
known, substantial time can be saved in locating the corre-
sponding card and obtaining the information written on 1ts
face. I the groove number 1s not known, the same relative-
table organization can be searched by sequentially thumbing
through the trays and examining the cards according to a
key-sequenced approach 1n order to find a desired card even
through the cards are stored in grooves. The relative-table
organizing method 1s not mutually exclusion of a key-
sequenced examination method. There 1s a difference
between a purely key-sequenced table and a relative table,
however. A relative-table organized system 1s not as easily
updated as 1s a purely key-sequenced system. In the relative
table system, a new card cannot be inserted between two
cards which already fill adjacent slots. This inflexibility has
led many in the database management field away from the
relative-table method and towards purely key-sequenced
systems since the latter can accept any number of new cards
for insertion between old cards.

In FIG. 2B, all the record areas are of a fixed and pre-
defined length. The fixed length of each record defines the
groove size. To access the N” item of a “relative-table” type
of list 130b, one need only multiply the fixed record length
by the value N to directly obtain the physical address (slot)
of the desired record. There 1s no need to sequence through a
chain of threading pointers in order to find a desired row
once 1ts slot number (groove number) 1s known. Empty slots
290, such as the slot number 4 shown 1n FIG. 2B, are prefer-
ably scattered throughout the address space of the bulk

memory section 130b to allow for occasional insertion of
new items.

It should be noted that while the relative table organiza-
tion 130b of FIG. 2B 1s nether as flexible nor as easily
updated as the key-sequenced organization 130a of FIG. 2A,
the relative-table structure 130b has one major advantage
over the key-sequenced structure 130a; an N? item in a
relative-table list 130b may be accessed much faster than the
N7 item of a key-sequenced list 130a.

FIG. 3 1s a block diagram of a bulk storage area 130c
whose data 130d 1s organized according to a known key-

US RE40,5260 E

13

sequenced scheme which 1s often referred to 1n the imndustry
as a “relational” database. A “tables” area 300 contains a
plurality of tables 310, 320, 330, 340 and 350. Each of these
tables 1s defined purely by a threaded-list, key-sequenced
structure such as shown 1n FIG. 2A. For the sake of 1llustra-
tive brevity the list threading pointers (1.e., 232, 234, 236)
are not shown. Only the non-threading boxes (1.e., 231, 233,
235) are shown.

Rows are illustrated to extend horizontally (in the “x”
direction) 1n FIG. 3 while table columns are illustrated to
extend vertically (in the “y” direction). Each table 310-350
1s shown to have its respective rows sorted numerically
according to “key” numbers that are stored 1n its leftmost
column (referred to here as the “sort column™).

A first of the key-sequenced tables, 310 (also labeled
“Table of Names™), 1s shown to have two columns. One
(right side) column 312 holds “real” data representing the
names of various persons while a preceeding (left side) col-
umn 311 holds unique key-numbers, 1, 2, 3, .. ., N, N+1,
N+2, . . ., each associated with a unique name of a person.
The association of a person’s name to a key-number 1is
“mmplied” by the fact that the key number 1, 2, 3, . . .,
N, .. ., 1s located in the same row of table 310 as is the
corresponding “Person’s Name”. Each key-number of left
column 311 1s referred to as a “Name Identification Num-
ber” (abbreviated here as N-IDN). Table 310 1s shown to
have been pre-sorted according to the N-IDN’s of column
311. The sorting method 1s indicated i FIG. 3 by position-
ing the imtials “KSO” over column 311 to tag that column as
the Key-Sequenced-Ordering column of table 310.

To find the name of a person within table 310 whose asso-
ciated 1dentification number 1s known to be N, one normally
starts at row number 1 of the left column 311, where the
N-IDN of the first person’s name 1s stored and treads down-
wardly (in the y direction) through the threaded-list pointers
(not shown) associated with this sort column 311, testing
cach corresponding entry of column 311 for a match until
the position holding the number N 1s found. Then one moves
horizontally (in the x direction) across that row to the right
column 312 to extract the name associated with the N”” name

identification number (N-IDN).

When an automated search machine 115 performs this
thread and test process, 1t must retriecve data from the
memory area 130c at least N times before the target data
(Person’s-Name) 1s retrieved. The time for retrieving the tar-
get data 1s thus at least N times the access delay period (e.g.,
the t,-t, period of FIG. 1B) of the memory means 130. By
way ol example, 11 N=1000 and the access time of memory
means 130 1s 30 milliseconds, then 1t can take 30 seconds or
more just to retrieve one name. If a thousand names are to be
randomly retrieved at different times from the range N, N+1,
N+2, ..., N+M (where M would be 1000 or higher), then 1t
can take as much as 30,000 seconds (8.3 hours) or longer
just to perform this stmple table look-up task.

The N-IDN field of each row 1s generally made much
shorter 1n bit length than its associated Person’s-Name field.
The N-IDN can be viewed therefore as an abbreviation of a
person’s full name. The first table 310 can be viewed as a
conversion list or look-up table which allows one to easily
convert a given abbreviation (N-IDN) 1nto a full name.

A second, separate, table 320 (also labeled as “Table of
Locations™) 1s shown to contain two similar columns. Right
column 322 stores “Home Addresses” 1n full while lett col-

umn 321 holds unique, Home-Identification-Numbers
(abbreviated H-IDN) which are generally shorter i bit
length than the associated “Home-Address™ fields. The

10

15

20

25

30

35

40

45

50

55

60

65

14

H-IDN’S thus can serve as abbreviations for the full address
fields. Table 320 1s ordered numerically according to the
H-IDN’s as indicated by the legend “KSO” over column
321. The table 320 can therefore easily serve as part of an
H-IDN abbreviation to full address converting means.

Since many people often live at a single home address, 1t
1s plausible that a single home address will be shared by
persons of different names. Relational database theory rec-
ognizes this and teaches to separate information (e.g., home
address) than might be shared by many entities away from
any unique one of those entities (e.g., persons’s name). Table
310 1s accordingly separated from table 320. Concurrently, 1t
should be possible to relate a person’s full name to a full
home address without having to repeatedly duplicate the full
name string or full address sting within the bulk storage
means 130. The data organization 300 shown i FIG. 3
includes a third key-sequenced table 330 which 1s structured
for doing just that; linking one persons’ name with one home
address while using the abbreviated bit stings, N-IDN and
H-IDN.

Third table 330 comprises three vertical columns, 331,
332 and 333. Leit column 331 holds Person Identification
Numbers (P-IDN’s), 1, 2, 3, . . ., P. The rows of third table
330 are sorted using the P-IDN’s as the sort key. For each
row o1 the third table 330, the second column 332 contains a
Name-IDN and the third column 333 contains a Home-IDN.
Each Name-IDN of third table 330 (for example, at row 4 of
table 330 whose column 332 contains the value “N”’) should
have 1n the left column 311 of the Names table 310 a match-
ing key number (e.g., the number N which 1s pointed to by
arrow L,). Thus an N-IDN stored in the third table 330 can
be used to indicate the row within the first table 310 where a
person’s full name may be found. Each Home-IDN of the
third table 330 should similarly have a matching key number
(e.g., the number 2 which 1s pointed to by arrow L) within
left column 321 of the second “Locations™ table 320 at
whose row a corresponding full home address may be found.

Each row (e.g., row 4) within the third table 330 implicitly
creates a set of logical links or “relations™, L,,-P.,-L.;
which join a person’s name to a particular home address.
These links, L,,, P,, and L, are represented in FIG. 3 by
dashed connecting lines which, in combination, join the
Person’s-Name held in table 310, row N, to the Home-
Address held in table 320, row 2. The implied linkage, L ;-
P,,-L.;, does not arise from the contents of the first three
tables, 310, 320 and 330 taken alone. The key numbers (e.g.,
N-IDN, H-IDN, P-IDN) that are held within these tables are
by themselves a meaningless series of numbers. It 1s only
when randomly distributed modules of object code 120d4*
stored within the memory means 120 of this “relational data-
base” system (300) cooperatively interact with the CPU 110
that the implied relations come 1nto being. The object code
120d* mstructs the CPU 110 to select a specific row (1.e.,
row 4) in the third table 330, to extract the numbers from
adjoining columns 332 and 333 of that row (thus 1mplying
the proximity link, P,,), to selected table 310, to sequence
down i1ts KSO column 311 looking for a match to the number
from column 332 (thus implying logical link L,), to select
table 320, to sequence down 1ts KSO column 321 looking for
a match to the number extracted from column 333 (thus
implying logical link L,,), and to then extract from each
respectively matching row of tables 310 and 320 the corre-
sponding person’s full name and full home address. It is only
by performing these data processing steps, as directed by the
object-code 120d*, that the search-and-translation machine
115 of embodiment 300 1s able to link (L,) and otherwise
meaningless number (N) held in the third table 330 to a

US RE40,5260 E

15

specific row (1.e. the row holding the same number N) posi-
tioned 1n another table (310) and to link (L,,) further num-

bers (1.e., the number “2” 1n col. 333) of the third table 330 to
a specific row (1.e. the row holding the same number 2) of

yet another table (320). This object-code dictated linkage
L,,-P.,-L .5 then implies a “relation” between the Person’s-
Name field stored at row N of table 310 and he Home-
Address field stored in row 2 of table 320. Arrow L__ denotes
that all illustrated linkages (L. ,-L) 1n FIG. 3 spring forth
from randomly-distributed object code modules 120d* of
the access control program 120d. Note that the third table
330 assumes by its three column structure a one-to-one car-
dinality between person-name and home-address. It 1s
assumed that a person can have only one home address. The
structure of table 330 1s incapable of handling a situation
where a person has, for example, both a summer home-
address and a winter home-address. Restructuring of the
third table 330 would be called for 11 1t becomes desirable to
associate each person’s name with more than one home
address.

A number of advantages come from organizing the tables
of data storing area 300 separately according to relational
database theory. Storage space 1s conserved in cases where
plural entities of a first type (person) are related to a common
entity of a second type (home address). The same Home-
IDN can appear many times down column 333 without con-
suming large amounts of memory space while the actual full
address 1s stored only once in second table 320. When a
person moves to a new home address, the corresponding
Home-IDN in column 333 can be easily altered to point to a
new position within the second table 320 which contains the
new home address (e.g., H+1) thereby implying the new
person-to-address relation. If a person changes their name
(1.e., by way of marriage) the home address can remain the
same. Only the first table 310 needs to be modified and
updating work 1s thus minimized. Also, the basic listings
“Names” 310 and “Addresses” 320 can be used to imply a
wide variety of “relations” other than a relation between a
person’s name and his/her home address using the same
abbreviated set of 1dentification numbers (IDN’s).

By way of example, assume that the first three tables, 310,
320 and 330, are used by a business 1nstitution (company) to
keep track of the names of their employees and the corre-
sponding home addresses of these employees. Let 1t be sup-
posed that many employees need to commute to work by a
privately-owned car. Some employees drive their own car,
some drive a car owned by another employee and some are
merely passengers. Let 1t be further assumed that after tables
310, 320, 330 are defined 1n a mass storage means 130, the
company decides to also keep track of which person drives
which car, which person 1s a passenger in which car and
further, who the owner of the car 1s.

A fourth table 340 (Table of Drivers) may be constructed
as shown 1n FIG. 3 to have a first key-sequenced column 341
storing plural driver identification numbers (abbreviated
here as D-IDN’s), 1,2, 3, ..., D. A second column 342 1s
provided for holding person i1dentification numbers
(P-IDN’s) and a third column 343 1s provided for holding car
identification numbers (C-IDN’s). A fifth table 350 (Table of
Cars) may be similarly constructed as shown with a first
KSO column 351 for holding the C-IDN’s (1,2, 3, ..., C),
with a second column 352 for holding owner identification
numbers (O-IDN’s) which will point to the one person who
owns the vehicle and with a third column 353 for holding a
vehicle serial number (SN). While not shown, 1t should be
apparent that a sixth table (Table of Passengers) would be
constructed with the same organization as that of fourth table
340 to 1dentily passengers and their corresponding car.

5

10

15

20

25

30

35

40

45

50

55

60

65

16

Referring to row D of table 340, 1t can be seen that one
implied link [, 1dentifies driver D as being the person of
P-IDN=4 who has the name implied by earlier link L, and
the home address implied by earlier link L ;. Proximity link
P,. implies that driver D drives the car having C-IDN=2.
The latter number implies a logical link [, to row 2 of table
350 which holds the serial number (SN) of the driven car. By
way of another proximity link, P47, in row 2 of the same
fifth table 350, a further logical link, L ., indicates that the

owner ol car C-IDN=2 1s the person P-IDN=P of table 320.
It was assumed by the structure of table 359 that each car can
have only one owner and one serial number.

Consider, however, what happens iI a new government
regulation comes into being allowing for more than one
owner per car or requiring multiple 1dentification numbers
for each car. The fifth table 350 may have to be restructured
to add new columns (1.e., 354, 355, etc.; not shown) which
would allow for the implication of such new relations. This
means that the access control modules 120d* which define
the “meaning” of each data field (subsection) within table
350 would have to be revised. Referring back to FIG. 1 1t can
be seen that modification to the control code 120d* will
usually occur first 1n the original source code 112, which 1s
then complied 114 as indicated 1n FIG. 1, debugged to cor-
rect programming errors (not shown) and thereaiter repeat-
edly complied 114 and debugged until all apparent errors are
removed. The process ol restructuring relations within a
relational-type database system (300) therefore tends to be
time-consuming, costly, and prone to error.

A newer form of database organization, referred to some-
times as the “object oriented” approach, has been proposed
to solve some of the problems associated with reorganizing
and updating previous database systems. According to the
object-oriented approach, encapsulation bubbles are defined
to hide from external view, data which 1s encapsulated
within the bubble. Each bubble 1s referred to as an “object”
and the encapsulated information of the object 1s referred to
as the object’s “attributes.” One bubble may encapsulate a
second bubble which 1n turn encapsulates third, fourth and
further bubbles so that a relatively complex data structure
may be defined. Objects can be assigned to “classes” and by
such assignment they can be made to automatically “inherit”
the attributes of other objects 1n the same class, even when
the class attributes are changed after creation of the objects.

There 1s still controversy 1n the field over what constitutes
“object oriented” and how such a concept may be practically
applied to database management systems. Experimental ver-
sions ol object-oriented systems are often too slow 1n per-
forming update and 1mnquiry servicing to be practical in com-
mercial settings. The present mvention takes an approach
which might be considered a partial hybrid of the object-
oriented approach and the earlier-described relational data-
base methodology. It provides a database system which 1s
capable of operating at commercially acceptable speeds and
which 1s easily restructured as well as updated. The mnven-
tion will be explained first conceptually and then by concrete
examples.

Referring to FIG. 4A, there 1s shown a relational graph or
“schema” 400 which contains three egg-shaped bubbles
labeled respectively as “Customer”, “Address” and
“Account”. These bubbles are not intended to represent
“objects” from the object-oriented school of thought, but
rather “classes” of entities. Each of these bubbles is referred
to as an “entity type” or “entity class”. The “Customer”
entity class generically covers all entities which might {it
under the broad descriptor “Customer”, regardless of
whether that entity 1s a natural person, a business

US RE40,5260 E

17

corporation, an association or so forth. The “Address™ entity
class covers all entities which {it under the broad descriptor
“Address” regardless of whether the subject entity 1s a resi-
dential address, a business address, a post-oifice mailing
address or so forth. Similarly, the “Account” entity class
covers all sorts of accounts including savings accounts,

checking accounts, trust accounts, etc.

Each entity bubble may contain one or more “instances”™
of the entity class (1.e., Customer, Address, Account) which
it represents. By way of example, let it be assumed that there
are three customers whose names are “Customer-A”,
“Customer-B” and “Customer-C”. Let 1t be further supposed
that because of a peculiar rule, the Customer bubble (also
labeled as entity class

E-1) 1s restricted to contain the
name of only one customer at a time, say “Customer-B”,
while the address bubble (E-2) can at the same time contain
many “addresses”, each corresponding to that Customer-B.
If Customer-B 1s a person, the address instances might be
summer-home and winter-home addresses. If Customer-B 1s
the name of a business having a chain of stores, the plural
addresses 1n the second bubble (E-2) might be the mailing
addresses of those stores. The name “Customer-B” 1s an
example of a first instance, I,,,.,, of the E-1 entity class and
1s 1llustrated conceptually 1n FIG. 4A as a small sphere I, -,
enclosed 1n the entity class bubble E-1. Three instances,
Iz, I,,z» and 1;,, of entity class E-2 are similarly 1llus-
trated as three spheres 1nside of entity bubble E-2. It 1s also
assumed here that the Account bubble (E-3) 1s restricted by a
peculiar rule so that at any one time it may contain only one
account number (instance I,,.,) which 1s somehow associ-
ated with Customer-B.

Until now we have been visualizing the instances, 1, .,
I 55s Isns 13,20 and 1, Of respective entity classes, E-1,
E-2 and E-3 as i1solated spheres floating separate from one
another, without i1dentifying any specific relation between
the instances. The present invention treats “relations™ as
being objects of equal substance to the entities they tie
together. There are relation “classes” and instances of a
specified relation class. Three arrow-shaped bubbles, R-1,
R-2 and R-3, are shown 1n FIG. 4A to be respectively cou-
pling the Customer entity class (E-1) to the Address entity
class (E-2), the Account entity class (E-3) to the Customer
entity class (E-1) and the Account entity class (E-3) to the
Address entity class (E-2). These linking bubbles (R-1, R-2,
R-3) are referred to here as “relationship” types or classes.
Each relation bubble R-x (where x 1s an arbitrary 1dentifier,
1, 2, 3, etc.) 1s visualized as having a bulb-shaped Head
portion, H, an elongated body portion B and an arrow-
shaped Tail portion, T. A “Head attribute” can be assigned by
cach relation bubble R-x to the entity bubble (E-h) located at
its head end (H). A “Tail attribute” can be correspondingly
assigned by each relationship bubble R-x to the entity bubble
(E-t) located near 1ts tail end (1). The combination of the
Head-attribute, 1t any, plus the Tail-attribute, 1f any, can be
used to give the relationship bubble (R-x) a “meaning™. This
meaning 1s generated by associating with the body portion B
of each relationship bubble (R-x), a “meaning-string’” which
preferably, but not necessarily, has a head character-string
and a tail character-string. The combination of an “entity-
class name” (ECN-h) associated with the head enftity type
(E-h), the meaning-string (M-s) of the connecting relation
type (R-x) and another entity class name (ECN-t) associated
with the tail entity type (E-t) are concatenated according to
the formula, (ECN-h)+(M-s)+(ECN-t), to expressly define a
relational phrase. The expressly defined phrase can be modi-
fied by changing any one or all of its three components;
(ECN-h), (M-s) and (ECN-t).

5

10

15

20

25

30

35

40

45

50

55

60

65

18

In more concrete terms, the top relation bubble R-1 1s
shown to have the meaning string “’s business”. The

substring, “’s” 1s a head character-string while the substring,

“business” 1s a tail character string. By 1tself, the meaning-
string (’s business) appears to be nonsensical, but 1n con-
junction with the class names its head and tail entities, E-1
(“Customer”) and E-2 (“Address™), this first relations
bubble, R-1, forms the relational phrase: “The Customer’s

business Address”. Instance I,,-, 1s a specific customer’s
M 14 22 M

name (1.e., “Customer-B”’) and instances I, ..., I, and L5, .,

are now defined as specific instances of that customer’s busi-

ness addresses (1.e., the addresses of individual stores in a

chain of stores owned by Customer-B).

Of importance, 1t 1s to be noted that the first entity bubble,
E-1 (Customer), does not itself encapsulate the attribute of
possession as indicated by the apostrophed head character-
string “’s”. Instead, that attribute of possession 1s encapsu-
lated by the first relationship bubble, R-1. Furthermore, the
second entity, E-2 (Address), does not encapsulate the modi-
tying attribute “business”. Instead that attribute 1s also
encapsulated by the relation bubble R-1. Thus, each entity
bubble (E-1, E-2, E-3) 1s free of any narrowing attributes or
modifiers and instead, represents a relatively broad and
generic listing of data items which can come under the head-
ing of either “Customer” or “Address” or “Account”. The
advantage of this structure will become apparent shortly.

Consider for a moment what happens 11 the meaning-
string 1n relation bubble R-1 1s changed from ““’s business”
to “’s headquarters”. Under this circumstance, the rules
change. The address bubble (E-2) should be restricted to at
any one time contain only a single mstance (e.g., I,) rep-
resenting the “Customer’s headquarters Address” rather than
many instances. Presumably each customer can have only
one headquarters address. Thus, the “cardinality” of rela-
tions bubble R-1 must be changed from its earlier one-to-
many {1:m} format, as was possible with business
addresses, to a one-to-one setting {1:1}. According to the
invention, each relation bubble, R-x, has a cardinality rule
(e.g., {1:1} and {1:m}) associated with its body B as well as
a meaning- string (e.g., *’s business”).

Consider, next what happens 1 a business database 11
users are allowed to enter a customer name but leave out the
mailing address or telephone number of that customer. Most
companies operate under a strict rule which requires its
olfice workers to record at least one forwarding address or
telephone number when the name of a new customer 1s
entered. To enforce this requirement, each relation bubble
(R-1) turther incorporates a mandatory-coupling character
which can be either “Y” or “N” (representing yes or no). If 1t
1s required that at least one instance (I,,-,) of a tail enfity
class E-2 should be created whenever an instance (I,,.,) of a
head entity class E-1 1s created, then the mandatory-
coupling character of relation bubble R-1 1s set to “Y”. This
indicates that instance I, -, should not exist without instance
I,,z. The “MC” lightning bolt shown emanating from I, ,.,
represents this mandatory coupling of instances. On the
other hand, 11 such coupling 1s not mandatory, the coupling
character 1s set to “N” and there 1s no “MC” connection.

As Turther examples of the concepts behind the invention,
the second relation bubble, R-2, 1s shown to contain in FIG.
4A the meaning string, “’s owning’, the cardinality rule,
{1:1}, and the mandatory-coupling character, “Y” presum-
ably every account should have an owner). The third relation
bubble, R-3, 1s shown to contain the meaning string, “’s
statement mailing”, the cardinality rule, {1:1}, and the
mandatory-coupling character, “N”” (presumably an account
holder can pick up his/her statement rather than having 1t

US RE40,5260 E

19

mailed). Instances of entity E-1 which satisty the relation-
ship created by relation bubble R-2 are read as “The
Account’s owning Customer”. Instances of entity E-2 which
comply with the relationship created by relation bubble R-3
satisty the descriptive phrase, “Account’s statement mailing
Address™, or stated otherwise, the address to which account
statements are mailed for the particular instance I,,., of the
Account enfity class E-3.

By changing the meamng-string within a relation bubble
R-x, 1t 1s possible to create new relational phrases although
the Head and Tail entity classes remain the same. By chang-
ing either or both of the Head and Tail entity classes (E-h or
E-t), it 1s possible to again create new relational phrases

although the relation bubble R-x remains unchanged.

Consider what happens for example when the meaning-
string of relation bubble R-3 i1s changed to the phrase:
“which 1s managed at bank branch having”. Then the combi-
nation of the class names or meanings associated with entity
bubble E-3, relation bubble R-3 and entity bubble E-2 pro-
vides for an inquiry path allowing one to find the Account
which has a specific bank branch address as 1ts managing,
branch. Consider what happens 1f the tail portion T of rela-
tion bubble R-3 where moved from E-2 to a new enftity
bubble (not shown) which 1s labeled “Managing Officer”
rather than “Address”. Then the relational phrase becomes
“Account which 1s managed at bank branch having | this per-
son as its| Managing Officer”. It can be seen that an entirely
different inquiry path 1s formed with each change of a head
entity type, tail entity type or relation type.

Inquiry paths can be defined to extend through pluralities
of entity and relation bubbles as well as between just two
entity bubbles. Still referring to FIG. 4 A, suppose that a bank
officer finds an important document bearing only an account
number on 1t. The bank officer needs to immediately contact
a person who 1s authorized to manage that account for more
details about the document. In such a case, the bank officer
would turn to a database processing engine according to the
invention (explained later with reference to FIG. 9), start at
the known 1nstance of the account number, I,,.,, which 1s
shown contained within the Account bubble (E-3), jump
through the relation bubble R-2 (s owner) to the Customer
bubble (E-1) 1n order to learn who the owning customer 1s
(instance 1,,-,) and then with that new information (I,,-,)
serving as a stepping stone, jump from the Customer bubble

(E-1) through the relation bubble R-1 (s business) to the
Address bubble (E-2) to learn the address at which he may
contact the account manger. This 1s merely an example,
inquiry paths can include many more bubbles, they can
branch out to form a tree rather than being serial and they
can produce many pieces of information which are useful for
solving a puzzle rather than just one piece of target informa-
tion.

Relation bubbles (R-x) do not have to be single tailed.
Referring to FIG. 4B, further variations of the concept
behind the invention are i1llustrated. A fourth relation bubble,
R-4, 1s shown to have a plurality of tail ends, T1, T2 and T3,
so that a single meaning-string (e.g., “’s business”) can
simultaneously couple a common Head entity (Customer) to
a plurality of Tail entities (e.g., Address, Account and
Telephone). Moreover, a relation bubble does not need to
span between different entity bubbles. FIG. 4B shows
another relation bubble, R-5, which folds back 1n a loop so
that the Head entity (Customer) 1s also the Tail entity. In the
illustrated example, the relation bubble R-5 contains the
meaning string “’s largest”. Given the name of a first
customer, this back-looping relation bubble R-3 allows one
to find that customer’s largest customer. The loop may be

10

15

20

25

30

35

40

45

50

55

60

65

20

followed around ad infinitum to obtain a long list of largest
customers belonging to other largest customers.

With the above-mentioned conceptual models 1n mind, a
concrete embodiment of the invention now will be con-
structed piece by piece. Relferring to FIG. 5, there 1s shown a
first table 500 which 1s referred to as an entity definition
table or in abbreviated form, ENT.DEF Table 500. This
entity definition table 500 1s stored within a data string area
130-RP of a database engine 1n accordance with the inven-
tion. Data storing area 130-RP preferably resides within a
bulk storage means 130' such as diagrammed 1n later-to-be
described FIG. 8. Unlike the earlier described tables 310-
350 of the relational system shown in FI1G. 3, which relied on
a purely key-sequenced organization, the entity definition
table 500 of FIG. 5 can rely on a relative table orgamization
(abbreviated here as “RT0O”) which features faster data
access properties and 1s also adaptable to key-sequenced
search algorithm (but not key-sequenced update methods).
Each row of the ENT.DEF table 500 1s of a fixed bit length
and has two columns. The first (left) column 500a stores a
two character field (e.g., “CU,” “AD,” “AC” or “SU”") which
1s an abbreviation of an entity class name. The abbreviation
“EA” will be used here to mean “the abbreviated form of the
entity class name” (Entity-name Abbreviation). By way of
example, slot number 1 1s shown to contain the two-
character abbreviation “CU” (representing the entity name
“Customer”) 1n 1ts leit column 500a.

For expedience sake, a matrix notation i1s used here to
identify the columns of table 500 with letters, a, b, c, . . .,
etc. and the rows with a numeral preceeded by a period. The

symbol 500a.1 thus refers to the box 1n table 500 at column
500a and row 500.1.

As further seen 1n FIG. 5, the abbreviation “AD” 1s stored
in box 500a.2 to represent the entity name “Address™. Box
500a.3 holds the abbreviation “AC” for “Account” and box
500a.4 stores the abbreviation “SU” for “Supplier”. The slot
or row numbers, .1, .2, .3 and .4 of table 500 do not occupy
storage space within memory means 130-RP. They merely

represent the physical or logical address of their respective
rows, 500.1, 500.2, 500.3 and 500.4.

In the corresponding right column 500b of the ENT.DEF
table 500 there 1s stored, for each slot (.1, .2, .3, 4, etc.) the
name ol a single other table where nstances of the named
entity class are stored. The abbreviation “E11” (Entity-
instances-Table) will be used here to mean the table where
instances of the entity class are stored. Again by way of
example, box 500b.1 1s shown to reference an E1T called
“T.Companies” as the single table where instances of the
entity class “Customer” are stored. The entry in box 500b.2
1s “T.Addresses” and the entry 1n box 500b.3 15 “T.Ac-
counts”. Note that the entry in box 500b.4 1s “T.Companies”
just as 1t 1s Tor box 500b.1. Instances belonging to two difier-
ent entity classes (e.g., “CU” and “SU”) may be stored 1n
one instances table (Fi1T) under situations where the data
structures of the mstances are compatible to the structure of
that E1T (e.g., the entity instances table has enough columns
of appropriate widths to support the description of each
entity 1nstance).

Each entity class can be referenced not only by its abbre-
viated name (e.g., EA="AD") but also by the slot number
(e.g., slot .2) where 1t 1s stored 1n the entity definition table
500. The slot number may function as an “enftity type num-
ber” (abbreviated here as ETN) for numerically identifying,
its corresponding entity class. Alteratively, an additional
“type number” column (not shown) may be added to the
ENT.DEF table, 500, unique type number may then be

US RE40,5260 E

21

entered 1nto each row of the type number column and these
can serve as the ETN’s. Thus, the “Address™ entity class may
be referenced not only by the abbreviation EA=“AD” but
also by an enfity type number whose value, ETN=2. For the
relative table organization (RTO) shown 1n FIG. 5, the ETN
happens to be the same as the slot number (e.g. slot 500.2)
where the entity name abbreviation (e.g., AD) 1s stored 1n the
ENT.DEF table together with the name of the corresponding
E1T (e.g., T. Addresses). For the case where an additional
type number column (not shown) 1s added, the unique
ETN’s can be assigned arbitrarily such as according to the
alphabetic ordering of the EA’s 1n which case the ETN’s
may be used as sort keys for alphabetically ordering the
ENT.DEF table rows according to entity class names (e.g.
using threaded-list techniques).

Referring next to FIG. 6, there 1s shown another table 600
which 1s also stored within the data storage area 130-RP of
an engine according to the mvention. This table 600 may
also have a relative-table organization (RTO) and 1t 1s
referred to as a relations-definition table, or REL.DEF table
600 for short. As before, a matrix notation 1s used here to
identify vertical columns of the REL.DEF table as 600a,
600b, 600c, etc.; horizontal rows as 600.1, 600.2, 600.3, etc.:
and 1individual boxes as 600a.1, 600a.2, 600b.1, 600b.2, etc.

The left-most column 600a holds a two character abbre-
viation representing the class name and/or meaning-string of
a relation bubble. The mnemonic, RA, will be used here to

designate such a relationship abbreviation. By way of
example, box 600a.1 holds the abbreviation “-BU-" which

represents the meaning-string “’s Business”. (Hyphens
embrace the relation abbreviations here to distinguish them

from entity abbreviations [EA’s].) Box number 600a.2
stores the abbreviation “-OW-" to represent the meaning-
string “’s Owning”. Box number 600a.3 stores the abbrevia-
tion “-SM-" to represent the meaning-sting “’s Statement
Mailing”. Box number 600a.4 holds the abbreviation
“-HQ-"" to represent the meaning-string *“’s Main Headquar-
ters”.

Each row of the REL.DEF table 600 may also identified
numerically by a “relationship type number” (RTN) which
in the illustrated example happens to be the sane as the slot
number (.1, .2, .3, etc.) where 1ts corresponding two charac-
ter code (-BU-, -OW-, -SM-, etc.) 1s stored. Alternatively, a
type number column (not shown) may be added to the REL.
DEF table 600 and unique RTN’s may be assigned accord-
ing to any desired, unique number generating scheme, such
as according the alphabetic ordering of the RA’s. In the
latter case, the RTN’s can also function as sort keys for
ordering the rows of the REL.DEF table (using threaded list
techniques) alphabetically according to relationship class
names (RA’s). Thus, when given a specific RIN, one can
quickly calculate the physical or sequence to the logical
address 1n the REL.DEF table 600 where details about the
corresponding relation class are stored so as to quickly
retrieve those details.

In the second column 600b of the REL.DFEF table, there 1s
stored, for each slot (.1, .2, .3, etc.), the name of a single
table where 1nstances of the named relation class are stored.
The mnemonic, “RiT” (Relation instances Table), 1s used
here to represent such a table. By way of example, the entries
in boxes 600b.1, 600b.2, 600b.3 and 600b.4 are respectively:
“T.Rel-17, “T.Rel-2”, “T.Rel-3” and ““I.Rel-1”. Note that the
entries of box numbers 600b.1 and 600b.4 are the same.
Compatible instances of two different relation classes may
be represented by two corresponding rows of data stored 1n a
common relation-instances holding table (RiT).

The third column 600c of the REL.DEF table stores the
type number (ETN,) of a head entity (E-h). Here, the entity

10

15

20

25

30

35

40

45

50

55

60

65

22

type number (ETN,) 1s the same as an ETN assigned to a
corresponding row 1n the ENT.DEF table 500 where the
abbreviated class name (EA) of that head entity bubble 1s
stored. Similarly, the fourth column 600d of the REL.DEF
table stores the type number (ETN,,) of a corresponding first
tail entity (E-t1).

Note that the first three rows (600.1, 600.2 and 600.3) 1n
FIG. 6 A correspond to the relations schema shown 1n FIG.
4A. When row number 600.1 1s read across using the column
sequence: ¢, a, d, 1t corresponds to the relationship descriptor

phrase “Customers’ business Address”. Box 600b.2 tells us
that 1instances of this relationship are stored 1n an RiT table

called “T.Rel-1"’.

Similarly, row number 600.2, columns c, a, d correspond
to the relationship descriptor phrase “Account’s owning
Customer”. Box 600b.2 tells us that instances of this relation
are stored 1n table T.Rel-2. Row number 600.3 likewise cor-
responds to the relationship describing phrase “Account’s

statement mailing Address™ and tells us that instances of this
relation are found 1n the T.Rel-3 table.

The REL.DEF table 600 can be updated indefimitely by
adding new rows to 1ts bottom so as to encompass a great
number of further relation classes. There 1s no need to physi-
cally order the data describing each of the relational classes
and thus descriptions of new classes can be added to the
bottom or other empty slots of the REL.DEF table 600 spo-
radically as the need arises over time. Relation classes which
become obsolete can be deleted to leave behind an empty
slot. Similarly, there 1s no need to order the entity classes
defined by the ENT.DEF table 500. The ENT.DEF table can
be updated by arbitrarily adding new entity class describing
rows to 1ts bottom or other empty slots or by deleting obso-
lete entries as the need arises. Accordingly, when demands
on the database system of the imnvention change over time,
new relation classes may be defined in combination with
new head and tail entity classes. The schema of the invention
can be continuously restructured as the need arises simply

by updating the REL.DEF and ENT.DEF tables, 600 and
500.

The fifth columnar region 600¢ of FIG. 6 A represents a
plurality of additional columns within the REL.DEF table
600. The names of multiple tail entities which are activated
in addition to or 1n substitution for the first ETN, of column
600d may be optionally entered in this region 600¢. Refer-
ring briefly to FIG. 6B, an exploded view of this fifth region
600¢ 1s illustrated. In the example, each relation class R-x
can have as many as five tail entities (11, T2, T3, T4, T5).
The invention 1s, of course, not limited to five. Column 600d
identifies the first tail entity, T1, while extension columns
602 through 605 1n region 600¢ 1dentily the optional, other
tail entities, T2-T15. The opening phrase “Customer’s busi-
ness. . .~ of slot number 600.1 columns, ¢ and a, may apply
to the first tail entity T1="Address” and/or to a second tail
entity 12="Supplier” and/or 1n a third tail entity T3="Area”,
etc.

Extension region 600¢ 1s shown to include a tail activating,
column 606 which functions as a mask to activate or deacti-
vate each of the corresponding tail entity columns 600d,
602-605. In the illustrated example, a dark filled circle
means that the corresponding tail entity of that slot (row) 1s
active while an unshaded circle means that the respective tail
entity 1s deactivated. As an alternate embodiment, the mask
column 606 may be dispensed with and the lack of an ETN
entry (or a “null” entry) in a box of columns 602-603 will be
regarded as indicating a deactivated tail while the inclusion
of an ETN value will be regarded as indication an active tail.

US RE40,5260 E

23

When two or more tail entities are activated, the relation
bubble takes on a multi-tailed form such as shown 1n FIG.
4B at R-4. The same meaning-string 1s applied to the plural
tail entity bubbles of the activated tails. Multiple copies of a
prespeciiied row 1n the REL.DEF table 600 may be added to
empty slots within the table 600 in a boiler-plate stamping
manner with only the tail activation masks 606 being modi-
fied or some E'TN entries of columns 602-605 nulled from
copy to copy in order to generate a wide variety of different
relation classes.

Returming to FIG. 6 A, the next column 6001 of the REL-
DEF table holds a code indicating the cardinality of the
corresponding relation bubble (e.g., {1:m} or {1:1}). The
next following column 600g contains a one character code
indicating whether there 1s mandatory coupling (MC)
between an istance of the head entity and an instance (or
instances) of the tail entity (or active tail entities).

Referring to FIG. 7 a broader view 700 of a relations-
processing storage area 130-RP in accordance with the
invention 1s now shown. Storage means 130-RP is coupled to
a data search-and-retrieval machine 815 by way of address

bus 131 and data bus 132. Starting at the bottom of FIG. 7,
we see that two relative-organized (RTO) tables are shown: a

T.Companies table 710 and T.Addersses table 720. Both of
these are Entity-instance Tables (E1T-1 and E1T-2,

respectively). The T.Companies table 710 has one column
710a 1n whose numbered slots (710a.1, 710a.2, 710a.3, etc.)

are stored the names of various companies. The T.Addresses
table 720 has one column 720a 1n whose slots (720a.1,
720a.2, 720a.3, etc.) there are stored data fields representing
various street addresses. Each piece of “real” data such as

the name of a company (e.g., “Allen’s Automobiles™) 1s
referred to as an “Entity-instance™ or Fi1 for short. The slot
number where the Ei 1s stored defines an “Enftity-instance
Number” or FiN for short.

The broader view 700 reveals a third table 730 which 1s
labeled 1 FIG. 7 as the T.Rel-1 table and also as R1T 730.
Each of the numbered slots, 730.1, 730.2, .. .,730.6, etc., in
this “Relation-instances Table” (R1T) 730 has five columnar
entries. They are respectively: (a) a head entity-type 1denti-
fier[ETN, |, (b) a head-entity instance identifier [FiN, |, (c) a
relationship class identifier [RTN], (d) a first tail entity-type
identifier [ETN,]| and (e) a first tail-entity instance identifier
|EiN.]. For the sake of illustrative clarity two-character
abbreviation identifiers are shown entered 1n the vertical col-
umns 730a, 730c and 730d of the T.REL-1 table 730. It 1s
within the contemplation of the invention to alternatively
enter the corresponding entity or relation type number (ETN
or RTN) for these two-character abbreviations. This allows
the retrieval machine 815 to quickly and directly access the
corresponding row of the ENT.DEF or REL.DEF table
where data of interest 1s stored using either relative-table or
key-sequenced access techniques.

Columns 730a and 730b 1n combination 1dentily particu-
lar 1instances of a head entity class (Head Fi1) while columns
730d and 730¢ in combination identily particular instances
of a tail enftity class (Tail E1). Referring specifically to box
number 730a.2 of the T.REL-1 table 730, the “CU”” (or alter-
natively ETN, =.1) entry of this box directs the data retrieval
machine 815 of the invention to a first section 500.1 of the
ENT.DEF table where there 1s stored the name of a first table
(E1T-1=T.Companies”) where instances of this names
entity class (“CU”) are stored. The logical link from third
table (R1T) 730 to table area 500.a 1s labeled as L,,,. The
link from table area 500.1 to the first table (E1T-1) 710 1s
labeled as L., .

The second column 730b of the T.REL-1 table holds the
slot number or “Entity-instance Number” (EiN=.5 of box

10

15

20

25

30

35

40

45

50

55

60

65

24

730b.2 for example) of the indirectly referenced Entity-
instances table (T.Companies 710) within which a specific
instance (Ei="“Expert Electronics™) of the named head entity
class (EA=*CU”) 1s stored. In this example, box number
710a.5 of the first E1T 710 contains the name “Expert Elec-
tronics” and this name-string 1s the enftity instance refer-

enced by the “CU.5” entries of boxes 730a.2 and 730b.2.
The link from box 730b.2 to box 710a.5 1s labeled as logical
link L 5,.

Referring to columns 730d and 730e¢ of slot number
730.2, a similar linkage 1s created to the instance of a tail
entity class. In the illustrated example, the “AD” entry of
box 730d.2 points to a second section 500.2 of the ENT.DEF
table (thereby defining link L-55) where a second pointer 1s
found to a second Entity-instances Table (E11-2) which 1n
this example 1s the T.Addresses table 720 (thereby defiming
link L-.,). Box 730a.2 holds the slot number (.4) of the
indirectly referenced table 720 1n which the target data “355
Transistor Lane” 1s stored (thereby defining link I, ,). Thus,
the 1llustrated Relationship-instances Table (RiT) 730
defines a connecting relationship (extending from the arrow-
head of L5, to row 730.2 to the arrowhead of L-;,) which
jo1ns the mstance “Expert Electronics™ of entity class “Cus-
tomer” (CU) with the instance “555 Transistor Lane” of the
“Address” (AD) entity class. Each row of the RiT 730 1s
referred to as a “Relation-instance” (abbreviated as Ri1) and
the slot number of that row defines a corresponding
“Relation-instance Number” (RiN). (while not shown, it 1s
within the contemplation of the invention to add a “instance
number” column to any of tables 710, 720 or 730 so as to
unmiquely 1dentily their rows by arbitrarily assigned instance
numbers, EiIN or RiN, rather than relying on an RTO slot
number, but the RTO slot number approach 1s believed to
result 1 faster data access.) Columns 730a-730b accord-
ingly define the head portion of a “Relation-instance” (Ri1)
and columns 730d-730¢ define a tail portion of the relations-
instance (as conceptually shown i FIG. 4A). Column 730c,
as will now be seen, defines the body portion of each
Relation-instance (R1).

Referring to the middle column, 730c, of the T.REL-1
table 730, this column holds an identifier pointing to a corre-
sponding row 1n the REL.DEF table 600 where the relation-
ship class of the instant relationship (R1) 1s defined. For the
sake of illustrative clarity, the RA of each relation class 1s
shown entered 1n column 730c. It 1s within the contempla-
tion of the invention to alternatively enter the corresponding
slot number, RTN, of the REL.DEF table 600 so as to speed
the access time of the retrieval machine 815. By way of
example, the entry “-BU-"" 1n box 730c¢.2 indicates that the
relationship between the head instance, Customer.5, and the
tail instance, Address.4, 1s the “’s Business™” meaning-string

associated with slot 600.1 of the REL.DEF table (FIG. 6).

The relation instances table, T.REL-1 730, may contain
many rows, each of which has the identical head enftity-
instance entries (1n col.s 730a and 730b), identical tail
entity-instance entries (1n col.s 730d and 730e¢), but different
relationship-defining entries (e.g., -BU-, -HQ-, -OW-, etc.)
in column 730c¢. Each of these almost identical rows would
represent a different Relation-instance (Ri1). As an example,
the address mnstance AD.4 might be the “Business™ address
of customer instance CU.5 as shown 1in slot 730.2. But 1t may
also be the headquarters address “-HQ-" of that same cus-
tomer CU.S as shown 1n slot 730.6. Each of these 1s consid-
ered a different relation instance (Ri1). The T.REL-1 table
730 1s accordingly shown to include two separate row
entries: 730.2=CU.5-BU-AD.4 and 730.6=CU.5-HQ-AD 4.

A relational query which asks the question, “What 1s the

US RE40,5260 E

25

headquarters address of my customer, Expert Electronics
would be answered by accessing row 730.6 of the T REL-1
table 730. The slightly different relational query, “What are
all the business addresses of my customer, Expert Electron-
ics!” would be answered by accessing all rows 1n the

T.REL-1 table 730 beginning with the entries, “CU.5-BU-",
which 1n the 1llustrated case includes rows 730.2 and 730.5.

With the illustrated structuring of a Relation-instances
Table (R1T 730), all sorts of relational inquiries can be
answered by starting with a known first instance of a {first
entity class, 1irrespective of whether the class 1s a head entity
class or tail entity class, and searching through the RiT 730
to locate all relationship-instances (R1’s) of which that start-
ing instance 1s a member. Once the matching Ri1 rows are
tound within a designated Relation-instances Table (Ri1T), 1t
becomes a simple matter to scan horizontally across the row
from the starting instance through the relation descriptor of
column 730c¢ to find the corresponding, but until now,
unknown instances of the opposed tail and head entity
classes.

'3‘3‘

The uncovered instances can then serve as stepping stones
for answering further parts of a compound query. Consider
for example the two-level query, “What are all the business
addresses of my customer Expert Electronics, and once you
know that, what other customers use those addresses as their
business addresses!” There may be a plurality of business
addresses satistying the first part (Level-1) of the question
and each such answer would serve as a new stepping stone
leading to the answers which satisiy the second part (Level-
2) of the question.

In accordance with the invention compound queries are
answered by deflning one or more question lines 1n an
inquiry-definition (INQ.DEF) table 740. Each question line
1s 1dentified as belonging to either a one level question or to a
particular level of a compound question. A first column 740a
of the INQ.DEF table is provided for holding the entity type
numbers (ETN) of one or more entity classes, regardless of
whether they are known at the start of a query. A second
column 740b of the INQ.DEF table 1s provided for holding
corresponding instance-identification numbers (EiN), again
regardless of whether they are known at the start of a query.
A third column 740c 1s provided for holding one or more
relation type numbers (RTN) while a fourth column 740d 1s
provided for holding corresponding relation-instance num-
bers (RiN), some of which may be known and others not
known at the start of a query. Fifth column 740¢ defines the
level of each question row relation to preceding question
rOws.

An RTN wvalue, which if known, 1s entered 1n a box of
third column 740C 1n order to indicate to the retrieval
machine 815 a corresponding row 1n the REL.DEF table 600
from which the retrieval machine 815 can obtain the name of
the single table (RiT-x) where all instances of the named
relation type (RTN) reside. The identified table, RiT-x, can
then be searched for one or more Ri1 rows which hold infor-
mation relevant to a posed query. When found, the RilN val-
ues of those rows are entered into one or more boxes of
fourth column 740d. The specific R1 rows (e.g., row 730.2)
which are fully specified by filled in RTIN-RiN data pairs of
the INQ.DEF table 740 can then be accessed to direct the
retrieval machine 815 to the corresponding head and tail
entity instances ol interest (e.g., the CU.5 and AD.4;

instances which are related to one another by the -BU- entry
of box 730c.2).

If a specific R1 row 1s not fully identified at the beginning,
of a query within a row of the INQ.DEF table 740 by a

10

15

20

25

30

35

40

45

50

55

60

65

26

completed RTN-Ri1N pair, the R1 row or rows of interest can
be nonetheless located by partially filling 1n a row within the

INQ.DEF table 740 and then searching the REL.DEF or
ENT.DEF tables for additional information. Row 740.2 of
the INQ.DEF table 1s shown to have the question line, “!!.!-
HQ-!” which may mean “Please identily the Headquarters
addresses of all my customers™. In such a case, all rows of
the T.REL-1 table 730 which have the entry -HQ- 1n their
middle column 730c would provide the required informa-
tion. Fach such -HQ- row of R1T 730 would pair an identi-
fied instance of a Customer (head Ei1) with an identified
instance ol a headquarters Address (Tail(1) Ei1). It 1s to be
appreciated that for cases of multi-tailed relation classes, the
corresponding RiT would have columns for identifying the
other tail enfity 1nstances (e.g. Tail(2) E1, Tai1l(3) Ei, etc., not
shown).

Sometimes a question 1s more specific. By way of
example, let it be assumed that an 1nquiring user has a spe-
cific but fragmentary piece of starting information such as
the street address “555 Transistor Lane™. The inquiring user
wishes to find out the names of one or more companies for
whom “355 Transistor Lane” 1s a “Business Address™. The
user 1dentifies the fragmentary information to the data
retrieval machine 815 as belonging to the “Address” entity
class. In response, the machine 815 searches through the
ENT.DEF table 500 to locate the entity type number “E'TN”
of the named class and the Entity-instances Tale “Ei11”
where all instances of this “Address™ entity class are stored.
It should be recalled that the illustrated relative-table organi-
zation “RTO” of the ENT.DEF table 500 1s not mutually
exclusive of a key-sequenced organization “KSO”. Accord-
ing to the invention, the EA column 500a of the ENT.DEF
table 1s threaded alphabetically so that the row of a desired
entity class (e.g., EA =“AD”) can be easily found using
known key-sequenced search algorithms. A different table
(not shown) can serve as an abbreviation to full name look-
up table for converting between the entity name abbreviation
(EA) and the full name or narrative description of the entity
class (ECN) if desired or, alteratively, the ENT.DEF table
500 may include one or more additional columns (not
shown) for providing this search and conversion function.

Once the corresponding type number (ETN) of the entity
class 1s idenftified, 1n this case ETN=.2 referencing slot
500.2, the retrieval machine 815 places this first puzzle piece
into an appropriate box of the INQ.DEF table. In this
example 1t will be box 740a.3 of INQ.DEF question line
740.3 which 1s for 1llustrative purposes filled with the corre-
sponding EA=“AD".

The retrieval machine 815 then obtains from box 500b.2
of the ENT.DEF table the name of the corresponding EiT
where it 1s to search for the occurrence of the fragmentary
information “555 Transistor Lane”. The FiT’s can be key-
sequence organized (KSO) in addition to their RTO structur-
ing to facilitate such searching. After the corresponding FiT
(1n this case, the T.Addresses table 720) 1s searched and the
row of the fragmentary information 1s found, its correspond-

ing FiN, 1n this case .4, 1s entered as an entity-instance num-
ber (EiN) 1n box 740b.3 of the INQ.DEF table 740.

The earlier found entity type number (ETN) which corre-
sponds to EA="“AD" now combines with the FiN=.4 of INQ-
DEF row 740.3 to define the *“starting instance™ for resolv-
ing question line 740.3. The starting instance 1s AD .4.

The relationship type number (RTN) of the relationship
under question (-BU-) 1s entered in box 740c¢.3. If the RTN
value 1s not known, the REL.DEF table 600 1s first searched

to generate the appropriate RI'N. While not shown, the REL-

US RE40,5260 E

27

DEF table or some other table will includes a full name or
narrative column for converting between a relationship’s full
name/description and 1ts abbreviated form (RA). Box 740d.3
1s now the last puzzle piece to be filled in as indicated by a
question mark i FIG. 7.

Since the EIN.EiN-RTN- entries of boxes 740a.3, 740b.3

and 740c.3 are now all known, the retrieval machine 815
searches through the corresponding RiT (T.REL-1 table
730) to locate all relation-instances (R1’) which have the

corresponding ETN plus Ein 1n the tail entity instances col-
umns 730d and 730e and the corresponding RTN 1n column
730c. The REL.DEF table 600 identifies the starting entity
class of the AD.4-BU-! question as being a tail entity. (When
there 1s more than one tail entity, the RiT will have plural
columns for 1dentifying first, second, etc. tail instances and
the REL.DEF table 600 will specity which of these tail col-
umns 1s to be searched.) In the illustrated example, row
730.2 of the T.REL-1 table will be found to have matching
information. The retrieval machine 815 can now {fill the last
empty box 740d.3 of the INQ.DEF row 740.3 with the infor-
mation RiN=.2. Once question row 740.3 1s completely
filled, the retrieval machine 8135 may use the information of
this INQ.DEF row 740.3 to retrieve the detailed information
about the head entity instance, Ei="Expert Electronics™ from
table row 710a.5 of the T.Companies table.

The ETN.EiN i1dentifiers of the uncovered Level-1
answer, “Expert Electronics” can now serve as stepping
stones which fuel a second part of a compound query. For
example, the tull query might have been “Who has business
address, 555 Transistor Lane and what bank accounts belong
to the entity or entities that satisty the first part of this ques-
tion!” The first part 1s defined here as “Level-1" of the ques-

tion and the second part as “Level-2”. Column 740¢ of the
INQ.DEF table 1s shown to identify the level number. Refer-

ring to a feedback link L-,, shown in FIG. 7, the Level-1
answer (ECN=“CU” and EiN=.5) can now be fed back as an
entry to a subsequent inquiry-defining row 740.4 so that the
multi-level inquiry path may continue. Inquiry box 740c.4 1s
shown already filled with the relationship identifier (-OW-)
for locating account owners. The answer to inquiry row
740.4 may be used to fuel yet a further level (Level-3, not
shown) of a compound 1nquiry and the answer or answers to
that inquiry may fuel yet further inquiry rows.

Referring to FIG. 8, a block diagram of a database system
800 1n accordance with the invention 1s shown. Bulk storage
means 130' i1s indicated to include a relation-processing
region 130-RP 1n accordance with the invention. The bulk
storage means 130" may also include previously-utilized
relational tables for defining “implied” relationships
between entities. Such “implied” relationships are not
incompatible with the “explicit” relationships that are

defined by the REL.DEF table 600 of the invention. As
shown 1n region 130-RP of FIG. 8, the REL.DEF table and
ENT.DEF table may be used to define a continuously
expandable backbone which supports various relationships
(R1T-1, R11-2, etc.) between various entity instances (E11-1,
E1T-2, E1T-3, etc.). The INQ.DEF table may be visualized as
having two legs (dashed vertical lines) which sequentially
step from a starting instance table (E11-1), across a starting
table of relationship 1nstances (R1T-1) to an explicitly linked
table which holds relationship-opposed instances (F11-2) of
the starting instances. The opposing instances (of Ei1-2)
then become starting istances for a next inquiry step over
yet a further set of relationship istances (Ri1T-2).

Since the REL.DEF and ENT.DEF tables may be
expanded as desired by adding new entries to empty middle
or bottom slots found within them, a lay user can create new

10

15

20

25

30

35

40

45

50

55

60

65

28

entities, new relation classes and restructure the schema of
explicitly-defined relationships and entities forever without
having to reprogram the database system 800 at the source or
object code level. Instead, the lay user supplies schema
restructuring commands, in an appropriate structured
language, as indicated at 870 for restructuring the schema
whenever needed. The access control program 820d of the
retrieval machine 815 may remain fixed while the entity-to-
explicit-relationship schema or region 130-RP i1s forever
changed. Accordingly, object-code compilation 814 needs to
occur only once. This source code listing 812 of this access
control program needs to be developed and debugged only
once. Substantial cost savings are realized, especially as
time progresses and new entity-relationship schemas are
required.

In some commercial applications, the ENT.DEF table and
REL.DEF table may be relatively short, having for example
less than 1000 rows each (e.g., the ENT.DEF table may have
30 rows or less and the REL.DEF table may have approxi-
mately 100 rows or less). For suchy cases 1t has been found
advantageous to “copy” the ENT.DEF and REL.DEF tables
from the bulk storage means 130* to a higher speed memory
area within first memory means 120 1n order to shorten pro-
cessing time. The copied versions of the ENT.DEF and
REL.DEF tables can be purely-key-sequenced 11 an addi-
tional “type number” column 1s added for storing the respec-
tive ETN’s and RTN’s of each row. The ligher data access
speed of the first memory means 120 more than compensates
for any speed reduction which might be caused by switching
to a purely key-sequenced organization. These “mirror” cop-
ies of the ENT.DEF and REL.DEF tables are then accessed
by the CPU 110 1n place of the original ENT.DEF and REL.
DEF tables. It 1s advisable to periodically check the original
ENT.DEF and REL.DEF tables for possible revisions, since
lay users may update that original tables at any time, and
when such revisions are detected, to immediately recopy the
ENT.DEF and REL.DEF tables into the first memory means
120 so that the mirror tables faithiully reproduce the con-
tents of the original tables.

The CPU 110 1n combination with the various modules of
the object code 820d can be visualized as one or more
machine means for performing data-altering functions as
specified by the object code 820d. A Microfiche Appendix 1s
included here listing sample modules written 1n Tandem
COBOL’85™ and TANDEM SCREEN COBOL™ f{or
execution on a Tandem NONSTOP™ computer system run-
ning under Tandem NonSTOP SQL™, TMEF™, Pathway™,
SCOBOLX™ and Guardian™ systems (all available from
Tandem Computers of Cupertino, Calif.). It 1s to be under-
stood that the sample modules disclosed 1n the Microfiche
Appendix are merely exemplary. The invention may be prac-
ticed using different computer hardware and/or software.

Referring to FIG. 9, a schematic diagram of an inquiry
processing engine 900 in accordance with the invention 1s
shown. The engine 900 comprises an inquiry guide means
910 which 1s coupled to a relationship defining means 960, a
relationship storage and search means 970 and to an
intermediate-answers recerving means 980. The intermedi-
ate answers means 980 feeds abbreviated answers back to
the mquiry guide means 910 after such answers are pro-
duced by the relation storage means 970. Desired ones of all
produced results are sent from the mquiry guide means 910
to an abbreviated results gathering means 915 which then
expands them into full result details by sending an enftity
type signal sETN_to an Entity Define means 950 which
includes within itself, the earlier described ENT.DEF table
500. The sETN, signal 1s converted by the entity define

US RE40,5260 E

29

means 950 into an entity table selecting signal sE1T which 1s
fed mto an entity storage means 920 that includes within
itsell a plurality of entity-instances tables (E11-1, E11-2, etc.)
such as earlier described. Results gathering means 915 also
feeds an instance row selecting signal, sEiN, to entity stor-
age means 920. Details from the addressed entity instance
row are then transmitted through a detailed filter and por-
tions of the details which are selected by the filter 985 are
then printed on a detailed results display (e.g. a video
monitor) 990.

Relationship inquiry in general 1s a two step operation:
path selection (to create an Inquiry) and 1nquiry execution.
On a Path Selection screen (not shown) the operator selects
starting and optionally ending entity types and supplies
detailed description of the path to follow. Each path is
defined 1n terms of:

a starting entity type to initiate the query path,

a connecting relationship type which will lead to an inter-
mediate entity type and then to anther connecting rela-
tionship type and another intermediate entity type, and
so forth until

a last connecting relationship type leads to a terminating,

entity type
Taking out all but the key words from the above, we get

the form structure:
<starting entity type>
<connecting relationship type><intermediate entity type>

<connecting relationship type><intermediate entity type>

<connecting relationship type><terminating entity type>

A single mquiry definition may initiate several parallel
paths which extend from a starting entity type to an ending
entity type. When the ending entity type has not been speci-
fied 1n the header of the path-selecting screen then all these
parallel paths can end with different entity types. For
example, an inquiry to show a person’s total involvement
with all accounts held at a bank could be defined as shown in
the following Table I:

TABLE I
Level-1 Connected Level-2
Entity Relationship Entity Relationship
Person —» Account —> Account
Holder
Person —> Loan —> Account
Guarantor
Person —> Signatory —> Account
Person —> Card Holder —> Account
Person —> Group Member —> Joint —> Account —>
Party Holder
Person —> Group Member —> Joint —> Card Holder —
Party

10

15

20

25

30

35

30

TABLE II-continued

Level Relationship Entity

Account
Card
Joint Party

Account
Card

Signatory

Card Holder
Group Member
Account Holder
2 Card Holder

B)

Note that level numbers are used to determine which
entity types are intermediate to a path, which entity types
terminate a path, and which relationship types commence a
new parallel path. A line containing a level number which 1s
the same as that of an immediately previous line indicates a
parallel path separate from the previous line. A level number
greater than that on the previous line indicates the entity on
the previous line 1s an imntermediate entity (1.e. the path 1s an
association, and will follow several relationship links before
terminating the path.)

Once a set of paths have been stored as an imquiry and
recorded 1n the system 1t may be executed. Each unique set
ol inquiries 1s given a unique name, stored as such 1n the
inquiry-definition table (INQ.DEF) and may be recalled for
execution repeatedly at any time without need to go through
the path selection process again. Before executing the pre-
defined inquiry, the operator must select one or more starting
entity instances for which the query is to run. Hence for each
execution of an inquiry, the operator must choose which
occurrence of the Starting Enftity Type to use. Using the
previous sample mquiry to mvestigate persons of the names,
“John Smith™ and “Bill Brown”, the operator would execute
the same mquiry once using “John Smith™ as the Starting
Entity instance and once using “Bill Brown” as the Starting

Entity instance.
The Inquiry 1s executed by examining each of the defined
paths 1n turn. Starting with the selected entity and following
the first relationship, a list of intermediate (or target) entities

1s assembled. For each of the intermediate entities the next

Connected
Entity

Account

Account

Each of the above lines 1s a separate path generated by one ss leg of the path 1s followed through the level 2 relationship

inquiry form. The results of the inquiry would show all
Accounts a Person had influence over, either directly or as a
member of a partnership.

For simplicity the above inquiry 1s shown on the screen as
in the following Table I1I:

TABLE 11
Level Relationship Entity
1 Account Holder Account
1 L.oan Guarantor Account

60

65

ctc. until the mquiry operation arrives at the ending entity
type at which time the results of the entire path (with all
intermediate entities and relationships) may be displayed to
the operator.

If the ending entity type has been specified during inquiry
definition, then at execution time the operator may select not
only the starting entity occurrence of interest but also the
occurrence ol an ending entity. In this case the mquiry will
return results from only the paths that satisfy this termina-
tion condition.

Reusable inquiry sets would normally only be created by
privileged users. However, each inquiry set that 1s created for
subsequent executions may be given its own security settings

US RE40,5260 E

31

and attached to 1ts own menu. Hence where sensitive data
was 1volved, normal operators would be given access to
only those 1nquiry sets they specifically need for their day to
day business operations.

Despite 1ts complexity, the inquiry engine 900 of the
invention can operate at high speed because the E1T and RiT
structures, while they may be large in size rely on relative
tables. Relative table structures have always offered high
performance for Random memory access (as opposed to
key-sequenced access) but presented many complications
and difficulties 1n other areas of use (e.g. updating). Because
of this, conventional wisdom has been to use purely Key-
Sequenced structures almost exclusively. Key-Sequenced
structures pay performance penalties for the use of extra
indexing levels.

The first problem with Relative structures was that with
some early versions, deleted row locations (or slots) could
not be re-used without file (table) reorganization. Reorgani-
zation of Relative structures 1n this case meant compressing
the file (table) to regain unused slots. This process can
change the relative addresses from their original values,
which can cause corruption of the database. Reorganizion 1s

no longer required because Relative structures such as
offered 1n Tandem’s NonSTOP SQL™ system allow deleted

row slots to be reused immediately. The Tandem system
actually ensures that vacated slots are used again and again.
Relative tables in NonSTOP SQL™ can be partitioned and
re-partitioned without risk of corrupting the database, but
table compression 1s no longer necessary or allowed. Parti-
tioming a table means that the table can be split across a
plurality of data storage devices, usually disks, transparent
to the object code of the application program runmng under

NonSTOP SQL™,

The second problem with Relative structures was imple-
menting meaningtul keys that allowed access to the data in a
sequence based on indicative data, such as numerical order
ol account number or alphabetical order of customer name.
However, by using Alternate Key 1index tables 1t 1s possible
to provide meaningiul sequential access of entities stored
within Relative Tables.

The Relationships Processor or “engine” of the present
invention 1s a “Closed Loop™ system 1n that all explicit
schema definitions are stored within the system. The finite
set of tables and their meanings are also defined within the
system. This provides an infrastructure that makes the Table
Structures transparent to users and developers. Hence, Rela-
tive tables can be used for performance improvements while
avolding any usability penalties that once existed.

Hence this invention has gone against conventional atti-
tudes because of new data processing techniques used by the
invention.

The above advances in Relative structure techniques,
coupled with the closed loop nature of the Relationships
Processor has allowed Relative tables to be used 1n a con-
trolled and meaningtul way, destroying the premise that
Key-Sequenced structures are the best way to store relation-
ships.

A benchmark was run on a Tandem NonSTOP SQL™
system to test the system’s performance capabilities. The
benchmark was to stimulate the normal processing require-
ments of an extremely large bank’s Customer Information
System.

The database used 14 Gigabytes of disk storage space, and
was populated with 5 million Customers, 7 million Cards, 9
million Addresses, 10 million Accounts and 67 million rela-
tionships.

The benchmark simulated 1000 simultaneous users
(tellers), with each user executing 100 typical on-line trans-
actions.

10

15

20

25

30

35

40

45

50

55

60

65

32

The invented system achieved a rate of 64 transactions per
second with less than 2.6 second response time for 90% of
all transactions which included all screen formatting. Thas 1s
quite remarkable for a database system of this size and com-
plexity.

The mvented system was also benchmarked for batch pro-
cessing at rates of hundreds of transactions per second. This
shows that the system 1s able to process inquiries at commer-
cially acceptable rates.

Referring to FIG. 9, an mquiry begins by transmitting a
signal representing starting entity instance and relation
information (e.g., “Level-1=ETN,,EiN,-RTN,-!”) from an
input form means 901 to the inquiry guide means 910. The
data of this starting instances and relationship signal, 902, 1s
stored 1n an mquiry-defining table 740 provided within the
inquiry guide means 910. The inquiry guide means 910
transmits a starting relationship type signal sRTN,; to the
relation defining means 960 and a relationship instance
defining signal sRi=FETN, and/or EiN, and/or RTN;, to the
relationship storage and search means 970. The relation
defining means 960, which includes REL.DEF table 600,
transmits a Relation-instances table selecting signal sRi1T, to
the relationship storage means 970 1n order to select one of a
plurality of Relation-instances tables, R1T,, RiT,, R1T;, eftc.
stored within the relation storage means 970. The relation
defining means 960 further transmits a head or tail identity-
ing signal, H/T, to the relation storage means 970 to identity
a head or tail instance defining column, Ei-h or Ei-t, which
should be searched for information matching the ETN, and/
or FiN, information of the starting instance signal, sRi.
(While not shown, each RiT can have multiple columns
specilying a plurality of tail entity instances, 1.e., Fi-tl,
E1-12, etc. and 1n such a case, the H/T signal also indicates
which one or more tail columns of the target RiT are to be
searched for matching information.) In response, the rela-
tionship storage and search means 970 searches through the
selected relationship instances table R1T-x to find informa-
tion matching that of the mput signals, sRi1, sRiT and H/T.
Signals 971 representing the opposing entity instances (Fi-
0) of each matched row are then transmitted to an intermedi-
ate answer gathering means 980 which complies within 1ts
memory area a list of entity instances, E1-0,, Fi1-0,, Ei1-04,
etc., which oppose the starting entity instances found 1n
matching rows of the referenced Ri1T (730). The collected
intermediate answers are then fed back along path 981 to the
inquiry guide means 910 1n order to fill stepping-stone boxes
(shown as sill open question,!.!!) in a next level query row
(e.g. Lvl-2). The next query row (e.g. Lvl-2) now becomes
the new starting row and 1ts contained information, E1-0,-
RTN,-!, 1s now fed as the new sRi signal to the relation
storage means 970 and the relation define means 960. The
inquiry loop repeats until an inquiry path terminates on 1ts
own or a terminating entity 1s struck.

After termination, the results of the inquiry loop are fed
through signal bus 911 to an abbreviated results compiling
means 915 which orders the results according to their level
number and interrelation. By way of example, a first Level-2
inquiry may produce mtermediate answer, Ei1-2a. That inter-
mediate answer together with 1ts forward-connecting rela-
tion (RTN,) may produce a plurality of intermediate answers
at Level-3, namely, Ei1-32a.1, E1-32a.2, etc. Each of these
Level-3 answers may then result in a larger plurality of
Level-4 answers (not shown) and so forth. Likewise the
Level-2 answer Fi1-2b may produce a plurality of Level-3
answers, Fi1-32b.1, Ei1-32b.2, Ei1-32b.3, etc. Each of these
answers 1s recorded as a paired set of an entity class number
ETN and an enftity instance number FiN. The abbreviated

US RE40,5260 E

33

results are then expanded into user-understandable results by
sending an entity type number signal, sETN_ to the entity
definition means 950 and a corresponding entity instance
signal, sHiN to the entity storage means 920. In response the
entity storage means 920 then produces detailed information
from the referenced entity instances tables. Often, the data-
base user may not wish to see all of the detailed information

within a row, but rather wishes to see only prespecified col-
umns of the referenced row and wishes the data to be dis-
played according to a predetermined display format. The
details filter 985 filters out information from undesired col-
umns and orders the remaining data according to a predeter-
mined display format selected by the user. The desired “real”™
information then appears in the selected format on display
means 990.

Referring to FIG. 10, 1t will now be explained how a
single starting instance can lead to the production of a large
plurality of answers. A database user has a first account
number (instance 1 ,,) from which the user wishes to find
all persons, groups or companies which are holders of that
account, and once known, all other accounts held by those
persons, groups or companies; and further, where a person 1s
a member of a group or a group has many persons as 1its
members or where a company has subsidiary compamnies, the
accounts held by these entities. As shown 1n FIG. 10, the
relationship instance 1, ,, has three tails, T1, T2 and T3,
only one of which will be active for a given instance of the
head entity I_,..,. Tail T1 points to person instance I, ... Tail
12 points to group instances I, .. Tail T3 points to company
instance I, ... These instances of person, group and com-
pany represent intermediate instances which lead to the
desired answer, namely, the accounts held by such persons.
One person 1, -, may hold many other accounts as indicated
by the multiple instances of the ’s Holder relationship
instances, Iz, Lz, Iyr1, €tc. Each of these relationship
instances has a corresponding account instance at its head
(H) end. In FIG. 10, these are Ii/E1, 1 1, I, z,, etc. The rest
of FIG. 10 1s self-explanatory. A person can belong to sev-
eral groups and each of those groups may hold several
accounts. A group may have many members and each of
those members may have several accounts. A company may
be a subsidiary of many other companies and each of those
companies can hold several accounts. Thus, the list of end-
ing instances shown in FI1G. 10, 1, , ;= -1, ..z, can be quite
long compared to the starting instance 1, -, which started the
nquiry.

A variety of modifications will become apparent to those
skilled 1n the art 1n light of the above description. The scope
of the claimed invention 1s accordingly, defined, not by any
specific embodiment described herein, but rather by the fol-
lowing claims.

What 1s claimed 1s:

1. In a computer system, a data processing system for
retrieving a selected entity from a relational database, said
data processing system comprising:

memory means containing a plurality of entities, wherein
said entities are part of said relational database;

means, operatively coupled to said memory means, for
storing a {first search path record wherein said first
search path record identifies a first enfity and a first
relation, and said first search path record storing means
includes an inquiry definition table means;

means, operatively coupled to said first search path record
storing means, for retrieving from said relational data-
base a second entity wherein said second entity 1is
related to said first entity by said first relation;

means, operatively coupled to said memory means, for
storing a second search path record wherein said sec-
ond search path record 1dentifies a second relation, and

10

15

20

25

30

35

40

45

50

55

60

65

34

said second search path record storing means includes
said inquiry definition table means; and

means, operatively coupled to said second search path
record storing means and to said second entity retriev-
ing means, for retrieving from said relational database
said selected entity wherein said selected entity 1s
related to said second entity by said second relation.

2. In a computer system, a data processing system for
retrieving a selected entity from a relational database, said
data processing system comprising:

memory means containing a plurality of entities, wherein

said entities are part of said relational database;

means, operatively coupled to said memory means, for
storing a first search path record wherein said first
search path record identifies a first entity and a first
relation;

means, operatively coupled to said first search path record
storing means, for retrieving from said relational data-
base a second entity wherein said second entity 1is
related to said first entity by said first relation;

means, operatively coupled to said memory means, for
storing a second search path record wherein said sec-
ond search path record i1dentifies a second relation;

means, operatively coupled to said second search path
record storing means and to said second entity retriev-
ing means, for retrieving from said relational database
said selected entity wherein said selected entity 1s
related to said second entity by said second relation;
and

means, operatively coupled to said second entity retriev-

ing means and to said selected entity retrieving means,

for storing said second entity in an abbreviated results
gathering means.

3. In a computer system, a data processing system for

retrieving a selected group of one or more entities from a

relational database, said data processing system comprising;:

memory means containing a plurality of entities, wherein
said entities are part of said relational database;

means, operatively coupled to said memory means, for
storing a {first search path record wherein said first
search path record identifies a first entity and a first
relation, and said first search path record storing means
includes an inquiry definition table means;

means, operatively coupled to said first search path record
storing means, for retrieving from said relational data-
base a first group of entities comprising all entities
within said relational database related to said first entity
by said first relation;

means, operatively coupled to said memory means, for
storing a second search path record wherein said sec-
ond search path record 1dentifies a second relation, and
said second search path record storing means includes
said inquiry definition table means; and

means, operatively coupled to said second search path
record storing means and to said first group of entities
retrieving means, for retrieving from said relational
database said selected group of one or more entities
wherein said selected group of one or more entities
comprises all entities within said relational database
related to at least one of said first group of entities by

said second relation.
4. In a computer system, data processing system {for
retrieving a selected group of one or more entities from a
relational database, said data processing system comprising;:

memory means containing a plurality of entities, wherein
said entities are part of said relational database;

means, operatively coupled to said memory means, for
storing a first search path record wherein said first
search path record identifies a first entity and a first
relation;

US RE40,5260 E

35

means, operatively coupled to said first search path record
storing means, for retrieving from said relational data-
base a first group of entities comprising all entities
within said relational database related to said first entity
by said first relation;

means, operatively coupled to said memory means, for
storing a second search path record wherein said sec-
ond search path record 1dentifies a second relation;

means, operatively coupled to said second search path
record storing means and to said first group of entities
retrieving means, for retrieving from said relational
database said selected group of one or more entities
wherein said selected group of one or more entities
comprises all enftities within said relational database
related to at least one of said first group of entities by
said second relation; and

means, operatively coupled to said first group of entities
retrieving means and to said selected group of one or
more entities retrieving means, for storing said first
group of entities 1 an abbreviated results gathering
means.
5. A computer method for retrieving a selected entity from
a relational database, said method comprising:

forming a first search path record wherein said first search
path record 1dentifies a first entity and a first relation;

retrieving from said relational database in response to said
first search path record a second entity wherein said
second entity 1s related to said first entity by said first
[relating]relation:;

forming a second search path record wherein said second
search path record 1dentifies a second relation;

retrieving from said relational database in response to said
second search path record said selected entity wherein
said selected entity 1s related to said second entity by
said second relation; and

storing said first search path record and said second search
path record in an inquiry definition table means.
6. A computer method for retrieving a selected entity from
a relational database, said method comprising:

forming a first search path record wherein said first search
path record identifies a first entity and a first relation;

retrieving from said relational database in response to said
first search path record a second entity wherein said
second entity 1s related to said first entity by said first
relation;

forming a second search path record wherein said second
search path record identifies a second relation;

retrieving from said relational database in response to said
second search path record said selected entity wherein
said selected entity 1s related to said second entity by
said second relation; and

storing said second entity 1n an abbreviated results gather-
Ing means.

7. A computer method for retrieving a selected group of
one or more entities from a relational database, said method
comprising;

forming a first search path record wherein said first search

path record identifies a first entity and a first relation;

retrieving from said relational database a first group of
entities comprising all entities within said relational
database related to said first entity by said first relation;

forming a second search path record wherein said second
search path record 1dentifies a second relation;

retrieving from said relational database said selected
group of entities wherein said selected group of entities
comprises all entities within said relational database
related to at least one of said first group of entities by
said second relation; and

5

10

15

20

25

30

35

40

45

50

55

60

65

36

storing said first search path record and said second search

path record 1n an inquiry definition table means.

8. A computer method for retrieving a selected group of
one or more entities from a relational database, said method
comprising;

forming a first search path record wherein said first search

path record 1dentifies a first entity and a first relation;

retrieving from said relational database a first group of
entities comprising all entities within said relational
database related to said first entity by said first relation;

forming a second search path record wherein said second
search path record identifies a second relation;

retrieving from said relational database said selected
group of entities wherein said selected group of entities
comprises all entities within said relational database
related to at least one of said first group of entities by
said second relation; and

storing said first group of entities 1n an abbreviated results

gathering means.

9. In a computer system, a data processing system for
retrieving a selected entity from a relational database, said
data processing system comprising;:

memory means containing a plurality of entities, wherein

said entities are part of said relational database;

means, operatively coupled to said memory means, for
storing a {irst search path record wherein said first
search path record identifies a first relation, and said
first search path record storing means includes an
inquiry definition table means;

means, operatively coupled to said first search path record
storing means, for retrieving from said relational data-
base a first entity wherein said first entity 1s related to a
second entity by said first relation;

means, operatively coupled to said memory means, for
storing a second search path record wherein said sec-
ond search path record 1dentifies a second relation, and
said second search path record storing means includes
said inquiry definition table means; and

means, operatively coupled to said second search path
record storing means and to said first entity retrieving
means, for retrieving from said relational database said
selected entity wherein said selected entity 1s related to

said first entity by said second relation.
10. In a computer system, a data processing system for
retrieving a selected group of one or more entities from a
relational database, said data processing system comprising;:

memory means containing a plurality of entities, wherein
said entities are part of said relational database;

means, operatively coupled to said memory means, for
storing a {first search path record wherein said first
search path record identifies a first relation, and said
first search path record storing means includes an
inquiry definition table means;

means, operatively coupled to said first search path record
storing means, for retrieving from said relational data-
base a first group of entities comprising all enfities
within said relational database related to at least one of
said entities by said first relation;

means, operatively coupled to said memory means, for
storing a second search path record wherein said sec-
ond search path record 1dentifies a second relation, and
said second search path record storing means includes
said inquity definition table means; and

means, operatively coupled to said second search path
record storing means and to said first group of entities
retrieving means, for retrieving from said relational
database said selected group of one or more entities
wherein said selected group of one or more entities

US RE40,5260 E

37

comprises all entities within said relational database
related to at least one of said first group of entities by

said second relation.
11. A computer method for retrieving a selected entity
from a relation database, said method comprising:

forming a first search path record wherein said first search
path record 1dentifies a first relation;

retrieving from said relational database in response to said
first search path record a first entity wherein said {first
entity 1s related to a second entity by said first relation;

forming a second search path record wherein said second
search path record identities a second relation;

retrieving from said relational database in response to said
second search path record said selected entity wherein
said selected entity 1s related to said first entity by said

second relation; and

storing said first search path record and said second search

path record 1n an mnquiry definition table means.

12. A computer method for retrieving a selected group of
one or more entities from a relational database, said method
comprising;

forming a first search path record wherein said first search

path record identifies a first relation;

retrieving from said relational database a first group of
entities comprising all entities within said relational
database related to at least one of said entities by said
first relation;

forming a second search path record wherein said second
search path record 1dentifies a second relation;

retriecving from said relational database said selected
group of entities wherein said selected group of entities
comprises all entities within said relational database
related to at least one or said first group of entities by
said second relation; and

storing said first search path record and said second search

path record 1n an mnquiry definition table means.

13. In a computer system, a data processing system for
retrieving a selected entity from a relational database, said
data processing system comprising:

memory means containing a plurality of entities, wherein

said entities are part of said relational database;

means, operatively coupled to said memory means, for
storing a {first search path record wherein said first
search path record 1dentifies a first relation;

means, operatively coupled to said first search path record
storing means, for retrieving from said relational data-
base a first entity wherein said first entity 1s related to a
second entity by said first relation;

means, operatively coupled to said memory means, for
storing a second search path record wherein said sec-
ond search path record i1dentities a second relation;

means, operatively coupled to said second search path
record storing means and to said first entity retrieving
means, for retrieving from said relational database said
selected entity wherein said selected entity 1s related to
said first entity by said second relation; and

means, operatively coupled to said first entity retrieving
means and to said selected entity retrieving means, for
storing said first entity 1n an abbreviated results gather-

Ing means.
14. In a computer system, a data processing system for
retrieving a selected group of one or more entries from a
relational database, said data processing system comprising;:

10

15

20

25

30

35

40

45

50

55

60

38

memory means containing a plurality of entities, wherein
said entities are part of said relational database;

means, operatively coupled to said memory means, for
storing a first search path record wherein said first
search path record 1dentifies a first relation;

means, operatively coupled to said first search path record
storing means, for retrieving from said relational data-
base a first group of entities comprising all enfities

within said relational database related to at least one of
said entities by said first relation;

means, operatively coupled to said memory means, for
storing a second search path record wherein said sec-
ond search path record 1dentifies a second relation;

means, operatively coupled to said second search path
record storing means and to said first group of entities
retrieving means, for retrieving from said relational
database said selected group of one or more entities
wherein said selected group of one or more entities
comprises all entities within said relational database
related to at least one of said first group of entities by
said second relation; and

means, operatively coupled to said first group of entities
retrieving means and to said selected group of one or
more entities retrieving means, for storing said first
group ol entities 1n an abbreviated results gathering
means.
15. A computer method for retrieving a selected entity
from a relational database, said method comprising:

forming a first search path record wherein said first search
path record 1dentifies a first relation;

retrieving from said relational database 1n response to said
first search path record a first entity wherein said {first
entity 1s related to a second entity by said {first relation;

forming a second search path record wherein said second
search path record identifies a second relation;

retrieving from said relational database 1n response to said
second search path record said selected entity wherein
said selected entity 1s related to said first entity by said
second relation; and

storing said first entity in an abbreviated results gathering

means.

16. A computer method for retrieving a selected group of
one or more entities from a relational database, said method
comprising;

forming a first search path record wherein said first search

path record 1dentifies a first relation;

retrieving from said relational database a first group of
entities comprising all entities within said relational
database related to at least one of said entities by said
first relation;

forming a second search path record wherein said second
search path record identifies a second relation;

retrieving from said relational database said selected
group of entities wherein said selected group of entities
comprises all enftities within said relational database
retalted to at least one of said first group of entities by
said second relation; and

storing said first group of entities 1 abbreviated results
gathering means.

	Front Page
	Drawings
	Specification
	Claims

