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METHODS AND APPARATUS FOR
ABBREVIATED INSTRUCTION SETS
ADAPTABLE TO CONFIGURABLE
PROCESSOR ARCHITECTURE

Matter enclosed in heavy brackets [ ] appears in the
original patent but forms no part of this reissue specifica-
tion; matter printed in italics indicates the additions
made by reissue.

FIELD OF THE INVENTION

Morve than one reissue application has been filed for the
reissue of U.S. Pat. No. 6,408,382. The reissue applications
are application Ser. Nos. 10/848,615 which is the present

application and 12/144,046 which is a divisional reissue
application filed Jun. 23, 2008.

The present invention relates generally to improved meth-
ods and apparatus for providing abbreviated instructions,
mechanisms for translating abbreviated instructions, and
configurable processor architectures for system-on-silicon
embedded processors.

BACKGROUND OF THE INVENTION

An emerging class of embedded systems, especially those
for portable systems, 1s required to achieve extremely high
performance for the itended application, to have a small
silicon areca with a concomitant low price, and to operate
with very low power requirements. Meeting these some-
times opposing requirements 1s a difficult task, especially
when 1t 1s also desirable to maintain a common single archi-
tecture and common tools across multiple application
domains. This 1s especially true 1n a scalable array processor
environment. The difficulty of the task has prevented a gen-
eral solution resulting 1n a multitude of designs being
developed, each optimized for a particular application or
specialized tasks within an application. For example, high
performance 3D graphics for desktop personal computers or
AC-powered game machines are not concerned with limiting,
power, nor necessarily maintaining a common architecture
and set of tools across multiple diverse products. In other
examples, such as portable battery powered products, great
emphasis 1s placed on power reduction and providing only
enough hardware performance to meet the basic competitive
requirements. The presently prevailing view 1s that it 1s not
clear that these seemingly opposing requirements can be met
in a single architecture with a common set of tools.

In order to meet these opposing requirements, 1t 15 neces-
sary to develop a processor architecture and apparatus that
can be configured 1n more optimal ways to meet the require-
ments of the intended task. One prior art approach for con-
figurable processor designs uses field programmable gate
array (FPGA) technology to allow software-based processor
optimizations of specific functions. A critical problem with
this FPGA approach 1s that standard designs for high perior-
mance execution units require ten times the chip area or
more to implement 1n a FPGA than would be utilized 1n a
typical standard application specific integrated circuit
(ASIC) design. Rather than use a costly FPGA approach for
a configurable processor design, the present invention uses a
standard ASIC process to provide soltware-configurable
processor designs optimized for an application. The present
invention allows for a dynamically configurable processor
for low volume and development evaluations while also
allowing optimized configurations to be developed for high
volume applications with low cost and low power using a
single common architecture and tool set.
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Another aspect of low cost and low power embedded
cores 1s the characteristic code density a processor achieves
in an application. The greater the code density the smaller
the 1nstruction memory can be and consequently the lower
the cost and power. A standard prior art approach to achiev-
ing greater code density 1s to use two instruction formats
with one format half the size of the other format. Both of
these different format types of instructions can be executed
in the processor, though many times a mode bit 1s used to
indicate which format type instruction can be executed. With
this prior art approach, there typically 1s a limitation placed
upon the reduced instructions which 1s caused by the
reduced format size. For example, the number of registers
visible to the programmer using a reduced 1nstruction format
1s frequently restricted to only 8 or 16 registers when the tull
instruction format supports up to 32 or more registers. These
and other compromises of a reduced instruction format are
climinated with this present invention as addressed further
below.

Thus, 1t 1s recognized that it will be highly advantageous
to have a scalable processor family of embedded cores based
on a single architecture model that uses common tools to

support software-configurable processor designs optimized

for performance, power, and price across multiple types of
applications using standard ASIC processes as discussed fur-
ther below.

SUMMARY OF THE INVENTION

In one embodiment of the present invention, a manifold
array (ManArray) architecture 1s adapted to employ various
aspects of the present invention to solve the problem of con-
figurable application-specific instruction set optimization
and program size reduction, thereby increasing code density
and making the general ManArray architecture even more
desirable for high-volume and portable battery-powered
types of products. The present invention extends the plug-

gable instruction set capability of the ManArray architecture
described 1n U.S. application Ser. No. 09/215,081 filed Dec.

18, 1998, now U.S. Pat. No. 6,101,592, entitled “Methods
and Apparatus for Scalable Instruction Set Architecture with
Dynamic Compact Instructions” with new approaches to
program code reduction and stand-alone operation using
only abbreviated instructions i a manner not previously

described.

In the ManArray instruction abbreviation process in
accordance with the present invention, a program 1s ana-
lyzed and the standard 32-bit ManArray instructions are
replaced with abbreviated instructions using a smaller length
istruction format, such as 14-bits, custom tailored to the
analyzed program. Specifically, this process begins with pro-
gramming an application with the full ManArray architec-
ture using the native 32-bit mnstructions and standard tools.
After the application program 1s completed and verified, or
in an iterative development process, an instruction-
abbreviation tool analyzes the 32-bit ManArray application
program and generates the application program using abbre-
viated instructions. This instruction-abbreviation process
creates different program code size optimizations tailored
for each application program. Also, the process develops an
optimized abbreviated imstruction set for the intended appli-
cation. Since all the ManArray instructions can be
abbreviated, instruction memory can be reduced, and
smaller custom tailored cores produced. Consequently, 1t 1s
not necessary to choose a fixed subset of the full ManArray
instruction set archutecture for a reduced instruction format
s1ze, with attendant compromises, to improve code density.

Depending upon the application requirements, certain
rules may be specified to guide the 1mitial full 32-bit code
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development to better optimize the abbreviation process, and
the performance, size, and power of the resultant embedded
processor. Using these rules, the reduced abbreviated-
istruction program, now located in a significantly smaller
instruction memory, 1s functionally equivalent to the original
application program developed with the 32-bit 1nstruction
set architecture. In the ManArray array processor, the abbre-
viated instructions are fetched from this smaller memory and
then dynamically translated into native ManArray instruc-
tion form in a sequence processor array controller. If after
translation the mnstruction 1s determined to be a processing
clement (PE) instruction, 1t 1s dispatched to the PEs for
execution. The PEs do not require a translation mechanism.

For each application, the abbreviation process reduces the
instruction memory size and allows reduced-size execution
units, reduced-size register files, and other reductions to be
evaluated and 1f determined to be effective to thereby specity
a umquely optimized processor design for each application.
Consequently, the resultant processor designs have been
configured for their application.

A number of abbreviated-instruction translation tech-
niques are demonstrated for the present mmvention where
translation, in this context, means to change from one
instruction format into another. The translation mechanisms
are based upon a number of observations of instructions
usage 1n programs. One ol these observations 1s that 1n a
static analysis of many programs not all instructions used 1n
the program are unique. There 1s some repetition of 1nstruc-
tion usage that varies from program to program. Using this
knowledge, a translation mechanism for the unique nstruc-
tions 1n a program 1s provided to reduce the redundant usage
of the common instructions. Another observation 1s that in a
static analysis ol a program’s instructions it 1s noticed that
for large groups of instructions many of the bits i the
instruction format do not change. One method of classitying
the groups 1s by opcode, for example, arithmetic logic umit
(ALU) and load instructions represent two opcode groupings
of 1nstructions. It 1s further recognized that within opcode
groups there are many times patterns of bits that do not
change within the group of instructions. Using this
knowledge, the concept of instruction styles 1s created. An
instruction style as utilized herein represents a specific pat-
tern of bits of the instruction format that 1s constant for a
group ol instructions 1n a specific program, but that can be
different for any program analyzed. A number of interesting
approaches and variations for translation emerge from these
understandings. In one approach, a translation memory 1s
used with a particular style pattern of bits encoded directly
into the abbreviated-instruction format. In another approach,
all the style bit patterns or style-field are stored 1n translation
memories and the abbreviated-instruction format provides
the mechanism to access the style bit patterns. With the style
patterns stored in memory, the translation process actually
consists ol constructing the native instruction format from
one or more stored patterns. It was found 1n a number of
exemplary cases that the program stored in main instruction
memory can be reduced by more than 50% using these
advantageous new techniques.

It 1s noted that the ManArray instruction set architecture
while presently preferred 1s used herein only as illustrative
as the present invention 1s applicable to other instruction set
architectures.

These and other advantages of the present invention will
be apparent from the drawings and the Detailed Description
which follows.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1A 1llustrates an exemplary ManArray 2x2 1VLIW
processor which can suitably be employed 1n conjunction
with the present invention;
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FIG. 1B 1llustrates a series of ManArray istruction set
formats 1n accordance with the present invention;

FIG. 2 1llustrates, at a high level, the 1dea that the ManAr-
ray processor architecture can be focused on various appli-
cations showing focuses on three exemplary application-
specific product areas as illustrative;

FIG. 3A 1llustrates a stream-flow development process 1n
accordance with the present invention;

FIG. 3B illustrates a preferred encoding of ManArray
B-bit abbreviated 1nstructions 1n accordance with the present
invention;

FIG. 3C illustrates a style register concatenated with a
VIM base address register Vb 1n accordance with the present
imnvention;

FIG. 3D 1llustrates a Manta-1 chip implementation of the
ManArray architecture;

FIG. 3E illustrates a Manta-2 chip implementation of the
ManArray architecture including instruction abbreviation 1n
accordance with the present invention;

FIG. 4 illustrates a type 1 abbreviated-instruction transla-
tion apparatus 1n accordance with the present ivention;

FIG. 5A illustrates a type 2A abbreviated-instruction
translation apparatus in accordance with the present mnven-
tion;

FIG. 5B illustrates exemplary abbreviation styles for store
and load unit instructions 1n accordance with the present
imnvention;

FIG. 5C illustrates exemplary abbreviation styles for
MAU and ALU 1nstructions in accordance with the present
invention;

FIG. 5D illustrates exemplary abbreviation styles for DSU
instructions 1n accordance with the present invention;

FIG. SE 1llustrates exemplary abbreviation styles for con-
trol flow 1nstructions 1n accordance with the present mnven-
tion;

FIG. 6A 1illustrates a type 2B abbreviated-instruction
translation apparatus in accordance with the present mnven-
tion;

FIG. 6B illustrates an exemplary 14-bit abbreviated XV
1VLIW 1nstruction format 1 accordance with the present
invention;

FIG. 6C illustrates a type 2C abbreviated-instruction
translation apparatus using an alternative translation

memory (IM) addressing mechanism in accordance with the
present invention;

FIG. 7 illustrates the type 2C abbreviated-instruction
translation apparatus used in a SP/PEQ core processor in
accordance with the present invention;

FIG. 8 illustrates the type 2C abbreviated-instruction
translation apparatus 1n use 1n a 1x2 ManArray processor in
accordance with the present invention;

FIG. 9 illustrates a dual-fetch type 2C abbreviated-
instruction translation apparatus in use 1 an SP/PEO core
processor 1n accordance with the present invention; and

FIG. 10 illustrates the operations performed 1n the five
stage pipeline for five clock cycles for ADD.S, XV.S,
COPY.S, ADD.S, and Instr (1+4) abbreviated-instructions in

accordance with the present invention.

DETAILED DESCRIPTION

Further details of a presently preferred ManArray archi-
tecture for use 1n conjunction with the present invention are
found 1n U.S. Pat. No. 6,023,753, U.S. Pat. No. 6,167,502,
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U.S. patent application Ser. No. 09/169,255 filed Oct. 9,
1998, U.S. Pat. No. 6,167,501, U.S. Pat. No. 6,219,776, U.S.
Pat. No. 6,151,668, U.S. Pat. No. 6,173,389, U.S. Pat. No.
6,101,592, U.S. Pat. No. 6,216,223, U.S. patent application
Ser. No. 09/238,446 filed Jan. 28, 1999, U.S. patent applica-
tion Ser. No. 09/267,570 filed Mar. 12, 1999, as well as,
Provisional Application Serial No. 60/092,130 entitled
“Methods and Apparatus for Instruction Addressing 1 Indi-
rect VLIW Processors” filed Jul. 9, 1998, Provisional Appli-
cation Serial No. 60/103,712 entitled “FEilicient Complex
Multiplication and Fast Fourier Transform (FF'T) Implemen-
tation on the ManArray” filed Oct. 9, 1998, Provisional
Application Serial No. 60/106,867 entitled “Methods and
Apparatus for Improved Motion Estimation for Video

Encoding™ filed Nov. 3, 1998, Provisional Application Serial
No. 60/113,637 entitled “Methods and Apparatus for Provid-

ing Direct Memory Access (DMA) Engine” filed Dec. 23,
1998, Provisional Application Serial No. 60/113,5355 entitled
“Methods and Apparatus Providing Transter Control” filed
Dec. 23, 1998, Provisional Application Serial No. 60/139,
946 entitled “Methods and Apparatus for Data Dependent
Address Operations and Efficient Variable Length Code
Decoding in a VLIW Processor” filed Jun. 18, 1999, Provi-
sional Application Serial No. 60/140,245 entitled “Methods
and Apparatus for Generalized Event Detection and Action
Specification 1n a Processor™ filed Jun. 21, 1999, Provisional
Application Serial No. 60/140,163 entitled “Methods and
Apparatus for Improved Efficiency in Pipeline Simulation
and Emulation” filed Jun. 21, 1999, Provisional Application
Serial No. 60/140,162 entitled “Methods and Apparatus for
Initiating and Re-Synchronizing Multi-Cycle SIMD Instruc-
tions” filed Jun. 21, 1999, Provisional Application Serial No.
60/140,244 entitled “Methods and Apparatus for Providing
One-By-One Manifold Array (1x1 ManArray) Program
Context Control” filed Jun. 21, 1999, Provisional Applica-
tion Serial No. 60/140,325 ent1tled “Metheds and Apparatus
for Establishing Port Priority Function 1n a VLIW Proces-
sor” filed Jun. 21, 1999, and Provisional Application Serial
No. 60/140,425 entitled “Methods and Apparatus for Paral-
lel Processing Utilizing a Manifold Array (ManArray)
Architecture and Instruction Syntax” filed Jun. 22, 1999
respectively, all of which are assigned to the assignee of the
present mmvention and incorporated by reference herein in
their entirety.

In a presently preferred embodiment of the present
invention, a ManArray 2x2 1VLIW single mstruction mul-
tiple data stream (SIMD) processor 100 as shown 1n FIG. 1A
1s used. Processor 100 comprises a sequence processor (SP)
controller combined with processing element-0 (PE0)
SP/PEO 101, as described in further detail in co-pending
U.S. patent application Ser. No. 09/169,072, now U.S. Pat.
No. 6,219,776, entitled “Methods and Apparatus for
Dynamic Merging an Array Controller with an Array Pro-
cessing Element” and filed Oct. 9, 1998. Three additional
PEs 151, 153, and 155 are also utilized to demonstrate the
abbrewated instruction and configurable processor architec-
ture and apparatus. Note that the PEs can be also labeled
with their matrix positions as shown 1n parentheses for PE(
(PE00) 101, PE1 (PE01)151, PE2 (PE10) 153, and PE3
(PE11) 155. The SP/PE0 101 contains a fetch controller 103
to allow the fetching of abbreviated-instruction words from a
B-bit instruction memory 105, where B 1s determined by the
application instruction-abbreviation process to be a reduced
number of bits representing ManArray native instructions
and/or to contain two or more abbreviated instructions as
turther described below. The fetch controller 103 provides
the typical functions needed 1n a programmable processor,
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such as a program counter (PC), a branch capability, event
point loop operations (for further details of such operation

see U.S. Provisional Application Serial No. 60/140,245
entitled “Methods and Apparatus for Generalized Event
Detection and Action Specification 1n a Processor” filed Jun.
21, 1999) and support for interrupts. Fetch controller 103
also provides instruction memory control which could
include an instruction cache if needed by an application. The
tetch controller 103 additionally provides the abbreviated-
instruction translation apparatus described in the present
ivention. In addition, fetch controller 103 which may also
be referred to as an instruction-fetch or I-fetch unit dis-
patches translated native instruction words and instruction
control information to the other PEs in the system by means
ol a D-bit instruction bus 102. The D-bit instruction bus 102
may include additional control signals as needed i an
abbreviated-instruction translation apparatus.

In this exemplary system 100 of FIG. 1A, common ele-
ments are used throughout to simplily the explanation,
though actual implementations are not limited to this restric-
tion. For example, the execution units 131 in the combined
SP/PEQ 101 can be separated into a set of execution units
optimized for the control function with fixed point execution
units 1n the SP, while PE0 as well as the other PEs can be
optimized for a floating point application. For the purposes
of the present description, 1t 1s assumed that the execution
units 131 are of the same type 1n the SP/PE0 101 and the PEs
151, 152 and 153. In a similar manner, the SP/PEQ and the
other PEs use a five instruction slot iVLIW architecture
which contains a VLIW memory (VIM) 109 and an 1nstruc-
tion decode and VIM controller function unit 107 which
receives 1nstructions as dispatched from the SP/PE0’s
[-fetch unit 103 and generates the VIM addresses and control
signals 108 required to access the 1VLIWs stored in the
VIM. Store, load, arithmetic logic umt (ALU), multiply
accumulate umit (IMAU) and data select unit (DSU) nstruc-
tion types are i1dentified by the letters SLAMD 1 VIM 109
as follows store (S), load (L), ALU (A), MAU (M), and DSU
(D).

The basic concept of loading the 1VLIWSs 1s described 1n
turther detail 1n co-pending U.S. patent application Ser. No.
09/187,539, now U.S. Pat. No. 6,151,668, entitled “Methods
and Apparatus for Efficient Synchronous MIMD Operations
with 1VLIW PE-to-PE Communications” and filed Nov. 6,
1998. Also contained in the SP/PE0 and the other PEs 1s a
common PE configurable register file (CRF) 127 which 1s
described 1n further detail in co-pending U.S. patent applica-
tion Ser. No. 09/169,255 entitled “Methods and Apparatus
for Dynamic Instruction Controlled Reconfiguration Regis-
ter File with Extended Precision” filed Oct. 9, 1998. Due to
the combined nature of the SP/PE0, the data memory inter-
tace controller 125 must handle the data processing needs of
both the SP controller, with SP data in memory 121, and
PE0, with PEO data in memory 123. The SP/PE( controller
125 also 1s the controlling point of the data that 1s sent over
the 32-bit or 64-bit broadcast data bus 126. The other PEs,
151, 153, and 155 contain common physical data memory
umts 123', 123", and 123" though the data stored in them 1s
generally different as required by the local processing done
on each PE. The interface to these PE data memories 1s also a
common design in PEs 1, 2, and 3 and indicated by PE local
memory and data bus interface logic 157, 157" and 157",
Interconnecting the PEs for data transfer communications 1s
a cluster switch 171 which 1s more completely described 1n

co-pending U.S. patent application Ser. Nos. 08/885,310
entitled “Manifold Array Processor” filed Jun. 30, 1997, now

U.S. Pat. Nos. 6,023,753, 08/949,122 entitled “Methods and
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Apparatus for Manifold Array Processing” filed Oct. 10,
1997, and 09/169,256 entitled “Methods and Apparatus for
ManArray PE-to-PE Switch Control” filed Oct. 9, 1998, now
U.S. Pat. No. 6,167,501. The iterface to a host processor,
other peripheral devices, and/or external memory can be
done 1n many ways. For completeness, a primary interface
mechanism 1s contained 1n a direct memory access (DMA)
control unit 181 that provides a scalable ManArray data bus
183 that connects to devices and interface units external to
the ManArray core. The DMA control umt 181 provides the
data flow and bus arbitration mechanisms needed for these
external devices to interface to the ManArray core memories
via the multiplexed bus mterface symbolically represented

by line 185. A high level view of a ManArray control bus
(MCB) 191 1s also shown 1n FIG. 1A.

FIG. 1B shows three instruction formats 10, 12A and 12B
that are described in further detail for the ManArray
abbreviated-instruction architecture in accordance with the
present invention. The {irst mstruction format 10 contains
B-bits with a single bit 11 lighlighted. The second format
12A encapsulates two smaller instruction formats, each
B-bits 1n length. The third format 12B illustrates a single
instruction of C-bits, which incorporates a special bit 99. In
the description of the present invention which follows below
C represents 32-bits and examples of B described herein are
12-bits, 13-bits, 14-bits, 13-bits, and 16-bits, although other
s1zes Tor B and C are not precluded. In all types of instruc-
tion formats for the ManArray array processor, a single bit
11, 13, and 99, 1s used to differentiate between SP 1nstruc-
tions and PE 1nstructions. This single bit 1s labeled the S/P-
bit. In instruction format 12A, a single S/P-bit applies to
both of the B-bit abbreviated instructions under the assump-
tion that the majority of code will contain sequences of SP or
PE instructions and usually not switch, instruction-by-
istruction, between the SP and PFEs. In the instruction for-
mat 12A, and additional bit P can be added to specily
whether the two abbreviated instructions are to be executed
in parallel, P=1, or sequentially, P=0. With parallel execution
of two abbreviated 1nstructions that do not have data depen-
dencies between them, two sets of translation mechanisms
operating in parallel are required. Alternatively, an addi-

tional bit can be added to provide each B-bit 1nstruction in
format 12A of FIG. 1B with 1ts own S/P-bit.

In the instruction format 12B, bit 99 1s the S/P bit. Two
other bits 14 are hierarchy bits. Suitable 1nstruction type-2-
AB,C formats 98 are described in further detail in U.S.
patent application Ser. No. 09/215,081 entitled “Methods
and Apparatus for Scalable Instruction Set Architecture with
Dynamic Compact Instructions™ and filed Dec. 18, 1998.

The ManArray abbreviated-instruction architecture of the
present mvention allows a programmer to write application
code using the full ManArray architecture based upon the
native instruction format 12B of FIG. 1B. A ManArray
stream-tlow process 1llustrated 1n FIG. 3A 1s then used to
create abbreviated instructions of either format 10 of FIG.
1B 1n one implementation, or format 12A of FIG. 1B 1n
another implementation, to fully represent the application
code orniginally produced using instruction format 12B of
FIG. 1B. The sub-setting nature of the ManArray
abbreviated-instruction apparatus and tools provides the
flexibility to reduce both the silicon area (price) and power
for cost and power sensitive applications while not affecting
performance. The flexibility offered by the ManArray digital
signal processor (DSP) 1s fully available during the develop-
ment phase with the full ManArray architecture and tools.
Programmer flexibility to make changes to an abbreviated
instruction program can be provided as required by a devel-
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oper by providing additional abbreviated instruction
memory space and translation capabilities greater than an
embedded program’s 1nitial needs.

Thus, the ManArray abbreviated-instruction architecture
allows maximum tlexibility during development while pro-
viding an optimized-to-an-application core in final produc-
tion. This multiple application focusing process 200 1s 1llus-
trated in FIG. 2 where the ManArray architecture 219 1s
depicted as the starting point 301 for the stream-tlow process
300 of FIG. 3A to focus the architecture on one of three
intended applications 220, 230 or 240. A first application,
video focus 220, comprises multiple fixed-point core prod-
ucts that encompass a range ol high performance products
with native ManArray instruction cores and portable prod-
ucts with B-bit abbreviated-instruction optimized cores. A
second application, a communication focus 230 has a similar
range, but the cores would be different than the video focus
cores depending upon application needs. For example, 1n a
portable cell phone application, the B-bit abbreviated-
instruction core would contain execution units that execute a
subset of the ManArray architecture appropriate for commu-
nication processing. This reduced size communication core
would be different than the B-bit abbreviated-instruction
core used 1n any of the video focus cores, but both would be
optimized for their intended application. An exemplary third
application, a 3D graphics focus 240, would use the full
architecture potential but subset for floating point instruc-
tions 1n the PEs with the portable 3D graphics cores using an
abbreviated-instruction core processor. The floating point
cores could be divided 1nto two entry core types: a first entry
single-1ssue floating point core followed by a second entry
dual-1ssue tloating point core. The dual-1ssue floating point
core would advantageously use dual single-precision float-
ing point packed data types.

The ManArray instruction format 12B of FIG. 1B 1s now
described further since 1t represents the presently preferred
native application coding format and, as 1s described further
below, represents the basis for the istruction format at the
execution unit level. In format 12B, the 2-bit hierarchy field
14 1dentifies four functional groupings, each of which can
contain different instruction formats depending upon the
requirements for each group. With the 2-bit hierarchy field in
C=32-bit mstructions of format 12B, the specific operations
in each group are defined within a 30-bit field. For a ManAr-
ray implementation, the four groups are preferably
00-reserved, Ol-flow control, 10-load/store, and
11-arithmetic/logical ALU/MAU/DSU). In FIG. 1B, an
additional single bit field, bit 99 termed the S/P-bit, 1s used
in a preferred embodiment of the present architecture to dii-
ferentiate between the array-control SP instructions and the
array PE 1nstructions. If specific instructions cannot be
executed 1n a PE, for example a branch instruction, then the
bit 1s fixed in the controller SP-state. Alternatively, without
using an S/P-bit, the flow control group could be defined to
contain primarily SP instructions and have the determination
of whether an instruction 1s an SP or a PE struction be
based upon a decode of that group’s opcode field. For pertor-
mance reasons and generality, the presently preferred
ManArray implementation uses the S/P-bit on all instruction
types 1n the three groups.

In this present implementation, when a non-1VLIW SP
instruction 1s executed on the control processor, no PE
instruction 1s executed. When a non-1VLIW PE instruction 1s
executed, no SP control processor instruction 1s executed.
This separation provides an easy logic-design control strat-
cgy for implementation and an intuitive programming
model. For those instances where additional performance 1s
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required, the SP array controller merged with an array
1VLIW PE such as merged unit 101 of FIG. 1A, allows SP

SLAMD type mstructions to be mixed with PE instructions
in the same 1VLIW with bit 99 used 1n each mstruction 1n the
VLIW to differentiate the mixed instructions. 5

Further aspects of the present invention are discussed in
greater detail below. While 32-bit and now 64-bit architec-
tures have dominated the field of high-performance comput-
ing in recent years, this domination has occurred at the
expense of the size of the instruction memory subsystem. 1,
With the movement of digital signal processing (DSP) tech-
nology into multimedia and embedded systems markets, the
cost of the processing subsystem, 1n many cases, has come to
be dominated by the cost of memory and performance 1s
often constrained by the access time of the local instruction {5
memory associated with the DSP. Real-time 1ssues impose
turther constraints, making 1t desirable to have time-critical
applications in instruction memory with deterministic access
time. This memory 1s preferably located on-chip. In a high
volume embedded application, the full application code 1s 5
embedded and many times stored in a read only memory
(ROM) to further reduce costs. Since application code has
been growing to accommodate more features and
capabilities, the on-chip memory has been growing, further
increasing 1ts cost and affecting memory access timing. 55
Consequently, the 1ssue of code density becomes important
to processor implementations.

The Manifold Array processor architecture and instruc-
tion set are adapted to address the code density and config-
urable processor optimization problem by utilizing the 3¢
stream-tlow process and abbreviated-instruction apparatus
and tools 1n accordance with the present invention. The
stream-tlow process 300 1s shown 1n FIG. 3A. In the devel-
opment ol a specific application, the standard ManArray
soltware development kit (SDK) 1s used 1n step 301 with the 33
application of some optional programmer/tool-supported
rules as programming constraints listed i 302 and 320.
These rules are chosen to improve the probability of creating
smaller abbreviated programs that if no rules were used 1n
the program development process. The rules are also chosen 49
to aid 1 determiming what instruction set choices are best
suited to the intended application. For example, 1n a portable
voice-only cell phone type of application, where power 1s of
extreme 1mportance and the performance requirements are
low relative to the tull ManArray capabilities, sample rules 45
such as those indicated m step 302 might be used. One of
these rules specifies a restricted use of the configurable reg-
ister file (CRF), allowing the register file to be cut 1n half
providing a 16x32 or an 8x64 configurable register file for a
lower cost optimized processor core. Selected instructions sg
can be eliminated from a programmer’s choice, such as
those specifically itended for MPEG Video type process-
ing. Each of the rules describes a subset of the full ManArray
architecture to be used and verified with tools that support
this sub-setting. 55

After the application code 1s written using native
instructions, an instruction-abbreviation tool 1s used 1n step
303 to analyze the ManArray native application code for
common characteristic features of the code. These common
characteristic features are specific bit-patterns within the 60
instructions that are termed style-fields. These style-fields
are used in conjunction with the abbreviated-instruction
translation hardware to translate instructions as described
herein. After the tool creates the application code 1n
abbreviated-instruction form, the code can be run 1n step 304 65
on Manta-2 hardware capable of executing B-bit abbreviated
instructions for evaluation purposes. In step 321 of FIG. 3 A,

10

a Manta-1 hardware evaluation unit 1s used where Manta-1
refers to a ManArray 2x2 processor with combined fixed and
floating point execution units, implementing the majority of
ManArray 1nstructions, and having DMA capability. The
Manta-2 processor possesses the same ManArray instruction
execution capabilities as the Manta-1, but also has the ability
to execute abbreviated instructions. The Manta-2 processor
used 1n evaluation step 304 1s a dynamically configurable

processor for low volume and development evaluations.

A Manta-1 chip implementation 360 of the ManArray
architecture 1s shown in FIG. 3D. As presently defined, this
implementation contains a 2x2 Manta DSP Core 361,
including DMA and on-chip bus interfaces 363, a PCI con-
troller 365, an 1input/output (I/0) unit 367, a 64-bi1t memory
interface 369, and a ManArray peripheral bus (MPB) and
host 1nterface 371. This DSP i1s designed to be utilized as a
coprocessor working alongside an X86, MIPS, ARM, or
other host processor. The 2x2 ManArray core contains an I
fetch unit 379 that interfaces with a 32-bit instruction
memory 381. The 2x2 core attaches to the two main on-chip
busses, the 32-bit ManArray control bus (MCB) 375 and the
64-bit ManArray data bus (MDB) 373 which 1s a scaleable
bus allowing wider bus widths in different implementations
depending upon a product’s needs. The memory interface
block 369 provides bulk memory (SDRAM) and non-
volatile memory (FLASH read only memory) service via
two busses, namely the MDB 373 and the private host
memory port 377 from the host processor interface block
371. The ManArray peripheral bus 1s an off chip version of
the mternal ManArray busses and provides an interface to an
ARM host processor. It 1s noted that the ManArray periph-
eral bus, 1n the present implementation, 1s shared with a host
processor interface that 1s designed specifically to iterface
with a MIPS processor. The PCI controller 365 provides a
standard X86 personal computer interface. The I/O block
367 internally contains a rudimentary I/O system for an
embedded system, including, for example a debug UART
interface, as well as MIPS host interface I/Os. These host
I/O0s 1nclude three 32-bit timers and an interrupt controller
for the external host. Other chip support hardware such as
debug and oscillator functions are not shown for clanty.

A Manta-2 chip implementation 385 of the ManArray
architecture including instruction abbreviation 1 accor-
dance with the present invention 1s shown in FIG. 3E. This
implementation 385 contains equivalent functional units to
those 1n the Manta-1 system of FIG. 3D except for support of
the 1nstruction abbreviation hardware and reduced B-bit size
instruction memory. The 2x2 ManArray core 391 and DMA
and bus interfaces 393 of FIG. 3E correspond to the 2x2
ManArray core 100 depicted 1n FIG. 1A. The I fetch Xpand
unit 387, which corresponds to unit 103 of FIG. 1A, fetches
abbreviated instructions from reduced B-bit instruction
memory 389 which corresponds to memory 105 of FIG. 1A.
Unit 387 also translates the instructions as described in the
present 1nvention.

The next step as shown by the examples of F1G. 3A deter-
mines the final type of core to be developed. In step 305, the
core for an application-1 optimized 12-bit subset processor
1s determined. In step 306, an application-2 optimized 13-bit
subset processor 1s determined. These final process steps 305
and 306 result in the definition of a silicon core comprising
an optimized design for the imntended application. The choice
ol 12-bit or 15-bit processor, or other abbreviated-
instruction format and configuration, depends upon the
application code and product requirements. The optimized
design silicon cores still retain their programmable nature
and can be designed with additional space reserved in the
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abbreviated-instruction memory and translation apparatus if
desired for additional flexibility 1n the intended application.

In a stmilar manner, a subset of the full ManArray archi-
tecture can also be employed without using the abbreviated-
instruction tool to produce optimized 32-bit processor cores.
This path 1s indicated by step 320. For example, this process
may be advantageous in connection with the removal of
MPEG wvideo instructions from a communications only
application core. The resultant code can be verified 1n the
Manta-1 hardware evaluation vehicle as 1n step 321, and an
optimized silicon core produced for the mntended application
as indicated 1n optimized subset 32-bit processor step 322.
Instruction Abbreviation

The approaches described 1n this invention for abbreviat-
ing 1instructions, hardware to execute the abbreviated
instructions, and supporting configurations of the core pro-
cessor have a number of unique and advantageous differ-
ences with respect to the approach used 1n the previously
mentioned U.S. patent application Ser. No. 09/2135,081. In
the present ivention, a program, using the full ManArray
native instruction set, 1s used as mput to the mstruction-
abbreviation tool and a new stand-alone abbreviated repre-
sentation of the program 1s uniquely produced dependent
upon the common characteristics of the initial program. In
this present mvention, all mnstructions including control tlow
and 32-bit 1IVLIW 1nstructions, such as Load VLIW (LV)
and execute VLIW (XV) instructions, can be abbreviated,
allowing the abbreviated program to stand-alone without any
use of the original 32-bit instruction types in the program
flow. The abbreviated-instruction program, stored 1n a
reduced-size instruction memory, 1s fetched nstruction-by-
instruction and each abbreviated mstruction 1s translated into
a native form that then executes on the ManArray processor.
The abbreviated-instruction translation hardware may use
one or more styles of translation formats 11 1t 1s determined
by the instruction-abbreviation tool that a smaller
abbreviated-instruction memory can be obtained through the
use of multiple styles. Note that the preferred approach 1s to
do the translation of abbreviated instructions 1n the SP and
only dispatch PE instructions 1n native form to the array of
PEs. By using the SP to dispatch PE instructions, the array
power can be reduced during SP-only operations, a feature
not previously described in the ManArray architecture.
Further, even though each program will have a different
abbreviated form resulting 1n a potentially different configu-
ration of the resultant processor core, in each case, all the
abbreviated instructions are subsets of the ManArray archi-
tecture. These aspects of the present invention are explained
turther below.

The ManArray architecture uses an indirect VLIW design
which translates a 32-bit execute VLIW 1nstruction (XV)
into a VLIW, for example, a VLIW consisting of Store (S),
Load (L), ALU (A), MAU (M), and DSU (D) instructions as
in memory 109 of FIG. 1A i the SP/PE0O 101 and 1n each of
the PEs 151, 153, and 155. With judicious choices 1n the
definition of the 1VLIW XV instruction, it 1s possible to
create a reduced B-bit XV instruction which indirectly
chooses a VLIW from the VLIW memory (VIM) 109 1n the
SP and 1n each PE for execution. This 1s a form of abbrevia-
tion; however, due to these judicious choices, there would be
compromises made 1n the reduced nstruction format.

It 1s also possible to create an abbreviated B-bit mstruc-
tion that can be translated into a native C-bit form. For
example, a 32-bit instruction abbreviated into a 13-bait
instruction would use a separate memory, or translation
memory (ITM), to contain the necessary bits of the original
32-bit instruction that are not represented 1n the 13-bit form.
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The TM 1s used 1n the process to translate the 13-bit abbrevi-
ated form back 1nto a form containing all the information of
the original native instruction necessary for execution,
though not necessarily 1n the same format as the documented
native format. For implementation reasons, the internal pro-
cessor version of the native format can vary. The important
point 1s that all the information context of the native format
1s maintained. It 1s also noted that each Store, Load, ALU,
MAU, DSU, and control opcode type may use its own
translation-memory (TM). Two related but distinctly ditier-
ent uses of VIMs, individually associated with execution
units, are described 1n further detail 1n U.S. patent applica-
tion Ser. Nos. 09/215,081 and 09/205,558, respectively.

In the present invention, a TM, 1s directly used in the
translation process for every instruction. The TM does not
contain VLIWSs, but the TM does contain partial bit-patterns
as defined by a selected style. One of the aspects of the
present invention 1s the mechanism for translating the abbre-
viated instructions back into a native form necessary for
execution. By translating back into a native form, the full
capabilities of the ManArray architecture remain intact at
the execution units. In other words, the abbreviation process
does not restrict the programmer 1 any way. The only
restrictions are determined by the programmer 1n selecting
rules to govern the program creation based on characteristics
of the application and desired performance, size, and power
ol the configurable processor core to be built at the end of the
development process. This invention also provides a mecha-
nism so that after the functionality of an application program
1s stabilized, or at some point 1n the development process at
the discretion of the product developer, the execution units
can be made into subsets of the full ManArray architecture
definition optimized for the intended application.

FIG. 3B shows further details a presently preferred encod-
ing format 10 for the ManArray single B-bit abbreviated

instructions. This format 10 1s also shown 1n FIG. 1B in less
detail. The abbreviated-instruction format 10 uses a single
bit (B-1), S/P bit 330, 1n array processors to indicate if the
instruction 1s an SP or a PE 1nstruction, a three bit opcode
field 335 (B-2, B-3 and B-4), and bits 340 (B-5 through 0)
which are interpreted by styles. For example, 1n a B=14-b1t
abbreviated-instruction encoding, bit-13 1s the S/P bit, bits
12-10 represent the opcode field, and bits 9-0 define the
specifics for each opcode type. The eight opcode encodings
are defined for an implementation, namely Store (S) 341,
Load (I,) 342, ALU (A) 343, MAU (M) 344, DSU (D) 345,
control flow 346, SetV and LV 1iVLIWs 347, and XV iVLIW
348. Set V, LV, and XV are specific instructions of the
ManArray architecture. The concept of styles 1s discussed
next.

A style-field 1s a specific set of bits, 1dentified by the
instruction-abbreviation tool’s analysis of a particular pro-
gram or by human perception, that, for the specific analyzed
program, change infrequently with respect to the other bits
in the instruction stream. Note that multiple style-fields can
be 1dentified depending upon the characteristics of the appli-
cation code. There may be a different style-field for each
opcode 1n the abbreviated-instruction format, multiple style-
fields within an opcode, or common style-fields for multiple
opcodes. In the hardware, a style i1s defined as a logical
mechanism, operative for at least one instruction but more
typically operative on a group of instructions, that specifies
how the translation 1s to occur. The style i1s indicated in
hardware by a set of bits, such as the four bits (15-12)
loaded 1n 4-bit style register 351 of FIG. 3C. These 4-bits
can be loaded 1n the same programmer-visible control regis-
ter associated with a Vb TM base address register 333 also
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shown 1 FIG. 3C. For the specific example shown i FIG.
3C, a 4-b1t style register 351 1s defined along with up to a
12-bit Vb TM base address register 353.

It 1s anticipated that the TMs will usually require only a
small address range and the number of styles needed will 5
also usually be small. For example, an implementation may
use only two styles and use TMs of only 64 addresses.
Depending upon the analysis of the program to be reduced 1n
s1ze, 1t may turn out that the number of bits in the different
style-fields 1s constant, allowing a single TM to be imple- 10
mented where the different styles relate to different address
ranges 1n the single TM. The distribution of the style-field
bits can be different for each style and is specified by the
definition of each style. Alternatively, physically separate
TMs, associated with each style in the abbreviated- 15
instruction format, can be provided. A combination of sepa-
rate TMs and address-range selectable TM sections can be
used dependent upon the style-fields chosen, as discussed in
turther detail 1in the following sections. Note that for a TM
which holds multiple style bit-patterns, the style can be indi- 20
rectly inferred by the address range within the TM accessed
as part of the translation mechanism. Also note that depend-
ing upon the characteristics of the program being reduced,
there can be a common style associated with a common TM
base address register, individual styles with a common TM 25
base address register, a common style with individual TM
base address registers, and individual styles with individual
TM base address registers among the different opcodes. The
choice of which approach to use 1s dependent upon the char-
acteristics of the program being reduced and product needs. 30

It 1s noted that alternatives to the encoding shown 1n FIG.
3B are possible that are based on the analysis of the program.
For example, if a common style-field 1s used for both ALU
and MAU instructions, it may be advantageous to assign
only one abbreviated-instruction opcode to represent both 35
groups ol ALU and MAU i1nstructions. In this case, 1t 1s
important to note that 1t 1s not necessary to distinguish
between the two 1nstructions during the translation process.
The determination of the instruction type occurs naturally
during the decode phase of the pipeline. Consequently, the 40
abbreviated-instruction opcodes, except for C-bit VLIW
instructions, can be chosen independent of the native
instruction opcodes based on other distinct groupings of
instructions that provide the highest degree of program size
reduction. 45
Type 1 Translation

FI1G. 4 represents a system 400 for controlling the flow of

a translation process wherein a B=12-bit instruction 402
comprised of an S/P-bit 405, a 3-bit opcode 403, and an 8-bit

TM address offset 401 1s used to select 27, 28, or 29 bits 50
from a location 419 in a TM 411 and load the bits into an
instruction register 421 via path 418 1n preparation for
decoding and execution. After translation, three exemplary
native instruction forms are shown 1n registers 421, 422 and
423 1n FIG. 4. Control flow instructions are shown 1n register 55
421 using 29 bits from TM 411. Load/store instructions are
shown 1n register 422 using 28 bits from TM 411. ALU/
MAU/DSU instructions are shown 1n register 423 using 27
bits from TM 411. The group bit fields 437 are attained
through decoding the 3-bit opcode field 403 in decoding 60
block 425 and providing these bits on mnput 427. The group
field bits 1n the ManArray architecture define major classes
of instruction, namely 00-reserve, 01-tlow control, 10-load/
store, 11-ALU, MAU and DSU instructions. Siumilarly, the
L/S or unit bit fields 436 are also attained through decoding 65
the 3-bit opcode field 403 1n decoding block 425 and provid-
ing this bit or bits on mput 426. The S/P-bit 405 1s available

14

directly via input 428 from instruction 402. Note that the
group, S/P, L/S, and unit fields shown 1n register 421, since
they are generated from the S/P-bit 405 and the opcode 403,
may not necessarily be loaded into register 421 directly asso-
ciated with the rest of the instruction bits, as shown 1n FIG.
4. Instead, the S/P-bit 405 and the opcode 403 bits may be
used more directly 1in the control logic as an alternative
implementation option. Note that the 29 bits of 421, the 28
bits o1 422, and the 27 bits of 423 may be placed 1n a manner
best suited by a hardware implementation. The TM address
416 1s formed by adding a TM base address 414 stored 1n a
base register Vb 407 with the 8-bit offset 412 1n adder 409.
The use of the Vb base plus offset TM addressing allows a
greater translation range if needed. If the application task 1s
small, then an 8-bit TM address may be used directly. This
translation approach of system 400 removes any duplication
of exact forms of C=32-bit structions in the application
program and requires that for every umque C=32-bit mnstruc-
tion there exists a 29-bit location in the TM 411. This
approach provides one level of mstruction abbreviation.
Type 2 Translation

Where only certain bits within the C-bit (32-bit) native
instruction format tend to change frequently 1n an applica-
tion program, 1t 1s conceivable to divide the C-bit instruction
into two or more portions which are not necessarily contigu-
ous bit field portions, and analyze the pattern of bit changes
in these two portions across the application program. Using
the mformation obtained from this analysis, i1t 1s then pos-
sible to determine a number of strategies to abbreviate the
instructions and to handle the mstruction translation mecha-
nism. Three examples of this further approach are shown in
FIGS. S5A, 6A, and 6C.
Type 2A Translation

FIG. SA represents a translation mechanism 500 based
upon the number of bits which tend to change most fre-
quently within the instructions used in an application pro-
gram. The abbreviated-instruction format shown 1n FIG. 5A
1s a B=16-bit instruction 502 comprised of four parts: an
S/P-bit 505, a 3-bit opcode 503, a 3-bit TM ofifset field 504,
and a 9-bit field 501. The 3-bit TM ofiset ficld 504 1s used to
select an X-bit portion 518 of the native instruction from a
location 519 1n a TM 511 and load it via TM output path 518
into an instruction register 521. The 9-bit field 501 contains
bits which are directly loaded via path 517 to create a native
instruction form 1n register 521 1n conjunction with the TM
portion 518 and group, S/P, L/S, and/or unit bits as required
in preparation for decoding and execution. The native
instruction forms, for example shown 1n FIG. SA, are control
flow 1nstructions 1n register 521, load/store nstructions 1n

register 522, or ALU/MAU/DSU instructions in register 523.
The TM address 516 1s formed by adding a TM base address
514 stored 1n a Vb base register 307 with the 3-bit offset 512
in adder 509. Note that with only a 3-bit TM ofiset, the Vb
base register may need to be loaded multiple times during
program execution. Some overhead instructions to manage
the Vb register and style register are required to be added to
the abbreviated program. Also note that the 29 bits of
instructions stored 1n register 521, the 28 bits of instructions
stored 1n register 522, and the 27 bits of instructions stored 1n
register 523 may be placed in a manner best suited by a
hardware 1implementation.

As shown 1n FIG. 5A, the control flow instructions of
register 521 use 29=X+9-bits, while the Load/Store nstruc-
tions use 28=X"'+9-bits, and the ALU/MAU/DSU 1nstruc-
tions use 27=X"+9-bits. Since the instruction type 1s defined
by the 3-bit opcode field 503, a different TM can be assigned

for each opcode type. Consequently, the style and bit-width
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X can vary for each defined opcode type, such as opcodes
341-348 shown 1n FIG. 3B. Examples of possible style-
fields for the 16-th abbreviated-instruction 502 shown 1n
FIG. 5A are shown in FIGS. 5B-5E. In FIGS. SB-5E, “MO”
stands for “map out”. In particular, FIG. 5B illustrates eight
styles 530544 for the Load and Store units showing a pres-
ently preferred encoding of 4-bit style bits for these mstruc-
tions. The particular 9-bit fields 531-545 for 9-bit field 501
of FIG. SA that are to be loaded 1nto the instruction register
521 of FIG. SA are also shown. The particular bits loaded
into register 521 and their bit position within register 521 are
itemized within bits 8—0 of the 9-bit fields shown 1n FIG. 5B.
The bits not shown 1n a particular style are loaded from the
TM 3511 of FIG. 5A via path 518. As can be seen, the bit
patterns are not necessarily consecutive across all 9-bits. The
style encoding of FIG. 3C and 1n styles 530544 of FIG. 5B
indicates how the bits from the TM and the bits from the
abbreviated instruction received in register 502 are to be set
into the register 521 of FIG. 5A. For example, style 534 of
FIG. 5B representing the 12-bits of the abbreviated nstruc-
tion recerved in register 502 of FIG. SA including the 9-bit
field as shown 1n 535 requires that bit 0 546 (FIG. 5B) of
register 502 of FIG. SA be placed into bit 24 547 (FI1G. 5B)
of register 521 1 FIG. SA. Similarly, bits 2 and 1 535 (FIG.
5B) are placed mto bits 23 and 22 521 (FIG. SA), bits 5-3
535 (FIG. 3B) are placed into bits 15-13 521 (FIG. 5A), and
bits 8—6 5335 (FIG. 5B) are placed into bits 18-16 521 (FIG.
5A). The style-field bit pattern 531545 1llustrated i FIG.
5B defines how the bits of instruction 502 of FIG. SA map to
bit positions 1n the instruction 1n register 521 1n FIG. 5A.

In a similar fashion, eight styles are shown for the MAU
and ALU instructions 1n FIG. 5C. Only three of these styles
550, 552 and 554 have been numbered, as have their corre-
sponding style-field bit patterns 551, 553 and 555. The
remaining unnumbered styles correspond to bit patterns
which are presently reserved. Exemplary styles for the DSU
instruction are shown in FIG. 5D where seven style encod-
ings 5603572 are shown. The unnumbered style corresponds
to a bit pattern which 1s presently reserved. Corresponding,
bit patterns 561573 are also shown. Control flow style
encodings 580586 are shown 1n FIG. 5E with their corre-
sponding bit patterns 581-587. In FIG. SE, four styles corre-
spond to reserved bit patterns.

Type 2B Translation

FIG. 6A 1llustrates a presently preferred translation
mechanism 600. This mechanism 1s based upon the number
of bits which tend to change most frequently within the
instructions used in an application program. The
abbreviated-instruction type shown in mechanism 600 is a

B=14-bit instruction 602 comprised of an S/P-bit 605, a 3-bit
opcode 603, a first 5-bit TM oilset field 604, and a second
S-bit offset field 601. The first 5-bit TM offset field 604 1s
used to select an X-bit portion of the C=32-bit instruction
from a first TM 611 and load 1t via a first TM output path 618
into an instruction register 621. The second 5-bit offset field
601 1s used to select a Y-bit portion of the C=32-bit instruc-
tion from a second TM 631 and load it via the second TM’s
output path 638 to create a native istruction form 621 1n
conjunction with the first TM portion and group 640, S/P
641, L/S 642, and/or unit 643 bits as required 1n preparation
for decoding and execution. Three exemplary native mstruc-
tion forms are shown 1n registers 621, 622 and 623 in FIG.
6A. Control flow instructions are shown in register 621.
Load/store instructions are shown in register 622. ALU/
MAU/DSU 1nstructions are shown 1in register 623. These
instructions are produced by translating the abbreviated-
instruction 602 into a native istruction form prior to decod-
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ing and execution. Note that the 29 bits of 621, the 28 bits of
622, and the 27 bits of 623 may be placed in a manner best
suited by a hardware implementations. The two TM
addresses 616 and 636 arc formed by adding individual TM
base addresses 614 and 634, stored 1n base register Vb2 607
and base register Vb1 627, to the 5-bit offset 612 and 632 1n
adders 609 and 629, respectively. It 1s noted that the format
of the B-bit instruction can be different depending upon the
B-bit opcode field. For example, FIG. 6B illustrates a 14-bat
1IVLIW encoding format 6350 for the XV 1VLIW opcode
encoding 1117652 also shown 1n encoding 348 of FI1G. 3B.
A first TM offset field 654 1s a 6-bit field and a second TM
olfset field 656 1s a 4-bit field. It 1s noted that multiple styles
can be used 1n the translation mechamism 600 of FIG. 6A.
The sample analysis 1n a later section reports program size
reduction for an exemplary 14-bit abbreviated-instruction
format with four styles being utilized.
Type 2C Translation

Another approach to TM accessing and abbreviated-
instruction translation 1s i1llustrated in FIG. 6C. Mechanism
670 of FI1G. 6C 1s similar to mechanism 600 of FIG. 6 A with
several notable exceptions. The format of a control register
671, shown 1n detail 1n an insert to FIG. 6C, as compared
with format 350 of FIG. 3C 1s different. In the system of
FIG. 6C, the style field and Vb TM base address register size
have been reduced to an 8-bit format size as compared to the
16-bit format used 1n FIG. 3C. With the format of register
671 1n FIG. 6C, eight styles can be obtained per TM. The
TM addressing of FIG. 6C 1s a second difference to note
from the previous discussions of FIG. 6A. In FIG. 6C, TM
addresses 674 and 678 are formed by concatenating the Vb
base address registers V,, 673 and V,, 677 with oflset fields
675 and 679, respectively. Specifically, the Vb value forms

the high address field and the ofiset field from 672 forms the
low address field of the TM address. With a 5-bit Vb and a
S-bit offset, up to 1024 TM addresses can be generated. No
TM address adder 1s required. The rest of the abbreviated-
instruction translation apparatus 670 operates as previously
described.

Type 2 Translation Extension

It will be recognized that there exist instruction set archi-
tecture employing more than 32-bits, such as 40-bits,
48-bits, and 64-bits, among others. The instruction abbrevia-
tion process and translation approaches of the present inven-
tion would work equally well for these architectures.
Further, the concept of splitting the native istruction format
into two sections can be generated to splitting the mstruction
format into three or more sections. In these cases, the style
would cover the three or more sections with separate bit-
patterns that would be analyzed in a program’s instructions.
For each section, there would be a translation memory TM
and the abbreviated-instruction translated into the larger
native format. For example, a 48-bit mstruction could be
split into three sections, with each section represented 1n a
TM. The abbreviated-instruction format for this 48-bit case
might contain three 3-bit fields, a 3-bit opcode, and a single
S/P-bit, totaling 19-bits instead of the 48-bit instruction. It 1s
noted that the 32-bit instruction format may also be split into
more than two segments for abbreviation purposes, but
present analysis indicates the split into two segments 1s a
better match to presently anticipated needs.

As technology processes continue to improve providing
greater density of logic and memory implementations, it
becomes desirable to expand the scope of an architecture to
take advantage of the greater on-chip density. Instruction
abbreviation allows the expansion of the mnstruction set for-
mat while still minimizing the instruction memory size
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external to the core processor. For example, the ManArray
architecture register file operand specification can be
expanded from the present 5-bits per operand to 7-bits per
operand. Since the ManArray architecture 1s a three operand
specification architecture, this expansion adds 6 bits to the
instruction format size. Assuming 2 additional bits are added
to expand the opcode field or other field specifiers, the 32-bit
ManArray architecture could be expanded to 40-bats.

With instruction abbreviation, the 40-bit instructions
could be abbreviated to a B-bit format, where B might be 15,
16, 17, or a different number of bits less than 40 depending
upon the application. Since instruction abbreviation
decouples the instruction format used by the core processor
from the instruction format size stored in instruction
memory, the core processor has more freedom to grow in
capability and performance, while still minimizing external
memory size and access time requirements.

ManArray SP/PEQ Translation

The adaptation of the presently preferred dual TM using
mechamism 670 of FIG. 6C 1s described next. This discus-
s1on begins with an exemplary 1x1 SP/PE0 ManArray archi-
tecture configuration 700 shown in FIG. 7 and then proceeds
to discuss how to use the techniques of the present invention
as PEs are added to the SP/PE0 creating a 1x2 array 800 as
shown 1n FIG. 8. Note that in FIG. 6C, the two offset fields,
675 and 679, 1n 1nstruction 672 are shown as being of equal
s1ze. This 1s not necessary, and depending upon the applica-
tion code, it may be that different sizes are appropnate for
cach field.

An example of unequal fields 1s shown 1n FIG. 7 where an
abbreviated-instruction 702 1s a B=15-bits mstruction com-
prising an S/P-bit 705, a 3-bit opcode field 703, and two TM
olffset fields 704 and 701 of different sizes. FIG. 7 illustrates
a 1x1 processor configuration, also referred to as a combined
SP/PEOQ. In the system configuration 700, the TM apparatus
1s 1ncorporated i1n an I-Fetch-Xpand unit 750 which also
includes a program counter (PC), branch, EPLoop, interrupt
controls, and memory controls, though these are not shown
for reasons of clarity. The I-Fetch-Xpand umt 750 1s also
used as a building block in larger arrays, such as for
example, the 2x2 ManArray processor where an I-Fetch-
Xpand unit 103 1s shown 1n FIG. 1A. The I-Fetch-Xpand
unit 750 includes a pipeline control unit 751 which operates
as a S-stage pipeline, where the pipeline stages are Fetch,
Xpand and Dispatch, Decode, Execute, and Condition
Return. A typical pipeline example 1s described in further
detail below in conjunction with the discussion of FIG. 10.

For 1illustrative purposes, FIG. 7 only shows a single pair
of translation TMs, Y-TM 761 and X-TM 765 for ALU/
MAU type instructions for reasons of clarity. It will be rec-
ognized that a complete implementation would typically
include multiple translation TMs, each associated with a cor-
responding compressed B-bit opcode. In the present
example, with a 3-bit opcode 703, there could be up to eight
sets of TMs, assuming one TM associated with each opcode.
With common styles, the number of TMs could be less. For
example, 11 the MAU, ALU, and DSU 1nstructions all used
the same style shown as style-4 1n the sample analysis below,
then a common translation TM could be used with an
address range set aside for each instruction type as defined
by the opcode. It 1s also feasible for the load and store
istructions to be translated using the same style, see style 3
in the sample analysis below. For these instructions, it 1s
possible to combine style-fields due to the similarity of the
instruction format. Specifically, in the case of the MAU and
ALU there are common 1instructions with the same format
except for the bit field that specifies 1n which unit an mstruc-
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tion 1s to execute. With these design choices, the number of
TMs could be four. The abbreviated-instruction opcode
decode logic would allow only the proper set of TMs to be
accessed and the final output from the four pairs of TMs
selected through a multiplexer (not shown) to output bus
770.

Also, not shown 1n FIG. 7 1s a data path to load the TMs
under DMA control or by use of the processor’s load mnstruc-
tions. Note that 1n a high volume product, the TMs could be
implemented with ROMSs, with a small amount of SRAM
provided 1 desired by the product developer. With ROMs
implementing the TMs, the DMA to the TMSs or use of pro-
cessor load operations would not be required.

In each cycle, the S/P-bit 705 and opcode bits 703 are sent
to the Opcode, Group, L/S, and Unit PreDecode logic 755
over signal lines 739. In addition, the abbreviated-
instruction Y-TM ofilset field 701 1s sent to the 1VLIW
address generation function unit 730 over lines 737. For
execute VLIW (XV) mstructions 1n abbreviated form, the
dual TM translation occurs 1n parallel with the XV VLIW
735 access. For XV 1VLIW abbreviated instructions of the
form shown in FIG. 6B, and with VIMs of 64 or less
addresses, the 6-bit Y-TM address field 701 can be loaded
directly 1nto register IR2 771, 1f required by an
implementation, without the need of a Y-TM access for the
1VLIW 1nstructions. This direct loading approach results 1n
an even further reduction of on-chip resources. At the end of
an Xpand and Dispatch cycle, the tull 5 instruction VLIW
will be loaded mto the VLIW instruction register 733 and the
translated XV instruction loaded into register IR2 771, pro-
viding the additional bits needed to further control 1VLIW
execution. For the 1llustrated MAU/ALU/DSU TMs 761 and
765, a 27-bit 1nstruction 770 1s translated at the end of the
Xpand and Dispatch phase and loaded into the register IR2
771. I the translated instruction in the IR2 register 771 1s an
ALU struction, the IR2 output 1s selected for the ALU
execution unit through an appropriate one of the multiplex-
ers 773 and decoded in the ALU 1n the next cycle. The ALU
instruction 1s then executed 1n the fourth cycle with a condi-
tion return phase completing the 5-stage pipeline.
ManArray 1x2 Translation

FIG. 8 illustrates how the TM fits mto a 1x2 array con-
figuration where an additional PE, PE1 890, 1s added to the
SP/PEQ 1x1 array 700 of FIG. 7 to for a 1x2 array. For this
array, an instruction bus 870 1s connected to PE1’s IR2 reg-
ister 871. Interface signals 881, 883, and 885 go to PE0 as
shown 1in FIG. 7. Assuming the instruction i1s a PE
instruction, the pipeline proceeds as already described for
the operation of the SP/PE 1n FIG. 7, except that 1t instigates
operations in both PEQ and PE1. Multiple PEs can be added
by distributing the appropriate busses to the additional PEs,
with all the PEs operating in SIMD fashion as the exemplary
system ol FIG. 8 illustrates. Since the translation process
occurs 1n the SP once, as an abbreviated-instruction 1s
received 1n the SP, only PE instructions in a native-format, or
in a format containing the native instruction information
content, are dispatched to the attached PEs, PE1, PE2, . . .,
PEn. There are two important points concerning this archi-
tecture. One 1s that since the translation process occurs only
in the SP, the main mstruction memory 1s accessed only by
the SP and mstructions are not distributed from the main
instruction memory directly to the PEs. This constraint
ensures that the instruction memory output bus 875 1s a
direct path to the SP and consequently has minimum load-
ing. In addition, since the translation process occurs only 1n
the SP, dispatching PE instructions only when required
reduces the system power dependent upon array utilization.




US RE40,509 E

19

Dual Abbreviated-Instruction Fetching

The dual abbreviated-instruction format 12A of FIG. 1B
1s employed in system 900 of FIG. 9. This architecture has
the potential of further reducing power consumption of the
core processor. In FIG. 9, an abbreviated-instruction
memory 910 1s implemented as a (3/2)x27-bit SRAM that
corresponds to a ManArray native application program of
s1ze 1x32-bits. It 1s noted that a small number of TM Vb base
address register management instructions would need to be
added to the abbreviated program. This need is accounted for
in the mitial abbreviated-instruction tool analysis step. An
example of the two-instruction format as fetched from an
instruction memory 910 1s shown 1n 1nstruction insert 912.
This has implications for branch operations, so has to be
accounted for in the application program development. In
this approach, the abbreviated-instruction memory SRAM
910 15 less than half the size of the original native instruction
memory required for a particular application program. In
addition, since two compressed instructions are fetched at a
time from the abbreviated-instruction memory, the access
frequency 1s one-half that of the original native memory size
tor the imtended program. This significantly reduces instruc-
tion memory power use.

In some applications, it 1s noted that the abbreviated-
instruction program and/or individual tasks of a product pro-
gram may be stored in a system’s storage device whose data
types may be based on 32-bits, due to other system needs. In
this case, 1t 1s noted that two abbreviated instructions can be
{it 1nto a 32-bit format with bits to spare. For example, using
the format 912 of FIG. 9, five additional bits would be avail-
able for other purposes, which may prove advantageous, for
example, 1n a coprocessor environment.

In FIG. 9, the 27-bit mstruction bus 973 1s split into two
unequal segments: a 14-bit segment 976 and a 13-bit seg-
ment 977. The imdividual segments are loaded into register
IR1 902 and a pre-IR1 register 920, respectively. The
abbreviated-instruction enters the Xpand and Dispatch stage
from register IR1 902. At the end of the Xpand and Dispatch
stage, the abbreviated-instruction 1n the pre-IR1 register 920
1s loaded into the register IR1 902. The single S/P-bit 905 1n
this example 1s not changed when the new abbreviated-
instruction 1s loaded from the pre-IR1 register 920 into the
register IR1 902. This use of the S/P-bit has implications to
the application code development and would need to be
accounted for by the programmer or by analysis and com-
pression tools. A translated PE instruction 1s dispatched to
the PE as previously described. A translated SP instruction
remains 1n the SP for execution and no dispatch action to the
PEs occurs. The PEs are aware that an SP istruction 1s in the
pipeline since the S/P-bit 1s sent to the PEs 1n all cases.
Pipeline Description

FIG. 10 illustrates a sequence of operations or process
1000 performed 1n a five-stage pipeline for five clock cycles
for a 1x1 array, such as array 700 of FIG. 7. The following
sequence ol abbreviated-instructions: ADD.S, XV.S,
COPY.S, ADD.S, and an instruction Instr(1+4) are illustrated
in FIG. 10. For this example, only SP instruction operations
are shown and the hardware 700 shown 1n FIG. 7 1s used as a
reference for the operations described. Each horizontal row
1010-1050 1n the table 1000 of FIG. 10 represents the opera-
tions occurring in the abbreviated-instruction processor dur-
ing some clock cycle of the processor. The columns cycle
1015, fetch 1025, Xpand and Dispatch 1035, decode 1045,
execute 1055 and conditional return 1065, correspond to the
clock-stage actions which occur 1n the different clock peri-
ods. The row 1010 1dentified as clock cycle “1” indicates an
abbreviated B-bit ADD.S instruction i1s fetched over the
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istruction bus 775 of FIG. 7 from the reduced size instruc-
tion memory 710 and loaded into the instruction register IR1

702.
In the next cycle “1+1”” shown 1n row 1020, the SP fetches

the abbreviated B-bit XV.S instruction and loads 1t into the
IR1 702. While the fetch operation 1s occurring, the ADD.S

1s 1n the Xpand and Dispatch pipeline stage 1n which a num-
ber of operations occur. The S/P-bit 705 1ndicates this 1s an

SP-only operation. The local dual TM fetches occur and a
native form of the ADD.S mstruction 1s loaded into the IR2

771 at the end of the cycle. The S/P-bit and 3-bit abbreviated
opcode arc sent to the Opcode, Group, L/S, and Unit PreDe-
code logic 755 and are decoded in the SP with control
latches set at the end of this stage as required to control the
next stages of the pipeline.

In cycle “1+2” shown in row 1030, the SP {fetches the
abbreviated B-bit COPY.S mstruction and loads it into the
register IR1 702 at the end of the fetch cycle. While the fetch

operation 1s occurring, the XV.S 1nstruction 1s 1n the Xpand
and Dispatch pipeline stage in which a number of operations
occur. The S/P-bit and opcode indicate an SP XV operation.
The local TM fetches occur and a native form of the XV.S
instruction 1s loaded into register IR2 at the end of this cycle.
The S/P-bit and 3-bit opcode are decode 1n the SP and appro-
priate latches are set at the end of this stage. In parallel, the

VIM address 1s calculated by address generation function
unit 730 of FIG. 7 and the 1VLIW 1s fetched from the VIM

735. Also, m cycle “1+2”, the ALU decodes the ADD.S
instruction.

In cycle “143” shown 1n row 1040, the SP fetches the next
abbreviated B-bit istruction, which in this example 1s an
ADD.S struction, and loads it into the register IR1 at the
end of the fetch cycle. In the Xpand and Dispatch stage, the
COPY.S abbreviated instruction 1s being translated into a
native form suitable for continued processing. In the decode
pipeline stage, the VLIW fetched from the VIM representing
up to 5 native ManArray instructions 1s 1n unit 1-n decoder
779 of FIG. 7. The ADD.S has entered the execute pipeline
stage and the results of the ADD.S will be available by the
end of this stage.

In cycle “1+44” shown 1n row 1050, the SP fetches the next
abbreviated B-bit instruction, Instr(I+3). The fetched ADD.S
abbreviated instruction enters the Xpand and Dispatch stage
where 1t 1s translated into a native form suitable for decoding
and execution. The COPY.S 1nstruction 1s decoded 1n the
DSU 1n the decode pipeline stage and the fetched VLIW of
up to 5 native imstructions enters the execute stage of the
pipeline with the results from the up to 5 executions avail-
able at the end of this stage. The ADD.S first fetched in cycle
“1”” enters the condition return stage where any side effects of
its execution are stored 1n programmer visible tlag registers,
Arnithmetic Scalar Flags (ASFs) and the Arithmetic Condi-
tion Flags (ACFs).

Other Processor Architectures

As an example of the generality of the instruction-
abbreviation process, consistent with the teachings of the
present invention, other processor architectures containing
one or more execution units can have their opcode space
partitioned 1nto one or more separate groups and the 1nstruc-
tion format partitioned into one or more bit-pattern style-
fields. Based upon a program coded with this other processor
architecture, B-bit abbreviated instructions can be formed
that can then be stored in a reduced size memory. These
abbreviated instructions can then be fetched and translated
into a native form internal to the other processor suitable for
execution on the other processor.

Since there 1s a standard B-bit format for this other pro-
cessor’s abbreviated structions, and a one-to-one mapping
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between the B-bit instruction and a processor’s native
instruction, there 1s no problem storing the abbreviated
instruction 1n a cache, branching to an abbreviated
istruction, or taking interrupts as would normally occur 1n a
native processor program.
Sample Analysis

The sample analysis described below 1s based on a
ManArray MPEG decoder application program containing
5050 total native 32-bit instructions. The analysis tool reads
instructions as data from an nput file <mpeg.dump> where
the MPEG decoder program 1s located. The analysis tool
also reads style-fields from 1input file <style7.dat> where dii-
ferent style-fields can be placed for analysis. For this
example, the following styles were used 1n the analysis pro-
gram. The dual-TM translation apparatus of FIG. 6A or 6C
was used as the underlying hardware for this analysis. The
abbreviated instruction opcode type 1s shown below in the
column on the left and the specific style-fields with the bat
definition for the Y-TM are shown below 1n the column on
the right. Each opcode type uses only a single style but four
unique styles are used. The ability to optimize the styles by
opcode type represents an important advantage to further
reduce the program memory size.

VLIW 012345 Style-1
FLOW 01234567 Style-2
LOAD 0123451617 1819 Style-3
STORE 0123451617 1819 Style-3
ALU 6781112131617 18 19 Style-4
MAU 6781112131617 1819 Style-4
DSU 6781112131617 18 19 Style-4

An example from the sample analysis program for MAU
instructions using style-4 1s as follows:

bit-26 bit-0
1 2 3
Y e ALy
10001 1—0yyyyv—00yyy—10yyy—000—101
x1 X2 X3 x4

The struction format given by 100011-Oyyyy-00yyy-
10yyy-000-101 indicates the Y-TM style-field bit pattern

covering y1 (bits 19-16), y2 (bits 13—11), and y3 (bits 8-6).
The x-field covers bits x1 (bits 26—-20), x2 (bits 15, 14), x3
(bits 10, 9), and x4 (bits 5-0). It 1s group bits (bits 31 and
30), the S/P bit (29), and the unit field bits (bits 28 and 27)
have been excluded from the analysis since the group, S/P,
and unit information 1s covered 1n the abbreviated 1nstruc-
tion format’s S/P-bit and opcode bits. In the reported

analysis, 12 MAU 1nstructions were found where the X-field
was Xx1=100110, x2=00, x3=10, and x4=000101 which did

not change for the 12 mstructions and only bits within the y
fields changed as follows:

12: 100011-0yyyy-00yyy-000-101

3: 100011-00000-00000-10100-000-101 mpyl.pm.4sh 10,
r0, r20

3: 100011-00010-00010-10100-000-101 mpyl.pm.4sh r2,
r2, r20

3: 100011-00100-00100-10100-000-101 mpyl.pm.4sh r4,
r4, r20

3: 100011-00110-00110-10100-000-101 mpyl.pm.4sh r6,
r6, r20

Within the grouping of 12 MAU instructions, there were 4

distinct groupings of 3 instructions that each have common
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Y-bit patterns. In these four cases, the only change 1s in the
register specification field as can be seen 1n the instructions
mnemonics listed to the right of the instruction binary for-
mat shown above as r#. In this example of 12 MAU
instructions, there would only need to be one location 1n the
X-TM to cover this specific X pattern of bits. For this same
12 MAU 1nstruction example, only four entries are required
in the Y-TM to cover the four specific variations noted
above. Consequently, the 12 MAU nstructions in the MPEG
program could be translated or constructed from a single
X-TM location in combination with four Y-TM locations. In
all of these 12 cases, the abbreviated instruction would have
a common X-TM offset and use one of four Y-TM offsets to
select the specific Y-TM location and to provide the needed
bits to create the desired instruction. The native program
would occupy 12*32=384-bits in a native 1instruction
memory while the abbreviated program would occupy
12%*14=168-bits, or less than half the space 1n an abbreviated
instruction memory design.

The MPEG application code was analyzed by a software
static analysis tool which:

1. Splits the program code into seven instruction groups,
indirect VLIW, flow control, Load, Store, ALU, MAU,
and DSU.

2. In each group the unique nstructions are 1dentified and
counted.

3. The unique structions are examined based on the
appropriate style, and the bit patterns, such as patterns

619 of FIG. 6A and the number of unique X-TM and
Y-TM addressable locations are determined.

4. Based upon the chosen style-fields for each group as
defined above and the analysis, the final size of the two
TMs 1s determined for each opcode type.

In this particular example, a 14-bit abbreviated-
instruction format was used and the total number of bits was
determined for the main nstruction memory and compared
to the native form as used 1n the actual MPEG program. A
memory savings was then reported. In the following sum-
mary reports, a slot 1s an addressable location 1n the TM.
VLIW 1nstructions:

57 Y-TM Slots (covering 628 VLIW 1nstructions used in
the 5050 instruction program)

23 X-TM Slots (covering 628 VLIW instructions used 1n
the 5050 1nstruction program) (covering 127 UNIQUE

instructions)
14-bit Dual-TM Instruction Analysis:

(Y-TM Slots=57)*(Y-TM Slot-size=6)=342 bits
(X-TM Slots=23)*(X-TM Slot-size=23)=329 bits
(Instructions=628)*(14-bit instructions)=8792 bits

Total Bits for this abbreviated-instruction type=9663 bits
Vs.

(Instructions=628)*(32-bit instructions)=20096 bits
Memory SAVINGS (14-bit) (20096-9663)/(20096)=
51.92%

FLOW instructions:

123 Y-TM Slots (covering 804 instructions used in the
5050 1nstruction program)

69 X-TM Slots (covering 804 instructions used in the
5050 1instruction program) (covering 384 UNIQUE

instructions)
14-bit Dual-TM Instruction Analysis:

(Y-TM Slots=123)*(Y-TM Slot-s1ze=8)=984 bits
(X-TM Slots=69)*(X-TM Slot-size=21)=1449 bits
(Instructions=804)*(14-b1t instructions)=11256 bits
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Total Bits for this abbreviated-instruction type=13689 bits
VS.

(Instructions=804)*(32-bit mnstructions)=25728 bits
Memory SAVINGS (14-bit) (25728-13689)/(25728)=
46.79%

LOAD instructions:

138 Y-TM Slots (covering 1326 instructions used in the
5050 1nstruction program)

121 X-TM Slots (covering 1326 instructions used in the
5050 1nstruction program) (covering 326 UNIQUE

instructions)
14-bit Dual-TM Instruction Analysis:

(Y-TM Slots=138)*(Y-TM Slot-size=10)=1380 bats
(X-TM Slots=121)*(X-TM Slot-s1ze=18)=2178 bits
(Instructions=1326)*(14-bit instructions)=18564 bits

Total Bits for this abbreviated-instruction type=22122 bits
VS.

(Instructions=1326)*(32-bit 1instructions)=42432 bits
Memory SAVINGS (14-bit) (42432-22122)/(42432)=

47.86%
STORE instructions:

59 Y-TM Slots (covering 604 mstructions used 1n the 5050
instruction program)

37 X-TM Slots (covering 604 instructions used in the
5050 1nstruction program) (covering 182 UNIQUE

istructions)
14-bit Dual-TM Instruction Analysis:

(Y-TM Slots=59)*(Y-TM Slot-s1ze=10)=390 bits
(X-TM Slots=37)*(X-TM Slot-s1ze=18)=666 bits
(Instructions=604)*(14-bit instructions)=8456 bits

Total Bits for this abbreviated-instruction type=9712 bits
VS.

(Instructions=604)*(32-bit mnstructions)=19328 bits
Memory SAVINGS (14-bit) (19328-9712)/(19328)=
49.75%

ALU instructions:

128 Y-TM Slots (covering 8235 instructions used in the
5050 1nstruction program)

92 X-TM Slots (covering 825 instructions used in the
5050 1nstruction program) (covering 234 UNIQUE
instructions)

14-bit Dual-TM Instruction Analysis:
(Y-TM Slots=128)*(Y-TM Slot-size=10)=1280 bits
(X-TM Slots=92)*(X-TM Slot-s1ze=17)=1364 bits
(Instructions=825)*(14-bit instructions)=11550 bits

Total Bits for this abbreviated-instruction type=14394 bits
VS.

(Instructions=825)*(32-bit nstructions)=26400 bits
Memory SAVINGS (14-bit) (26400-14394)/(26400)=
45.48%

MAU instructions:

35Y-TM Slots (covering 191 1nstructions used 1n the 5050
istruction program)

23 X-TM Slots (covering 191 instructions used in the
5050 1nstruction program) (covering 56 UNIQUE
instructions)

14-bit Dual-TM Instruction Analysis:
(Y-TM Slots=35)*(Y-TM Slot-s1ze=10)=350 bits
(X-TM Slots=23)*(X-TM Slot-s1ze=17)=391 bits
(Instructions=191)*(14-bit instructions)=2674 bits

Total Bits for this abbreviated-instruction type=34135 bits
VS.

(Instructions=191)*(32-bit mnstructions)=6112 bits
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Memory SAVINGS (14-b1t) (6112-3415)/(6112)=44.13%
DSU 1nstructions:

119 Y-TM Slots (covering 672 istructions used in the
5050 1nstruction program)

71 X-TM Slots (covering 672 mstructions used in the
5050 1instruction program) (covering 231 UNIQUE
instructions)

14-bit Dual-TM Instruction Analysis:

(Y-TM Slots=119)*(Y-TM Slot-s1ze=10)=1190 bits
(X-TM Slots=71)*(X-TM Slot-size=17)=1207 bits
(Instructions=672)*(14-bit instructions)=9408 bits

Total Bits for this abbreviated-instruction type=11805 bits
Vs.

(Instructions=672)*(32-bit instructions)=21504 bits
Memory SAVINGS (14-bit) (21504-118035)/(21504)=
45.10%

The overall memory savings for the MPEG decoder example
are now described.

L B

T'otal native 32-bit instructions=5050
Total UNIQUE nstructions=1540

Overall 14-bit Dual-TM Analysis

Total bits 1in Slots and 14-bit instructions=84800 bits
(VIM Locations=57)*(160 bits)=9120 bits

Total Bits for all instruction types=93920 bits vs.

(Instructions=5050)*(32-bit instructions)=161600 bits

(VIM Locations=57)*(160 bits)=9120 bits

Total Bits for all instruction types=170720 bits

System Memory SAVINGS (14-bit) (170720-93920)/

(170720)=44.99%

The 1nstruction memory savings by itself 1s as follows:

Instruction memory Savings (14-bit) (161600-(5050*14)/
(161600)=56.25%. It 1s noted that the addition of Vb and
style register management instructions will reduce this per-
centage slightly. It 1s further noted that there are additional
analysis mechanisms not addressed 1n this exemplary sum-
mary report but which can further reduce instruction
memory requirements. For example, for those opcodes with

common styles, a search may be done to find the common
X-TM and Y-TM entries.

Also, this analysis report did not try more than one style
per group. It 1s very feasible that an additional style or styles
can be determined for each style grouping and steps 3 and 4
(1n the previous 1dentified analysis tool steps) are repeated to
determine whether additional styles further reduce memory
requirements.

Guidelines to Develop Application Code for Abbreviated-

Instructions:

Exemplary ManArray Abbreviated-Instruction Set guide-
line rules are:
1. Interactive with the analysis tool, account for the TM Vb

base address register and style register management
instructions in the initial program. The management
instructions 1n the abbreviated program include loads to
the programmer visible control registers in order to
change the style and Vb values as necessary. These addi-
tional cycles must be accounted for in both the mitial
native program and the newly created abbreviated-
instruction program.

2. After initial analysis for the reduced size program memory
1s completed, look for very low usage TM locations.
These low usage locations point to low usage 1nstructions
which 1t may be possible to eliminate and then reprocess
the program. This would further reduce memory needs
and reduce the complexity of the end core processor.

3. It 1s anticipated that grouping the use of compute register
file (CRF) registers can be of benefit to reducing the pro-
gram memory size. The groupings are determined from
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the style-fields that cover the CRF register specification in
the 1nstruction format.

While the present has been described 1n a presently pre-
terred embodiment, it will be recogmized that a number of

variations will be readily apparent and that the present teach-
ings may be widely applied. By way of example, while
instructions with specific numbers of bits and formats are
addressed herein, the present invention will be applicable to
instructions having other numbers of bits and different for-
mats. Further, while described 1n the presently preferred
context of the ManArray architecture, the imnvention will also
be applicable to other processing architectures.

We claim:

1. A method for generating an abbreviated application
specific program utilizing an abbreviated instruction set
comprising the steps of:

generating a native program for an application utilizing a
set of native instructions having a first [fixed] number

of bits:

debugging the native program;

processing the debugged native program by analyzing the
set of native 1nstructions at a sub-instruction level wit/z
a processor 1o determine specific patterns of bits that do
not change within groups of instructions [mid] ard uti-
lizing the results of said analysis to determine an abbre-
viated instruction set having a second [fixed] number of
bits less than the first [fixed] number of bits and corre-
sponding to the set of native instructions; and

converting the native program to the abbreviated applica-
tion specific program by replacing the set ol native
instructions with the abbreviated instruction set.

2. The method of claim 1 wherein said step of processing

turther comprises:

analyzing the set of native instructions to 1dentify a first
group of native instructions having a style pattern of
bits which 1s defined as a specific pattern of bits that are
constant for said group.

3. The method of claim 2 further comprising the step of:

storing the i1dentified style pattern of bits 1n a translation
memory.
4. The method of claim 3 further comprising the step of:

utilizing the identified style pattern of bits stored 1n said
translation memory to recreate native instructions from
the first group of native mnstruction by combining bits
from corresponding abbreviated instructions with the
identified style pattern of baits.
5. The method of claim 1 wherein said step of processing,
turther comprises:

analyzing the set of native instructions to 1dentify multiple
groups of native mstructions, each group having a style
pattern of bits which 1s defined as a specific pattern of

bits that are constant.
6. The method of claim 5 further comprising the step of:

storing the 1dentified style patterns of bits 1n a translation
memory.
7. The method of claim 6 further comprising the step of:

utilizing an 1dentified style pattern of bits selected from
said translation memory to recreate native instructions
from one of said multiple groups of native instructions
by combining bits from corresponding abbreviated
instructions with the 1dentified style pattern of bits.

8. The method of claim 4 further comprising the step of:

creating a one-to-one mapping between a program’s
native instruction and an abbreviated instruction by
using a translation memory addressing mechanism to
identify the style pattern of bits stored 1n said transla-
tion memory.
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9. The method of claim 7 turther comprising the step of:

creating a one-to-one mapping between a program’s
native instruction and an abbreviated instruction by
using a translation memory addressing mechanism to
identify the style pattern of bits stored in said transla-
tion memory.

10. The method of claim 8 further comprising the transla-
tion memory addressing step of adding or concatenating an
olfset field contained in the abbreviated instruction with a
translation memory base address stored in an internal
machine register to form the address to select a specific pat-
tern of bits from said translation memory.

11. The method of claim 9 further comprising the transla-
tion memory addressing step of adding or concatenating an
offset field contained 1n the abbreviated instruction with a
translation memory base address stored in an internal
machine register to form the address to select a specific pat-
tern of bits from said translation memory.

12. The method of claim 1 further comprising the step of:

executing the application specific program on a sumulator
to verily its functional equivalence to the native pro-
gram.

13. The method of claim 12 further comprising the step of:

determining a processor core specification tailored for use
in 1implementing the application specific program uti-
lizing the abbreviated 1nstruction set.

14. The method of claim 1 further comprising the step of
executing the application specific program on a Manta-2
based simulator acting as an emulator.

15. The method of claim 1 wherein the native mstruction
set 1s a manifold array (ManArray) istruction set.

16. The method of claim 15 further comprising the step of
translating abbreviated instructions back into a native
ManArray format for decoding and execution in a ManArray
sequence processor and processing elements.

17. The method of claim 16 wherein the step of translating
abbreviated instructions back i1s performed only by a
sequence processor.

18. A method for generating an abbreviated 1nstruction set
corresponding to a set of native manifold array (ManArray)
instructions [for all] used ir an application specific program
comprising the steps of:

separating the set of native ManArray instructions into
groups of instructions;

identifying [the] unique instructions within each group of
instructions;

analyzing the umique nstructions for common instruction
characteristics;

determining at least one style pattern of bits which 1s
defined as a specific pattern of bits that are constant;
and

generating the abbreviated instruction set utilizing the at
least one style by encoding the at least one style pattern
of bits into a reduced number of bits utilizing a proces-
SOF.

19. The method of claam 18 wherein the set of native
ManArray instructions are separated into groups by classity-
ing said mstructions by opcode.

20. The method of claim 19 wherein at least the following
groups are established: store and load instructions; MAU
and ALU instructions; DSU 1nstructions; and control flow
instructions.

21. The method of claim 19 wherein at least one of the
common 1nstruction characteristics 1s a relative bit-pattern
usage 1n the application specific program for a given bit-
pattern split 1n an abbreviated instruction format.
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22. The method of claim 18 further comprising the step of:

storing the at least one style pattern of bits 1n a translation

memory.

23. The method of claim 22 further comprising the step of
analyzing relative bit-pattern usage among groups of
instructions that include a common style.

24. The method of claim 22 further comprising the step of
generating at least one translation management memory
istruction.

25. The method of claim 22 further comprising the step of:

utilizing the identified style stored in the translation
memory to recreate native instructions from a first
group of native mstruction by combining bits from cor-
responding abbreviated instructions with the at least
one style pattern of baits.

26. A method for translating abbreviated instructions into

a native 1struction format comprising the steps of:

fetching an abbreviated instruction having a first [fixed]
number of bits from a memory tailored to storage of
abbreviated instructions:

dynamically translating the abbreviated instruction into
the format of a native istruction by using a first bit
field 1n the abbreviated instruction as an address refer-
ence [to a first translation memory containing at least
one specific sub-native instruction pattern of bits] for a
sub-native instruction pattern;

fetching [a] #ke sub-native instruction pattern [from the
translation memory] using said address reference, said
sub-native mstruction pattern being based on a previous
analysis of [the] a set of native instructions on a sub-
instruction level to determine patterns of bits that do not
change within groups of istructions;

combining the sub-native instruction patterns with bits
from the abbreviated instruction to create the native
istruction 1n a sequence processor (SP) array control-
ler said native instruction having a second [fixed] num-
ber of bits greater than said first [fixed] number; and

dispatching the native instruction to the sequence proces-
sor array controller or a processing element for execu-
tion.

27. The method of claim [26] 59 wherein the abbreviated
istruction includes at least one S/P bit, a multi-bit opcode
field and a multi-bit translation memory address oifset for
use in the address veference to the first translation memory.

28. The method of claim 27 wherein the step of dynami-
cally translating further comprises the step of decoding the
multi-bit opcode field.

29. The method of claim 27 wherein the step of dynami-
cally translating further comprises the steps of forming a
translation memory address by adding the multi-bit transla-
tion memory address offset with a translation memory base
address; and

selecting a plurality of native instruction bits from a loca-
tion in the translation memory corresponding to the
formed translation memory address.

30. The method of claim 27 further comprising the step of
directly using the multi-bit translation memory address oil-
set to select a plurality of native istruction bits from a loca-
tion 1n a translation memory corresponding to the multi-bit
translation memory address oifset.

31. The method of claim 26 wherein the abbreviated
istruction includes at least one S/P bit, a multi-bit opcode
field, a multi-bit translation memory address oflset, and a
plurality of bits which are to be directly loaded.

32. The method of claim 31 wherein the step of dynami-
cally translating further comprises the step of decoding the
multi-bit opcode field.
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33. The method of claim 31 wherein the step of dynami-
cally translating further comprises the steps of forming a
translation memory address by adding the multi-bit transla-
tion memory offset with a translation memory base address;
and

selecting a plurality of native instruction bits from a loca-
tion in the translation memory corresponding to the
formed translation memory address.

34. The method of claim 33 wherein the step of dynami-
cally translating further comprises the step of combining the
selected plurality of native mstruction bits and the plurality
of bits which are to be directly entered.

35. The method of claim 26 wherein the abbreviated
istruction includes at least one S/P bit, a multi-bit opcode
field, a first multi-bit translation memory offset field and a
second multi-bit translation memory offset field.

36. The method of claim 35 wherein the step of dynami-
cally translating further comprises the step of decoding the
multi-bit opcode field.

37. The method of claim 35 wherein the step of dynami-
cally translating further comprises the steps of:

selecting a first multi-bit portion of the native mstruction
from a first translation memory address utilizing the
first multi-bit translation memory ofiset field; and

selecting a second multi-bit portion of the native nstruc-
tion from a second translation memory address utiliz-
ing the second multi-bit translation memory offset

field; and

combining both multi-bit portions 1nto a native mstruction

format.

38. The method of claim 37 wherein translation memory
addresses are formed by concatenating base address register
bits and translation memory offset field bats.

39. A system for translating abbreviated instructions nto a
natrve instruction format comprising:

a memory storing an abbreviated instruction having a first
[fixed] number of [hits] bits:

means for fetching the abbreviated instruction from the
memory;

means for dynamically translating the abbreviated instruc-
tion into a native instruction using [a translation
memory storing at least one specific] a sub-native
istruction pattern of bits, said sub-native instruction
pattern being based on a previous analysis of [the] a set
ol native instructions on a sub-instruction level to deter-

mine patterns of bits that do not change within groups
of 1nstructions;

an addressing mechanism using a first bit field i the
abbreviated instruction as an address reference [to the
translation memory] for the sub-native instruction pat-
lern,

means for fetching the sub-native instruction pattern
[from the translation memory] utilizing the address ref-

erence; and

means for combiming the sub-native instruction pattern
with bits from the abbreviated instruction to create the
native instruction in the native istruction format hav-
ing a second [fixed] number of bits greater than said
first [fixed] number.

40. The system of claim 39 further comprising means for
dispatching the native instruction to at least one processing
clement for execution.

41. The system of claim 39 wherein the means for
dynamically translating further comprises at least one trans-
lation memory for storing style pattern bits which are com-
mon to a group ol native istructions.
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42. A method [fur] for translating abbreviated instructions
into a native mstruction format comprising the steps of:

fetching an abbreviated instruction having a first [fixed]
number of bits from a memory tailored to storage of
abbreviated instructions:

dynamically translating the abbreviated instruction into
the format of a native instruction by using a first and a
second bit field 1n the abbreviated 1nstruction as address
references [to a first field and a second translation
memory each containing at least one specific sub-native
instruction patterns of bits] for at least two sub-native
instruction patterns,

fetching at least two a sub-native instruction [pattern from
each translation memory] patterns using said address
references, each of said at least two sub-native struc-
tion [pattern] patterns being based on a previous analy-
sis of [the] a set of native instructions on a sub-
instruction level to determine patterns of bits that do not
change within groups of istructions;

combining the at least two sub-native 1struction patterns
to create the native instruction 1n a sequence processor
(SP) array controller said native instruction having a
second [fixed] number of bits greater than said first
[fixed] number; and

dispatching the native instruction to the sequence proces-
sor array controller or a processing element for execu-
tion.
43. A system for translating abbreviated instructions into a
native instruction format comprising:

a memory storing an abbreviated mstruction having a first
[fixed] number of bits;

means for fetching the abbreviated instruction from the
memory;

means for dynamically translating the abbreviated instruc-
tion into a native instruction using [two translation
memories each storing] at least one specific sub-native
istruction patterns of bits, each of said at least one
sub-native instruction patterns being based on a previ-
ous analysis of [the] a set of native instructions on a
sub-instruction level to determine patterns of bits that
do not change within groups of 1nstructions;

two addressing mechanisms each using a bit field 1n the
abbreviated instruction as an address reference [to one
of the two translation memories] for the at least one
specific sub-native instruction patterns of bits;

means for fetching the sub-native instruction patterns
[from each translation memory]; and

means for combiming the sub-native instruction patterns to
[crate] create the native instruction in the native
instruction format having a second [fixed] number of
bits greater than said first [fixed] number.

44. The method of claim 26 wherein the address veference
used in the translating step is an address vefervence to a first
translation memory containing at least one specific sub-
native instruction pattern of bits.

45. The system of claim 39 wherein the means for dynami-
cally translating the abbreviated instruction into a native
instruction furthev comprises.

a translation memory for stoving said sub-native instruc-
tion pattern of bits.
46. A system for controlling a translation process wherein
a B-bit abbreviated instruction having B bits is translated
into a native instruction format having C bits, where the
value C is greater than the value B, the system comprising:

a B-bit instruction vegister for holding the B-bit abbrevi-
ated instruction;
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a base register,
an adder; and

a native instruction vegister, wherein the base vegister out-
put and a field of the B-bit abbreviated instruction in
the B-bit instruction register ave added by the adder to
produce an output which selects native instruction bits
for loading into the native instruction register, the
selected native instruction bits are not found in the
B-bit abbreviated instruction, the selected native
instruction bits having been previously determined by
analyzing a set of native instructions for specific pat-
terns of bits that do not change within the set of native
instructions.

47. The system of claim 46 further comprising a decoder,
the decoder receives opcode bits from the B-bit abbreviated
instruction in the B-bit instruction vegister and decodes said
opcode bits to generate group bits which ave loaded into the
native instruction register.

48. The system of claim 46 wherein Bis 12, 13, 14, 15, 16,
or some other integer value less than 30 and Cis 32, 40, 45
or 64.

49. A system for controlling a translation process wherein
a B-bit abbreviated instruction having B bits is translated
into a native instruction format having C bits, where the
value C is greater than the value B, the system comprising:

a B-bit instruction register for holding the B-bit abbrevi-
ated instruction;

a base register;
an adder;

a native instruction register, wherein the native instruc-
tion register receives a plurality of divect load bits from
a direct load field of the B-bit abbreviated instruction in
the B-bit instruction register; and

a base register output and a field of the B-bit abbreviated

instruction are added by the adder to produce an output
which selects native instruction bits for loading in com-
bination with the divect load bits into the native instric-
tion register, the selected native instruction bits are not
found in the B-bit abbreviated instruction, the selected
native instruction bits having been previously deter-
mined by analyzing a set of native instructions for spe-
cific patterns of bits that do not change within the set of
native instructions.

50. A system for controlling a translation process wherein

a B-bit abbreviated instruction having B bits is translated
into a native instruction format having B bits, wheve the
value C is greater than the value B, the system comprising:

a B-bit instruction register for holding the B-bit abbrevi-
ated instruction;

two base registers, the two base register outputs and two
fields of the B-bit abbreviated instruction are concat-
enated respectively to form at least two addresses to
select at least two patterns of native instruction bits, the
selected at least two patterns of native instruction bits
having been previously determined by analyzing a set
of native instructions for specific patterns of bits that do
not change within the set of native instructions, and

a native instruction register for loading the native
instruction, wherein the selected at least two patterns of
native instruction bits ave combined as specified by a
stvle set of bits storved in the processor to form the
native instruction.

51. A method for operating a processor utilizing an abbre-

viated instruction having a first number of bits, the method
COmprising.
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retrieving the abbreviated instruction; converting a set of native instructions defining an applica-

generating an address reference for a native instruction tion program into the abbreviated instruction set; and
pattern from combining a first bit field in the abbrevi-

ated instruction and a base addvess register; storing the abbr evzarefl ISty ”C”O”‘ set. | |
retrieving the native instruction pattern of bits to be com- 5 54. The method of claim 51 wherein the retrieved bits are

bined with the abbreviated instruction using the retrieved from a translation memory entry, whevein the com-
address veference, the native instruction pattern of bits bining step further comprises:

being based on a previous analysis of a set of native
instructions on a sub-instruction level to determine pat-
terns of bits that do not change within groups of |,

applving a style to determine how to map bit positions in
the abbreviated instruction to bit positions in the native

instructions: instruction and how to map bit positions in the transia-
combining the native instruction pattern of bits with the tion memory entry to bit positions in the native instruc-

abbreviated instruction to create a native instruction, tion.

the native instruction having a second number of bits, 35. The method of claim 51 wherein the address reference

the second number of bits is greater than the first num-
ber of bits; and

dispatching the native instruction to a processor for

15 15 an address veference to a translation memory, an entry in
the translation memory containing the native instruction

pattern of bits to be combined with the abbreviated instruc-

execution. _
52. The method of claim 51 wherein the retrieving the tion.
abbreviated instruction step retrieves the abbreviated 56. The method of claim 51 wherein the abbreviated
instruction from instruction memory, the instruction memory “° instruction includes at least one S/P bit, a multi-bit opcode
dimension depends on the size of the abbreviated instruction  field and a multi-bit translation memory address offset.

rather than the size of a native instruction.

53. The method of claim 51 further comprising the follow-
ing steps, wherein the following steps occur before the decoding the multi-bit opcode field.
retrieving the abbreviated instruction step, the following 25
steps comprising. ¥k ok k%

57. The method of claim 56 further comprising:
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