USO0ORE40405E
(19) United States
a2 Relssued Patent (10) Patent Number: US RE40.405 E
Schwartz et al. 45) Date of Reissued Patent: Jun. 24, 2008
(54) METHOD AND APPARATUS FOR SECURING 5,666,411 A * 9/1997 McCartyccoeevevnvunnn. 705/51
EXECUTABLE PROGRAMS AGAINST
COPYING FOREIGN PATENT DOCUMENTS
EP O 536943 A2 4/1993
(75) Inventors: Edward L. Schwartz, Sunnyvale, CA
(US); Michael J. Gormish, Redwood OTHER PUBLICATIONS
City, CA (US)
Donald E. Knuth. “The Art of Computer Programming,”
(73) Assignee: Ricoh Company, Ltd., Tokyo (IP) Addison—Wesley Publishing Company. Second Edition. p.
28.
(21) Appl. No.: 09/414,994 David Shetl. “Game Over: How Nintendo Zapped an Ameri-
, can Industry. Captured Your Dollars, and Enslaved Your
(22) Filed: Oct. 7, 1999 Children,” gandofn House, Inc. (1993), pp. 160-161.
Related U.S. Patent Documents * cited by examiner
Reissue of:
(64) Patent No.: 5,675,645 Primary Examiner—Matthew Smithers
Issued: Oct. 7, 1997 (74) Attorney, Agent, or Firm—Blakely, Sokoloil, Taylor &
Appl. No.: 08/423,402 7 ofman [T P
Filed: Apr. 18, 1995
(37) ABSTRACT
(51) Int.CL
HO4L 9/00 (2006.01) A secure system for executing program code 1n an insecure
environment while making 1t impossible, or at least
(52) US.CL ..., 713/187; 713/190; 705/57 impractical, to determine how to copy the program code and
(58) Field of Classification Search 713/187, associated data 1s provided. A program memory contains
713/190, 193: 380/201: 705/51, 56, 59, 57 encrypted program data and security circuitry contained
See application file for complete search history. within an integrated circuit 1s provided for decrypting the
program data as 1t 1s needed by a processor. A portion of the
(56) References Cited processing steps which would be done by the processor 1n an
isecure system 1s performed in this secure system within
U.s. PAIENT DOCUMENTS the secure circuitry using portions of the decrypted program
4168396 A * 9/1979 BESt worvrerrererrerereerennn. 713/190 data which are not provided to the processor. Program data 1s
4433207 A * 2/1984 BeSt weueiiiieieeeeerinnnnn, 713/190 parsed 1t out based on a proper request to the security chip
4465901 A * 8/1984 Best ..ccooveveieereriiennnnne, 713/190 from the processor. A key value stored 1n volatile memory is
4,558,176 A * 12/1985 Amoldetal. 713/190 used 1n the decryp‘[ing Process and the volatile memory 1S
4,562,305 A % 121985 Gallneycocoeinnnenn, 713/190 positioned on the itegrated circuit such that its contents are
4,905,277 A * 2/1990 Nakamura 713/190 lost before a chip peel provides access to the volatile
5,379,342 A * 1/1995 Arno.ld etal. 380/2 memory.
5,504,816 A * 4/1996 Hamilton et al. 380/217
5,533,051 A * 7/1996 Jamesceeviviininennn. 375/240
5,544,244 A * §/1996 Oguraccooevvvnennnen. 713/190 93 Claims, 8 Drawing Sheets

f 100

GAME FROGRAM

BRANCH SEFPARATOR

102

120

CHECKSUM
TAELE DATA

X 1 _I
104
COMPRESSOR
32
a
108

110
KEY ENCRYPTOR Encrypted

ROM

US RE40,405 E

Sheet 1 of 8

Jun. 24, 2008

U.S. Patent

8l
E

S{00] JOJJUOD

pue sisAjeuy

|, ainbi4

dvli Sndg

1S3NO3Y

A4

diyn
Ajunoeg

VivQ

¢l

Z ainbi 4

US RE40,405 E

SI1avL 3LVARd A20TD
SNIL

= ol vay

74

m Sdvl SNy
-
~ 3SNOJS3d HONVYE (ND) LINN TYNOILY.LNAWOD
m 1S3NDIH HONYYE
7 P,
/1S3NO3Y V1vQ
0t rd
oo _
m LN v1va N3aaH
. pL SNG SNd ¥3LNOY HOLJANOIG
X TWNY3IX3 OL v.va WOX
m HVv3aT10 oy 80 79
g (A

1S3N03Y TJOHLNOD FHOVO/BLVISNYRL
SS300V NOY

U.S. Patent

09

JHOVO

b5

viva

yAAay

Ol

U.S. Patent Jun. 24, 2008 Sheet 3 of 8 US RE40,405 E

100

GAME PROGRAM

112 f

102
BRANCH SEPARATOR

SECURE
PROGRAM

BRANCH

TIMING
DATA

COMPRESSOR
110
ENCRYPTOR Encrypted
KEY S OM

Figure 3

U.S. Patent Jun. 24, 2008 Sheet 4 of 8 US RE40,405 E

Security Chip Processor
!
.
|
i O
l
l
| Request Page of | S1
Instructions/Data
52 |
s Request _N l S3
Proper?
Y

S4
Extract Page from ROM

)
—-'_'___—m_———__

Place Hidden Data in Private Tables

S6

Retum Page in Clear o

S7
Get Next Instruction

o8

Y
Is it a Branch?

S11% N

R e G iy bl S AN R hEgsk BARRERE R Al (Pl

FPass Branch

Request to
Security Chip

Figure 4A

U.S. Patent Jun. 24, 2008 Sheet 5 of 8 US RE40,405 E

Processor
S

9

Security Chip

Execute Instruction

--—_—_“—_—___—-"—_——l_-——_——ﬂ

Is Request
Proper?

N S13

S14
Calculate Branch Address

915

Pass Next Address to Processor
S16

Go to New Address

*___‘______-——

Figure 4B

U.S. Patent Jun. 24, 2008 Sheet 6 of 8 US RE40,405 E

TIME INPUT FROM
REAL-TIME CLOCK 76

CONTROL |316 500

/

ERROR
SIGNAL

006
s02 °10

CHECKSUM

PASSWORD
TIMING STACK MUX CONTROL

ADDRESS 2 | ADDRESS

-lr. N
e

NEXT 1

MUX

_wneaz || |
INITIAL VALUE ..l-

'l-l
STACK |22

PENDING (NEXT BRANCH INDEX)

Figure 5

U.S. Patent

Compressed
Data Stream

Jun. 24, 2008 Sheet 7 of 8

602

Pseudo-

Random { gos
Number

Generator
{PRNG)

Key Value

106

608A

6088

Buffer

608C

Buffer

Figure 6

604

Mux

Select

US RE40,405 E

SCRAMBLED
OUTPUT

U.S. Patent Jun. 24, 2008 Sheet 8 of 8 US RE40,405 E

712 716 700
Key Loac KEY POWER 2
CLOCK SOURCE
Key In 706 702

Key Shift Register

714

Init/Run MLS
CLOCK
708

MAXIMAL LENGTH SEQUENCE (MLS)
SHIFT REGISTER

Figure 7/

US RE40,405 E

1

METHOD AND APPARATUS FOR SECURING
EXECUTABLE PROGRAMS AGAINST
COPYING

Matter enclosed in heavy brackets [] appears in the
original patent but forms no part of this reissue specifica-
tion; matter printed in italics indicates the additions
made by reissue.

BACKGROUND OF THE INVENTION

The present invention relates to the field of securing
executable programs against copying. More specifically, 1n
one embodiment the mnvention provides security against
copying in an open hardware system where access to the
processor executing the program and the memory holding
the program 1s assumed.

Securing computer programs (software) against unautho-
rized copying has been a concern of software developers
since soltware was sold as a separate product. The difficulty
lies 1n the fact that software 1s easily copied and any copy
protection or prevention scheme must allow for the eventual
copying ol portions of the software 11 it 1s to be executed.
Unless the software 1s secured in a chip (integrated circuit)
which also contains the microprocessor which will execute
the software, the executed portions of the software must pass
from the distribution media to the processor along circuit
lines which are monitorable. Thus, for a program to be
secure and still be usetul to 1ts mtended user, the program
cannot be readily copyable in 1ts generally available form or
in the form 1n which it 1s executed by the intended user.

Recently, with the increasing need for technical support
from a program’s developer, the desire for complete
documentation, and the fear of viruses, unauthorized copy-
ing of some software, especially critical business soitware,
has diminished. However, where software needs no support
or documentation and 1s used on systems where viruses can-
not be transmitted, such as video game systems using video
game cartridges with game software stored in read-only
memory (ROM), unauthorized copying 1s still prevalent. All
that 1s needed 1s an understanding of the circuitry used 1n the
game cartridge and a copy of the game program.

An additional concern of the makers of video games, who
typically make video game consoles and wish to limit their
use to games produced by licensed software producers, 1s
not software copying, but video game console copying to
produce consoles which will execute authorized game car-
tridges or unauthorized, but compatible, game cartridges.

In an unprotected system, a copyist (1.e., a “software
pirate” or other unauthorized analyzer or copier of the
soltware) can easily copy program code 1f 1t 1s accessible.
Program data, as used herein refers to the data necessary to
run the program, which includes instructions (program
code), tables of values and 1mage data used to generate
screen 1mages. Even 1f the program data 1s not easily acces-
sible 1n its distributed form, a copyist might obtain i1t by
observing a bus between the storage media which holds the
program data and the processor to determine the program
code. Thus, encryption of the program data alone does not
provide real protection, since it must be decoded eventually
to be used. Where the program data 1s stored on video game
cartridges and the processor 1s on a video game console,
analyzing the program data 1s simplified, since the interface
between the storage media and the processor 1s readily avail-
able without any hidden communication. In many video
game consoles, the entire bus of the CPU 1s readily available
for analysis. This particular problem, of course, extends to

10

15

20

25

30

35

40

45

50

55

60

65

2

all forms of program storage media which are detachable,
not just video game cartridges.

Many copy protection systems are a deterrent to casual
copyists, but not to determined copyists, who might be will-
ing to spend large sums of money and time to break a copy
protection scheme in order to be able to manufacture large
numbers of unauthorized copies of a program. For some
casual copyists, 1t 1s enough to include software-only copy
protection, such as the use of secret files or codes not nor-
mally accessed or observed by a casual copyist. Many casual
copyists will also forgo copying when copying imnvolves con-
struction of cartridges, since this requires the ability to make
plastic cases and circuit boards. However, the most deter-
mined copyists of cartridges are those who plan to make
large numbers of cartridges for sale and thus have the ability
to make cartridges once the program data 1s copied.

Software-only copy protection systems, which might use
an undocumented portion of the program data media to store
hidden codes, generally rely on “security through obscurity™
to prevent only those who are not aware of the copy methods
from making workable copies. Therefore, when the goal 1s to
stop large-scale and educated copyists, software-only pro-
tection 1s not viable. Fortunately, where the program data 1s
distributed on media containing hardware elements, as 1s the
case with video game cartridges, hardware copy protection
can be included on the cartridge.

Many hardware protection systems rely on the presence of
a hardware circuit or device which signals the existence of
an authorized copy of the program. The program, when
executed, runs a routine to check for the existence of the
authorization device. If the authorization device 1s not
present, the program refuses to continue or performs some
other undesirable action. These protection systems are open
to two methods of attack, both of which could render the
protection ineflective.

In a first type of attack, a copyist would analyze the cir-
cuitry of the hardware authorization device to determine 1ts
essential elements and from that information make
duplicate, unauthorized authorization devices. Even 1f the
details of the authorization device are buried 1n a custom
integrated circuit, the mtegrated circuit could be examined
under a microscope layer-by-layer using a chemical peeling
process to resolve the circuit features. The operation of the
authorization device might also be observed by slowing
down or speeding up both the authorization device circuitry
and the processor to aid in the detailed analysis of one opera-
tion or the high-speed analysis of many passes over the pro-
gram.

In a second type of attack, the copyist attempts to modily
the software routines which check for the exists of the autho-
rization device so that the routines always report back that
the authorization device 1s 1n place, whether or not 1t actually
1s. With a readily-available logic analyzer attached to a
mICroprocessor running a program, a copyist can run the
processor at a slow speed and have the logic analyzer record
all 1nstructions executed by the microprocessor and all the
data traffic to and from the microprocessor, then use this
information to determine the flow of the program. I1 the flow
of the program 1s recorded both with the authorization
device 1 place (simulating an authorized use) and without
the authorization device 1n place (simulating an unautho-
rized use), the copyist can compare the flows and determine
where 1n the program the decision 1s made as to whether the
authorization device 1s in place. Once that location 1s
determined, the software at that location could be modified
so that the routine which tests for the presence of the autho-

US RE40,405 E

3

rization device never fails. This can often be done by replac-
ing one conditional jump instruction with an unconditional
mump or a NOP (null operation).

Therefore, what 1s needed 1s an apparatus which allows a
processor to execute program code, over a possibly msecure
bus, while requiring an 1mpractical amount of work on the
part of a copyist to reproduce the program data for use apart
from the apparatus or to reproduce the apparatus.

SUMMARY OF THE INVENTION

The present invention provides a secure system for
executing program code 1n an insecure environment while
making 1t impractical to determine how to copy the program
code or associated data. In one embodiment of a secure sys-
tem according to the present invention, a program memory
contains encrypted program data (program instructions, data
tables, digitized images, etc.) and security circuitry con-
tained within an 1ntegrated circuit i1s provided for extracting,
the program data as 1t 1s needed by a processor. In various
embodiments, the processor 1s a central processing unit
(CPU), a video pixel processor or other low-level CPU
requiring program data. A portion of the processing steps
which would be done by the processor 1n an insecure system
1s performed 1n this secure system within the secure circuitry
using portions of the decrypted program data which are not
provided to the processor. Program data 1s parsed based on a
proper request to the security chip from the processor. The
security chip tracks which sections of the program memory
are proper for the processor to be requesting based which
program code 1 being executed. The security circuitry
includes a key register in which a key value, needed to
decrypt the program code, 1s stored. For security, a different
key value can be used for each different program.

Where a risk of chip peeling exists, the key might be
stored 1n volatile memory powered by a battery or stored as
charge on capacitor, positioned and/or distributed on the
security chip surtace such that a chip peel breaks the source
of power to the volatile memory well before the volatile
memory can be reached.

In a specific embodiment, the security chip extracts the
branch statements from the program instructions and stores
them 1n an internal branch table after decryption and before
providing the instructions to the processor. In a preferred
embodiment, the branch statements are separated before
being encrypted and stored 1n the program memory. Because
the possible flows of the program are known from the branch
table, the branch table only need contain a listing of the
branches which are imminent, thereby saving memory.

In various embodiments, the encryption 1s complex con-
ventional encryption while 1n others, to save hardware, 1s
simpler encryption such as XOR’1ing with the output of a
pseudorandom number generator (PRNG). A number of
additional security measures can be applied where needed.
For example, if the security chip 1s positioned to read the
processor bus, a tap of the processor bus can be provided so
that the security chip can monitor all instruction fetches and
data fetches from memory. For example, since the security
chip provides all the branch information, the program flow
between branches 1s linear and deterministic. Thus, the secu-
rity module could perform a checksum on all the bus activity
between branches, compare 1t to a precompiled checksum
and refuse to provide more branch information if the check-
sums do not match, as would be the case it the instructions
provided to the processor had been modified in some way.

The security chip could also 1include a real-time clock, RC
(resistor-capacitor) time constant circuit, or other dynamic

10

15

20

25

30

35

40

45

50

55

60

65

4

logic circuit to confirm that the processor 1s executing
instructions at an expected rate. This prevents a processor
from being accelerated to speed up the process of running
the program through all the possibilities needed to build an
unauthorized branch table or from being slowed to perform
hardware analysis.

Furthermore, because the security chip maintains the
branch table, 1t can calculate what the next branch 1s, so that
the processor only need provide the values neetled to evalu-
ate whether to take a conditional branch. In order to handle
return 1nstructions, the security chip also maintains the pro-
gram stack for the processor. This security feature prevents
the processor from requesting unexpected branch informa-
tion.

To make a chosen text attack on the encrypted program
data more difficult, the program data could be compressed
first to remove patterns in the data.

The encryption and decryption could be done as conven-
tional encryption/decryption. However, where low hardware
cost 1s a priority, the encryptor could be just a data scrambler
which rearranges the order of the bits or bytes of the pro-
gram data according to the output of a PRNG. The data
decryptor 1s then just a series of bullers, a multiplexer and a
demultiplexer. Where the security chip includes
decompression, the buflers might already exist in the
decompressor. If the scrambler 1s used in addition to other
encryption, a chosen text attack 1s made more difficult, since
the position of any word or bit 1n the data cannot be inferred.
The PRNG 1s seeded by the key value or some agreed upon
value dependent on the key. Because the file 1s compressed,
less robust encryption can be used. To further defend against
analyses 1n which many different sections of the encrypted
program data are compared with the corresponding
decrypted data to determine the key value, a secondary key
value which varies from section to section could be used.
The secondary key value could be a value generated from
data stored with the program data and the main key value.
Alternatively, a table of secondary keys could be stored with
the program data or in the security chip, with the main key
value used to select keys from the table.

In some applications, it 1s also desirable to prevent the
operation of an authorized game cartridge on an unautho-
rized game console. For these applications, the game con-
sole 1s provided with a difficult to copy element and the
security chip on the game cartridge requires this element to
be present before operating.

A Turther understanding of the nature and advantages of
the mventions herein may be realized by reference to the
remaining portions of the specification and the attached
drawings.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 1s a block diagram of a computer system according,
to the present invention wherein program data resides on a
cartridge connected to a processor over a plug-in bus includ-
ing a security chip on the cartridge;

FIG. 2 1s a more detailed block diagram of the security
chip;

FIG. 3 1s a block diagram of a system used to encrypt
programs onto encrypted memories which are used in the
cartridges;

FIGS. 4A and 4B together show a flow chart of an execu-
tion of a program by the processor;

FIG. 5 1s a block diagram of a branch unat;
FIG. 6 1s a block diagram of a dam stream scrambler; and

US RE40,405 E

S

FIG. 7 1s a block diagram of a pseudorandom number
generator.

DESCRIPTION OF THE PR
EMBODIMENTS

L1
M

ERRED

FIG. 1 shows a common application for the present
invention, namely video games. It should be apparent after
reading this disclosure that the mvention 1s not limited to
video games or programs stored on cartridges. In FIG. 1, a
game console 10 1s shown with a game cartridge 12 about to
be mated to game console 10 via a bus 14. We assume herein
that a copyist 1s able to read the game program and game
data as 1t 1s stored 1n game cartridge 12 and 1s also knows
everything that goes on 1n game console 10. According to the
preferred practice i the design of security devices, we also
assume that the copyist knows all the derails of any security
circuits and algorithms except for any keys or passwords.
Because the primary goal of the system 1s to allow a legiti-
mate user to run the program, it 1s impossible to prevent the
copyist from determining the outcome and flow of the pro-
gram by running it with a given set of iput data. Thus, the
goal of the security of this system is to require that the pro-
gram actually be run, at normal speed, and limit the amount
of information about the program which can be inferred
from one execution of the program with one mmput data set.
The impracticality of determining the actual program code
and data 1s based on the fact that the number of mnput data
sets which would have to be run against the system 1s so high
that the time needed to perform such an analysis 1s greater
than, or comparable to, the time span 1n which the bulk of the
legitimate sales of the program are made.

Game console 10 1s shown with a processor 20, local
memory 22, an output interface to a video display 16, an
input interface from put devices 18, and a circuit clock 24.
Game console 10 might include other elements not shown.
The mput devices 18 are shown generically, since they are
not the subject of the present invention, but might include
keyboards, joysticks, touch pads or sensor arrays. Video dis-
play 16 1s typically a pixelated display (e.g., a raster
monitor) which displays a two-dimensional array of pixels
colored as indicated by processor 20 or an itermediate
video memory (not shown). Local memory 22 stores vari-
ables used 1n the execution of the program as well as a cur-
rent page ol instructions of the program. Local memory 22
need not store the entire program at once, since the program
can be paged 1nto local memory 22 as needed. As should be
apparent from this description, the security system 1s
described with reference to processor 20, the CPU of game
system, however the present invention might also be used
with a video processor, 1mage processor or other processor
present 1n the system.

Game cartridge 12 1s shown with a security chip 30 and a

ROM 32. Other forms of storage can be substituted for ROM
32, such as CD-ROM (compact disk ROM), diskette, flash
memory, or even remote programs accessed via a network.
ROM 32 contains the game program in an encrypted form.
The game program so stored comprises program executable
cede, data tables, graphic 1images and other related objects
which are necessary or related to the operation of the game
embodied by the cartridge. In a preferred embodiment, secu-
rity chip 30 1s a single integrated circuit with no secure data
streams flowing on externally accessible pins.

The present mvention cannot protect against all attacks.
For example, 11 a copyist obtains the game program 1n 1ts
unencrypted form from an unscrupulous employee of the
game maker, the present invention will not prevent the copy-

10

15

20

25

30

35

40

45

50

55

60

65

6

1st from distributing the game in that form. It 1s assumed here
that the unauthorized copyist only has access to a game con-
sole and a number of game cartridges. With this limited
access, the copyist will attempt to analyze the operation of
the console and cartridges using various analysis and control
tools shown as tools 40 1n FIG. 1. An analysis tool records
signals, while a control tool changes the signals, often while
an analysis tool 1s recording signals. Such tools include
microprocessor trace analyzers, waveform generators,
oscilloscopes, etc. FIG. 1 shows various places within the
game console 10 and game cartridge 12 the copyist could tap
to analyze and control signals. Significantly, the copyist can-
not tap onto internal lines of security chip 30 without chemi-
cally peeling the security chip and working on a microscopic
level.

A tap 41 to circuit clock 24 might be used to slow down
the processing speed of game console 10 to more easily
analyze 1ts operation, or used to speed up circuit clock 24 to
more quickly execute many instructions to test different
variations ol the program. To render this tap ineffective,
security chip 30 might also maintain a clock whose speed 1s
determined internal to security chip 30 and refuse to decrypt
program data from ROM 32 if circuit clock 24 does not run
at the correct speed.

A tap 42 to ROM 32 provides the copyist with the con-
tents of ROM 32, but these contents are not useful without
the decryption provided by security chip 30. A tap 44 on the
data traflic on bus 14 or a tap 43 on the data trailic between
processor 20 and local memory 22 might provide decrypted
program information, but would only provide the 1instance of
the program sequence which applies to one execution of the
game 1nstead of a sequence which 1s usable for different sets
of input. Furthermore, that information does not include
branching instructions, as those are not sent to the processor,
but are executed 1n security chip 30.

The same 1s true for a tap 45 on the video display. While
tap 45 might be able to record all the video signals, they
would only correspond to one particular playing of the
game. For example, 11 a game level containing unique graph-
ics 1s never reached, the graphics at that game level will

never be sent to video display 16 and therefore cannot be
obtained by tap 45.

A determined copyist might use a tap 46 on the signals
between 1nput devices 18 and processor 20 to 1nsert signals
simulating different outcomes and events 1n the game. With
enough different paths, a copyist might be able to determine
all the possibilities and work backwards to reconstruct the
game program, but because the speed of the processor can-
not be increased and due to the sheer number of possibilities,
the copyist 1s not likely to be able to do this between the time
a game 1s released to the public and the game sells enough
copies to diffuse the copyist’s potential market.

Thus, even with all these taps, a copyist having access to
only game console 10 and game cartridge 12 cannot make a
tull, usable copy of the game program. A determined copyist
might tap into the internals of security chip 30 itself, which
would require careful removal of the casing of the security
chip and a layer-by-layer analysis of security chip 30.
However, even knowing the entire internal circuitry of secu-
rity chip 30, the copyist will not obtain the volatile settings
of the key needed for decryption of ROM 32, since the
memory holding the key 1s designed to lose power as layers
are removed. If the memory 1s many layers below the layers
required for power, the memory will be erased before its
layer 1s available for analysis. In order to defeat security chip
30, the copyist must be able to analyze the contents of ROM

US RE40,405 E

7

32 and the output of the security chip to derive the key. In
addition to the key being different for each different game
(not necessarily each game cartridge containing that game),
security chip 30 contains other features which make the
cracking of the encryption without access to the internals of
security chip 30 more difficult.

FI1G. 2 shows security chip 30 1n more detail, including a
bus unit 50 which couples security chip 30 to bus 14 and
passes requests for program data to a translator 52. Transla-
tor 52 converts the addles of the access request into an
address location, or range of locations, n ROM 32. This
address 1s sent over an address bus 54 to ROM 32, which
returns the data on data bus 56. Alternatively, some locations
of ROM 32 might be cached 1n cache 60, in which case
translator 52 routes address information to cache 60, which
in turn supplies the cached data.

Both sources of data are coupled to an input of a decryptor
62, which decrypts the data from ROM 32 using a key value
supplied from a key register 64. As explained below, differ-
ent configurations for decryptor 62 are possible depending
on the degree of security needed. Since the decryptor 62 1s
constrained to be, more or less, the inverse of the an encryp-
tor used to encrypt the program data, the different configura-
tions are discussed below 1n connection with the encryptor.

The output of decryptor 62 feeds to the mput of a decom-
pressor 68, which 1s optional. Decompressor 68 1n turn
passes the data to a router 70. Router 70 includes an output
tor clear ROM data and an output for hidden data. The clear
ROM data 1s unencrypted program code and data objects,
but without branch information. The hidden data contains
the branch information as well as other variables, such as
checksums and expected execution times.

The hidden data output 1s coupled to an 1input of a compu-
tational unit 72, which handles the overall control of security
chip 30. Computational unit 72 also includes a port for read-
ing from, and writing to, private tables 74, an input for read-
ing from a real-time clock 76, an input for receiving branch
requests from bus unit 50, an output for branch responses
coupled to bus unit 50, an input from bus unit 50 for bus taps
which provide information about activity occurring over a
processor bus or bus 14, and a port for recerving and
responding to queries from bus unit 50 about the proprietary
of requests for program data. The detailed operation of secu-
rity chip 30 1s described below 1n connection with FIG. 4.

FIG. 3 15 a block diagram of a system 100 used to encrypt
a game program 112 onto an encrypted ROM 32 to be used
in game cartridge 12. System 100 includes storage for game
program 112 coupled to a branch separator 102 which out-
puts a secure program 114, a branch table 116, a file of
checksum data 118 and a file of timing data 120. Storage 1s
provided for these output data sets and that storage 1s
coupled to a compressor 104, which 1s optional but pre-
terred. The output of compressor 104 1s coupled to an 1put
of an encryptor 108, which also has an input for recerving a
key value from a key register 110. The output of encryptor

108 forms the contents of ROM 32.

As explained above, game program 112 comprises pro-
gram executable code, data tables, graphic images and other
related objects. A short example of program executable
code, usetul for explanation purposes only, 1s shown 1n Table
1. The program represented in Table 1 1s a “clear” program
in that all the information needed to run this program for any
possible input 1s apparent from the program alone. Indeed, it
should be apparent from Table 1 that the program does noth-
ing more than move the first ten entries of the array al | into

5

10

15

20

25

30

35

40

45

50

55

60

65

8

the corresponding locations in b|]| for any possible input
values (e.g., the values in a| |).

TABL.

1

(1]

Clear Program

Line # Instruction
0 1=0
1 1f (1 >=10) then goto 7
2 call 5
3 1=1+1
4 goto 1
5 mov ali], b|i]
6 return
7 return
TABLE 2
Secure Program
Address Line # Instruction
0 0 1=0
1 1 mov 1, br_req_ arg|1]
2 br_reqO
3 5 mov ali], b|1]
4 6 or_req 1
S 2 or__req 2
6 7 or__req 3
7 3 1=1+1
8 4 br_req4
TABLE 3

Branch Table (Hidden Data)

True
BR # Type Argument(s) Address Address
0 Cond’l arg[1] > 10 6 5
1 Return — — —
2 Call — 3 —
3 Return — — —
4 Goto — 1 —

In generating the secure program, the order of the instruc-
tions could have been retained, so that the line numbers are
in sequential order. However, 1f they were in order, the
analysis of the addresses being passed to security chip 30
would indicate where jumps are being taken and not taken.
For example, it the line numbers were in order 1n the secure
program of Table 2, a request for jump address a, followed
by a request for jump address n+1 would indicate that the
jump associated with address n was not taken (otherwise a
jump address other than n+1 would be the next jump
address). To prevent this kind of analysis, the order of the
lines 1n the secure program are scrambled. Since a true and
false address 1s stored for each conditional jump, the code
following a jump not taken does not need to sequentially
tollow the jump.

Appendices A, B and C are listings of longer examples of
a clear program, its corresponding secure program and
branch table, respectively. Appendix D 1s a listing of a pro-
gram used 1n a software implementation of branch separator
102 (FIG. 3). That program 1s written 1n the “awk” language
which 1s commonly available on computers running the
Unix operating system. As should be apparent, the program
in Appendix B cannot be executed without the occasional
reference to the branch table of Appendix C.

US RE40,405 E

9

In some embodiments, branch separator 102 also calcu-
lates a checksum {for the several instructions executed
between each reference to the branch table. Since these sev-
eral 1nstructions do not contain any branches, they must be
executed 1n the same order every time, and their checksum 1s
casy to calculate. These checksums are stored as checksum
data 118. Similarly, 1n some embodiments, the execution
time for the several instructions can be calculated and stored
as timing data 120.

If more security against analysis 1s needed, instead of hav-
ing the branches performed by security chup 30, security
chip 30 could generate interrupts to implement taken
branches. If this 1s done, a copyist would not detect branches

not taken.

After secure program 114, branch table 116, checksum
data 118 and timing data 120 are generated, if used, this
information 1s compressed by compressor 104. In one
embodiment, compressor 104 1s the entropy coder shown 1n
U.S. Pat. No. 5,381,145, 1ssued to Allen, Boliek, and
Schwartz, and entitled “Method and Apparatus for Parallel
Encoding and Decoding of Data.” Compression 1s used not
only to allow more data to be stored 1n a fixed sized ROM,
but 1s used to remove any patterns which might be present in
the data, thereby making decryption without the key more

diftficult.

Encryptor 108 can take several forms. Where security 1s
more of a priority than keeping the hardware cost low,
encryptor 108 could be a Data Encryption Standard (DES)
encryptor, triple-DES, or a more secure encryption system as
1s known 1n the art of data security. Various embodiments of
encryptor 108 can be used, depending on the laws of the
country in which the game i1s sold and the country of its
intended use, as well as a balancing of security needs and
computational limitations. Where security of the encryption
process 1s less ol a priority than keeping hardware costs
down, several simple encryption circuits might be used. In
one embodiment, encryption 1s merely the process of exclu-
stve “OR”1ing (XOR) the clear data with a stream of output
bits from a pseudorandom number generator (PRNG). In
another embodiment, the order of the clear data 1s reordered
based on the output of the PRNG. With an incremental addi-
tion to the hardware cost, both of these methods could be
used together.

The simple encryption i1s low-cost, since a PRNG can be
casily build out of a few gates. See, for example, FIG. 7 for a
PRNG constructed from a shift register. FIG. 6 shows a
detailed diagram of the internal structure of for a data scram-
bler 106. Data scrambler 106 uses a number of bufters, but
the incremental cost of these butlers 1s zero where the buil-
ers already exist as part of compressor 104.

In another low-cost variation, the encryption 1s combined
with the compression. In this vanation, the compression 1s
entropy compression, which uses tables of probability esti-
mates to determine optimal codes to use. Since memory for
these table 1s needed for compression anyway, using them
for encryption adds no extra hardware. They are used for
encryption by seeding them, iitially or during the compres-
s10n process, according to the key value or numbers based on
the key value. An added benefit of this encryption scheme 1s
that 1t prevents a known plaintext attack on the encryption
process since the compression process does not necessarily
remove patterns in the data being compressed until the prob-
ability tables have had a chance to build up. With the key
value providing the initialization for the probability tables,
the compression process cannot as easily be analyzed.

After being encrypted and possibly compressed, the out-
put of encryptor 108 1s stored in the encrypted ROM 32. The

10

15

20

25

30

35

40

45

50

55

60

65

10

operation of game console 10 and game cartridge 12 using
encrypted ROM 32 will now be described, with reference to
FIGS. 1-4. FIG. 4 comprises FIG. 4A and 4B, and together
they show the steps taken by processor 20 and security chip
30 to execute a portion of the game program in a secure
manner, beginning with a request for a page ol instructions

and/or data (Step S1).

For ease ol implementation, the program data could be
arranged 1n separately compressed data sets, with processor
20 requesting a page by speciiying a pointer to a compressed
data set, or just a selection of one page from a limited set of
pages based on the last decoded page. For more security,
cach data set could be i1dentified by a random ID associated

with 1t at the time the program 1s encrypted.

The request for a page 1s passed over bus 14 to bus unit 50,
which 1n turn queries computational umt 72 as to whether
the request was proper (Step S2). Since computational unit
72 maintains the branch table, it can easily determine which
instructions should and should not be requested by processor
20. This feature prevents a copyist from controlling the pro-
cessor 20 such that 1t requests each and every block of the
program 1n a known order so that the copyist can assemble
the entire program in the clear. If the request was not proper,
computational unit 72 halts processor 20 (Step S3).
Alternatively, computational unit 72 could cause some other
elfect, such as the erasure of the key value, erasure of ROM
32, cause the slow degradation of the data over time, or other
steps to frustrate further analysis. In some embodiments,
computational umt 72 responds to a detected attack by alter-
ing the flow of the game such that 1f the copyist succeeds 1n
deducing the flow of the game program, the deduced flow
will be limited. For example, computational unit 72 could
limit the program flow to just the first several levels of the
game.

If the request 1s proper, the page 1s extracted from ROM
32 (S4). To do this, the request 1s processed by bus unit 50
and sent to translator 52. Translator 52 1s not necessary
where the addresses used by the processor are the same the
addresses used to access ROM 32. As Tables 1-2 indicate,
the addresses do not always correspond. The addresses also
will need translation 11 the encryption alters the addresses for
the data. Once the address of ROM 32 at which the requested
page 1s stored 1s determined, that address 1s output on bus 34
to either ROM 32 or cache 60. In either case, the requested
data 1s nput to decryptor 62. The returned data might be
program instructions or data objects. If the data 1s program
istructions, corresponding entries of the branch table are
included with the data, along with the checksum and timing
information, 1f used.

Decryptor 62 uses the key value from key register 64 to
decrypt to data. Decryptor 62 1s the inverse of encryptor 108,
and the key value 1s either equal to, or the iverse of, the key
value stored 1n key register 110, depending on the type of
encryption used. The decrypted data 1s then decompressed
by decompressor 68. The effect of these elements 1s to repro-
duce sections of the data in data blocks 114, 116, 118 and
120 shown in FIG. 3. This data 1s then separated into the
secure program (dear ROM data) which 1s passed back to
processor 20 via bus unit 50 and hidden data (branch table,
checksums, timing data) which 1s passed to computational
umt 72. Computational unit 72 stores this data in private
tables 74 (53). Bus unit 30 passes the secure program page in
the clear to processor 20 (56). As explained above, the
secure program page alone would not allow the copyist to
duplicate the operation of the game program.

Once processor 20 has a page of program data, 1t executes
the next instruction in that page (S7). Belore executing the

US RE40,405 E

11

instruction, processor 20 checks the instruction to see if it 1s
a branch instruction (S8). If it 1s not a branch instruction,
processor 20 executes the instruction (S9) and checks for
turther instructions 1n the page (S10). If more instructions
are present, processor 20 gets the next mstruction (looping

back to step S7), otherwise processor 20 requests the next
page from ROM 32 (looping back to step S1).

On the other hand, if the instruction 1s a branch
istruction, which processor 20 does not process, a branch
request 1s passed to security chip 30 (5S11). If the branch
request 1s not proper, as determined 1n step S12, computa-
tional unit 72 halts processor 20 (S13). For a request to be
proper, 1t must be expected, must occur at the time expected,
and the bus checksum must be correct. The response from
security chip 30 to a proper branch request 1s the address to
which processor 20 should branch. Of course, for condi-
tional branches, processor 20 will need to pass one or more
arguments to security chip 30, which will calculate which of
a true address and a false address to return (S14). Security
chip 30 then passes the address back to processor 20 (S15),
the processor jumps to that address (S16) and gets the
instruction at that address (looping back to step S7). In this
way, an address 1s provided for a branch without processor
20 ever being told what kind of branch 1t 1s or what all the
possible branch addresses are.

Computational unit 72 1s used both to process branch
requests and to evaluate whether a request for a branch 1s
proper. To do this, 1t uses a private branch table, which 1s
stored as part of private tables 74. This branch table need not
store all the branches, but just those which are upcoming.

For each branch entry in the branch table, the following
fields are maintained:

TYPE - the type of branch, selected from:
1) unconditional jump

2) conditional jump

3) subroutine call

4) subroutine return.

CONDITION - Only used with conditional jumps; 1ndi-
cates the condition tested.

ADDRESS 1 - For unconditional jumps and conditional
jumps with a true condition, this address 1s the address to
Tump to; for calls, it 1s the called address; and for returns, it 1s
not used.

ADDRESS 2 - Not used for unconditional jumps. For a
conditional jump with a false condition, this 1s the address to
jump to; for calls this 1s the return address, which 1s saved on
a stack. This 1s not used for returns.

In some embodiments, processor 20 does not specity, and
1s never told, the index mto the branch table for an upcoming
branch. In those embodiments, the branch table tracks which
branch index should follow the current branch. Of course,
the next branch depends on which branch 1s taken, so that
information 1s stored in the following two fields in those
embodiments:

NEXT BRANCH 1 - Indicates the index of the branch 1n
the program code which 1s the first branch 1n the code after
ADDRESS 1.

NEXT BRANCH 2 - Indicates the index of the branch 1n
the program code which 1s the first branch 1n the code after
ADDRESS 2.

CHECKSUM - The expected checksum for all the pro-
gram code preceding the branch.

EXECUTION TIME - The expected execution time from
the previous branch to the next branch.

10

15

20

25

30

35

40

45

50

55

60

65

12

PASSWORD - The password required to execute the cur-
rent branch.

The TYPE field indicates the type of branch and,
consequently, which other fields are used. If example, an
entry for an unconditional branch (e.g., “goto 5”) need not
include a condition or a false condition address. Of course,
in some systems other branches are possible, such as condi-
tional calls and conditional returns. In some high-security
systems, NOP branches might also be included 1n the secure
program.

The CONDITION field might be expressed as an operand
and a constant, for comparisons of a variable against the
constant (e.g., “branch if (1>=10)") or just an operand for
variable-to-variable comparisons (e.g., “branch 1f (x<y)”).
Where variables are needed for the comparison, they are
passed by processor 20 to security chip 30 as part of the
branch request. Processor 20 need not be informed of which
condition 1s being applied, just how many and which vari-
ables to pass as arguments. In one embodiment, the TYPE
field indicates which type of condition field 1s used and a
VALUE field indicates the constant value where one 1s used.

The ADDRESS 1 and ADDRESS 2 fields supply the next
address for the currently requested branch. For conditional
branches, ADDRESS 1 1s supplied if the condition 1s true,
otherwise ADDRESS 2 is supplied. For unconditional
branches, ADDRESS 2 1s not used. For calls, ADDRESS 1 1s
the called address and 1s supplied to processor 20, while
ADDRESS 2 i1s the address of the instruction following the
call (1.e., the return address). That ADDRESS 2 value 1s
placed on a stack for later use with the corresponding return
branch. For a return, neither address field 1s used; the return
address comes from the stack.

L B

Table 2 shows a secure program intended to be run by a
processor such as processor 20. When the processor reaches
a branch request (which replaces a branch in the clear
program), the processor makes a branch request and passes
to the security chip the index of the branch request with the
arguments necessary for the evaluation of a condition. For
example, at address 4 1n Table 2, a branch request 1s made for
a specific branch index. The nstruction “br_req 17 signals
that entry 1 1s the branch table 1s to be used. However, for
some determined copyists, the index of the branch request
might be used to extract branch information. For example,
by tracing enough “br__req 17" mstructions, the copyist could
determine that 1t 1s equivalent to a return instruction. In turn,
cach of the indexed branch requests can be analyzed to deter-
mine the type and condition for each branch.

To make this sort of analysis more difficult, the indices 1n
instructions can be eliminated. Thus, instead of the instruc-
tions “br_req 17 and “br_req 2”7 being available to the
processor, both of these are known only as “br__req”. The
indexing information 1s stored 1n the fields NEXT BRANCH
1 and NEX'T BRANCH 2. Since all branches are controlled
by computational unit 72, the branch request following the
address of the current branch 1s known and thus 1s easily

stored. The NEXT BRANCH 1 field contains the index of
the next branch when ADDRESS 1 1s the branch taken and
the NEXT BRANCH 2 field contains the index for the next
branch when ADDRESS 2 1s the branch taken. For a call,
ADDRESS 1 1s the start of the called subroutine and
ADDRESS 2 1s the address of the mnstruction following the
call instruction. Thus, NEXT BRANCH 1 1s the index of the
first branch 1n the subroutine and NEXT BRANCH 2 i1s the
index of the first branch following the ADDRESS 2 address.
For calls, ADDRESS 2 and NEXT ADDRESS 2 are pushed

onto a stack 1n computational unit 72.

US RE40,405 E

13

Where used, the CHECKSUM.EXECUTION TIME and
PASSWORD fields are used to determine whether the
branch request 1s authorized. After a branch, bus information
from bus taps 1s fed to computational unit 72, which check-
sums the bus data until a branch 1s found. The resulting
checksum 1s compared to the stored CHECKSUM value. If
these are different, computational unit 72 will take action to
prevent the further progress of the game. The checksum can
be applied to all traific over the processor bus except, of
course, variable data.

Similarly, real-time clock 76 1s used to recorded the time
between branches and that time 1s compared to the EXECU-
TION TIME value. The expected amount of time 1s easily
determined 11 the processor clock rate 1s known, since there
are no intervening branches and the known number of
instructions between the branches. Alternatively, a separate
real-time clock 1s not needed. If a PRNG 1s used as part of
the decryption process, 1t could be set to clock each nstruc-
tion cycle, whether or not it 1s being used. That way, if extra
instructions are mserted, the PRNG would lose sync with the
data and corrupt it.

For particularly sensitive branches, a PASSWORD value
could be assigned, where the processor must supply the
password for the branch to be taken. The PASSWORD value
might be calculated from a known combination of the state
ol the processor or memory contents of the local memory.

Relying on the security chip for branch processing might
take longer than 11 the processor was executing a clear pro-
gram. Where the execution of code 1s time-critical, the pro-
tection of selected sections of the program code could be
disabled so that the processor does 1ts own branch process-
ing. Alternatively, portions of the processing necessary for
the time-critical program code could be executed by the
security chip to save processing time.

FIG. 5 shows a branch unit 500 which 1s a part of compu-
tational unit 72 used to implement the above rules. Branch
unit 500 recerves an entry from branch table 502, data from a
bus tap 504 and arguments from a DATA IN bus 506 and,
based on those inputs, outputs either an error signal indicat-
ing an improper branch was requested or a properly
requested branch address. In some embodiments, the branch
address 1s passed to processor 20, while in other embodi-
ments the branch address 1s used to control which instruc-
tions are provided to processor 20 without ever informing
the processor of the address for those instructions.

Branch unit operates as follows. Once an entry 1n branch
table 502 1s selected, the fields VALUE, TYPE,
CHECKSUM, PAS SWORD TIMING, ADDRESS 1
ADDRESS 2, NEXT 1 and NEXT 2 are output. The VALUE
field 1s the constant associated with a conditional jump with
a comparison to a constant, and forms one input to subtractor
508. The other mput to subtractor 508 comes from a register
510 which holds the latest contents of the DATA IN bus.
Subtractor 308 provides results for comparisons of a variable
argument against a constant, and 1n some cases merely indi-
cates whether the one 1nput 1s greater than, equal to, or less
than the other input. Subtractor 512 similarly compares the
output of register 510 and the output of a second register 514
coupled to register 510. The outputs of both registers are
provided to a control section 516.

Control section 516 determines whether an error signal 1s
to be output and also controls two multiplexers (muxes) 518,
520. The output of mux 518 1s the branch address, selected
from one of ADDRESS 1, ADDRESS 2 and a stack top
value from a stack 522. The output of mux 520 1s one of
NEXT 1, NEXT 2, an initial value, and the stack top value.

5

10

15

20

25

30

35

40

45

50

55

60

65

14

The output of mux 520 indicates the index for the next
branch and 1s fed back to an index input for branch table 502.
The mitial value 1s a pointer to the first branch in the chain of
branches, so that the PENDING line 1s properly initialized.

Control section 516 determines which output of mux 518
1s active based on its 1nputs, as indicated above: when the
branch TYPE 1s an unconditional jump, a call, or a condi-
tional jump with a true condition. ADDRESS 1 1s selected.
ADDRESS 2 1s selected for a conditional jump with a false
condition and the stack top 1s selected for a return branch. In

the case of a call, ADDRESS 2 i1s pushed onto the stack, for
use with the next return.

Control section 516 also determines which output of mux
520: when the branch TYPE 1s unconditional, a call, or a
conditional jump with a true condition, NEXT 1 i1s selected
and applied to the PENDING line, NEX'T 2 1s selected for a
conditional jump with a false condition and the stack top 1s
selected for a return branch.

Control section 516 outputs an error signal 1f the CHECK-
SUM value from branch table 502 does not match what
checksum logic 524 calculates as the checksum from bus tap
504, 11 the execution time obtained by monitoring real-time
clock 76 does not match the expected execution time 1ndi-
cated by the EXECUTION TIME (TIMING) field, or if the
password provided by processor 20 does not match the
PASSWORD field.

FIG. 6 shows scrambler 106 1n more detail. Scambler 106
comprises a demultiplexer (demux) 602, a mux 604, a
pseudo-random number generator (PRNG) 606 and a num-
ber of bullers 608. Three butfers 608A, 608B and 608C are
shown, however the number of butfers 1s not limited to three.
The effect of scrambler 106 on an iput data stream 1s to
rearrange the order of bits, bytes, words or blocks of the
input data stream 1n a determinmistic and reversible manner.

To do this, demux 602 parses the input data elements (bits,
bytes, words or blocks) at 1ts mput to one of 1ts outputs as
determined by a current pseudorandom number. As the cur-
rent pseudorandom number changes, the output to which the
clements are directed changes. Mux 604 combines the sepa-
rated streams of elements into one stream as they are output
by the buifers. The elements are reordered because they
require different amounts of time to travel between demux
602 and mux 604, due to the arrangement of buifers 608.
Each butier 608 1s either a first-in, first-out (FIFO) which
alternates its head and tail, or 1s a FIFO which alternates as a
last-1n first-out (LIFO) butlfer. In the former case, each time
an element 1s shifted into a buffer 608 from the left, an
clement 1s output to mux 604 from the right and each time an
clement 1s shifted into the buffer from the fight, an element 1s
output from the leit. In the latter case, elements are pushed
into the bulfer from either end, but they are output from the
right end. The end from which the element 1s shifted into the

builer 608 1s controlled by the values output by PRNG 606.

Thus, knowing the pseudorandom number sequence, one
could discover the reordering pattern and reverse 1t. In order
to discover the pseudorandom number sequence, the key
value (stored 1n key register 64 of FIG. 2 or key register 110
of FIG. 3) must be known, since that key value acts as the
seed for PRNG 606. Of course, where hardware 1s at a
premium, scrambler 106 could use portions of the
decompressor, or the key value could be used to scramble or
modily internal decompression tables, such as probability
estimation or R-code tables.

Where hardware logic i1s especially at a premium, the
pseudorandom number generator (PRNG) 700 shown in

FIG. 7 can be used. PRNG 700 requires only a key shiit

US RE40,405 E

15

register 702, a maximal length sequence (MLS) shift register
704, two muxes 706, 708 and one XOR gate 710. Inputs to

PRING 700 are provided by a key clock 712, an MLS clock
714, a KEY IN senal input, a KEY LOAD signal and an
INI'T/RUN signal. Once loaded, key shiit register 702 can be
used as key register 64 or 110, with the application of an
uninterruptible power source 716.

FI1G. 7 shows the mput to key shiit register 702 being the
output of mux 706, which is either the looped-back output of
key shift register 702 or the KEY IN input depending on
whether the KEY LOAD signal at the select imnput of mux
706 1s asserted or not. FIG. 7 also shows the input to MLS
shift register 704 being the output of mux 708 which 1s either
the output of key shift register 702 or the output of XOR gate
710 depending on whether the INIT/RUN signal at the select
input of mux 708 1s set to INIT or RUN. The mputs to XOR
gate 710 are the output of MLS shift register 704 and one tap
from a nonfinal stage of MLS shift register. The particular
tap used and the number of stages 1n MLS shift register
determine the length of the pseudorandom number sequence
which results. For examples of sequence lengths and tap
points, see Knuth, D. E., The Art Of Computer
Programming, 2d. Ed., 1981, pp. 27-29 and Table 1 therein.
In one embodiment, the number of stages (tlip-tlops) for
MLS shiit register 704 1s 98 and the number of bits 1n a key
value 1s 98, however other lengths and taps work equally
well. Of course, the number of bits in the key value should
be large enough that a copyist cannot easily guess 1ts value.
A 98 stage MLS shift register will produce a sequence of bits
which repeats only every 2°°-1 bits. With this many stages,
the shift register need not be maximal length. One advantage
to not having the shift register be maximal length 1s that the
set of taps for maximal length shift registers are known 1n the
art and therefore a non-maximal length shift register would
be more difficult to reverse engineer.

The key value 1s initially loaded 1nto key shift register 702
by asserting the KEY LOAD signal, applying the key to the
KEY IN mput and clocking key clock 712 until the key value
1s loaded. Once the key value 1s loaded, the KEY LOAD
signal 1s unasserted, so that the clocking of key clock 712
merely circulates the key value within key shaft register 702.
The KEY LOAD signal should be unasserted permanently,
which could be done by having the key preceded by a lead-
ing “1” bit. That bt 1s then used to set a tlip-tlop (not shown)
when 1t reaches the output of key shift register 702. That
tlip-tflop would control whether or not the KEY LOAD sig-
nal could be asserted and would also be powered by uninter-
ruptible power source 716.

The key value 1s circulated 1n key shiit register 702 to read
it out. When the INI'T/RUN signal 1s set to INIT, the key
value will be clocked into MLS shift register 704 by MLS
clock 714, which clocks along with key clock 712. Once
loaded, MLS shift register 704 will run and circulate 1ts con-
tents altered, of course, by XOR gate 710 to form a maximal
length sequence of pseudorandom numbers, as 1s known 1n
the art. The pseudorandom numbers of the sequence can be
read out 1n parallel from MLS shift register 704. With a
low-cost PRNG such as the one just described, multiple keys
become more feasible.

In summary, the above detailed description described a
system for preventing the copying of program data by a
copyist having access only to the end user portions of the
hardware and/or software needed to run the program. While
the examples referred to a specific application of protecting,
game programs which are provided on game cartridges and
used with game consoles, other applications were described.
Furthermore, the invention 1s usable even where the program

5

10

15

20

25

30

35

40

45

50

55

60

65

16

1s provided primarily as software, so long as a small hard-
ware component containing the security chip 1s provided.
But one improvement of the present invention over the prior
art 1s that the program data 1s kept encrypted until decrypted
by a security chip, and even then less than all of the program
data 1s provided to a processor—only the program code for
executing the instance of the program whose tlow 1s deter-
mined for the specific set of mputs provided by the user 1s
made available. The data not provided to the processor 1s
either provided only at a time known to be the appropnate
time for the processor to be requesting the program data, or
1s never provided to the processor. In the latter case, the
security chip performs the operations which would have
been performed by the processor had the security chip pro-
vided all the program data. In one embodiment, the informa-
tion retained by the security chip 1s branching information.
Thus, each time a processor encountered a branch
instruction, that istruction could only be completed with
the assistance of the security chip.

The above description also described the internal structure
and operation of the security chip, a system for generating
encrypted program data, the interaction of the security chip
and the processor during normal operation and operation
while under attack by a copyist, as well as a low-cost pseu-
dorandom number generator based on a stored key value.

The above description 1s 1llustrative and not restrictive.
Many vanations of the mvention will become apparent to
those of skill in the art upon review of this disclosure.
Merely by way of example, the above description described
an embodiment of the invention which protected video game
programs from unauthorized copying and use, however non-
game applications of the invention follow from this disclo-
sure. Other variations are discussed below.

In one particular embodiment of a video game according
to the present invention, the security chip tracks the number
of “lives” a player has left and the amount of time remaining
until the player must move on to the next level. The security
chip decrypts the program data one level at a time, and thus
initially provides only the program data for the first level of
the game. The program data contains 1nitial values which are
never shown 1n the clear outside the security chip and those
values are used to set a timer for the level. As the player 1s
playing the game, the program informs the security chip
when certain events occur. If the information from the pro-
cessor 1s as expected, the game 1s played normally. However,
if the mformation 1s not as expected, time can be added to
the timer or “lives” can be removed. I1 the rime on the timer
1s extended, the player has more time to wait to get to the
next level. If the time 1s extended oiten enough due to the
program runmng differently than intended, the timer wall
never run down and the player will remain on the first level.
One advantage to this approach over the security chip simply
shutting down the processor 1s that it 1s not apparent when 1n
the program the security chip first detects a problem.

The former approach 1s not without its advantages. It the
processor 1s part of a fault-tolerant system, which might or
might not be subject to attack by copyists, the security chip
can be used as a means for preventing an errant processor
from continuing once 1t has failed. The same security chip
can be used to halt the processor or set off an alarm when
improper execution 1s detected, but the assumption there 1s
that the unexpected operation 1s caused by hardware or soft-
ware failure instead of deliberate acts of a copyist.

As an example of non-game use, the processor might per-
form 1mage processing. In 1mage processing, a convolution
might be required. A convolution 1s performed as a series of

US RE40,405 E

17

many multiply operations and an add operation. Since the
security chip can monitor the data bus of the processor, the
security chip can perform the addition as the multiply results
appear on the bus. When the sum 1s needed, the processor
requests 1t from the security chip. If the processor 1s run
without the security chip, the convolution will either be
wrong or the processor will run slower since 1t will have to
do the accumulation 1tself.

Where the program data 1s compressed, elements of the
decompressor might be used to contribute to the decryption
process. For example, FIG. 6 shows a data scrambler which
could be formed from buifers of the decompressor. Also,
where the decompressor 1s an entropy encoder, the security
chip could use the key value for form the initial parameters
tor the decompression process, such as the initial probabaility
values. This has the additional advantage of preventing the
one-to-one mapping of bits that usually occurs at the start of
the entropy coder before enough bits have been received to
infer probabilities from the bits themselves.

When the security chip detects a security violation 1t need
not stop the processor. Other options are to reset the proces-
sor after a random delay, output pseudorandom numbers as
decoded data or adjust the PRNG by complement enabling
or other means so that the PRNG slowly degrades the data
being output.

The scope of the mvention should, therefore, be deter-
mined not with reference to the above description, but
instead should be determined with reference to the appended
claims along with their full scope of equivalents.

APPENDIX A

Example Clear (w/Branches) Assembly Language Program Listing;
(c) 1994, 1995 RICOH Corporation. All rights Reserved.

gcc2__complied.:
__egnu_ compiled c:
text
.align 8
LCO:
.ascii “%d\0”
.align 8
LC1:
.ascii “ 0”7
align 8
LC2:
.ascii ‘12407
align 4
global _ print_ it
Jproc 020
__print__it;
1#PROLOGUE# O
save Yosp,—112,%sp
1#PROLOGUE# 1
nop
sethi %hi(_ k),%00
Id [%00+%lo(__k)],%01
add %o01,-1,%00
st %600,| %ofp-12]
L2:
Id | %fp-12],%600
cmp %00, 0
bge L5
nop
b L3
nop
L5:
Id [%fp-12],%00
mov %00, %02
sll %602,2,%01
sethi %hi(_ x),%00
or %00,%lo(__x),%02
sethi %0hi(1.C0),%03
or %03,%Il0(L.C0),%00

10

15

20

25

30

35

40

45

50

55

60

65

Example Clear (w/Branches) Assembly Language Program Listing;
(c) 1994, 1995 RICOH Corporation. All rights Reserved.

L.3:

L1:

do

LR:

L11:

LL10:

L.9:

LL12:

18

APPENDIX A-continued

Id [%601+%02],%01
call _ printf,0

nop

Id [%1p-12],%00
and %00,3,%o01
cmp %010

bne L6

nop

sethi %6hi(1.C1),%01
or %01,%l0(L.C1),%00
call _ printf,0

nop

Id [%1p-12],%01
add %o01,-1,%00
mov %00,%01

st %01,| %fp-12]
b 12

nop

sethi %0hi(1.C2),%01
or %01,%lo(L.C2),%00
call _ printf,0

nop

ret

restore
align 4
global _do__ it
Jproc 020

It:

1#PROLOGULE# 0

save Yosp,—120,%sp
1#PROLOGULE# 1

at %10,| %fp+68]

sethi %hi(_ x),%00
mov 1,%o01

st %01, %00+%lo(__X)]

mov 1,%00
st %00,| %fp-12]

sethi %hi(__k),%00

id [%1p-12],%01

Id [%00+%lo(__k)),%00
cmp %01,%00

bl L11

nop

b L9

nop

sethi %hi(_ x),%00
mov 4,%.01

or %00,%lo(_ x),%02
add %01,%02,%00
mov %00,%01

st %g0,] %01 |

Id [%ip-12],%01
add %01,1,%00
mov %00,%01

st %o01,[fp-12]

b LS

nop

call _ print_it,0
nop
st %g0,| %ofp-16]

Id [%1p-16],%00
Id [%ip+68],%01
cmp %00,%01
bl L15

nop

bL13

nop

US RE40,405 E
19 20

APPENDIX A-continued APPENDIX A-continued

Example Clear (w/Branches) Assembly Language Program Listing;
(c) 1994, 1995 RICOH Corporation. All rights Reserved.

Example Clear (w/Branches) Assembly Language Program Listing;
(¢) 1994, 1995 RICOH Corporation. All rights Reserved.

5
L15: LC4:
sethi %hi(_ x),%00 asci ‘4117
Id [%600+%lo(__x)],%01 ascil “0 < L < K < %d\1210”
st %01,| %ifp-20] .align 4
sethi %ohi(_ k),%00 .global _ usage
sethi %hi(__1),%o01 10 Jproc 020
Id [%600+%lo(__k)],%00 __usage:
Id [%601+%lo(__1)],%01 1#PROLOGUE# O
sub %600,%01,%00 save Yosp,—104,%sp
mov %00,%01 1#PROLOGUE# 1
sll %01,2,%00 sethi %hi(__10b+40),%01
sethi %hi(__x),%02 15 or %01,%lo(__10b+40),%00
or %02,%lo(__x),%01 sethi %h1(LLC3),%02
Id [%600+%601 |,%600 or %02,%lo(1.C3),%o01
st %600,| %fp-24] call _ fprintf,0
st %g0,| %fp-12] nop
L.16: sethi %hi(__10b+40),%01
sethi %ohi(_ k),%00 50 or %o01,%lo(__10b+40),%00
Id | %00+%lo(__k)],%01 sethi %hi(1.C4),%02
add %o01,-1,%00 or %02,%lo(1.C4),%01
Id [%fp-12],%01 mov 100,%02
cmp %01,%00 call _ fprintf,0
bl L19 nop
nop mov 1,%0o0
bL17 235 call _ exit,0
nop nop
L.19: L.20:
Id | %fp-12],%00 rst
mov %00,%01 restore
sll %01,2,%00 .align 4
sethi, %hi(_ x),%02 30 .global __main
or %02,%lo(__x),%01 proc 020
Id [%6fp-12],%02 __main:
mov %02,%03 1#PROLOGUE# O
sll %603,2,%02 save %osp,—112,%sp
sethi %hi(_ x+4),%04 1#PROLOGUE# 1
or %04,%lo(__x+4),%03 35 st %610,[% ip+68 |
Id [%602+%03],%02 st %i1,[%ip+72]
st %602, %600+%01 | call __main,0
L1R: nop
Id [%fp-12],%01 Id [%1p+68],%00
add %o01,1,%00 cmp %00.4
mov %00,%01 40 be .22
st %01,| %fp-12] nop
bL16 call __usage,0
nop nop
L17: L.22:
sethi %hi(_ k),%01 mov 4,%00
Id [%01 +%lo{__k)],%00 Id [%1p+72],%01
mov %00,%o01 45 add %00,%01,%00
sll %01,2,%00 mov %00,%01
sethi %hi(__x-4),%02 Id [%o01],%00
or %02,%lo(__x-4),%01 call _ ato1,0
Id | %fp-20],%02 nop
Id [%6fp-24],%03 sethi %hi(__I1),%o01
xor %02,%03,%04 50 st %00, %01+%lo(__1)]
subcc %g0,%04,%g0 mov &,%00
addx %g0,0,%02 Id [%1p+72],%01
st %602,] %00+%01 | add %600,%01,%00
call __print_ 1t,0 mov %00,%01
nop Id [%601],%600
L14: 55 call atol1,0
Id [%fp-16],%01 nop
add %o01,1,%00 sethi %ohi(_ k),%01
mov %00,%01 st %600,[%01+%lo(__k)]
st %01,| %ip-16] mov 12,%00
bL12 Id [%ip+72],%01
nop 60 add %00,%01,%00
L13: mov %00,%01
L7: Id [%601],%600
ret call _ ato1,0
restore nop
.align 8 st %00,| %fp-12]
LC3: - sethi %hi(__1),%00

.ascii “Usage: mlsg L. K %lines\12410”

.align 8

Id [%600+%lo(__1)],%01
cmp %o01,0

21

APPENDIX A-continued

US RE40,405 E

Example Clear (w/Branches) Assembly Language Program Listing;

(c) 1994, 1995 RICOH Corporation. All rights Reserved.

1.24:

[.23:

[.21:

ble L.24

nop

sethi %ohi(__1),%00

Id [%600+%lo(__1)],%01
cmp %01,98

bg L.24

nop

sethi %hi(__k),%00

Id | %00+%lo(__k)],%01
cmp %o0l,1

ble L24

nop

sethi %hi(__k),%00

Id | %00+%0lo(__k)],%01
cmp %o01,99

bg L.24

nop

sethi %hi(__1),%00
sethi %ohi(_ k),%01

Id [%600+%lo(__1)],%00
Id [%601+%lo(__k)],%01
cmp %o00,%01

bge .24

nop

b L23

nop

call _ usage,0
nop

Id | %fp-12],%00
call do 1t,0
nop

rst

restore

.common _ k.4,’bss”
common [,4,bss”
common _ X,400,“bss”

; End of Listing.

Corresponding Secure Assembly Language Program;
(C) 1994, 1995 RICOH Corporation. All Rights Reserved.

APPENDIX B

10

15

20

25

30

35

40

45

Register %07 is a register unused 1n the mput assembly code

gcc2_ complied.:
gnu compiled_ c:

Lext
align 8
LCO:
.ascii “%d\0”
align 8
LC1:
.ascii “ 0~
align 8
LC2:
.ascii “412407
.align 4
global _ print_ it
Jproc 020
__print__it:
1#PROLOGUE# O

save Yosp,—112,%sp
1#PROLOGUE# 1

nop

sethi %hi(_ k),%00

Id | %00+%lo(__k)],%01
add %o01,-1,%00

st %600, %fp-12]

50

55

60

65

Corresponding Secure Assembly Language Program;
(C) 1994, 1995 RICOH Corporation. All Rights Reserved.

Register %07 1s a register unused 1n the mput assembly code

L.2:

LSCO:

L5:

LSC1:

LSC2:

LSC3:
L.6:
1L.4:

1.3:

L.SC4:
L.1:

LR:

LSC5:

It

22

APPENDIX B-continued

Id [%1ip-12],%00

sethi %hi(_ SC_ data),%o07

st %00,] %07+%lo(__SC__data)]
b __SC_ branch+0

nop

b _SC_branch+1
nop

Id [%1p-12],%00

mov %00,%02

sll %602.,2,%01

sethi %hi(_ x),%00

or %00,%lo(_x),%02
sethi1 %h1(L.C0),%03
or %03,%Ilo(1.C0),%00
Id [%01+%02],%01

b __SC_ branch+2

nop

Id [%1p-12],%00

and %00,3,%01

sethi %hi(__SC__data),%o07

st %01,] %07+%lo(__SC__data)]
b__SC_ branch+3

nop

sethi %hi1(LC1),%01

or %01,%lo(L.C1),%00
b__SC__branch+4

nop

Id [%ip-12],%01
add %o01,-1,%00
mov %00,%01

st %01,| %fp-12]
b __SC__branch+5
nop

sethi %0hi(1.C2),%01
or %01,%lo(L.C2),%00
b _ SC_ branch+6

nop

b__ SC_ branch+7
restore

.align 4

global _do__it
Jproc 020

1#PROLOGUE# 0

save Yosp,—120,%sp
1#PROLOGULE# 1

st %10, %ip+68]

sethi %hi(__x),%00
mov 1,%01

st %01,[%00+%lo(__X)]

mov 1,%00
st %00,| %fp-12]

sethi %ohi(_ k),%00

Id [%ip-12],%01

Id [%600+%lo(__k)],%00

sethi %hi(_ SC_ data),%o07

st %01,] %07+%lo(__SC__data)]
st %00, %07+%lo(__SC__data)]
b_ SC_ branch+8

nop

b _SC_branch+9
nop

US RE40,405 E
23 24

APPENDIX B-continued APPENDIX B-continued

Corresponding Secure Assembly Language Program;
(C) 1994, 1995 RICOH Corporation. All Rights Reserved.

Corresponding Secure Assembly Language Program;
(C) 1994, 1995 RICOH Corporation. All Rights Reserved.

Register %07 1s a register unused 1n the mput assembly code > Register %07 1s a register unused 1n the mput assembly code
L11: L18:
sethi %hi(__x),%00 Id [%1p-12],%01
mov 4,%01 add %o01,1,%00
or %00,%lo(_x),%02 mov %00,%01
add %601,%02,%00 10 st %01, %fp-12]
mov %00,%01 b_ SC_ branch+16
st %g0,[%01] nop
L10: L17:
Id [%fp-12],%01 sethi %hi(__k),%o01
add %o01,1,%00 Id [%601+%lo(__k)],%00
mov %00,%01 15 mov %00,%01
st %01, %ip-12] sll %601,2,%00
b__SC__branch+10 sethi %hi(_ x—4),%02
nop or %002,%lo(_ x-4),%01
L9: Id [%1p-20],%002
b _SC__branch+11 Id [%1p-24],%03
nop 20 xor %02,%03,%04
LSC6: subcc %0g0,%04,%g0
st %g0,| %fp-16] addx %0g0,0,%02
L12: st %602, %00+%01 |
Id [%6fp-16],%00 b __SC__branch+17
Id [%fp+68],%01 nop
sethi %hi(_ SC__data),%07 LSC9:
st %600,[%07+%lo(__SC__data)] 23 .14:
st %01, %07+%lo(__SC__data)] Id [%fp-16],%01
b _SC_ branch+12 add %o01,1,%00
nop mov %%00,%01
1SC7: st %01,| %fp-16]
b SC branch+13 b__SC_branch+18
nop 30 nop
L15: iy
sethi %hi(_ x),%00 '
Id [%G0+E%lmz_x)],%ﬂl b __SC_branch+19
i restore
st %Dl,__%fp—ZO] align 8
sethi %hi(__k),%00 15 1.C3
setht %ohi(__1),%01 .ascil “Usage: misg L. K #lines\1240”
Id [%00+%lo(__k)],%600 align 8
Id [%601+%lo(__1)],%01 1.C4:
sub %00,%01,%00 .ascit ‘4117
mov %00,%01 ascil 0 <« L <« K < %d\12\0”
sll %01,2,%00 40 align 4
sethi %hi(__x),%02 .global __usage
or %02,%lo(_x),%01 proc 020
Id [%00+%601 |,%00 __usage:
st %00,| Yofp-24] 1#PROLOGUE# O
st %g0,| %ofp-12] save %osp,—104,%sp
L16: 45 1#PROLOGUE# 1
sethi %ohi(_ k),%00 sethi %ohi(_ 10b+40),%01
Id [%600+%lo(__k)],%01 or %01,%lo(__10b+40),%00
add %o01,-1,%00 sethi %0hi1(1.C3),%02
Id [%fp-12],%01 or %02,%lo(1.C3),%o01
sethi %hi(_ SC_ data),%o07 b__SC_ branch+20
st %01,|%07+%lo(__SC__data)] 50) nop
st %600,[%07+%lo(__SC__data)] L.SC10:
b__ SC_ branch+14 sethi %hi(__10b+40),%01
nop or %01,%lo(__10b+40),%00
LSCR: sethi %0hi1(1.C4),%02
b__ SC_ branch+15 or %02,%lo(1.C4),%01
nop 55 mov 100,%02
L.19: b__SC_ branch+21
Id | %fp-12],%00 nop
mov %00,%01 LSCI11:
sll %01,2,%00 mov 1,%00
sethi %hi(_ x),%02 b__ SC_ branch+22
or %02,%lo(_x),%01 60 nop
Id [%1ip-12],%02 LSC12:
mov %02,%03 L20:
sll %603,2,%02 b__ SC_ branch+23
sethi %hi(__x+4),%04 restore
or %04.,%lo(_ x+4),%03 .align 4
Id [%02+$03 |,%02 65 .global __main
st %602, %600+%01 | .proc 020

Corresponding Secure Assembly Language Program;

25

APPENDIX B-continued

US RE40,405 E

(C) 1994, 1995 RICOH Corporation. All Rights Reserved.

Register %07 1s a register unused 1n the mput assembly code

__main:

LSC13:

LSC14:

LSCI15:

[.22:

LSC16:

LSC17:

LSCILS:

LSC19:

LSC20:

LSC21:

I#PROLOGULE# 0
save Yosp,—112,%sp
1#PROLOGUL# 1
st %10,[%oip+68]

st %11,| %oip+72]

b _ SC_ branch+24
nop

Id [%fp+68],%00

sethi %hi(__SC__data),%07

st %600,[%07+%lo(__SC__data)]
b __SC_ branch+25

nop

b _SC_branch+26
nop

mov 4,%00

Id [%fp+72],%01
add %00,%01,%00
mov %00,%01

Id [%601 |,%00

b _SC_branch+27
nop

sethi %ohi(_ 1),%01

st %600,[%01+%lo(__1)]
mov &,%00

Id [%fp+72],%01

add %00,%01,%00
mov %00,%01

Id [%0601],%600

b__ SC_ branch+2¥
nop

sethi %hi(_ k),%01

st %00,] %01+%lo(__k)]
mov 12,%00

Id [%6fp+72],%01

add %00,%01,%00
mov %00,%01

Id | %01 |,%00

b__SC_ branch+29

nop

st %00, %ip-12]

sethi %hi(_ 1),%00

Id [%600+%lo(__1)],%01

sethi %hi(_ SC__data),%07

st %01,] %07+%lo(__SC__data)]
b _ SC_ branch+30

nop

sethi %ohi(__1),%00

Id | %00+%lo(__1)],%01

sethi %hi(_ SC__data),%07

st %601,[%07+%lo(__SC__data)]
b_SC_ branch+31

nop

sethi %ohi(_ k),%00

Id | %00+%lo(__k)],%01

sethi %hi(_ SC_ data),%o07

st %01,|%07+%lo(__SC__data)]
b_ SC_ branch+32

nop

sethi %hi(__k),%00

Id [%00+%lo(__k)],%01

sethi %hi(_ SC_ data),%07

st %01,[%07+%lo(__SC__data)]
b __ SC_ branch+33

nop

10

15

20

25

30

35

40

45

50

55

60

65

26

APPENDIX B-continued

Corresponding Secure Assembly Language Program;
(C) 1994, 1995 RICOH Corporation. All Rights Reserved.
Register %07 1s a register unused in the mput assembly code

LLSC22:

LSC23:

1.24:

LSC24:
[.23:

LSC25:
[L21:

sethi %ohi(_ 1),%000

sethi1 %hi1(_ k),%01

Id [%600+%lo(__1)],%00

Id [%o01+%lo(__k)],%01

sethi %hi(_ SC_ data),%o07

st %00, %07+%lo(__SC__data)]
st %01,] %07+%lo(__SC__data)]
b __ SC_ branch+34

nop

b _SC_ branch+35
nop

b _SC_branch+36
nop

Id [%1p-12],%00
b _SC_branch+37
nop

b SC branch+38

restore

common _ k.4,“bss”
common [.4,“bss”
.common _ X,400,“bss”

APPENDIX C

Corresponding Branch Table for Secure Assembly Program
(C) 1994, 1995 RICOH Corporation. All Rights Reserved.

Branch information in security chip

>

00 -1 O A D WM = OO0 I D W = O

o D P = O N0 =1 O B)= DD

Labell Label2 Cond.
L5 LSCO:; bge
L3 always
__printf,0 LSC1: call
L6 LSC2: bne
_ printf,0 LSC3: call
L2 always
__printf,0 LSC4; call
return
LL11 LSC5: bl
L9 always
L8 always
__print__it,0 LSC6: call
L15 LSCT7: bl
.13 always
L19 LSCSR: bl
L.17 always
.16 always
__print__1t,0 LSC9; call
L12 always
return
_ fprintf,0 LSC10: call
__fprintf,0 LSC11: call
_exit,0 LSC12: call
return
__main,0 LSC13: call
[.22 LSC14: be
__usage,0 LSC15: call
_ato1,0 LSC16: call
__ato1,0 LSC17: call
__ato1,0 LSCI18: call
1.24 LSC19: ble
.24 LSC20: g
.24 LSC21: ble
L.24 LSC22: g
.24 LSC23: Dge

Compare

const O

const O

var

bar

var

const 4

const U
const 98
const 1
const 99
var

US RE40,405 E
27 28

APPENDIX C-continued APPENDIX D-continued

Corresponding Branch Table for Secure Assembly Program Source Code Listing for Software Implementation of Branch Separator

(C) 1994, 1995 RICOH Corporation. All Rights Reserved.

5 ‘e »l— 1-
Branch information in security chip opc__return[*“ret”] = 1;

Comparisons
opc__compare| “‘cmp”] = 1;

) Labell Label2 Cond, (ompare # Instructions that can follow branch instructions
33 L2 always zpz_gzﬂ{“?;slzm]‘;’]l;— 1; # occurs after return
36 _usage,0 LSC24. call 10 1 Pe— o
37 do_ 1t,0 [LSC25: call e
38 return BEGIN{
print “Register %07 must not be used in the input assembly code”
P S mmm o m o o e >’
print *”’
APPENDIX D 15 init_opcodes();
cmp_ flag = 0;
Source Code Listing for Software Implementation of Branch Separator label__flag = 0;
branch_count = 0;
#1/bin/nawk - $0 $* new__label = 0;
do_sc_ label();
Awk program for automatically removing branch instructions from 50 }
SPARC assembly code generated by gce so branches can be H =========—=—=——==——===——=—=—=——=————=—=——===——=========
implemented 1n security chip. END {
print **’
#(C) 1994, 1995 RICOH Corporation. All Rights Reserved. DI o mmmmmm oo >
e : SLE
. print
function do__sc__label() 55 print “Branch information in security chip”
{ print *”’
sc_ label = "LSC” new__label *:™; T R s
i}; tion do_ branchl print ™
{um: lon do__branchl(’) print “IDtLabel1\t\tLabel2\tCond.\tCompare™
lf (Gpc_reﬁ]_'[‘ﬂ[$1] != 1) pl‘%ﬂt ::::-\Illllt """ \\t\'\t """ \Illllt """ ‘Illllt """" ”
label[branch_ count] = $2; 30 primt = |
if (condition[branch__count] ==) { for (1=0;1f:bram?h_munt;1++) {
if (opc__return|[$1]==1) 11 = label(1);
condition|branch__count]| = “return”; while (length(l1) < 8)
else 11=11°% -
condition|branch__count]| = “always”; 12 = label2]i];
} | 35 1f(12== :H:) 12 — s :-:;
print “‘tb__SC__branch+” branch__count; print 1 “\t” 11 “@” 12 “\t” condition|i] “\t”” compare|1]
branch_ count++; 1
j)
conditional branches and calls e
function do_ branch2() ”
(# MAIN
if (opc_call[$1]!=1){ 40 "
split (cmp__save,args,”.”’); e
print “‘tsethi %hi(_ SC_ data),%o07”>
print “‘tst ” args|1] “,|%07+%lo(__SC__data)]|” 1 o .
condition[branch_count] = $1 if (comp_flag) {
if (match (args[2], %™)] { f:mp_ﬂag =0;
print “\tst > args|[2] “,[%007+%I10(_SC__data)|” 45 if (ope_b2[$1]==1) 1
compare|branch__count] = “var” do__branch2();
}else { ! else |
compare|branch _count| = “const ™ args| 2 |; print “\tecmp ** cmp__save;
h h
}else { } else is ((label flag == 1) && (opc__trail[$1] == 1)) {
condition| branch__count]| = “call”; 50 print $0
h print sc__label;
label_ flag = 1; label flag = 0;
label2|branch__count] = sc__label; new label++:
do_branchl(); do_sc_ label();
i o telse if (opc__compare[$1]==1) {
33 cmp__flag = 1;

Change the mitialization here to support parsing assembly code for

other processors. CHIP__save = $2;
function init_ opcodes() h elszlf (EPC—Ell[M] ==1){
{ o__branchl();

}else if (ope__call[$1]==1){

Unconditional branches

opc__bl|*b”’]=1; 60 do__branch2();

Conditional branches } else if (ope__return[$1]==1) {
opc_b2[“bne”]=1; opc_b2[*be”]=1; opc__b2[“bg”]=1; do__branchl();
opc__b2[“ble”]=1; opc_b2[*bg3”]|=1; opc_b2[*bgu”]=1; I else

opc__b2|“bleu”]|=1; opc_b2[*bcc”|=1; opc__b2[*bes”]=1; print $0;

opc_ b2[“bpos”]|=1; opc_b2[*bneg”]|=1; opc_b2[*b1”]|=1; }

Calls /* End of Listing. */

opc_ call]“call”] = 1; 63

Returns

US RE40,405 E
29 30

means, within the security chip, for checking that the
APPENDIX E requested subset 1s within a valid predetermined set of
requested subsets dependent on a stored state for the
Source Code Listing for Program to Test PRNG Processor.

m 5 2. The apparatus of claim 1, wherein the secure program
=g stored 1n the program memory 1s stored with the clear por-

* mlsg.c tion and the remainder portion stored separately.
* An example C program: Test maximal length sequence generator. 3. The apparatus of claim 1, wherein the remainder por-

3

tion 1s a set of branch instructions of the secure program.

(C) 1994, 1995 RICOH Corporation. All Rights Reserved. 4 The apparatus of claim 3, wherein the security Chlp

* 10 . :
stk stk sl ook ok ok kol Rk oK SRk Rl ok sk sk skl ok Rk SRl ok R oK Sk Sk R ok sk sk Skl kR sk K K0k Ok further includes means for CElChlllg branch statements based
sinolude <stdio hs on recently executed branches.
#define MAX 100 5. The apparatus of claim 1, wherein the means for
int k, I; decrypting portions of the secure program 1s configured with
int x|MAX]; /* K Flip-flops are used in hardware */ a decrvotion ke
d print_it() { P Y-
ol Elt L 15 6. The apparatus of claim 5, wherein the decryption key is
for (imk—1:i>=0:i—-) ! stored 1n a volatile memory.
printf(“%d” x[i]); 7. [The] Ar apparatus [of claim 6,] for executing a secure
if (1%4 == 0) printf(* ”); program in a computer system, wherein the ability to make
;o workable copies of the secure program from the computer
P prog /4
printf(*“n”); < inhibited th S
\ 20 system 1s 1nnibiled, the apparatus COomprising.
void do__it(int n) { a program memory in which the secure program data is
int i, j; stored in an encrypted form;
int t1, t2; . :
<[0] = 1. a security chip CO?/fp'ZEd to the program memory, the secu-
for (i=1;i<k;i++) rity chip comprising:
x[1] = 0; 23 means for decrypting portions of the secure program
I;flﬂé—ét() v into a clear portion and a remainder portion,
or (j=0;j<n;j++ : . .
{1 = X0, wherein the means Jfor decrypt‘mg portmnsﬁ of the
/% 12 = [1]; Alternative™/ secure program is configurved with a decryption key,
t2 = x[k-1]; wherein the decryption key is stoved in a volatile
for (1=F=?]Hk‘[FIH) 30 memory, and wherein the volatile memory is distrib-
X[1]=x[1+1]; : : : .
X[k-1]=(t1!=12)?1:0;/*XOR gate is used in H/W */ uted 01'.76.1‘ the SBCUI:lty Cl?lp, _the SGCI}I‘I‘[y Chlp.flll"[her
print_it(); comprising overlying circuitry which overlies and
1 obscures at least a part of the volatile memory;
;o means for providing the clear portion to memory loca-
void usage() { 35 " Do b - and
fprintf(stderr,”Usage: mlsg L. K #lines\n™); LORS ACCessivie D) d processor, an
fprintf(stderr,”t0 < L < K < %d\n”’, MAX); remainder memory for stoving the vemainder portion of
\ exit(1); the securve program, the remainder memory not divectly
void main (int argc, char **argv) { accessible by rk_e processor, : _
int lines: " means for vequesting subsets of the remainder portion for
if (arge 1= 4) usage(); use by the processor; and
= H"tm.(argv[l]);_ means, within the security chip, for checking that the
k = atoi(argv] 2]); o : ;
lines = atoi(argv[3]): requested subset is within a valid predetermined set of
if (<D (1 > MAX=-2)! (k< 2) ! (k > MAX-1) ! (I >=k)) requested subsets dependent on a stored state for the
usage(); yocessor.
do__it(lines); 45 g

\ 8. The apparatus of claim 7, wherein the overlying cir-

/% End of Listing, */ cuitry 1s coupled to a power source for the volatile memory
such that the removal of the overlying circuitry removes the

power to the overlying circuitry.
9. The apparatus of claim 1, further comprising:

clocking means, within the security chip, for determining
a rate of instruction execution of the processor; and

timing response means for rejecting processor requests
when the clocking means determines that the rate 1s

55 outside a range of normal operation for the processor.
10. The apparatus of claim 1, further comprising a data
decompressor for decompressing the secure program after

What 1s claimed 1s:

1. An apparatus for executing a secure program in a com- Y
puter system, wherein the ability to make workable copies of
the secure program from the computer system 1s mhibited,
the apparatus comprising:

a program memory in which the secure program data 1s
stored 1n an encrypted form;

a security chip coupled to the program memory, the secu-

rity chip comprising: decryption, wherein the secure program is compressed
means for decrypting portions of the secure program 1nto before encryption.

a clear portion and a remainder portion; c0 11. [The] An apparatus [of claim 10,] for executing a
means for providing the clear portion to memory locations secure program in a computer system, whevein the ability to

accessible by a processor; and make workable copies of the secure program from the com-
remainder memory for storing the remainder portion of puter system is inhibited, the apparatus comprising:

the secure program, the remainder memory not directly a program memory in which the secure program data is

accessible by the processor; 63 stored in an encrypted form;
means for requesting subsets of the remainder portion for a security chip coupled to the program memory, the secu-

use by the processor; and vity chip comprising:

US RE40,405 E

31

means for decrypting portions of the securve program
into a clear portion and a remainder portion;

means for providing the clear portion to memory loca-
tions accessible by a processor; and

remainder memory for storing the vemainder portion of 5

the secure program, the rvemainder memory not
dirvectly accessible by the processor;

means for vequesting subsets of the remainder portion for
use by the processor;

means, within the security chip, for checking that the

requested subset is within a valid predetermined set of

requested subsets dependent on a stored state for the
processor; and

a data decompressor for decompressing the secure pro-
gram after decryption, wherein the secure program is
compressed before encryption, wherein the decompres-
sor 1s an entropy decoder.

12. The apparatus of claim 1, further comprising:

checksum means, within the security chip, for determin-
ing a checksum of bus accesses on a processor bus; and

checksum response means for rejecting processor
requests when the checksum does not match a predeter-
mined checksum for those bus accesses.

13. [The] An apparatus Jof claim 1,] further comprising
for executing a secure program in a computer system,
wherein the ability to make workable copies of the secure
program from the computer system is inhibited, the appara-
tus comprising:

a program memory in which the secure program data is

stored in an encrypted form;

a security chip coupled to the program memory, the secu-
¥ity chip comprising:
means for decrypting portions of the secure program
into a clear portion and a remainder portion;,
means for providing the clear portion to memory loca-
tions accessible by a processor; and

remainder memory for storing the remainder portion of

the secure program, the remainder memory not
dirvectly accessible by the processor;

means for requesting subsets of the remainder portion for
use by the processor;

means, within the security chip, for checking that the

10

15

20

25

30

35

40

requested subset is within a valid predetermined set of 45

requested subsets dependent on a stored state for the
processor; and

a data scrambler for reordering data elements of the
secure program according to a reversible and determin-
istic pattern determined by a key value, wherein the
secure program 1s reordered by the 1verse of the data
scrambler before being placed 1n the program memory.

14. The apparatus of claim 13, wherein the data scrambler
comprises a plurality of first-in, first-out buitlers.

15. The apparatus of claim 13, wherein the reversible and
deterministic pattern 1s generated by reference to the output
ol a pseudorandom number generator.

16. [The] A apparatus [of claim 1,] for executing a secure
program in a computer system, wherein the ability to make
workable copies of the secure program from the computer
system is inhibited, the apparatus comprising:

a program memory in which the secure program data is
stored in an encrypted form;

a security chip coupled to the program memory, the secu-
¥ity chip comprising:

means for decrypting portions of the secure program

into a clear portion and a rvemainder portion,

50

55

60

65

32

wherein the means for decrypting portions of the
secure program operates based on the key value and
the output of a pseudorandom number generator;

means for providing the clear portion to memory loca-
tions accessible by a processor; and

remainder memory for stoving the vemainder portion of
the secure program, the vemainder memory not
dirvectly accessible by the processor,

means for vequesting subsets of the remainder portion for
use by the processor; and

means, within the security chip, for checking that the
requested subset is within a valid predetermined set of
requested subsets dependent on a stored state for the
processor.

17. The apparatus of claim 1, further comprising means
for altering the operation of the security chip and the pro-
gram tlow of the secure program when said means for check-
ing detects that the requested subset 1s not withun the valid
predetermined set of subsets, whereby the altered operation
causes a negative effect on the program flow or operation.

18. The apparatus of claim 17, wherein the means for
altering 1s a means for halting the processor.

19. An apparatus for encrypting program data to prevent
unauthorized copying, comprising:

a branch separator for extracting branch statements from

the program data;

a compressor for compressing the extracted branch state-
ments and a remainder of the program data to form
compressed data; and

an encryptor for encrypting the compressed data.
20. An apparatus for encrypting program data to prevent
unauthornized copying, comprising:
a branch separator for extracting branch statements from
the program data comprising:
means for automatically generating checksum data repre-
senting checksums of program data; [and]

means for automatically generating timing information
used to assess timing of program data processing;

a compressor for compressing the extracted branch
statements, a remainder of the program data, the check-
sum data, and the timing information, to form com-
pressed data; and

an encryptor for encrypting the compressed data.

21. A method of executing a secure program to prevent
copying of the secure program 1n a usable form from infor-
mation acquired over an isecure processor bus, the usable
form being a copy which replaces the functionality of the
original, comprising [the steps of]:

accepting a request from a processor over the insecure

processor bus for a block of program data, the block of
program data including at least one of one or more
program instructions or one or more program data ele-
ments;

decrypting, 1in a secure manner, the block of program data
into a clear portion and a remainder portion;

providing the clear portion to the processor over the inse-
cure processor bus; [and]

accepting requests from the processor over the nsecure
processor bus for elements of the remainder portion;

checking that the request 1s consistent with the state of the
processor and previous requests;

processing the requests from the processor for elements of
the remainder portion; and

responding to the requests with request responses,
wherein the request responses do not contain enough

US RE40,405 E

33

information content to recreate the remainder portion
with substantially less computational effort than
required to create said remainder portion.
22. The method of claim 21, further comprising [the steps
of]:
separating a program 1into the clear portion and the
remainder portion to form a secure program; and

encrypting the secure program prior to placing the secure

program 1nto an insecure memory.

23. The method of claim 22, wherein [the step of] separat-
ing [is a step of] a program into the clear portion and the
remainder portion to form a secure program includes sepa-
rating branch instructions of the program from other nstruc-
tions of the program.

24. The method of claim 21, wherein [the step of] decrypt-
ing 1s performed with a decryption key.

25. The method of claim 24, further comprising [the step
of] storing the decryption key in a volatile memory.

26. [The] A method [of claim 25, further comprising the
steps Of:] of executing a secure program to prevent copying
of the secure program in a usable form from information
acquived over an insecure processor bus, the usable form
being a copy which veplaces the functionality of the original,
comprising the steps of:

accepting a request from a processor over the insecure

processor bus for a block of program data, the block of
program data including at least one of one or more
program instructions ov one ov movre program data ele-
ments;

decrypting, in a secuve mannev, the block of program data
into a clear portion and a remainder portion, wherein
the decrypting is performed with a decryption key;

storing the decryption key in a volatile memory;
providing a power source to the volatile memory;

covering the volatile memory with a circuit such that the
power source 1s removed from the volatile memory
when the circuit 1s disturbed and the circuit shields the

volatile memory from probing;

providing the clear portion to the processor over the inse-
cure processor bus;

accepting requests from the processor over the insecure
processor bus for elements of the remainder portion;

checking that the request is consistent with the state of the
processor and previous requests;

processing the vequests from the processor for elements of
the remainder portion; and

responding to the requests with request responses,
wherein the request rvesponses do not contain enough
information content to recreate the remainder portion
with substantially less computational effort than
requirved to crate said remainder portion.

27. The method of claim 21, further comprising [the step
of] checking a rate of instruction execution of the processor
prior to providing a request response.

28. The method of claim 21, further comprising [the step
of] decompressing the secure program after decryption,
wherein the secure program 1s compressed before encryp-
tion.

29. The method of claim 21, further comprising [the steps
of]:

determining a checksum of bus accesses on a processor

bus;

comparing the checksum to a precalculated checksum for

a set of instructions of the secure program which are
executed under normal operation; and

5

10

15

20

25

30

35

40

45

50

55

60

65

34

preventing the unobstructed operation of the secure pro-
gram when the checksum and the precalculated check-
sum ditfer.

30. [The] 4 method Jof claim 21, further comprising the
steps Of:] of executing a secure program to prevent copying
of the securve program in a usable form from information
acquived over an insecure processor bus, the usable form
being a copy which replaces the functionality of the original,
COmprising:

accepting a request from a processor over the insecure

processor bus for a block of program data, the block of
program data including at least one of one or more
program instructions or one or move program data ele-
ments,

decrypting, in a secure manner, the block of program data
into a clear portion and a remainder portion;

providing the clear portion to the processor over the inse-
cure processor bus;

accepting requests from the processor over the insecure
processor bus for elements of the remainder portion,

checking that the request is consistent with the state of the
processor and previous requests;

processing the requests from the processor for elements of
the remainder portion;

responding to the requests with request responses,
wherein the rvequest vesponses do not contain enough
information content to recreate the vemainder portion
with substantially less computational effort than
required to create said vemainder portion;

scrambling an order of data elements of the secure pro-
gram according to a reversible and deterministic pattern
determined by a key value prior to storage 1n an inse-
cure memory; and

descrambling the order of the data elements upon proper

request of the processor.

31. The method of claim 30, wherein [the step of] scram-
bling comprises [a step of] generating a pseudorandom num-
ber used to form the reversible and deterministic pattern.

32. The method for encrypting a program to prevent unau-
thorized copying, comprising [the steps of]:

separating program code according to sequences ol non-

branch instructions and branch 1nstructions;

compressing the nonbranch instructions to form a first set
of compressed data;

compressing the branch instructions to form a second set
of compressed data; and

encrypting the first and second sets of compressed data.

33. An apparatus for executing a secure program 1in an
insecure computer system, wherein the ability to make
workable copies of the secure program during execution of
the secure program using the nsecure computer system 1s
inhibited, a workable copy being a copy which replaces the
functionality of the original secure program, the apparatus
comprising;

a program memory in which the secure program|.] data is

stored 1n an encrypted form;

a security chip coupled between the program memory and
adapted to be coupled to a processor over an accessible
processor bus, the security chip comprising;:

means for decrypting portions of the secure program into
a clear portion and a remainder portion;

means for providing the clear portion to memory locations
accessible by the processor; and

remainder memory for storing the remainder portion of
the secure program, the remainder memory not directly
accessible by the processor except via the security chip;

US RE40,405 E

35

means for requesting subsets of the remainder portion for
use by the processor; and

means, within the, security chip, for checking that the
requested subset 1s within a valid predetermined set of

36

44. The method defined in claim 42 further comprising
decrypting the requested program information.

45. The method defined in claim 34 further comprising
separating the requested program information between the

requested subsets given a stored state for the processor. 5 first subset and a second subset.

34. A method of executing a secure program comprising:

receiving a first request for program information having a
plurality of instructions;

determining if the first vequest is proper;

sending a first subset of requested program information if 10
the request is proper,

maintaining information regarding a second subset of the
requested program information, the second subset
relating to at least one instruction in the requested pro-
gram information not included in the first subset,

receiving a second request corresponding to an instruc-
tion of the requested program information not in the
fivst subset; and

sending information corresponding to the instruction to
allow continued execution of the program information
as if the instruction had been included in the first sub-
sel.

35. The method defined in claim 34 wherein receiving the
first request comprises receiving a pointer to a compressed
data set.

36. The method defined in claim 35 wherein the pointer
comprises an ID associated with the compress data set
whose creation occurred at time of encryption.

37. The method defined in claim 34 further comprising
preventing continued execution of the program in a manner
that the program was originally designed to be executed if "
the first request is determined to be improper.

38. The method defined in claim 37 wherein preventing
continued operation comprises halting program execution.

39. The method defined in claim 37 wherein preventing
continued operation comprises altering program flow.

40. The method defined in claim 37 wherein preventing
continued operation comprises causing degradation of pro-
gram execution performance.

41. A method for executing a secure program COmprising:

15

20

25

35

receiving a first request for program information having a 40

plurality of instructions;
determining if the first vequest is proper;
sending a first subset of requested program information if

the request is proper, A5

maintaining information regarding a second subset of the
requested program information, the second subset
relating to at least one instruction in the vequested pro-
gram information not included in the first subset,

receiving a second request corresponding to an instruc-
tion of the requested program information not in the
fivst subset; and

sending information corresponding to the instruction to
allow continued execution of the program information

as if the instruction had been included in the first sub-
set; and

50

55

preventing continued execution of the program in a man-
ner that the program was originally designed to be
executed if the first request is determined to be
improper, wherein preventing continued operation
comprises evasing a portion of the program stored in

memory.
42. The method defined in claim 34 further comprising

accessing the requested program information from memory.

43. The method defined in claim 42 further comprising
translating at least a portion of the requested program infor-
mation.

60

65

46. The method defined in claim 34 wherein maintaining
information vegarding a second subset comprises stoving a
branch table with information relating to execution of the at
least one instruction.

47. The method defined in claim 34 wherein maintaining
information regarding a second subset comprises stoving
checksum information relating to execution of instructions in
the requested program information.

48. The method defined in claim 34 wherein maintaining
information regarding a second subset comprises storing
timing information rvelating to execution of instructions in
the requested program information.

49. The method defined in claim 34 wherein veceiving the
second request comprises receiving a branch rvequest.

50. The method defined in claim 49 further comprising
determining if the branch request is proper.

51. The method defined in claim 50 further comprising
halting execution of instructions in the program information
if the branch request is improper.

52. The method defined in claim 34 wherein the instruc-
tion information comprises a branch address.

53. An apparatus for executing a secure program cCOm-
prising:

means for receiving a first vequest for program informa-

tion having a plurality of instructions,

means for determining if the first vequest is proper;

means for sending a first subset of requested program
information if the vequest is proper;

means for maintaining information rvegarding a second
subset of the requested program information, the sec-
ond subset velating to at least one instruction in the

requested program information not included in the first
subset;

means for receiving a second request corresponding to an

instruction of the vequested program information not in
the first subset; and

means for sending information corrvesponding to the
instruction to allow continued execution of the program
information as if the instruction had been included in

the first subset.
54. The apparatus defined in claim 53 wherein the means

Jor receiving the first request comprises means for veceiving

a pointer to a compressor data set.

55. The apparatus defined in claim 54 wherein the pointer
comprises an 1D associated with the compress data set
whose creation occurred at time of encryption.

56. The apparatus defined in claim 53 further comprising
means for preventing continued execution of the program in
a manner that the program was originally designed to be
executed if the first request is determined to be improper.

57. The apparatus defined in claim 53 further comprising
means for accessing the requested program information

from memory.

58. The apparatus defined in claim 57 further comprising
means for translating at least a portion of the requested
program information.

59. The apparatus defined in claim 57 further comprising
means for decrypting the requested program information.

60. The apparatus defined in claim 53 further comprising
means for separating the rvequested program information
between the first subset and a second subset.

US RE40,405 E

37

61. The apparatus defined in claim 53 wherein the means
for maintaining information vegarding a second subset com-
prises means for storving a branch table with information
relating to execution of the at least one instruction.

62. The apparatus defined in claim 53 wherein the means
for maintaining information regarding a second subset com-
prises means for storing checksum information relating to
execution of instructions in the requested program informa-
tion.

63. The apparatus defined in claim 53 wherein the means
for maintaining information regarding a second subset com-
prises means for stoving timing information relating to
execution of instructions in the requested program informa-
tion.

64. The apparatus defined in claim 53 wherein the means
Jor receiving the second request comprises means for receiv-
ing a branch request.

65. The apparatus defined in claim 64 further comprising
means for determining if the branch vequest is proper.

66. The apparatus defined in claim 65 further comprising
means for halting execution of instructions in the program
information if the branch request is improper.

67. The apparatus defined in claim 53 wherein the instruc-
tion information comprises a branch address.

68. An article of manufacture comprising one or more
recorvdable media having executable instructions storved
thereon which, when executed by a system, cause the proces-
SO¥ 1o:

receive a first request for program information having a
plurality of instructions;

determine if the first request is proper;

send a first subset of vequested program information if the
request is proper;

maintain information rvegarding a second subset of the
requested program information, the second subset

relating to at least one instruction in the vequested pro-
gram information not included in the first subset;

receive a second request corresponding to an instruction
of the requested program information not in the first
subset; and

send information corrvesponding to the instruction to
allow continued execution of the program information
as if the instruction had been included in the first sub-
sel.

69. An apparatus for executing a secure program COm-

prising:

an input to receive a first vequest for program information
having a plurality of instructions;

a processing unit to determine if the first request is proper
and to send a first subset of requested program infor-
mation if the request is proper;

a memory to stove information regarding a second subset
of the requested program information, the second sub-
set velating to at least one instruction in the vequested
program information not included in the first subset;
and

wherein the input receives a second request correspond-
ing to an instruction of the requested program informa-
tion not in the first subset, and, in vesponse thereto, the
processing unit access the memory and sends informa-
tion corresponding to the instruction and genervated in
response to the memory access to allow continued
execution of the program information as if the instruc-

tion had been included in the first subset.
70. The apparatus defined in claim 69 wherein the input
receives a pointer to a compressed data set, the pointer com-

10

15

20

25

30

35

40

45

50

55

60

65

38

prising an ID associated with the compress data set whose
creation occurrved at time of encryption.

71. The apparatus defined in claim 69 wherein the pro-
cessing unit prevents continued execution of the program in
a manner that the program was originally designed to be
executed if the first request is determined to be improper.

72. The apparatus defined in claim 69 wherein the pro-
cessing unit accesses the program from memory and trans-

lates at least a portion of the requested program informa-
tion.

73. The apparatus defined in claim 69 wherein the pro-
cessing unit accesses the program from memory and

decrypts the requested program information.

74. The apparatus defined in claim 69 wherein the pro-
cessing unit separvates the requested program information
between the first subset and a second subset.

73. The apparatus defined in claim 69 wherein the
memory stores information regarding a second subset com-
prises means for storving a branch table with information
relating to execution of the at least one instruction.

76. The apparatus defined in claim 69 wherein the
memory stoves information regarding a second subset com-

prises means for storving checksum information relating to
execution of instructions in the requested program informa-
tion.

77. The apparatus defined in claim 69 wherein the
memory stores information regarding a second subset com-
prises means for storing timing information relating to
execution of instructions in the requested program informa-
tion.

78. The apparatus defined in claim 69 wherein the second
request comprises a branch request.

79. The apparatus defined in claim 78 wherein the pro-
cessing unit determines if the branch request is proper and

sends a branch address if the branch vequest is proper.
80. A method for a processor to execute a program com-

prising:
generating a first vequest for program information;
receiving a portion of the program information requested;

executing instructions in the received program
information, including

generating a second request if program information
encounterved durving execution corresponds to an
instruction of a first type that must be executed to con-
tinue execution of the program yet is not included in the
received program information;

receiving non-instruction data in response to the second
request; and

operating on the non-instruction data to continue execu-
tion of the program as if the instruction had been
executed by the processor.

81. An apparatus for executing a program COmprising.

means for generating a first vequest for program informa-
tion;

means for rveceiving a portion of the program information
requested; and

means for executing instructions in the received program

information, including:

means for generating a second rvegquest if program
information encounteved during execution corre-
sponds to an instruction of a first type that must be
executed to continue execution of the program vet is
not included in the received program information;

means for veceiving non-instruction data in vesponse to
the second request; and

means for operating on the non-instruction data to con-
tinue execution of the program as if the instruction
had been executed by the processor.

US RE40,405 E

39

82. An article of manufacture comprising one ov more
recordable media with executable instructions stored
thereon which, when executed by a system, cause the system
o

generate a first request for program information;

receive a portion of the program information requested,
and

execute instructions in the veceived program information
by generating a second vequest if program information
encounterved during execution corresponds to an
instruction of a first type that must be executed to con-
tinue execution of the program yet is not included in the
received program information;

receiving non-instruction data in rvesponse to the second
request; and

operating on the non-instruction data to continue execu-
tion of the program as if the instruction had been
executed by the processor.

83. A method of executing a secuve program comprising:

providing a first portion of a program to a processov over
an insecure processor bus;

accepting a request from the processor over the insecure
processor bus for elements of a second portion of the
program not included in the first portion of the program
needed to continue execution of the program;

determining whether the regquest is consistent with
expected processor state and any previous requests;

processing the vequest from the processor for elements of

the second portion of the program; and

sending a response to the vequest to enable continued
execution of the program by the processor without the
processor executing an instruction in the second por-
tion of the program.

84. The method defined in claim 83 wherein the response
comprises a branch address.

83. The method defined in claim 83 wherein the vesponse
comprises a branch address to which the processor jumps so
that the processor doesn’t execute the branch instruction
that would have caused the processor to perform such a

ump.
! Sf;. An apparatus for executing a secure program COm-
prising:
means for providing a first portion of a program to a
processor over an insecure processor bus;
means for accepting a request from the processor over the
insecure processor bus for elements of a second portion
of the program not included in the first portion of the
program needed to continue execution of the program,

means for determining whether the rvequest is consistent
with expected processor state and any previous
requests;

means for processing the rvequest from the processor for
elements of the second portion of the program; and

means for sending a response to the request to enable
continued execution of the program by the processor
without the processor executing an instruction in the
second portion of the program.

87. The apparatus defined in claim 86 wherein the
response comprises a branch address.

88. The apparatus defined in claim 86 wherein the
response comprises a branch address to which the processor
Jumps so that the processor doesn’t execute the branch
instruction that would have caused the processor to perform
such a jump.

10

15

20

25

30

35

40

45

50

55

60

40

89. An article of manufacture comprising one or more
recordable media with executable instructions stored
thereon which, when executed by a system, cause the system
o

provide a first portion of a program to a processor over an

insecure processor bus;

accept a request from the processor over the insecure pro-
cessor bus for elements of a second portion of the pro-
gram not included in the first portion of the program
needed to continue execution of the program,

determine whether the vequest is consistent with expected
processor state and any previous requests;

process the vequest from the processor for elements of the
second portion of the program if the request is deter-
mined to be consistent; and

send a response to the request to enable continued execu-
tion of the program by the processor without the pro-
cessor executing an instruction in the second portion of
the program.

90. An apparatus for executing a secure program in coop-
eration with a processor, the apparatus comprising:

a memory,

a processing unit coupled to the memory and the input,
wherein the processing unit provides a first portion of a
program to the processov over an insecure processor
bus;

an input to accept a rvequest from the processor over the
insecure processor bus for elements of a second portion
of the program not included in the first portion of the
program needed to continue execution of the program,
and

wherein the processing unit determines whether the
request is consistent with expected processor state and
any previous vequests and processes the request for ele-
ments of the second portion of the program if the
request is consistent, and thereafter sends a response to
the rvequest to enable continued execution of the pro-
gram by the processor without the processor executing
an instruction in the second portion of the program.

91. The apparatus defined in claim 90 wherein the

response comprises a branch address.

92. The apparatus defined in claim 90 wherein the
response comprises a branch address to which the processor

Jumps so that the processor doesn’t execute the branch

instruction that would have caused the processor to perform
such a jump.

93. An apparatus for executing a program in a compuiter
system, the apparatus comprising:

a program memory to stove the program data in a secure

MARReEr,

a security chip coupled to the program memory, the secu-
vity chip comprising:
means for providing a first portion of the program data
to memory locations accessible by a processor; and
a memory for storing a second portion of the program
data not included in the first portion, the memory not
dirvectly accessible by the processor;

means for vequesting subsets of the second portion of the
program data for use by the processor; and

means, within the security chip, for determining whether
the vequest is proper based on stoved processor state
information and for providing information that allows
continued execution of instructions in the program data
even though the processor does not execute each of the
instruction itself.

	Front Page
	Drawings
	Specification
	Claims

