

US00RE40268E

(19) United States

(12) Reissued Patent

Meyers et al.

(10) Patent Number:

US RE40,268 E

(45) Date of Reissued Patent:

Apr. 29, 2008

(54) WHEEL LIFT IDENTIFICATION FOR AN AUTOMOTIVE VEHICLE

- (75) Inventors: Joseph Carr Meyers, Farmington Hills,
 - MI (US); Todd Allen Brown, Dearborn,

MI (US)

(73) Assignee: Ford Global Technologies, LLC,

Dearborn, MI (US)

- (21) Appl. No.: 11/019,148
- (22) Filed: **Dec. 21, 2004**

Related U.S. Patent Documents

Reissue of:

(64) Patent No.: 6,356,188
Issued: Mar. 12, 2002
Appl. No.: 09/669,513
Filed: Sep. 25, 2000

(51) **Int. Cl.**

B60Q 1/00 (2006.01)

701/71

See application file for complete search history.

(56) References Cited

U.S. PATENT DOCUMENTS

2,917,126 A	12/1959	Phillips
3,604,273 A	9/1971	Kwok et al.
3,608,925 A	9/1971	Murphy
3,797,893 A	3/1974	Burckhardt
3 899 028 A	8/1975	Morris et al

3,948,567	A	4/1976	Kasselmann et al.
3,972,543	\mathbf{A}	8/1976	Presley et al.
4,023,864	A	5/1977	Lang et al.
RE30,550	E	3/1981	Reise
4,480,714	A	11/1984	Yabuta et al.
4,592,565	A	6/1986	Eagle
4 597 462	Δ	7/1986	Sano et al

(Continued)

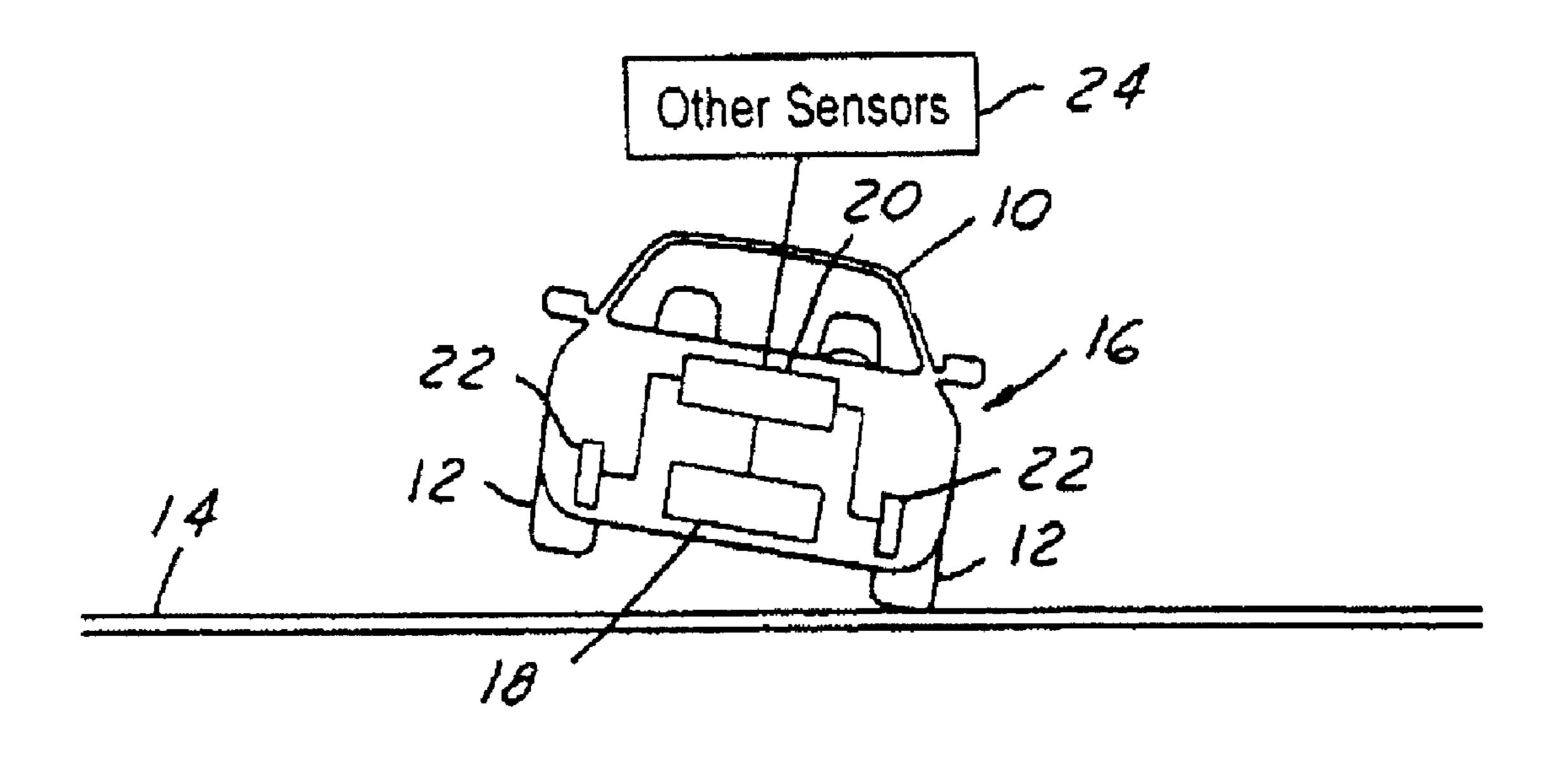
FOREIGN PATENT DOCUMENTS

DE	36 16 907	11/1987
DE	38 15 938	11/1989
DE	43 21 571	1/1994
DE	42 27 886	2/1994
DE	42 28 893	3/1994

(Continued)

OTHER PUBLICATIONS

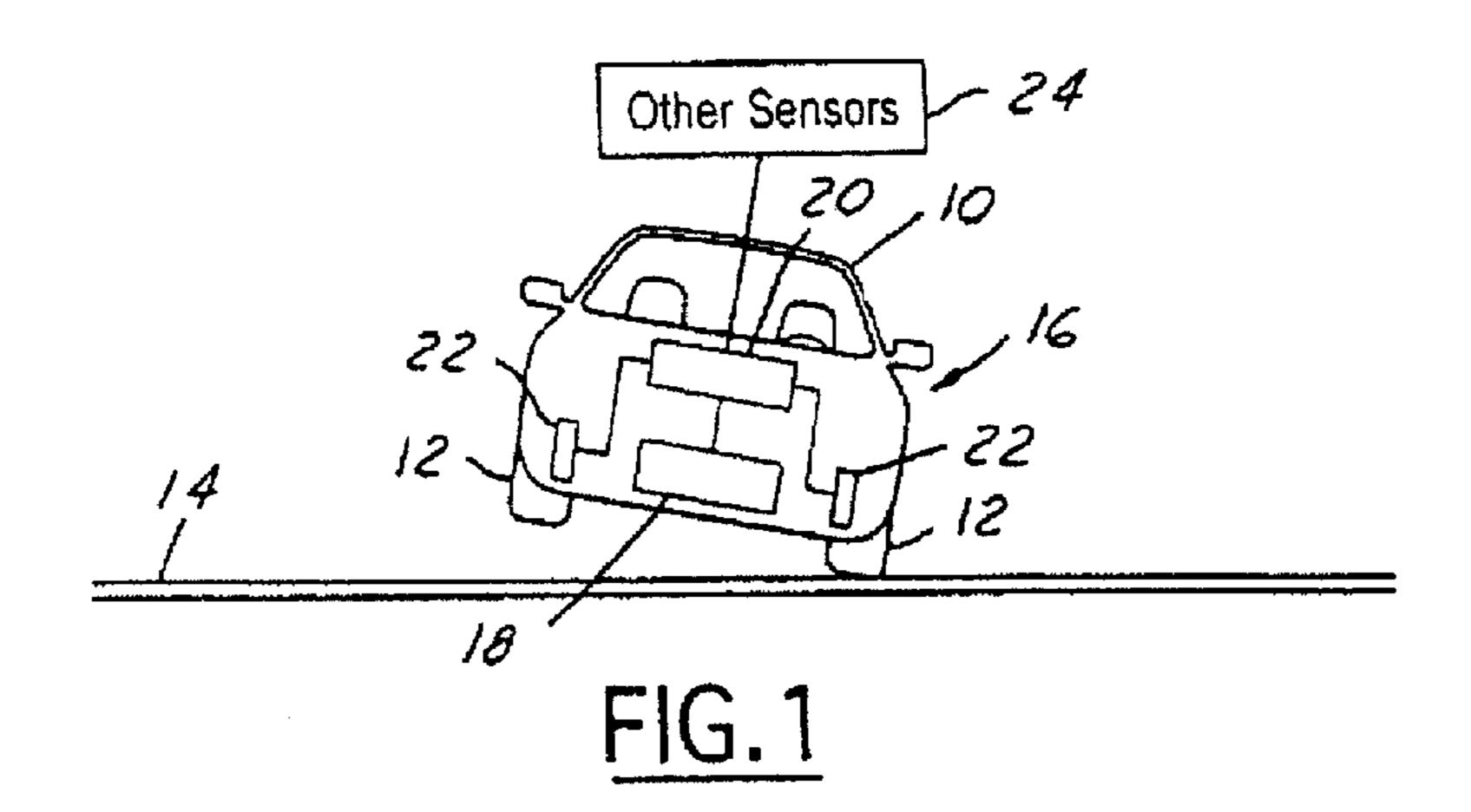
U.S. Appl. No. 10/459,697, filed Jun. 11, 2003, Lu. U.S. Appl. No. 10/608,909, filed Jun. 27, 2003, Lu.


(Continued)

Primary Examiner—Tai Nguyen (74) Attorney, Agent, or Firm—Fred Owens, Esq.; Dickinson Wright PLLC

(57) ABSTRACT

A system for detecting wheel lift of an automotive vehicle has a speed sensor (22) coupled to a wheel (12) of automotive vehicle (10). A torque control system (20) is coupled to wheel (12) to change the torque at the wheel. A controller (18) is coupled to the torque control system and a speed sensor. The controller (18) determines lift by changing the torque of the wheel, measuring the change in torque and indicating lift in response to change in torque which may be indicated by wheel speed.


14 Claims, 2 Drawing Sheets

US RE40,268 E Page 2

IIS PATENT	DOCUMENTS	5,723,782 A	3/1998	Bolles, Jr.
U.S. IAILINI	DOCUMENTS	5,732,377 A	3/1998	, , , , , , , , , , , , , , , , , , ,
4,624,476 A 11/1986	Tanaka et al.	5,732,378 A		Eckert et al.
4,650,212 A 3/1987	Yoshimura 280/707	5,732,379 A		Eckert et al.
, ,	Ito et al.	5,736,939 A		Corcoran
	Fukamizu et al.	5,737,224 A		Jeenicke et al.
	Fukunaga et al.	5,740,041 A	4/1998	
, ,	Ohashi et al	5,740,877 A	4/1998	
4,765,649 A 8/1988 4,767,588 A 8/1988	Ikemoto et al.	5,742,918 A		Ashrafi et al.
, ,	Sukegawa	5,742,919 A	4/1998	Ashrafi et al.
	Eckert	5,762,406 A	6/1998	Yasui et al.
, ,	Kawagoe et al.	5,782,543 A	7/1998	Monzaki et al.
	Tanaka et al.	5,787,375 A	7/1998	Madau et al.
4,872,116 A 10/1989	Ito et al.	5,801,647 A	9/1998	Survo et al.
4,888,696 A 12/1989	Akatsu et al.	5,809,434 A	9/1998	Ashrafi et al.
4,898,431 A 2/1990	Karnopp et al.	5,816,670 A		Yamada et al.
, ,	Harara et al.	5,825,284 A		Dunwoody et al.
, , , , , , , , , , , , , , , , , , ,	Watanabe et al.	5,842,143 A		Lohrenz et al.
4,960,292 A 10/1990		, ,		Dickinson et al.
4,964,679 A 10/1990		5,857,535 A 5,869,943 A	1/1999	Nakashima et al.
, ,	Schindler Matsumoto 180/197	5,809,943 A 5,878,357 A		Sivashankar et al.
	Karnopp et al.	5,890,084 A		Halasz et al.
5,033,770 A 7/1991		5,893,896 A		Imamura et al.
5,058,017 A 10/1991		5,925,083 A		Ackermann
5,066,041 A 11/1991		5,931,546 A		Nakashima et al.
, ,	Matsuda et al.	5,944,137 A	8/1999	Moser et al.
5,089,967 A 2/1992	Haseda et al.	5,944,392 A	8/1999	Tachihata et al.
5,163,319 A 11/1992	Spies et al.	5,946,644 A	8/1999	Cowan et al.
5,200,896 A 4/1993	Sato et al.	5,964,819 A	10/1999	
, ,	Adachi et al.	5,971,503 A		Joyce et al.
, ,	Matsuda	, ,		Schiffmann 701/36
, ,	Ito et al.	, ,		Schiffmann et al.
, ,	Takenaka et al.	, ,		Noro et al.
	Shimada et al.	6,038,495 A		Schiffman
5,261,503 A 11/1993	Nakayama 364/424.05	6,040,916 A 6,050,360 A		Griesinger Pattok et al.
	Williams	6,055,472 A		Breunig et al.
, ,	Ander et al.	6,062,336 A		Amberkar et al.
	Gioutsos et al.	6,065,558 A		Wielenga
	Yamamura et al.	6,073,065 A		Brown et al.
	Takata et al.	6,079,513 A	6/2000	Nishizaki et al.
5,311,431 A 5/1994	Cao et al.	6,081,761 A	6/2000	Harada et al.
5,311,956 A 5/1994	Sugiyama	6,085,860 A	7/2000	Hackl et al.
, ,	Roll et al.	6,086,168 A	7/2000	-
, ,	Nakamura	6,089,344 A		Baughn et al.
, ,	Momose et al.	6,104,284 A		Otsuka
, ,	Akuta et al 180/197			Yamada et al.
, ,	Nakamura et al.	6,122,568 A		Madau et al. Lin et al.
, ,	Pastor et al. Hadeler et al.	6,122,584 A 6,129,172 A	10/2000	
	Zabler et al.	, ,		Mattes et al.
5,515,277 A 5/1996		, ,		
5,548,536 A 8/1996		6,144,904 A		-
	Cubalchini	6,149,251 A		_
5,560,688 A 10/1996		6,161,905 A	12/2000	Hac et al.
5,579,245 A 11/1996	Kato	6,169,939 B1	1/2001	Raad et al.
5,598,335 A 1/1997	You	6,169,946 B1	1/2001	Griessbach
5,602,734 A 2/1997	Kithil	6,176,555 B1		
5,610,575 A 3/1997		6,178,375 B1		
, ,	Fukada et al.	6,179,310 B1		Clare et al.
, ,	Cao et al.	6,179,394 B1		Browalski et al.
	Inagaki	6,184,637 B1		Yamawaki et al.
, ,	Liubakka Wanka	6,185,485 B1 6,185,497 B1		Ashrafti et al. Taniguchi et al.
5,671,982 A 9/1997 5,676,433 A 10/1997	wanke Inagaki et al.	6,185,497 B1		Hackl et al.
	Suissa et al.	6,192,305 B1		Schiffmann
5,703,776 A 12/1997		6,195,606 B1		Barta et al.
5,707,117 A 1/1998		6,198,988 B1	3/2001	
		, ,		~
5,707,120 A 1/1990	Monzaki et al.	6,202,009 B1	3/2001	
		•		

6,206,383 B1		Burdock	,	/	9/2004		
6,219,604 B1		Dilger et al.	2003/01	82025 A1	9/2003	Tseng et al.	
6,223,114 B1		Boros et al.		FOREIGN	I PATEI	NT DOCUN	MENTS
6,226,579 B1		Hackl et al.					
6,227,482 B1		Yamamoto Dietman et el	DE	43 35 9		4/1995	
6,233,510 B1 6,236,916 B1		Platner et al. Staub et al.	DE	43 42 7		6/1995	
6,263,261 B1		Brown et al.	DE	199 07 6		10/1999	
6,266,596 B1		Hartman et al.	DE	100254		5/2000	
6,272,420 B1		Schramm et al.	DE DE	100650 100460		12/2000 3/2002	
6,278,930 B1		Yamada et al.	DE DE	100400		1/2003	
6,282,471 B1		Burdock et al.	EP	0 430 8		12/1993	
6,282,472 B1	8/2001	Jones et al.	EP	0 662 6		7/1995	
6,282,474 B1	8/2001	Chou et al.	EP	0 758 6		2/1997	
6,290,019 B1	9/2001	Kolassa et al.	EP	1 046 5		4/2000	
6,292,734 B1	9/2001	Murakami et al.	EP	1 197 4	09	9/2001	
6,292,759 B1		Schiffmann	FR	24 25 3	42	12/1979	
6,311,111 B1		Leimbach et al.	GB	22574	03	1/1993	
6,314,329 B1		Madau et al.	GB	2 342 0	78	4/2000	
6,315,373 B1		Yamada et al.	JP	620552	211	9/1985	
6,321,141 B1		Leimbach	JP	631169		5/1988	
6,324,445 B2		Tozu et al.	JP	631515		6/1988	
6,324,446 B1 6,324,458 B1		Brown et al. Takagi et al.	JP	632034		8/1988	
6,330,522 B1		Takeuchi	JP	11012		4/1989	
6,332,104 B1		Brown et al.	JP ID	21713		7/1990	
6,338,012 B2		Brown et al.	JP JP	30423 30454		2/1991 2/1991	
6,349,247 B1		Schramm et al.	JP	40088		1/1991	
6,351,694 B1		Tseng et al.	JP	50166		1/1993	
6,352,318 B1		Hosomi et al.	JР	52544		10/1993	
6,356,188 B1	3/2002	Meyers et al.	JP	62785		10/1994	
6,363,309 B1	3/2002	Irie et al.	JP	62979		10/1994	
6,370,938 B1		Leimbach et al.	JP	63126	512	11/1994	
6,394,240 B1		Barwick	JP	80808	325	3/1996	
6,397,127 B1		Meyers et al.	JP	90053	552	1/1997	
6,419,240 B1		Burdock et al.	JP	100248	319	1/1998	
6,424,897 B1		Mattes et al.	JP	103296		12/1998	
6,428,118 B1 6,438,464 B1		Blosch Woywod et al.	JP	110112		1/1999	
6,459,990 B1		McCall et al.	JP	111709		6/1999	
6,471,218 B1		Burdock et al.	JP JP	112549		9/1999 9/1999	
6,477,480 B1		Tseng et al.	JР	112550 113046		10/1999	
6,496,758 B2		Rhode et al.	JP	113046		11/1999	
6,496,763 B2	12/2002	Griessbach	JP	113216		11/1999	
6,498,976 B1	12/2002	Ehlbeck et al.	SU	8166		3/1981	
6,502,023 B1	12/2002	Fukada	WO	WO 02/203		3/2002	
, ,		Burdock et al.	WO	WO 03/0723	97	9/2003	
6,529,803 B2		Meyers et al.		ОТН	ED DIII	BLICATION	JC
6,542,792 B2		Schubert et al.	_				
6,547,022 B2		Hosomi et al.			_		vers—anti–rollover
6,553,284 B2 6,554,293 B1		Holst et al. Fennel et al.			_	•	ive, LLC, Interna-
6,556,908 B1		Lu et al.		_	Exposi	tion, Detroi	it, Michigan, Mar.
6,559,634 B2		Yamada	1-4, 199				
6,593,849 B2		Chubb	Eger, R.,	, Majjad, R.,	Naser, 1	N., "Rollove	er simulation based
6,598,946 B2		Nagae	on a nor	ılinear model	", SAE	98020.	
6,600,414 B2		Foo et al.	Nalecz,	A.G., Binder	nann, A	A.C., Brewe	r H.K., "Dynamic
6,600,985 B2	7/2003	Weaver	analysis	of vehicle ro	llover",	12 th Interna	ational Conference
6,618,656 B2	9/2003	Kueblbeck et al.	on Expe	rimental Safe	ety Vehi	icles, Goteb	org, Sweden, May
6,631,317 B2	10/2003		•	1, 1989.	-		_
6,644,454 B2		Yamada et al.		·	Y., Nal	kagaw, K.,	"rollover analysis
6,650,971 B2	11/2003			of a large-siz	-		•
6,654,674 B2		Lu et al.		_	•		llover sequences",
6,657,539 B2 6,681,196 B2		Yamamoto et al. Glaser et al.		Engineering	-	_	•
6,704,631 B2		Winner et al.		-		` ′	eal-time Rollover
6,747,553 B2		Yamada et al.	,	•		*	Proceedings of the
6,756,890 B1		Schramm et al.		-	-		go, CA, Jun. 1999.
-,, .	J. 200 1					-, ~ 1102	J-, -, , -

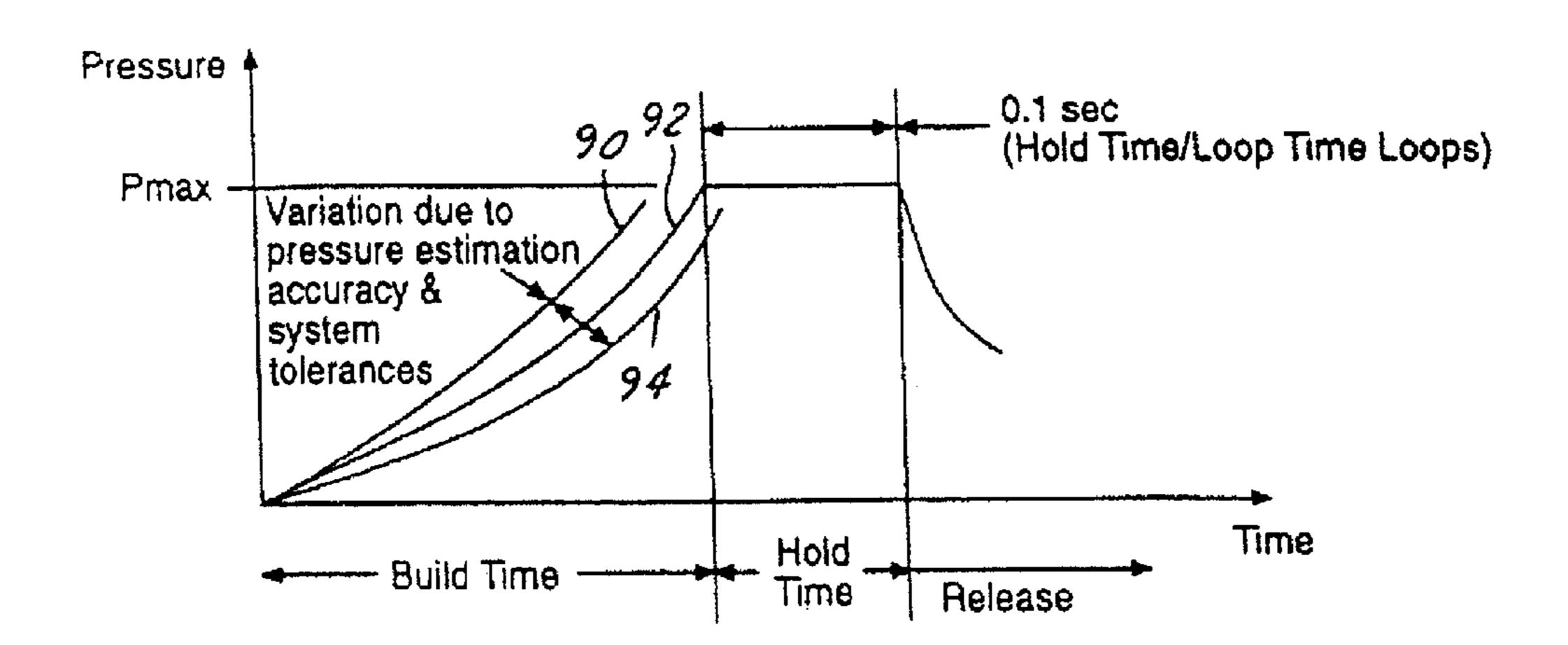


FIG.3A

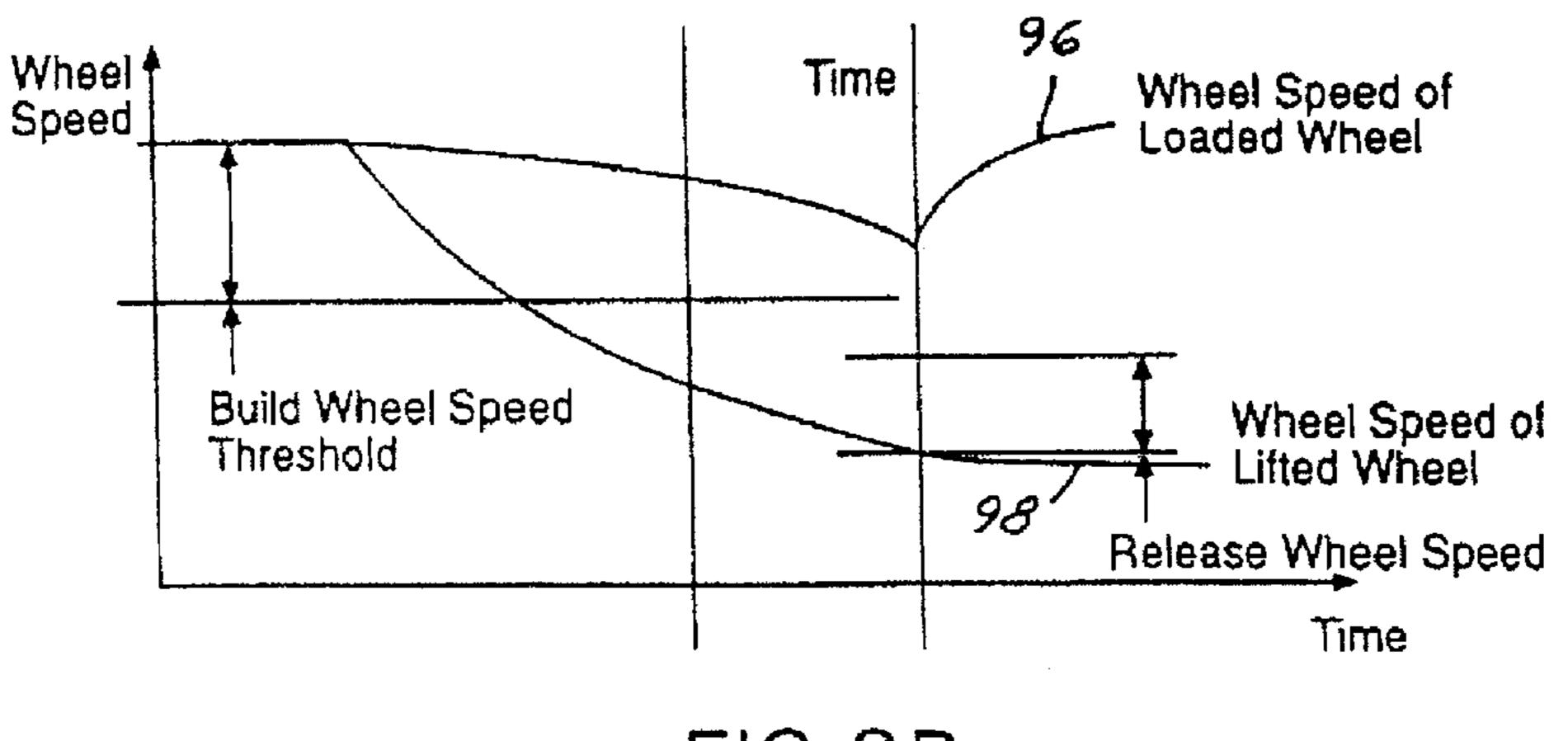
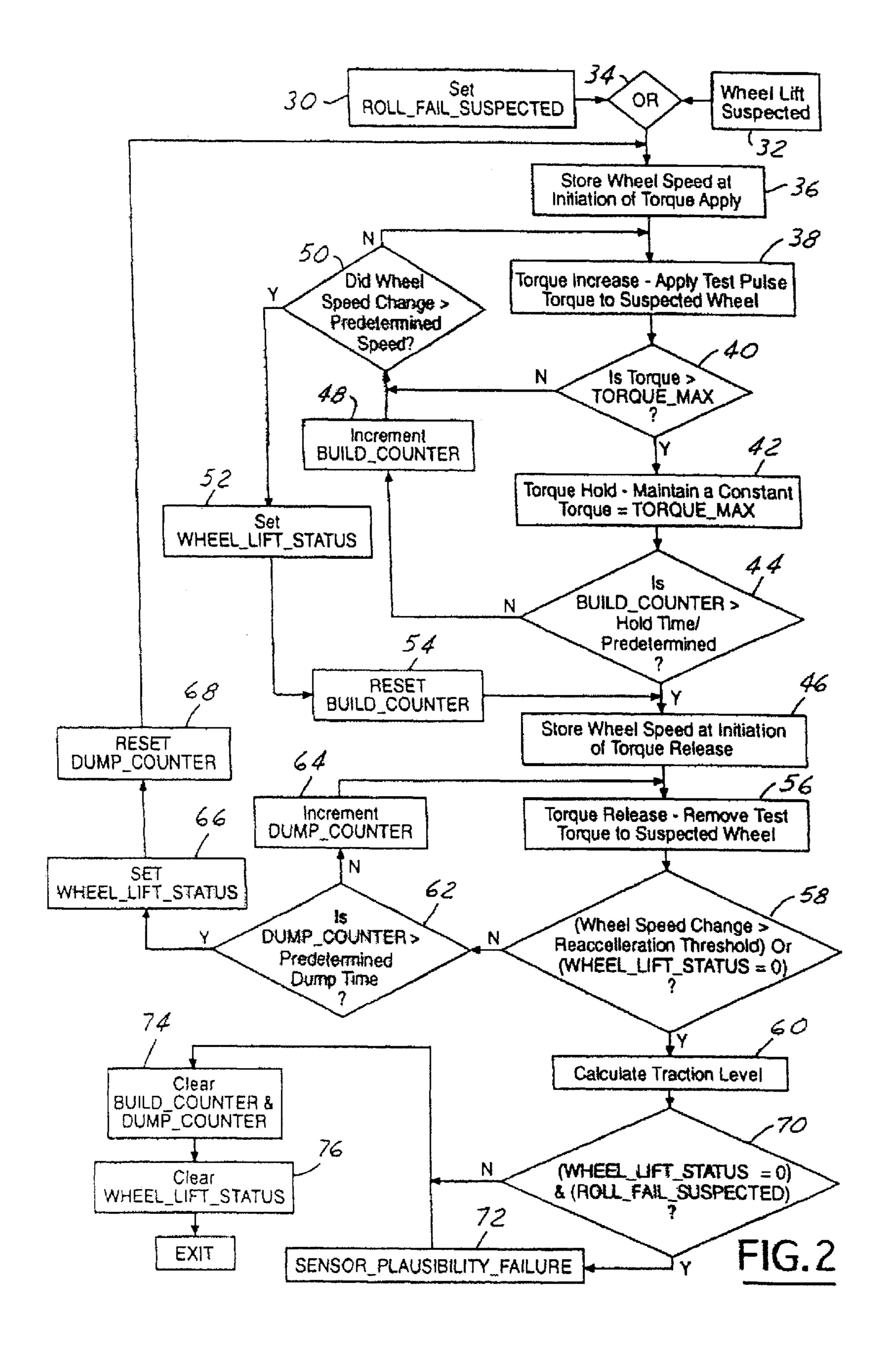



FIG.3B

WHEEL LIFT IDENTIFICATION FOR AN AUTOMOTIVE VEHICLE

Matter enclosed in heavy brackets [] appears in the original patent but forms no part of this reissue specification; matter printed in italics indicates the additions made by reissue.

TECHNICAL FIELD

The present invention relates generally to a dynamic behavior control apparatus for an automotive vehicle, and more specifically, to a method and apparatus for determining whether a wheel of an automotive vehicle has lifted from the pavement.

BACKGROUND

Dynamic control systems for automotive vehicles have recently begun to be offered on various products. Dynamic control systems typically control the yaw of the vehicle by 20 controlling the braking effort at various wheels of the vehicle. By regulating the amount of braking at each corner of the vehicle, the desired direction of the vehicle may be maintained.

Typically, the dynamic control systems do not address roll of the vehicle. For high profile vehicles in particular, it would be desirable to control the rollover characteristics of the vehicle to maintain the vehicle position with respect to the road. That is, it is desirable to maintain contact of each of the four tires of the vehicle on the road.

Vehicle rollover and tilt control (or body roll) are distinguishable dynamic characteristics. Tilt control maintains the body on a plane or nearly on a plane parallel to the road surface. Rollover control is used to maintain the vehicle wheels on the road surface.

Such systems typically use position sensors to measure the relative distance between the vehicle body and the vehicle suspension. One drawback to such systems is that the distance from the body to the road must be inferred.

It would therefore be desirable to provide a rollover detection system having reduced costs and increased reliability in predicting the occurrence of a rollover.

SUMMARY OF THE INVENTION

It is therefore one object of the invention to provide a rollover detection system that may be used in conjunction with the dynamic stability control system of the vehicle to determine rollover.

In one aspect of the invention, a wheel lift identification system for an automotive vehicle includes a speed sensor coupled to the vehicle producing a wheel speed signal. A torque control system is coupled to the wheel for charging the torque at the wheel. A controller is coupled to the torque control system and the speed sensor. The controller determines lift by changing the torque of the wheel, measuring the change in wheel speed since the torque was changed, and indicating a wheel lift if the change in the wheel speed is greater than a predetermined value.

In a further aspect of the invention, a method for determining wheel lift of a vehicle comprises the steps of:

changing the torque of a wheel;

measuring the change in wheel speed since the step of changing torque; and,

indicating wheel lift if the change in wheel speed is greater than a predetermined value.

2

In a further aspect of the invention, the changing of the torque of the wheel may be performed by increasing the brake pressure for that wheel. When the wheel speed has significant deceleration, a wheel flag is set. When the brake pressure is released and the wheel speed changes greater than a reacceleration threshold, then wheel contact is assumed. If the wheel speed does not increase over the reacceleration threshold within a predetermined time, then wheel lift status is confirmed. As an alternative, driveline torque may be used.

One advantage of the invention is that in vehicles employing a dynamic stability control system, additional sensors may not be required.

Other objects and features of the present invention will become apparent when viewed in light of the detailed description of the preferred embodiment when taken in conjunction with the attached drawings and appended claims.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a partial cutaway view of an automotive vehicle having a wheel lift identification system according to the present invention.

FIG. 2 is a flow chart of a wheel lift identification system according to the present invention.

FIG. 3A is a plot of pressure versus time for a wheel lift identification system according to one embodiment of the present invention.

FIG. 3B is a plot of wheel speed versus time for a wheel lift identification system according to one embodiment of the present invention.

DESCRIPTION OF THE PREFERRED EMBODIMENT

The present invention is described with respect to a wheel lift identification system for an automotive vehicle. Those skilled in the art will recognize that the present invention may be incorporated into a rollover prevention system for an automotive vehicle.

Referring now to FIG. 1, an automotive vehicle 10 has a 45 plurality of wheels **12**, two of which are shown as elevated above a road plane 14. A roll control system 16 is included within vehicle 10. The roll control system 16 is used to counteract the lifting of wheels 12 from road plane 14 as will be further described below. Roll control system 16 includes a roll controller 18 that is preferably microprocessor based. Roll controller 18 may be part of a dynamic stability control system of the automotive vehicle 10. Roll controller 18 is coupled to a torque control system 20 that is used to control the torque of the wheels 12. Although torque control system 55 20 is illustrated as a separate item, torque control system 20 may be included in roll controller 18 which may in turn be included within a dynamic stability control system. Torque control system 20 may act in conjunction with the electronic engine controller, a driveline engagement mechanism or 60 braking system, or a combination of these to control the torque at one or all of the wheels 12. Torque controller 20 and roll controller 18 may be coupled to wheel speed sensors 22 located at each of the wheels 12. Wheel speed sensors 22 provide roll controller 18 with a signal indicative of the speed of the individual wheel to which it is attached. Various types of wheel speed sensors including toothed-wheel type systems would be evident to those skilled in the art.

Other sensors 24 may be coupled to roll control system 16. For example, roll angle sensors, steering wheel angle sensors, yaw rate sensors, and other sensors may be incorporated therein. Other sensors 24, as will be further described below, may be used to identify a condition suitable for the potential of wheel lift. Such a condition may initiate further action by roll control system 16 to verify wheel lift.

In the following example, the application of brake pressure is used to provide the change in torque. However, other methods such as applying engine torque may also be used to change the amount of torque at a wheel. Further references to the application of torque to a wheel may include hydraulic or electric brake torque, changes in engine torque or engagement of driveline torque through the use of an electronically controlled transfer case, differential, transmission or clutch. The present invention may also be used to determine if a sensor has failed in the roll control system **16**. That is, if roll is suspected by a particular sensor but all other conditions or sensors indicate otherwise, the sensor may be operating improperly. Also, although speed is used, wheel acceleration may also be used in place of speed as would be evident to those skilled in the art.

Referring now to FIG. 2, in step 30, if a roll sensor failure is suspected or in step 32 if wheel lift is suspected by the roll control system 16, block 34 initiates the wheel lift determination process. In step 36, torque is applied to the wheel suspected of lifting and the wheel speed at the suspected wheel is stored. In step 38, the torque is increased by applying a test pulse of torque to the suspected wheel. Torque is applied until a torque threshold (Torque_Max) is 30 achieved. In step 40, if the torque is greater than the Torque_Max, the torque is held constant in step 42. In step **44**, if the time as counted by the Build_Counter is greater than a predetermined time, step 46 is executed in which the torque is released and the wheel speed at the initiation of the 35 release of torque is stored. In step 44, if the counter is not greater than the predetermined hold time, the counter is incremented in step 48. After step 48 the change in wheel speed is compared to a predetermined change in wheel speed. If the wheel speed change is not greater than a 40 predetermined speed in step 50, steps 38-44 are again executed. If the wheel speed change is greater than a predetermined speed, this indicates a lifted wheel. In this case, step 52 is executed in which a wheel lift status flag is set. After step 52, step 54 is executed in which the build 45 counter is reset.

Referring back to step 40, if the torque is not greater than the torque threshold then step 50 is executed.

Referring back to step **46**, after the wheel speed is recorded after the torque release, step **56** is executed. In step **56** torque is released. After step **56**, step **58** is implemented in which the wheel speed change is compared to a reacceleration threshold. The reacceleration threshold is a predetermined value that corresponds to a wheel speed change that should be achieved should wheel contact be reestablished. The wheel speed change is determined from the time that the torque was released. If the wheel speed change is greater than a reacceleration threshold or if the wheel lift status from steo **52** is zero, wheel contact is assumed. In such a case the traction level may be calculated in step **60**. If the wheel speed does not increase over the reacceleration threshold, then the wheel lift status is confirmed beginning with step **70**.

Referring back to step **58**, if the wheel speed is less than 65 the reacceleration threshold, step **62** compares the Dump__ Counter to a predetermined dump time. If the predetermined

4

dump time is greater than the Dump_Counter, then the Dump_Counter is incremented in step 64 and steps 56 and 58 are again executed. If the Dump_Counter is greater than the predetermined dump time, then the wheel lift status flag is set in step 66 and the Dump_Counter is reset in step 68. After step 68, the process is reinitiated and returns to step 36.

Returning back to step 60, the traction level is calculated in step 60. After step 60, the plausibility of a sensor failure is determined. If, for example, the process was initiated based on the suspicion of a sensor failure from block 30 above and no wheel lift was detected, a sensor failure is indicated in step 72. For either result, if a sensor failure is indicated by block 70 or not, the build counter and Dump__ Counter are cleared in block 74 and the wheel lift status is cleared in block 76. The end of the routine occurs in block 78.

Thus, as can be seen, the application of torque can be used to first determine whether a suspected wheel has lifted from the pavement. For confirmation, the removal of the torque and the resulting wheel speed change may be used to confirm the initial finding. Advantageously, the system may be implemented in a dynamic stability system of an automotive vehicle without adding further sensors. If rollover is detected, then the rollover can be corrected by applying the brakes or generating a steering correction.

Referring now to FIG. 3A, various lines 90, 92, 94 are illustrated during the build time to illustrate the variation in pressure of the braking system due to wear and other effects of the brakes. Lines 90, 92 94 have little effect on the overall operation of the system. Thus, the thresholds and parameters are selected so that the system is robust to wear and system variation. The maximum pressure P_{max} is reached and maintained for a hold time (such as set forth in step 42 above) until it is released.

Referring now to FIG. 3B, a plot of wheel speed corresponding to the various times is illustrated. As shown, the wheel speed of a loaded wheel is illustrated by line 96 which is higher than the wheel speed of a lifted wheel illustrated by line 98.

While particular embodiments of the invention have been shown and described, numerous variations alternate embodiments will occur to those skilled in the art. Accordingly, it is intended that the invention be limited only in terms of the appended claims.

What is claimed is:

[1. A method for determining wheel lift of a wheel of an automotive vehicle comprising the steps of:

applying a change of torque to the wheel;

measuring a change in a wheel condition since initiating the step of applying a change of torque;

indicating wheel lift if the change in the wheel condition is greater than a predetermined value.

[2. A method as recited in claim 1 wherein the condition is one selected from the group of acceleration and speed.]

[3. A method as recited in claim 1 further comprising the step of removing the change of torque;

measuring a wheel condition after the step of removing the change of torque.]

- [4. A method as recited in claim 3 further comprising the step of determining whether the second wheel condition is above a threshold.]
- [5. A method as recited in claim 1 wherein the step of applying a change of torque comprises applying a brake to the wheel.]
- [6. A method as recited in claim 5 further comprising the step of releasing the brake;

- determining a wheel condition after the step of releasing the brake;
- when the wheel condition does not increase over a reacceleration threshold, confirming wheel lift;
- when wheel speed condition increases over a reacceleration threshold, indicating wheel contact.
- [7. A method as recited in claim 1 wherein the step of applying a change of torque comprises applying engine torque.]
- **8**. A method for monitoring a predetermined condition of an automotive vehicle having a plurality of wheels comprising the steps of:
 - determining a potential for the predetermined condition of the wheel;
 - measuring a first wheel speed of a suspected lifting wheel; thereafter, changing [the] torque [of a] applied to the suspected lifting wheel from a first torque to a second torque;
 - changing the torque [from the vehicle] applied to the suspected lifting wheel from the second torque to the first torque;
 - measuring a second wheel speed of the suspected lifting wheel;
 - determining a wheel speed change as a function of the first wheel speed and the second wheel speed;
 - when the change in wheel speed is greater than a reacceleration threshold, confirming the wheel lift.
- 9. A method as recited in claim 8 wherein [the predetermined condition is] determining a potential for wheel lift comprises determining the potential for wheel lift as a function of roll angle, steering wheel angle, and road bank angle.
- 10. A method as recited in claim 8 wherein the step of changing the torque comprises the step of applying the brake.
- 11. A method as recited in claim 8 wherein the step of changing the torque comprises the step of applying engine torque.
- [12. A method as recited in claim 8 wherein a predetermined condition comprises a sensor failure.]
- [13. A method as recited in claim 8 wherein the predetermined condition comprises wheel lift.]
- 14. A method as recited in claim 8 further comprising the step of correcting lift by applying the brakes.
- 15. A method as recited in claim 8 further comprising the step of correcting lift by applying a steering correction.
- 16. A method as recited in claim 8 further comprising the step of calculating a traction level after the step of confirming wheel lift.
- 17. A system for detecting lift of a wheel of an automotive vehicle comprising:
 - a speed sensor coupled to the wheel producing a wheel speed signal;
 - a torque control system coupled to the wheel for changing [the] torque [at] applied to the wheel;
 - a controller coupled to the said torque control system and the wheel speed sensor, said controller determining lift by changing the torque [of] applied to the wheel, 60 increasing [the] a brake torque until a maximum brake torque threshold is achieved, detecting a change in wheel speed since [the] application of the brake torque, comparing the change in wheel speed to a threshold, when the change in wheel speed is above the wheel 65 speed change threshold value, indicating wheel lift, when the brake torque reaches a maximum value before

6

the change in wheel speed reaches the threshold, holding the *brake* torque for a predetermined amount of time, continuing to monitor the change in wheel speed during a hold duration, determining a second change in wheel speed, comparing the second change in wheel speed to the threshold value, when the second change in wheel speed exceeds the threshold value during the hold duration, indicating lift.

- 18. A method for determining wheel lift of a vehicle comprising the steps of:
 - applying a torque to [the] a wheel by applying a brake torque;
 - increasing the brake torque to build until a maximum brake torque threshold is achieved;
 - detecting [the] a change in wheel speed since the application of brake torque;
 - comparing the change in wheel speed to a wheel speed change threshold;
 - when the change in speed is above the wheel speed change threshold value, indicating wheel lift;
 - when the brake torque reaches a maximum value before the change in wheel speed reaches the *wheel speed change* threshold, holding the torque for a predetermined amount of time;
 - continuing to monitor the change in wheel speed during a hold duration;
 - determining a second change in wheel speed;
 - comparing the second wheel speed to the threshold value; when the second wheel speed exceeds the threshold value during the hold duration, indicating a wheel lift.
- 19. A method as recited in claim 18 further comprising the steps of:

releasing the torque;

determining a wheel speed change;

- when the wheel speed change is greater than a reacceleration threshold, indicating wheel contact;
- when the wheel speed change is less than the *reaccelera-tion* threshold, confirming an indication of wheel lift.
- 20. A method as recited in claim 18 further comprising the step of calculating a traction level.
- 21. A method as recited in claim 18 further comprising the step of when wheel lift is detected, continually monitoring the wheel speed change for a sudden increase to acknowledge wheel contact.
- 22. A method for monitoring wheel lift of an automotive vehicle having a plurality of wheels comprising the steps of: determining a potential for wheel lift of the wheel as a function of road bank angle;
 - measuring a first wheel speed of a suspected lifting wheel; thereafter, changing a torque of the suspected lifting wheel from a first torque to a second torque;
 - changing the torque of the suspected lifting wheel from the second torque to the first torque;
 - measuring a second wheel speed of the suspected lifting wheel;
 - determining a wheel speed change as a function of the first wheel speed and the second wheel speed;
 - when the change in wheel speed is greater than a reacceleration threshold, confirming wheel lift.
- 23. A method for monitoring a sensor failure condition of an automotive vehicle having a plurality of wheels comprising the steps of:
 - determining a potential for sensor failure;

measuring a first wheel speed;

thereafter, changing a torque of a suspected lifting wheel from a first torque to a second torque;

changing the torque from the second torque to the first torque;

measuring a second wheel speed;

8

determining a wheel speed change as a function of the first wheel speed and the second wheel speed; when the change in wheel speed is greater than a reacceleration threshold, confirming the sensor failure.

* * * *