(19) United States

12) Reissued Patent
Doktor

(10) Patent Number:
45) Date of Reissued Patent:

USOORE40063E

US RE40.,063 E
Feb. 12, 2008

(54) DATA PROCESSING AND METHOD FOR
MAINTAINING CARDINALITY IN A
RELATIONAL DATABASE

(76) Karol Doktor, 26 Threadbow Crescent,
Wheelers Hill, Victoria, 3150 (AU)

Inventor:

(21)
(22)

Appl. No.: 11/152,839
Filed: Jun. 14, 2005

Related U.S. Patent Documents
Reissue of:
(64) Patent No.:
Issued:
Appl. No.:
Filed:

3,073,779
Oct. 7, 1997
08/439,207
May 11, 1995

U.S. Applications:

(62) Division of application No. 08/083,861, filed on Jun. 28,
1993, now Pat. No. 5,604,899, which 1s a continuation of
application No. 07/526,424, filed on May 21, 1990, now
abandoned.

Int. CIL.
GO6F 17/30

(51)
(2006.01)
(52)

US.CL . 707/4;, 70°7/3; 707/101;

707/102; 707/103 R; 707/200

Field of Classification Search 707/101,
707/102, 103 R, 200
See application file for complete search history.

(58)

(56) References Cited

U.S. PATENT DOCUMENTS

3,618,027 A 1171971 Feng .ccovvvvvninininininnn.n. 364/900
3,670,310 A 6/1972 Bharwani et al. 395/603
4,068,300 A 1/1978 Backman 364/200
4,128,891 A 12/1978 Linetal. covevvvivvvnn...... 364/900
4,497,039 A 1/1985 Kitakami et al. 364/900
4,498,145 A 2/1985 Bakeretal. 364/900
4,575,798 A 3/1986 Lindstrom et al. 364/300
4.631,664 A 12/1986 Bachman 364/200
(Continued)
400
RELATION R-1

FOREIGN PATENT DOCUMENTS

WO 00/07354
WO 01/15811

WO
WO

2/2000
8/2001

OTHER PUBLICATIONS

Rudolf Munz, “The Well System: A Multi—User Database
System Based On Binary Relationships and Graph—Pattern—
Matching”, 1978, Pergamon Press Ltd., pp. 99-114.%

Rudolf Munz, “Design of The Well System™, 1980, Noth—
Holland Publishing Company, pp. 505-522.%

Korth and Silberschatz, Database System Concepts,
McGraw—Hill Book Company (New York, 1986), pp.

45-105; pp. 301-323.

“Extended Disjunctive Normal Form for Eflicient Process-
ing of Recursive Logic Queries”, IBM Technical Disclosure

Bulletin, vol. 30, No. 1, Jun. 1987 pp. 360-366.

Yu et al, “Automatic Knowledge Acquisition and Mainte-
nance For Semantic Query Optimization™, IEEE Transac-
tions on Knowledge and Data Engrn, V: 1, No. 3 Sep. 1989,
pp. 362-375.

Kifer et al, “Sygraf: Implementing Logic Programs 1n a
Database Style” IEEE Transactions on Soiftware Engnrm. v:
14, N7, Jul. 1988 pp. 92-935.

(Continued)

Primary Examiner—Hung (Q Pham
(74) Attorney, Agent, or Firm—Allen, Dyer, Doppelt,
Milbrath & Gilchrist, P.A.

(57) ABSTRACT

A relationships processing computing system provides for
the recording and extraction of data objects (entities) and for
development data representing a queried relationship
between data objects (entities). The set of enfities and
relationships may be expanded at any time during the life of
the system without reprogramming or compiling computer
code and without disrupting concurrent use of the system.
Complex inquiries, normally requiring multiple nested
queries, may be performed without code level programming.

6 Claims, 19 Drawing Sheets

= Mead Attribute + Tail Attribm

Meanl
[ardtnalrty ong fa many }
Mandatnl)' Coupling = Yes/No

INSTANC

1 fEl
J\= "Cugtomer-B°

E]

US RE40,063 E
Page 2

U.S. PATENT DOCUMENTS

4,670,848 A 6/1987 Schramm 364/513
4,791,561 A 12/1988 Hubercoceevennnnen. 364/300
4,807,122 A 2/1989 Babaccocveviinnnnn 364/200
4,829,427 A 5/1989 Greencoeeevvininnnn. 364/300
4,855,908 A 8/1989 Shimoda et al. 364/39
4,893,232 A 1/1990 Saimaoka et al. 364/200
4,901,229 A 2/1990 Tashiro et al. 364/200
4,918,593 A 4/1990 Hubercceevennn.n. 364/200
4,930,071 A 5/1990 Tou et al. 364/300
4,930,072 A 5/1990 Agrawal et al. 364/300
4,933,848 A 6/1990 Haderie et al. 364/300
4,947,320 A 8/1990 Crus etal. 364/200
4,967,341 A 10/1990 Yamamoto et al. 364/200
5,133,068 A 7/1992 Crusetal. 365/600
5,168,565 A 12/1992 Moritaoevvninivennnn.n. 365/600
5,193,183 A 3/1993 Bachman 395/600
5,197,005 A 3/1993 Shwartz et al. 364/419
5,226,158 A * 7/1993 Horn et al. 395/600
5,239,663 A 8/1993 Faudemay et al. 365/800
5,247,575 A 9/1993 Sprague et al. 380/9
5,262,942 A 11/1993 Earle ..coooevvviviininininnnnns 364/408
5,297,279 A 3/1994 Bannon et al. 395/600
5,369,761 A 11/1994 Conley et al. 395/600
5,379.419 A 1/1995 Heflernan et al. 395/600
5,386,557 A 1/1995 Boykin et al. 395/600
5,386,559 A 1/1995 Eisenberg et al. 395/600
5,408,657 A 4/1995 Bigelow et al. 395/600
5,459,860 A 10/1995 Burnett et al. 395/600
5488,722 A * 1/1996 Potokcccevinininnini. 395/600
5,504,885 A 4/1996 Alashqur 395/600
5,539,870 A 7/1996 Conrad et al. 395/155
5,542,073 A 7/1996 Schiefer et al. 395/600
5,548,749 A 8/1996 Kroenke et al. 395/600
5,581,785 A 12/1996 Nakamura et al. 395/828
5,664,177 A /1997 LOWIY orviriiiiiiiiininnnns 395/611
5,893,108 A 4/1999 Srinivasan et al. 707/103
6,105,035 A 8/2000 Monge et al. 707/103

QO
—

HER PUBLICATIONS

El-Sharkawi et al, ““The Architecture and Implementation of

Enli: An Example—Based Natural Language Assisted Inter-
face”, Parbase 90 Intl. Cont. on Databases, Parallel Archi-

tectures & Their Applications, Mar. 7-9, 1990.

Wilschut et al, “Pipelining 1n Query Execution” Parbase—90
Intl. Conf. on Databases, Parallel Architectures and Their
Applications, Mar. 7-9, 1990 p. 562.

Fishman et al., “Overview of the Iris DBMS”, Association
for Computing Machinery, Inc., pp. 219-250.

“An OODB *“Part” Relationship Model”, 10

Halper et al.,
pages.

Kim et al., “Feature of the ORION Object—Oriented Data-
base System”, pp. 251-282.

Kim et al., “Evaluation of the Object-relational DBMS
Postgres .I. Administrative Data”, Computing Science, Oct.

1994, pp. 1-52.

Hendler, James A. Expert Systems: The User Interface.
Albex Publishing Corporation. Norwood, NJ, 1988, pp. 31,

4647, 109-110, 113 and 132-134.

Rose, Peter S., et al. Financial Institution, Understanding

and Managing Financial Services, 4th Edition, Richard D.
[rwin, Inc., 1993.

Parsaye, Kamran & Chignell, Mark. Expert Systems For
Experts. John Wiley & Sons. 1988. pp. 35-60, 177-178,
191-210 and 295-309.

Banerjee et al., “Data Model Issues for Object—Oriented
Applications”, ACM Transactions on Oflice Information
Systems, vol. 5, No. 1, Jan. 1987, pp. 3-26.

Blakely et al., “Experiences Building the Open OODB
Query Optimizer”, 1993, pp. 287-296.

Markowitz et al., “Representing Extended Entity—Relation-
ship Structures 1 Relational Databases: A Modular
Approach”, ACM Transactions on Oflice Information Sys-
tems, vol. 17, No. 3, Sep. 1992, pp. 423-464.

Teorey et al., “A Logical Design Methodology for Relational
Databases Using the Extended Entity—Relationship Model”,
Computing Surveys, vol. 18, No. 2, Jun. 1986, pp. 197-222.
Chen, Peter, “Entity—Relationship Approach to Systems
Analysis and Design”, Proceedings of the International
Conference 1n Los Angeles, Dec. 10-12, 1979, pp. 237-2357.
Blakeley et al., “Experiences Building the Open OODB
Query Optimizer”, 1993, pp. 287-296.

Zand et al., “A Survey of Current Object—Oriented Data-
bases™, Data Base Advances, Feb. 1995, vol. 26, No. 1, pp.
14-29.

Straube et al., “Queries and Query Processing 1n Object—O-
riented Database Systems™”, ACM Transactions on Informa-
tion Systems, vol. 8, No. 4, Oct. 1990, pp. 387-430.

Kim et al., “Semantics and Implementation of Schema
Evolution 1in Object—Oriented Databases”, 1987, pp.
311-322.

Kim et al., “Composite Object Support in an Object—Ori-
ented Database System™, OOPSLA 87 Proceedings, Oct.
4-8, 1987, pp. 118-125.

Hull et al., “Semantic Database Modeling: Survey, Appli-
cations, and Research Issues”, ACM Computing Surveys,

vol. 19, No. 3, Sep. 1987, pp. 201-260.

Nixon et al., “Implementation of a Compiler for a Semantic
Data Model: Experiences with Taxis”, 1987, pp. 118-131.

Codd, E., “Extending the Database Relational Model to
Capture More Meaning”, ACM Transactions on Database

Systems, vol. 4, No. 4, Dec. 1979, pp. 397-434.

Packham et al., “Semantic Data Models”, Acm Computing
Surveys, vol. 20, No. 3, Sep. 1988, pp. 153—189.

Tsurt et al., “An Implementation of GEM—supporting a
semantic data model on a relational back—end.” 1984, pp.

236—-295.

Wilkinson et al., “The Inis Architecture and Implementa-
tion”, IEEE Transactlons on Knowledge and Data Engineer-
ing, vol. 2, No. 1, Mar. 1990, 27 pages.

(Gamache et al. “Addressmg Techniques Used 1n Database
Object managers O, and ORION”, SIGMOD Record, vol.
24, No. 3, Sep. 1993, pp. 50-55.

Kim et al., “Architecture of the ORION Next—Generation
Database System” IEEE, 1990, pp. 109-124.

Klimble et al., “Data Base Management”, North—Holland
Publishing Companyj 1974, pp. 1-39.

Hudson et al., “Cactis: A Seli—Adaptive Concurrent Imple-
mentation of an Object—Oriented Database Management
System”, ACM Transactions on Database Systems, vol. 14,
No. 3, Sep. 1989, pp. 291-321.

Annevelink et al., “Object SQL—A Language for the
Design and Implementation of Object Databases™, Jan. 3,
1994, pp. 1-21.

Chen, P., “Entity—Relationship Approach to Information
Modeling and Analysis”, International Conference 1n Wash-

ington, D.C., Oct. 12-14, 1981, pp. 49-72.

Wiederhold, ., “Database Design Appendix B”,
McGraw—Hill, 2001, pp. 689-698.

US RE40,063 E
Page 3

Hanks, D.R., “The Payofl of Modest Price Adjustments,”
(Abstract only), Bank Marketing, vol. 12, No. 9, p. 13,, Sep.
1980.

Cattell, R. and Rogers, T., “Combiming Object—Oriented and
Relational Models of Data™, 1986 International Workshop
on Sep. 26, 1986, pp. 212-213.

Rumbaugh, J., “Relations as Semantic Constructs in an
Object—Ornented Language”, OOPSLA ’87 Proceedings,
Oct. 4-8, 1987, pp. 466—481.

Dewan et al. “Engineering the Object—Relation Database
Model in O-Raid”, Lecture Notes in Computer Science, 3™
International Conference—Paris, Jun. 21-23, 1989, pp.
389-403.

Blaha et al., “Relational Database Design using an Object—
Oriented Methodology”, Communications of the ACM, Apr.
1988, vol. 31, No. 4, pp. 414-427.

Wiederhold, G., “Views, Objects, and Databases™ Computer
Database Architecture, Dec. 1986, pp. 37-44.

Mark et al., “Metadata Management”, Computer Database
Architecture, Dec. 1986, pp. 26-36.

Osborn et al., ““The Design of a relational Database System
with Abstract Data Types for Domains”, ACM Transactions
on Database Systems, vol. 11, No. 3, Sep. 1986, pp.
357-373.

Whang et al., “Query Optimization 1n a Memory—Resident
Domain Relational Calculus Database System”, ACM
Transactions on Database Systems, vol. 15, No. 1, Mar.
1990, pp. 67-95.

Finkelstein et al., “Physical Database Design for Relational

Databases”, ACM Transactions on Database Systems, vol.
13, No. 1, Mar. 1988, pp. 91-128.

Takahashi, J., “Hybrid Relations for Database Schema Evo-
lution”, IEEE, 1990, pp. 465-470.
Khoshatlan, S. and Copeland, G., “Object Identity”, Micro-

clectronics and Computer Technology Corporation, pp.
37-46.

Rowe, L. and Stonebraker, M., “The POSTGRES Data

Model”, Computer Science Division, EECS Department,
University of Califormia, pp. 1-21.

Stonebraker, M. and Moore, D., “Object—Relational DBMSs
The Next Great Wave”, Morgan Kaufman Publishers, Inc.,
1996, pp. 56-61.

Anon., “Future of European Payment Systems? Integrating
the Card, ATM’s and Eurocheque,” (Abstract only), World
of Banking, vol. 9, No. 2, p. 19, Mach/Apr. 1990.

Nadler, P.S. “Comment: Pitfalls of Relationship Banking,”
(Abstract only) American Banker, p. 4, Feb. 3, 1992.
Stuchfield, N., et al., “Modeling of Profitability of Customer
Relationships: Development and Impact of Barclays de
Zoete Wedd’s BEATRICE,” Journal of Management Infor-
mation Systems, vol. 9, No. 2, p. 53, Fall 1992.
Wiederhold, G., “Database Design Second Edition”,
McGraw—Hill, 1988. (Book).

Howcroft, “Contemporary 1ssues in UK bank delivery sys-
tems”, Inter. Jour. of Service Industry Management, vol. 3,
No. 1, pp. 39-56, ISBN 0964223, 1992.

“The Smart Card’s Chief Advocate”, Credit Card Manage-
ment, vol. 10, No. 1, p. 26+, ISBN: 0896-9329, 1992.

Bharadwaj et al., Determinants of success 1n service mdus-
tries: a PIMS—based empirical investigation, Journal of
Service Marketing, v/nd, pp. 19-40, 1993, 23 pages from
Dialog file 15, acc. # 00813287,

Nixon et al., “Implementation of a Compiler for a Semantic
Data Model: Experiences with Taxis”, ACM 1989, pp.
118-131.

El-Sharkawi et al., “The Architecture and Implementation
of ENLI: An Example—Based Natural Language—Assisted
Interface”, PARABASE—90 International Conference on

Databases, Parallel Avchitectures and Their Applications,
Mar. 7-9, 1990, pp. 430-342.*

* cited by examiner

U.S. Patent Feb. 12, 2008 Sheet 1 of 19 US RE40.,063 E

RACCE ONTIC
(Source Code) 100
BULK STORAGE
(Binary Code Strings)
R 115
E 6995_55_0001[0' _:_ ________ 132 PPN NSNS NS NSNS
| (Object Code)| .. ; Data e e
: : B S S e WL W W PN
| 120 110 i FavaY TV A
: NN R BN W%WN\
o : Y
130d
2V INF
SQL) A
‘Please find 40 5Q) 130
all books
having xxx"
UPDATE INPUT:
(SQL)
‘Please add 60
new books FlG 1A
yyy-zz2" (Prior Art)

(U Joud)
dl ©id

|
€| 2 _

US RE40,063 E

E mm e TR O Es am R . g W s i A R A W W

Sheet 2 of 19

S2E)
leubis eieQ

Feb. 12, 2008

SIEL
leubig ssaippy

S|oAS
21507

U.S. Patent

US RE40,063 E

Sheet 3 of 19

Feb. 12, 2008

U.S. Patent

A e T—————— B G]

UOHEo0
$3004

_ 1 Jppypiooey 2 ippypisey b ippy-pioosy _
_ |
| €f et 1 |
| 19jU104 b BIUIDd ! 13JUI04 _
_ buipeasy | : Buipeaiy d Buipealy L 0t
| LONEI0" oL SWEN m |
| 0Ee Z 7 ﬂ
_
_ G| UOIe07 ilL | SWEN |
_ d $)00g 51008 H g SA0UINY _
_ e _
e e e e o —— e —— e —— e ——— - — i ——— . —— — . S— T S——— 2 S— e e o s i)

(0SH) | ONPpIossY

NOLLVZINVYOHO G30N3ND3S-A3M
O
0oe e0et
(uy Joud) 4! 1€}

l-V¢ Dld

US RE40,063 E

Sheet 4 of 19

Feb. 12, 2008

U.S. Patent

(uy Joud)
¢-Vé Dld
m £t IPPY PI0dBY ot PPV pi00eY e PPV Pi0I%Y _
l
_ gt 1 ¢t 1 e 1 _
)
JOIUI0d bE J9JUI0d JBJUIO _
_ bujpeasyL : Buipeaiy | Bupes ml_. 05¢
: UOIe207 8|uL OWEN m _
| R, m
l
Ge LIO1}B207 SiiL GWeN .
_ d g 8,008 e g sdogny | |
| G52 _
e T —————
ey 4 € ONPIOJ9Y
_ £¢ 1ppy piooey ¢ ippy piodsy ¢ Jppy pioday _
I
_ IEIVE ¥e JejuIog e -~ I3I0d . _
_ Bupesiy Buipeaiy | Buipeaiy] 0¥
ml UOJEI0T ofilL OUEN m _
var |

e Sy el T s EEEE———— Y e S Sl dand RS S Y S S

LOJ1eJ0] € ON
$009 1015

US RE40,063 E

Sheet 5 of 19

UOEI0T T ON

$,00 0
6z 009 1015

(OL4)
‘NOILVZINYOHO 31gV1i-3AILY13Y

Feb. 12, 2008

qoet

ctl L1
09¢

(WY Joud)

l-d¢ D4

U.S. Patent

US RE40,063 E

Sheet 6 of 19

Feb. 12, 2008

U.S. Patent

(WY Joud)

¢-d¢ Old

dc 9ld

350y

oIl oUIeN
5,100g SAOUINy

5 ON
1015

1015

US RE40,063 E

Sheet 7 of 19

Feb. 12, 2008

U.S. Patent

GlLI

(Uy Joud)

Ve 9id

X

0t |

US RE40,063 E

Sheet 8 of 19

Feb. 12, 2008

U.S. Patent

£ Ol

(My 101d)

dt Ol

ozl
apo?) 199190
wopuey

U.S. Patent Feb. 12, 2008 Sheet 9 of 19 US RE40.,063 E

FIG. 4A

RELATION R-1

Head Attribute + Tail Attribute
rdinality = one 1o many }

l'»‘leanlncq’a

INSTANCE

4 /E
= "Customer-B"

a® -I‘-l
Y7 S
- é ‘I.-. : "‘

’ hr.i'-l—\'l'l .*

Customer

- -'I--
iz
l '._"

% MC
Account
| 1

L el FY
® - }‘ [
TN A=
L |

4/E3

063 E
U.S. Patent Feb. 12, 2008 Sheet 10 of 19 US REA40,

FIG. 4B

{tm}-Y

oy VR
- .\'-% -j-"i:--
" - *r
I' ‘:: - b g 9 ..f_n
BRadt o S RS
M e

'(-Iustomer @
[

[

'lln-p
1""_-1"""

| Telephone
v

U.S. Patent Feb. 12, 2008 Sheet 11 of 19 US RE40.,063 E

FIG. 5

131

130-RP

132

200
RTO| E
Entity Entity Name of
Type Class Name Single Table
__- Abbreviation = where instances
Siot No. (Full Name) are stored
%
(Customer)
(Address) A S
(Account) g
(Supplier) g

Lo |
N
¢

500a 500b

U.S. Patent Feb. 12, 2008 Sheet 12 of 19 US RE40.,063 E

130-RP
131 132
600
) ' -
|RTO T
Relation Name of

NO CIBSS Name where instances Head Entlt}' Tall Entlty

Abbreviation of Relation Type Number Type Number
SlOt (FU" Name] are stored (FU" Name) Full Name)

No. -BU-
I

A (Customer)
(TRel2 > | 3
(Account)

600f

2
|('s Business) (Address)

{1:m)| Y

{1:1}

'S ('s Owning) (Cusfomer

w | TR
Ma;llng | N (ACCOU!‘I[) Addl'ESS) I
-HQ-
s Ma TRel1 O A 2 |
H(esag;g | g (Customer)| (Address) ' ‘
LR ERIENIEN T
4/r) ./[o, /r Maﬁgggory
Coupling
Optional
Second thru Fifth 60%
Tail Entity
Names

(type)
600¢e

U.S. Patent Feb. 12, 2008 Sheet 13 of 19 US RE40.,063 E

130-RP
5 131 FIG. 6B
RTO
Optional
Second thru Fifth
Tail Entity
Names
Region Tail-Activation
6000 \. T2 T3 T4 TS Mask
602 603) (604) (605 (606)
1 S A (Pﬁgne > W #0000
| (Supplier] (Area) No. (Account)

g
= (Branch) ‘ | 0000

- 8

' ntact
3 (Branch) Ceorsoan} 0000

0 8
4 (Phone |(Contact | -3 00000

No.) |[Person) ((Account

Entity
T(mmﬁgr W T2 T3 T4 TS
Relation
Type

NoO.

US RE40,063 E

2 [@] [e] [o

[0 [fe] F
— [(0] [| F
M Halaalawl
~ ¢ :
= 3 ¥UAL 37
6 E_E _mm peeH

N4
= N2 9g/ .diysuonejal sy
~ . L Buinjoay
2l _ “ @.m. m_k_._wr_p..g‘w.._A
= eaks mssammm uw
: i%ﬁlﬁ NG| > BT IEE] v | % A
OAGT -UONERY- -ANUI- NGO)1 ;o“__%m e)

= m_m_: nz e 153N0H3Y
&
<
ol ctl ' L&} 007
) 8
-

US RE40,063 E

Sheet 15 of 19

Feb. 12, 2008

U.S. Patent

eZe|d @O 000L 9

JQ SUINOB SSauISNg 98¢ (g

OLHNOS/ Q2L
o SOSIPYL T
\ =z-113 |
Nmmq _
I R

L Oid

s,_,,,/

264

i
B | 7% N ﬁl
P -—--

e

einjuing spal4 |9
sojuojosjg padxy | g

d/ Did

U.S. Patent Feb. 12, 2008 Sheet 16 of 19 US RE40.,063 E

BULK STORAGE
\ (Binary Code Strings)
130-RE

squesCot)
ERAVAA

REL.DEF F{ELrDEF

l
AV ALLANVS
ENT.DEF ENT.DEF ENT]DEF

|

EiT-1 EiT-2 EfT-3

----hﬂ—__——-—-—-—-—-‘

r, 131

FIG. 8

(SQL)

“Plﬁabse End |
all books -
having " - 150

oy Schem:

"Please add
SQL
bl Pleasobdd o870
yyy-222 new REL

Rnn-Rmm®

US RE40,063 E

Sheet 17 of 19

Feb. 12, 2008

U.S. Patent

AH3NO bunels

016

106

A ANE
1'q2e-13

SNVIW 30IND AHINONI

¢06_~
WHO4 LNdNi AHINONI

US RE40,063 E

Sheet 18 of 19

Feb. 12, 2008

U.S. Patent

d6 Ol

1821)S ainjeia)] 0ge----—-"3u] $300g S,

08
aueT 0)SISUBL} GGG---SIIL0J}08|T m_tmmxw

BUI0] JED GO | --—---—S0INY Susly

RE[dsIq SYnSaH pafelad

066
£o-13
No._m
ho-13
SUES 18I
SIOMSUY 9)BIpauLIdjul
08¢ Ne—— 120

US RE40,063 E

Sheet 19 of 19

Feb. 12, 2008

U.S. Patent

EEE:

| 3/2°AX,
: LH/M'A'N _
ol
J9P[OH S,
LJ/MAD i . $3/q)
LHA'S" ¢33y s
t _
. - IEVYES mm =
L3NS,
"JOP|OH S,
13/b'd'o,

RETORTINT w
Unodd
Q m J3P|OH S, _"“

OF Ol

JUNOJJ. JO B3UBISUI

buue)s ajbuis Aue 10} anoe i
€L 2L 1.1 ‘sitel jo suo AjuQ

AEL
TAPOH S,

Ho |3,

8UEISU]

— Duels

US RE40,063 E

1

DATA PROCESSING AND METHOD FOR
MAINTAINING CARDINALITY IN A
RELATIONAL DATABASE

Matter enclosed in heavy brackets [] appears in the
original patent but forms no part of this reissue specifi-
cation; matter printed in italics indicates the additions
made by reissue.

This application 1s a division of application Ser. No.
[08/083,361] 08/083,861, filed Jun. 28, 1993, now [aban-
doned] U.S. Pat. No. 5,604,899, which issued on Feb. 18,
1997, [and] which is a continuation of Ser. No. 07/526,424,
filed May 21, 1990, now abandoned.

BACKGROUND OF THE INVENTION
1. Cross Reference to Microfiche Appendix

This application mcludes a plurality of computer program
listings (modules) 1n the form of a Microfiche Appendix
which 1s being filed concurrently herewith as 1162 frames
(not counting target and title frames) distributed over 20
sheets of microfiche 1n accordance with 37 C.F.R. § 1.96.
The disclosed computer program listings are incorporated
into this specification by reference but 1t should be noted that
the source code and/or the resultant object code of the
disclosed program modules are subject to copyright protec-
tion. The copyright owner has no objection to the facsimile
reproduction by anyone of the patent document (or the
patent disclosure as it appears in the files or records of the
U.S. Patent and Trademark Oflice) for the sole purpose of
studying the disclosure but otherwise reserves all other
rights to the disclosed computer program modules including,
the right to reproduce said computer program modules in
machine-executable form.

2. Field of Invention

The present invention relates generally to computer data-
base management systems and more specifically to appara-
tus and methods for modilying and searching through large
scale databases at high speed.

3. Description of Related Art

Modern computer systems are capable of storing volumi-
nous amounts of information i1n bulk storage means such as
magnetic disk banks. The volume of stored information can
be many times that of the textual information stored in a
conventional encyclopedia or 1n the telephone directory of a
large city. Moreover, modern computer systems can siit
through the contents of their bulk storage means at
extremely high speed, accessing as many as one million
bytes of information or more per second (a byte 1s a string
of eight bits, equivalent to approximately one character of
text 1n layman’s terms). Despite this capability, it may take
an undesirably long time (1.e., hours or days) to retrieve
desired pieces of mformation. In commercial settings such
as financial data storage facilities, there will be literally,
billions of pieces of information that could be sifted through
betore the right one or more pieces of information are found.
Thus, even at speeds of one million examinations per
second, 1t can take thousands of seconds (many hours) to
retrieve a desired piece of information. Efficient organiza-
tion of the stored information i1s needed 1n order to minimize
retrieval time.

The methods by which pieces of information are orga-
nized within a computer, searched through or reorganized,
often parallel techniques used by older types of manual
information processing systems. A well known example of
a manual system 1s the index card catalog found in public

10

15

20

25

30

35

40

45

50

55

60

65

2

libraries. Such a card catalog consists of a large number of
uniformly dimensioned paper cards which are serially
stacked 1n one or more trays. The cards are physically
positioned such that each card 1s directly adjacent to no more
than two others (for each typical examination there i1s a
preceding card, the card under examination and a following
card 1n the stack). On the front surface of each index card a
librarian enters, 1n leit to right sequence; the last name of an
author, the first name of the author, the title of a single book
which the author wrote and a shelf number indicating the
physical location within the library where the one book may
be found. Each of these four entries may be referred to as a
“column” entry. Suilicient surface area must be available on
cach card to contain the largest of conceivable entries.

After the entries are made, the index cards are stacked one
aiter the next 1n alphabetical order, according to the author’s
last name and then according to the author’s first name and
then by title. This defines a “key-sequenced” type of data-
base whose primary sort key 1s the author’s name. The
examination position of each card 1s defined relative to the
contents of preceding and following cards 1n the stack. That
1S, when cards are examined, each intermediate card 1s
examined immediately after its alphabetically preceding
card and immediately before 1ts alphabetically succeeding
card. When a new book 1s acquired, the key-sequenced
database 1s easily “updated” by inserting a new card between
two previously created cards. Similarly, 11 a book 1s removed
from the collection, 1ts card 1s simply pulled from the card
stack to reflect the change.

If a library user has an inquiry respecting the location of
a particular book or the titles of several books written by a
named author, the librarian may quickly search through the
alphabetically ordered set of index cards and retrieve the
requested 1nformation. However, 1f a library user has an
inquiry which 1s not keyed to an author’s name, the search
and retrieval process can require substantially more time; the
worst case scenario being that for each mquiry the librarian
has to physically sift through and examine each card in the
entire catalog. As an example of such a scenario, suppose
that an inquiring reader asks for all books in the library
where the author’s first name 1s John and the title of the book
contains the word “neighbor” or a synonym thereof.
Although 1t 1s conceptually possible to answer this inquiry
using the information within the catalog, the time for such
a search may be impractically long, and hence, while the
information 1s theoretically available, 1t 1s not realistically
accessible.

To handle the more common types of inquiries, libraries
often keep redundant sets of index cards. One set of cards 1s
sorted according to author names and another set 1s sorted
according to the subject matter of each book. This form of
redundant storage 1s disadvantageous because the size of the
card catalog 1s doubled and hence, the cost of information
storage 1s doubled. Also, because two 1ndex cards must be
generated for each new book added to the collection the cost
of tipdating the catalog 1s also doubled.

The size of a library collection tends to grow over time as
more and more books are acquired. During the same time,
more and more index cards are added to the catalog. The
resulting stack of cards, which may be viewed as a kind of
“database”, therefore grows both 1n size and in worth. The
“worth” of the card-based system may be defined 1n part as
the accumulated cost of all work that 1s expended in creating
cach new index card and in inserting the card into an
appropriate spot in the stack.

As time goes by, not only does the worth and size of the
database grow, but new technologies, new rules, new

US RE40,063 E

3

services, etc., begin to emerge and the mnformation require-
ments placed on the system change. Some of these changes
may call for a radical reorganization of the card catalog
system. In such cases, a great deal of work previously
expended to create the catalog system may have to be
discarded and replaced with new work.

For the sake of example, let it be supposed that the library
acquires a new microfilm machine which stores copies of a
large number ol autobiographies. The autobiographies dis-
cuss the life and literary works of many authors whose books
are kept in the library. Let 1t further be supposed that the
original, first card catalog system 1s now required to cross
reference each book to the microfilm location (or plural
locations) of 1ts author’s (or plural authors’) autobiogra-
phies. In such a case, the card catalog system needs to be
modified by adding at least one additional column of 1nfor-
mation to each index card to indicate the microfilm storage
locations of the relevant one or more autobiographies.

We will assume here that there 1s not enough surface area
available on the current index cards for adding the new
information. Larger cards are therefore purchased, the infor-
mation from the old cards 1s copied to the new cards, and
finally, the new microfilm cross referencing information 1s
added to the larger cards. This type of activity will be
referred to here as “restructuring” the database.

Now let us suppose, that as more time goes by, an
additional but previously unanticipated, cross indexing cat-
cgory 1s required because of the iftroduction of a newer
technology or a new government regulation. It might be that
the just revised and enlarged second card system does not
have the capacity to handle the demands of the newer
technology or regulation. In such a situation, a third card
system has to be constructed from scratch. The value of
work put 1nto the creation of the just-revised second system
1s lost. As more time passes and further changes emerge 1n
technology, regulations, etc., 1t 1s possible that more major
organizational changes will have to be made to the catalog
system. Time after time, a system will be built up only to be
later scrapped because 1t fails to anticipate a new type of
information storage and retrieval operation. This 1s quite
wastetul.

Although computerized database systems are in many
ways different from manual systems, the computerized
information storage and retrieval systems of the prior art are
analogous to manual systems in that the computerized
databases require similar restructuring every time a new
category of information relationships or a new type of
inquiry 1s created.

At a fTundamental level, separate pieces of information are
stored within a computerized database system as a large
number of relatively short strings of binary bits where each
string has finite length. The bit strings are distributed spa-
cially within a tangible medium of data storage such as an
array ol magnetic disks, optical devices or other information
representing means capable of providing mass storage. Each
bit 1s represented by a magnetic flux reversal, an optical
perturbation and/or some other variance in the physical
attributes of a data storage medium. A transducer or ampli-
fler means converts these variances into signals (e.g.,
clectrical, magnetic, or optical) which can be processed on
a digital data processing machine. Each string of bits 1s often
uniquely 1dentified by its physical location or by a logical
storage address. Some bit strings may function as address
pointers, rather than as the final pieces of “real” information
which a database user wishes to obtain. The address pointers
are used to create so-called “threaded list” organizations of

10

15

20

25

30

35

40

45

50

55

60

65

4

data wherein logical links between a first informational
“object” (first piece of real data) and a second informational
“object” (second piece of real data) are established by a
chain of direct or indirect address pointers. The user-desired
objects of real information themselves can be represented by
a collection of one or more physically or logically connected
strings.

Typically, “tables” of information are created within the
mass storage means of the computerized system. A horizon-
tal “row” of related objects, which 1s analogous to a single
card 1n a card catalog system, may be defined by placing the
corresponding bit strings of the objects i physical or
address proximity with each other. Logical interconnections
may be defined between different rows by using ancillary
pointers (which are not considered here as the “real” data
sought by a database user). A serial sequence of “rows”
(analogous to a stack of cards) 1s then defined by linking one
row to another according to a predefined sorting algorithm
using threaded list techniques.

il

A vast number of different linking “threads” may be
defined 1n this way through a database table having maillions
or billions of binary information bits. Unlike manual
systems, the same collection of rows (which replaces the
manual stack of cards) can be simultaneously ordered in
many different ways by utilizing a multiplicity of threaded
paths so that redundant data storage 1s not necessary.
Searches and updates may be performed by following a
prespecified thread from one row to the next until a sought
piece of information (or its address) 1s found within a table.
A threaded-list type of table can be “updated” in a manner
similar to manual card systems by breaking open a logical
thread within the list, at a desired point, and inserting a new
row (card) or removing an obsolete row at the opened spot.

Tables are often constructed according to a “key-
sequenced” approach. One column of a threaded-list table 1s
designated as the sort-key column and the entries 1n that
column are designated as “sort keys”. Address pointers are
used to link one row of the table to another row according
to a predefined sequencing algorithm which orders the
entries (sort-keys) of the sort column as desired (1.e.,
alphabetically, numerically or otherwise). Once a table 1s so
sorted according to the entries of 1ts sort column, 1t becomes
a simple task to search down the sort column looking for an
alphabetically, numerically or otherwise ordered piece of
data. Other pieces of data which are located within the row
of each sort key can then be examined in the same sequence
that each sort key 1s examined. Any column can serve as the
sort column and its entries as the sort keys. Thus a table
having a large plurality of columns can be sorted according
to a large number of sorting algorithms.

The key-sequencing method gives tremendous tlexibility
to a computerized database but not without a price. Each
access to the memory location of a list-threading address
pointer or to the memory location of a sort-key or to the
memory area ol “real” data which 1s located adjacent to a
sort-key takes time. As more and more accesses are required
to fetch pointers and keys leading to the memory location of
a piece of sought-aifter information (“real data”), the
response time to an inquiry increases and system perfor-
mance suilers.

There 15 certain class of computerized databases which
are referred to as “relational databases”. Such database
systems normally use threaded list techniques to define a
plurality of key-sequenced ““tables”. Each table contains at
least two columns. One column serves as the sort column
while a second or further columns of the table store either

US RE40,063 E

S

the real data that 1s being sought or additional sort-key data
which will ultimately lead to a sought-after piece of real
data. The rows of the table are examined in an ordered
fashion according to the contents of the sort column. Target
data 1s located by first threading down the sort column and s
thus moving through the chain of rows within a table
according to a prespecified sort algorithm until a specific
sort-key 1s found. Then the corresponding row 1s examined
horizontally and the target data (real data, or the next key)

1s extracted from that row.

An example of “real” data would be the full-legal names
of unique persons such as in the character strings, “Mr.
Harry W. Jones™, “Mrs. Barbara R. Smith”, etc. The sort-key
can be a number which 1s stored adjacent to the full name
and which sequences the names (real data) according to any | .
ol a wide variety of ordering patterns including by age, by
height, by residential address, alphabetically, etc. Because
the real data (e.g., full name of a person) 1s stored in a
separate column, it 1s independent from the sort key data. A
large variety of different relations can therefore be estab-
lished between a first piece of real data (e.g., a first person’s
name) and a second piece of real data (e.g., a second
person’s name) simply by changing the sort keys that are
stored 1n the separate sort column (e.g., who 1s older than
whom, who 1s taller, etc.). Plural orderings of the real data .4
can be obtained at one time by providing many columns 1n
one table, by storing alternate keys in the columns and by
choosing one or more of these columns as the primary sort
key column.

Relational database systems often include tables that do 5
not store real data in a column adjacent to their sort-key
column, but rather store a secondary key number which
directs a searcher to a row 1n another key-sequenced table
where a matching key number is held together with either a
piece of sought-after real data or yet another forward refer- ;5
encing key number (e.g., an entry which in eflect says “find
the row which holds key number x of yet another table for
turther details™). With this indirect key-sequenced approach,

a large number of tables can be simultancously updated by
changing one entry in a “base” table. 40

Relational database tables are normally organized to
create 1mplied set and subset “‘relations” between their
respective 1tems of pre-stored information. The elements of
the lowest level subsets are stored in base tables and higher
level sets are built by defining, 1n other tables, combinations 45
of keys which point to the base tables. The implied relations
between elements cannot be discerned by simply inspecting
the raw data of each table. Instead, relations are flushed out
only with the aid of an access control program which
determines 1n 1ts randomly-distributed object code, which sg
table to examine first and what column to look at before
beginning to search down the table’s column for a key
number and, when that key number 1s found, what other
column to look at for the real data or a next key number.
Relations between various “entities” of a relational database 55
are implied by the sequence 1n which the computer accesses
them.

By way of a concrete example, consider a first relational
table (Names-"Table) which lists the names of a large number
of people 1n telephone directory style. Each name (each 60
separate item of real data) 1s paired to a unique key number
and the rows of this Names-Table are sorted sequentially
according to the key number. A second relational table may
be provided in-the database (Cars-Table) which lists auto-
mobile (vehicle) identification numbers (VIN) each paired in 65
its row with a second key number. If the second key number
1s matched by a corresponding key number 1n the first table,

10

6

then a relationship might be implied between the entries of
the two separate tables (Names-Table and Cars-Table). The
“mmplied” relationship might be one of an infinite set of
possibilities. The relationship could be, for example, that the
car listed 1n the second table 1s “owned’ by the person whose
name 1s found next to a matching key in the first table. On
the other hand, 1t might be implied that the matched person
in the first table “drives” the car, or “cleans” the car or has
some other relation to the car. It 1s left to the access control
program to define what the relationship 1s between entities
in the first table and entities 1n the second table.

il

It can be seen that relational database systems offer users
a great deal of flexibility since an infinite number of relations
may be defined (1implied). Economy in maintaining
(updating) the database 1s also provided since a change to a
base table propagates through all other tables which refer-
ence the base table. The access control program of the
database system can include information-updating modules
which, for example, change the key number in the second
table (Cars-Table) whenever ownership of a car changes. IT
the name of the new owner 1s already in the first table
(Names-Table), 1t does not have to be typed a second time
into a new storage area and thus, extra work and storage
redundancy are avoided. The vehicle 1dentification number
(VIN) remains unchanged. Minimal work 1s thus expended
on updating the database.

Despite these advantages, relational database systems
suller from expandability and restructuring problems similar
to those of the above-described manual system. Sometimes
the rows within a particular table have to be altered to add
additional columns. This 1s not easily done. Suppose for
example, that a new government regulation came into being,
mandating that vehicles are to always be 1dentified not only
by a vehicle identification number (VIN) but also by the
name and location of the factory where the vehicle was
assembled. I spare columns are not available 1n the Cars-
Table, the entire database may have to be restructured to
create extra room 1n the storage means (1.e. the disk bank)
for adding the newly required columns. New key numbers
will have to be entered into the new columns of each row
(e.g., a new “lTactory of assembly” key number) and sorted
in order to comply with the newly mandated regulation. New
search and mmquiry routines will have to be wrntten for
handling the newly structured tables.

In the past, much of this restructuring work was done by
reprogramming the computer at the object code or source
code level. This process relied heavily on an expert pro-
gramming stail. It was time consuming, costly and prone to
programming errors. Worst of all, 1t had to be redone time
and again as new informational requirements emerged just
alter a last restructuring project was completed. There 1s a
need in the industry for a database management system
which provides quick responses to inquiries and which can
also be continuously updated or restructured without repro-
gramming at the source or object code level.

SUMMARY OF THE INVENTION

It 1s an objective of the present mvention to provide a
database system which 1s capable of storing voluminous
amounts of information, sifting through the information at
high speed, and 1s at the same time easily expandable or
restructurable to take on new forms of entities and relation-
ships.

In accordance with a first aspect of the invention, an entity

definition table (ENT.DEF) 1s defined within the memory
means of a computer system to store the name of an allowed

US RE40,063 E

7

entity type (class) and the name of a single other table
(Entity-instances Table or “E11” for short) where instances
of the allowed entity type may be stored. A separate rela-
tionships definition table (REL.DEF) 1s defined in the
memory means to list in each row of the table: (a) the name
of an allowed relations type, (b) the name of a single
Relation-instances Table (RiT) where instances of the
allowed relationship type may be stored, (¢) the name of a
primary (head) entity type to which the relation type may
apply and (d) the names of one or more secondary (tail)
entity types to which the named relationship may apply.
Each row of the Relation-instances Table (RiT) 1s provided
with at least one primary pointer which points to the storage
location of a first instance of the primary entity type and at
least one secondary pointer which points to the storage
location of a corresponding first instance of the secondary
entity type. Each row of the Relation-instances Table (RiT)
turther includes a pointer to a relationship-defining row 1n
the REL.DEF table. The pointer can be the name of an
applicable relation type as recorded in the REL.DEF table.
Relationships between instances of a primary entity and a
secondary entity are thus expressly defined by entries 1n the
Relation-instances Table (RiT). Adding new rows to this
Relation-instances Table (RiT) allows for the addition of
new relations. Adding new rows to the REL.DEF table
allows for the creation of new classes (types) of relation-
ships. Since relation-defining tables can be updated using a
fixed set of update modules, reprogramming at the source or
assembly level 1s not needed for restructuring the schema of
the database.

BRIEF DESCRIPTION OF THE DRAWINGS

The mvention will be described with reference to the
following figures 1n which:

FIG. 1A 1s a block diagram of a conventional database
system.

FIG. 1B 1s a timing diagram showing the delay between
the addressing and the delivery of storage data.

FIG. 2A 1s a block diagram of a conventional key-
sequenced table organization.

FIG. 2B 1s a block diagram of a conventional relative-
record table organization.

FI1G. 3 diagrams a multiple table system which 1s based on
a conventional relational database approach and which has
key-sequence organized tables.

FIG. 4A 1s a conceptual diagram illustrating an entity-
relation schema 1n accordance with the invention.

FIG. 4B 1s a further conceptual diagram of an entity-
relation schema according to the ivention.

FIG. 5 1s a block diagram of an entity definition
(ENT.DEF) table 1n accordance with the invention.

FIGS. 6 A and 6B are block diagrams of a relationship
definition (REL.DEF) table in accordance with the inven-
tion.

FIG. 7 1s a connection diagram showing how relations
may be explicitly defined 1n a Relation-instances Table (R1T)
so that unique relations between instances of a first entity
class and instances of a second entity class can be 1dentified.

FIG. 8 1s a block diagram of a database system according,
to the mvention.

FIG. 9 15 a block diagram of a relations processing engine
according to the mvention.

FIG. 10 graphs a variety of sample inquiry paths that may
be followed by the engine of FIG. 9.

10

15

20

25

30

35

40

45

50

55

60

65

8
DETAILED DESCRIPTION

The following includes a detailed description of the best
mode or modes presently contemplated by the inventor for
carrying out the invention. It 1s to be understood that these
modes are merely exemplary of the invention. The detailed
description 1s not intended to be taken in a limiting sense.

Referring to FIG. 1A, the block diagram of a conventional
database system 100 1s shown. The database system 100
comprises a cenftral processing umt (CPU) 110 which 1s
operatively coupled so as to be controlled by an access
control program (object code) 120d stored 1n a first memory
means 120 (1.e., read-only-memory, ROM, or random access
memory, RAM). The CPU 110 1n combination with the first
memory means 120 can be viewed as one or more machine
means for performing functions specified by the object code
120d. The CPU 110 1s further operatively coupled to access
the data 130d of a “bulk storage” second memory means 130
also 1included in the database system 100. Individual strings
of digital information are represented by wiggled lines (e.g.,
120d, 130d) in FIG. 1A. The bulk storage means 130
typically takes the form of a large array of magnetic disk
drives, tape drives, or other mass storage devices (e.g.,
arrays of Dynamic Random Access Memory [DRAM]

chips). The first (control) memory means 120 usually takes
the form of high speed RAM and/or ROM.

To access a particular string of data 130d stored within the
bulk storage means 130, the CPU 110 must provide a
corresponding address signal 131s (FIG. 1B) in the form of
logic highs (H) and lows (L) to the bulk storage means 130
over an address bus 131. As seen 1n the time versus
logic-level graph of FIG. 1B, the address signal 131s
(usually an electrical signal) comprises a set of logic high
and logic low levels (H and L) transmitted 1n a first time
period t,—t,. There follows a second time period, t,-t,,
which 1s often referred to as an “access delay”, during which
addressing circuits attempt to access the addressed memory
location. Depending on whether a memory read or memory
write operation 1s occurring, data signals 132s are then
transterred over a data bus 132 (FIG. 1A) from the addressed
location within the bulk storage means 130 to the CPU 110
or vice versa during a following third time period, t,-t;.

Referring still to FIG. 1A, the object code 120d of the
access control program determines when and how the CPU
110 will access information 130d stored in the bulk storage
means 130. The CPU 110 issues address signals 121s (not
shown) over an address bus 121 to the first memory means
120, and 1n response, the first memory means 120 supplies
instruction signals 122s (not shown) over a data bus 122 to
the CPU 110. Information signals 122s can be exchanged
bidirectionally over data bus 122 between the CPU 110 and
the first memory means 120. FIG. 1B may represent the
timing relation between address signals 121s and first
memory 1nformation signals 122s by replacing reference
numerals 131s and 132s with 121s and 122s, respectively.

It should be understood that neither the object code 120d
of the first memory means 120 nor the data code 130d of the
mass storage means 130 1s i human-readable form. A
translation machine 1s needed to convert the binary bit
strings of either memory means (120 or 130) into a form
which might be understandable to an experienced computer
programmer or to a lay computer user.

The object code 120d of the access control program 1s
produced by first generating (e.g., manually writing and
encoding) a source code listing 112 whose lines of infor-
mation 112d are usually understandable only to a highly
trained computer programmer. The source code listing 112

US RE40,063 E

9

which 1s written 1n an assembly level or higher level
language (e.g., C, COBOL, FORTRAN, PASCAL, etc.) 1s
transformed 1into machine-readable form, and passed
through a first translation machine which may be referred to
as a compiler (or assembler) means 114. The compiler
means 114 produces the machine-readable object code 120d
according to instructions provided by a machine readable
version of the source code listing 112. After 1t 1s stored 1n the
first memory means 120, the object code 120d 15 expressed
as machine detectable alternations (ones and zeroes) in a
physical attribute (e.g., voltage) of the medium which makes
up the first memory means 120. In this form, the object code
120d 1s more readily convertible into data signals 122s
which are understandable to the CPU 110 than into infor-
mation which 1s understandable to a lay (non-programmer)
person. It 1s highly improbable that a lay person will ever
wish to access or understand or modity the object code 120d

stored within the first memory means 120.

The information strings 130d within the bulk storage
means 130 are similarly expressed as alternations in the
physical property of the storage medium making up the
second memory means 130. Some of the data strings 130d
represent “real” data which a lay-user may wish to access
while others of the strings 130d represent “ancillary” data
such as sequencing keys, threading pointers or control codes
which a lay-user 1s not interested in. The object code 120d
of the control program defines which 1s which.

When “real” data 1s to be extracted from the data strings
130d within the bulk storage means 130, read and under-
stood by a lay person, a translation process similar to
compilation (or more correctly de-compilation) needs to
take place. Just like the compiler means 114 functions as a
man-to-machine translator, the combination of the first
memory means 120 and the CPU 110 defines a second
man-to-machine search-and-translate machine 115 which 1s
used to search through parts of the bulk stored data 130d,
extract relevant pieces ol “real” data and convert the
extracted data from machine-readable form into human-
readable form. The human-readable output of the second
translation machine 115 may be produced in the form of a
query output listing 150 (e.g., on paper or on a video screen)

as indicated in FIG. 1A.

If a lay user (defined here as someone other than a person
who 1s an expert programmer familiar with details of the
source listing 112) wishes to obtain useful (*real”) informa-
tion from the bulk storage means 130, the lay user will
normally supply a query input 140, 1n a form dictated by a
so-called “‘structured query language” (SQL) to the CPU
110. (In the 1llustrated example the user mputs the request
string “Please find all books having attribute xxx,” where
xxXx could be the relations “author’s last name=Jones”.) The
combination of the CPU 110 and first memory means 120
(which combination forms the second search-and-translate
machine 115) process this query mput 140 and 1n response,
produces a series of address signals 131s which are sent to
the bulk storage means 130 and processes a series of data
retrievals 132s which eventually lead to the production of a
corresponding query output listing 150. (In the example, 1t
would be a listing of all books whose author’s name 1s
“Jones”.) The access control program 120d 1s charged with
the task of enabling various types of queries 140 and making
sure that the queries do not violate basic rules of logic.

When the information 130d within the bulk storage means
130 needs to be updated, by for example adding new books,
a similar exchange occurs between the translating machine
115 and a lay user. The lay user supplies an update input 160,
again as dictated by a pre-specified structured query lan-

10

15

20

25

30

35

40

45

50

55

60

65

10

guage (SQL), and 1n response, the translating machine 115
rearranges the data 130d within the bulk storage means 130
to achieve the requested update.

Referring to FIG. 2A, a first embodiment 200 of the data
base system 100 will be described 1n more detail. FIG. 2A
schematically 1llustrates a section 130a of the bulk storage
means 130 according to embodiment 200 wherein some of

the stored data strings 130d are arranged to define a key-
sequenced type of table. In a first record region (Record No.
1) of the table 130a there 1s provided a first continuous data
string 230 which 1s subdivided to have a first string portion
231 representing an author’s name (1llustrated as the con-
tents of a rectangular box), a second string portion 232
contiguous thereto for representing a name threading pointer
(1llustrated as a second rectangular box coupled to the first
rectangular box by an address proximity link P,,), a third
data string portion 233 representing the book’s title (which
1s linked to the second portion 232 by proximity link P, ,),
a Tourth subsection 234 representing a title threading pointer
(linked to box 233 by address proximity link P,,), a fitth
subsection 235 representing the book’s location (linked to
box 234 by proximity link P,,) and a sixth subsection 236
representing a location threading pointer (linked to box 235
by proximity link P, .).

The name threading pointer 232 1s located directly adja-
cent to the author’s name subsection 231 within the address
space of Record No. 1, as indicated by address proximity
link P,, and thus, there 1s an “implied” logical connection
between the data contents of boxes 231 and 232. The book’s
title subsection 233 1s located directly adjacent to the same
threading pointer 232 as indicated by address proximity link
P,,. The combined, proximity linkage, P,,-P,,, “implies™ a
relationship between the contents of boxes 231 and 233,
namely that they apply to various attributes of a common
book. This format repeats for data subportions 234-236.
Only boxes 231, 233 and 235 contain “real” data which 1s
usetul to a lay person. The other boxes, 232, 234 and 236 of

Record No. 1 contain “ancillary” data which 1s usetul to the
search machine 115 but does not provide the kind of “real”

information sought by an inquiring lay person.

The implied relations between the “real” data boxes, 231,
233 and 235 of Record No. 1, arise only after “meaning™ 1s
assigned to all the boxes 231-236. Such “meaning” comes
from the operation of the search-and-translation machine
115 (FIG. 1). To understand this concept, assume that an
automated “searching” machine (computer) 115/200 of
embodiment 200 1s examining the data string 230 held
within the single Record No. 1. Assume further that this
searching machine 115/200 includes means for assigning
appropriate “meanings” to each of the data subportions
contained in each of subsections 231-236 to thereby desig-
nate some as containing “real” data and others as containing
“ancillary” (e.g., pointer) data. In that case the search
machine 115/200 can scan horizontally across the record,
parse the data string 230 into subsections of appropriate size
and extract the name of the book’s author, the book’s title
and the location of the book within the library, as desired. On
the other hand, if the searching machine 115/200 does not
possess iformation which tells it that box 232 1s a threading
pointer, box 233 1s a title, etc., then all boxes will look alike
to the search machine, there will be no “meamng” assigned
and the search machine 115/200 will not be able to extract
a desired piece of data. Thus, while not shown 1n FIG. 2A,
it 15 to be understood that there 1s a cooperative relation
between how the object code 120d of the search machine
115/200 causes that search machine to access the parts of bit
string 230 via the signal busses, 131 and 132, how subpor-

US RE40,063 E

11

tions of bit string 230 become designated as “real” or
“ancillary” data, and how relations are implied between
separate pieces of real data. The structure, meanings inter-
relations between the parts of bit string 230 are imntimately
linked to the structuring of the object code 120d.

In FIG. 2A, the bulk memory means section 130a 1s
shown to include additional record areas (Record No. 2,
Record No. 3, etc.) each having the same data structure
(represented respectively as string 240 which comprises data

subsections 241-246 and string 250 which comprises data
subsections 251-256). Although Record No. 1 1s 1n physical
proximity with Record No. 2, as indicated by physical (or
address) proximity link PR ,, and Record No. 2 1s 1n
physical proximity with Record No. 3 as indicated by
physical proximity link PR,,, the data items (231-236,
241-246, 251-256) within each record do not need to be
examined according to this physical ordering. Instead, the
name threading pointer 232 of Record No. 1 can represent
the address of any other arbitrary record area within the bulk
storage means section 130a whose author’s-name will seri-
ally follow the author’s-name of box 231 during a search
process. This 1s represented 1n FIG. 2A by the dashed logical
link L,, which points to some arbitrary record area,
Record.Addr.,, of section 130a. The name threading pointer
of the referenced record, Record.Addr.,,, can point to yet
another arbitrary record. With this mechanism, a list which
1s sorted (alphabetically for example) according to author’s
last name may be formed even though the records are not
physically ordered in any specific sequence. The list 1s
referred to as a “key-sequenced” list 1n cases where, as here,

the sequencing key (or sort key) 1s data stored in the boxes
c.g., 231, 241, 251, etc. of a table column.

The title threading pointers (234, 244, 254) of each record
may be used to form a different key-sequenced path 1n which
books are examined according to subject matter or alpha-
betically according to the book’s title or according to some
other ordering algorithm. The location threading pointers
(236, 246, 256) can be similarly used to create a key-
sequenced list which will identity what book 1s physically
located next to what other book on the library’s shelves.

For the sake of illustrative simplicity, only one threading
pointer (1.e., 232) 1s shown attached to each real data item
(1.e. 231) of each record, but 1t should be apparent that the
author’s name 231 may have many threading pointers, one
for threading alphabetically according to last name, and
others for threading according to additional relations such as
geographic location, age, number of published books and so
forth. It 1s up to the computer programmer and the access
control program 120d to assign “meaning” to each box and
thus determine whether that box will function as a storage
area for real data or for ancillary data such as pointer data.

The records of FIG. 2A may be wvisualized as being
serially stacked one on the next according to a sequence
defined by a preselected one of the threading pointers (e.g.
232 or 234 or 236) to thereby create a displayable table
which has as entries 1n the columns of each row, the real data
items: author’s name 231, book’s ftitle 233 and book’s
location 235. The ancillary threading pointers 232, 234, 236
are hidden from the lay user’s view. New rows are added to
the table by breaking a logical link (e.g., L,,) between a
preceding pointer (e€.g. 232) and a next pointer (e.g. 252) to
insert a new record in the search path. The rows can be of
variable length since the linking address pointers can point
to any arbitrary location 1n the bulk memory means 130. To
get to the N” item of a threaded list, one normally sequences
from the beginning of the list (table) through all the thread-
ing pointers until the N” access is performed, at which point

10

15

20

25

30

35

40

45

50

55

60

65

12

the contents of the addressed record area can then be read.
For relatively large tables (e.g. those having thousands of
rows), this process of sequencing through all the threading
pointers to reach the N” row of a table can take a significant
amount of time.

Referring to a second embodiment 260 shown in FIG. 2B,
the structure of an older and less sophisticated data orga-
nizing system will be described. In a bulk memory section
130b of this older system 260, data 1s organized according

to what 1s commonly referred to as “relative table” address-
ing. Threading pointers are not used for logically linking one
record (row) to the next. Instead, each data string (e.g., 270)
can be shrunk to contain only the essential target
information, such as in this example, author’s name (271),
book’s title (273) and book’s location (275), with one 1tem
of real data being physically located adjacent to the next.
The examination of all record 1tems 1n this structure 260 may
be performed according to the physical location of each
record (270) within the address space of bulk storage area
130b (the next adjacent string 280 follows first string 270
and so forth). Unlike the purely key-sequenced organization
of FIG. 2A, the physical proximity links PR,,,, PR,,;,
PR.4, etc., of FIG. 2B do indicate a particular ordering of
the stored imnformation.

The relative-table organization 1s somewhat similar to the
way that index cars are physically ordered 1n a manual
library system according to author’s last name, except that
the library catalog trays should now be visualized as having
sequentially arranged grooves defined on their bottom-1nner
surfaces. Each groove 1s numbered according to 1its absolute
position and only one card can be slotted into each groove.
With this system, each card can be immediately located by
its groove number rather than by thumbing through the
information of all previous cards. If a groove number 1is
known, substantial time can be saved 1n locating the corre-
sponding card and obtaining the information written on its
face. If the grove number 1s not known, the same relative-
table organization can be searched by sequentially thumbing
through the trays and examining the cards according to a
key-sequenced approach 1n order to find a desired card even
though the cards are stored in grooves. The relative-table
organizing method 1s not mutually exclusive of a key-
sequenced examination method. There 1s a difference
between a purely key-sequenced table and a relative table,
however. A relative-table orgamized system 1s not as easily
updated as 1s a purely key-sequenced system. In the relative
table system, a new card cannot be inserted between two
cards which already fill adjacent slots. This inflexibility has
led many 1n the database management field away from the
relative-table method and towards purely key-sequenced
systems since the latter can accept any number of new cards
for 1nsertion between old cards.

In FIG. 2B, all the record areas are of a fixed and
predefined length. The fixed length of each record defines
the groove size. To access the N” item of a “relative-table”
type of list 130b, one need only multiply the fixed record
length by the value N to directly obtain the physical address
(slot) of the desired record. There 1s no need to sequence
through a chain of threading pointers in order to find a
desired row once its slot number (groove number) 1s known.
Empty slots 290, such as the slot number 4 shown m FIG.
2B, are preferably scattered throughout the address space of
the bulk memory section 130b to allow for occasional
insertion ol new items.

It should be noted that while the relative table organiza-
tion 130b of FIG. 2B 1s neither as flexible nor as easily
updated as the key-sequenced organization 130a of FIG. 2A,

US RE40,063 E

13

the relative-table structure 130b has one major advantage
over the key-sequenced structure 130a; an N” item in a
relative-table list 130b may be accessed much faster than the
N7 item of a key-sequenced list 130a.

FIG. 3 1s a block diagram of a bulk storage area 130c
whose data 130d 1s organized according to a known key-
sequenced scheme which 1s often referred to 1n the industry
as a “relational” database. A ““tables™ area 300 contains a

plurality of tables 310, 320, 330, 340 and 350. Each of these
tables 1s defined purely by a threaded-list, key-sequenced

structure such as shown in FIG. 2A. For the sake of
illustrative brevity the list threading pointers (1.e., 232, 234,

236) are not shown. Only the non-threading boxes (1.e., 231,
233, 235) are shown.

Rows are 1llustrated to extend horizontally (in the *“x”
direction) 1n FIG. 3 while table columns are illustrated to
extend vertically (in the *“y” direction). Each table 310-350
1s shown to have its respective rows sorted numerically
according to “key” numbers that are stored in 1ts leftmost
column (referred to here as the “sort column”™).

A first of the key-sequenced tables, 310 (also labeled
“Table of Names™), 1s shown to have two columns. One
(right side) column 312 holds “real” data representing the
names ol various persons while a preceeding (left side)
column 311 holds unique key-numbers, 1, 2,3, ..., N, N+1,
N+2, . .., each associated with a unique name of a person.
The association of a person’s name to a key-number 1s
“immplied” by the fact that the key number 1, 2, 3, . . .,
N, . .., 1s located in the same row of table 310 as 1s the
corresponding “Person’s Name”. Fach key-number of left
column 311 1s referred to as a “Name Identification Num-
ber” (abbreviated here as N-IDN). Table 310 1s shown to
have been pre-sorted according to the N-IDN’s of column
311. The sorting method 1s indicated 1n FI1G. 3 by positioning
the mitials “KSO” over column 311 to tag that column as the
Key-Sequenced-Ordering column of table 310.

To find the name of a person within table 310 whose
assoclated i1dentification number 1s known to be N, one
normally starts at row number 1 of the left column 311,
where the N-IDN of the first person’s name 1s stored and
threads downwardly (in the y direction) through the
threaded-list pointers (not shown) associated with this sort
column 311, testing each corresponding entry of column 311
for a match until the position holding the number N 1s found.
Then one moves horizontally (1n the x direction) across that
row to the right column 312 to extract the name associated
with the N” name identification number (N-IDN).

When an automated search machine 115 performs this
thread and test process, 1t must retrieve data from the
memory area 130c at least N times before the target data
(Person’s-Name) 1s retrieved. The time for retrieving the
target data 1s thus at least N times the access delay period
(e.g., the t,—t, period of FIG. 1B) of the memory means 130.
By way of example, if N=1000 and the access time of
memory means 130 1s 30 milliseconds, then it can take 30
seconds or more just to retrieve one name. If a thousand

names are to be randomly retrieved at different times from
the range N, N+1, N+2, . . ., N+M (where M would be 1000

or higher), then 1t can take as much as 30,000 seconds (8.3

hours) or longer just to perform this simple table look-up
task.

The N-IDN field of each row 1s generally made much
shorter 1n bit length than its associated Person’s-Name field.
The N-IDN can be viewed therefore as an abbreviation of a
person’s full name. The first table 310 can be viewed as a
conversion list or look-up table which allows one to easily
convert a given abbreviation (N-IDN) into a full name.

10

15

20

25

30

35

40

45

50

55

60

65

14

A second, separate, table 320 (also labeled as “Table of
Locations™) 1s shown to contain two similar columns. Right
column 322 stores “Home Addresses” in full while left
column 321 holds unique, Home-Identification-Numbers
(abbreviated H-IDN) which are generally shorter imn bait
length than the associated “Home-Address” fields. The
H-IDN’S thus can serve as abbreviations for the full address
fieclds. Table 320 1s ordered numerically according to the
H-IDN’s as indicated by the legend “KSO” over column
321. The table 320 can therefore easily serve as part of an
H-IDN abbreviation to full address converting means.

Since many people often live at a single home address, 1t
1s plausible that a single home address will be shared by
persons ol diflerent names. Relational database theory rec-
ognizes this and teaches to separate information (e.g., home
address) that might be shared by many entities away from
any unique one of those entities (e.g., person’s name). Table
310 1s accordingly separated from table 320. Concurrently,
it should be possible to relate a person’s full name to a full
home address without having to repeatedly duplicate the full
name string or full address string within the bulk storage
means 130. The data orgamization 300 shown in FIG. 3
includes a third key-sequenced table 330 which 1s structured
for doing just that; linking one persons’ name with one home
address while using the abbreviated bit strings, N-IDN and
H-IDN.

Third table 330 comprises three vertical columns, 331,
332 and 333. Left column 331 holds Person Identification

Numbers (P-IDN’s), 1, 2,3, ..., P. The rows of third table
330 are sorted using the P-IDN’s as the sort key. For each
row of the third table 330, the second column 332 contains
a Name-IDN and the third column 333 contains a Home-
IDN. Each Name-IDN of third table 330 (for example, at
row 4 of table 330 whose column 332 contains the value
“N”) should have in the left column 311 of the Names table
310 a matching key number (e.g., the number N which 1s
pointed to by arrow L, ,). Thus an N-IDN stored 1n the third
table 330 can be used to indicate the row within the first table
310 where a person’s full name may be found. Each Home-
IDN of the third table 330 should similarly have a matching
key number (e.g., the number 2 which 1s pointed to by arrow
[,,) within left column 321 of the second “Locations™ table
320 at whose row a corresponding full home address may be
found.

Each row (e.g., row 4) within the third table 330 implicitly
creates a set of logical links or “relations™, L,,-P.,-L.;
which join a person’s name to a particular home address.
These links, L,,, P,, and L, are represented in FIG. 3 by
dashed connecting lines which, in combination, join the
Person’s-Name held in table 310, row N, to the Home-
Address held in table 320, row 2. The implied linkage,
L.,-P,,—L.;, does not arise from the contents of the first
three tables, 310, 320 and 330 taken alone. The key numbers
(e.g., N-IDN, H-IDN, P-IDN) that are held within these
tables are by themselves a meaningless series of numbers. It
1s only when randomly distributed modules of object code
120d* stored within the memory means 120 of this “rela-
tional database” system (300) cooperatively interact with the
CPU 110 that the implied relations come 1nto being. The
object code 120d* instructs the CPU 110 to select a specific
row (1.¢., row 4) 1n the third table 330, to extract the numbers
from adjoining columns 332 and 333 of that row (thus
implying the proximity link, P,,), to select table 310, to
sequence down i1ts KSO column 311 looking for a match to
the number from column 332 (thus implying logical link
L.,), to select table 320, to sequence down 1ts KSO column
321 looking for a match to the number extracted from

US RE40,063 E

15

column 333 (thus implying logical link L,5), and to then
extract from each respectively matching row of tables 310
and 320 the corresponding person’s full name and full home
address. It 1s only by performing these data processing steps,
as directed by the object-code 120d*, that the search-and-
translation machine 115 of embodiment 300 1s able to link
(L.,) an otherwise meaningless number (N) held 1n the third
table 330 to a specific row (i1.e. the row holding the same
number N) positioned in another table (310) and to link (L ;)
turther numbers (1.¢., the number “2” in col. 333) of the third
table 330 to a specific row (i1.e. the row holding the same
number 2) of yet another table (320). This object-code
dictated linkage [,,-P,,-L., then implies a “relation”
between the Person’s-Name field stored at row N of table
310 and the Home-Address field stored in row 2 of table 320.
Arrow L__ denotes that all illustrated linkages (I,,-L_,3) in
FIG. 3 spring forth from randomly-distributed object code
modules 120d* of the access control program 120d. Note
that the third table 330 assumes by its three column structure
a one-to-one cardinality between person-name and home-
address. It 1s assumed that a person can have only one home
address. The structure of table 330 1s incapable of handling
a situation where a person has, for example, both a summer
home-address and a winter home-address. Restructuring of
the third table 330 would be called for if it becomes
desirable to associate each person’s name with more than
one home address.

A number of advantages come from organizing the tables
of data storing area 300 separately according to relational
database theory. Storage space 1s conserved 1n cases where
plural entities of a first type (person) are related to a common
entity of a second type (home address). The same Home-
IDN can appear many times down column 333 without
consuming large amounts of memory space while the actual
tull address 1s stored only once 1n second table 320. When
a person moves to a new home address, the corresponding
Home-IDN 1n column 333 can be easily altered to point to
a new position within the second table 320 which contains
the new home address (e.g., H+1) thereby implying the new
person-to-address relation. If a person changes their name
(1.e., by way of marriage) the home address can remain the
same. Only the first table 310 needs to be modified and
updating work 1s thus minimized. Also, the basic listings
“Names™ 310 and “Addresses™ 320 can be used to imply a
wide variety of “relations™ other than a relation between a
person’s name and his’her home address using the same
abbreviated set of identification numbers (IDN’s).

By way of example, assume that the first three tables, 310,
320 and 330, are used by a business institution (company) to
keep track of the names of their employees and the corre-
sponding home addresses of these employees. Let it be
supposed that many employees need to commute to work by
a privately-owned car. Some employees drive their own car,
some drive a car owned by another employee and some are
merely passengers. Let it be further assumed that after tables
310, 320, 330 are defined 1n a mass storage means 130, the
company decides to also keep track of which person drives
which car, which person 1s a passenger 1n which car and
further, who the owner of the car 1s.

A fourth table 340 (Table of Drivers) may be constructed
as shown 1n FIG. 3 to have a first key-sequenced column 341
storing plural dniver identification numbers (abbreviated
here as D-IDN’s), 1, 2, 3, ..., D. A second column 342 1s
provided for holding person identification numbers
(P-IDN’s) and a third column 343 1s provided for holding car
identification numbers (C-IDN’s). A fifth table 350 (Table of

Cars) may be similarly constructed as shown with a first

10

15

20

25

30

35

40

45

50

55

60

65

16

KSO column 351 for holding the C-IDN’s (1, 2,3, ..., C),
with a second column 352 for holding owner identification
numbers (O-IDN’s) which will point to the one person who
owns the vehicle and with a third column 353 for holding a
vehicle serial number (SN). While not shown, 1t should be
apparent that a sixth table (Table of Passengers) would be
constructed with the same organization as that of fourth table
340 to identily passengers and their corresponding car.

Referring to row D of table 340, 1t can be seen that one
implied link .44 identifies driver D as being the person of
P-IDN=4 who has the name implied by earlier link L, and

the home address implied by earlier link L ;. Proximity link
P,, implies that dniver D drives the car having C-IDN=2.
The latter number 1implies a logical link L, to row 2 of table
350 which holds the serial number (SN) of the driven car. By
way of another proximity link, P,-, in row 2 of the same {fitfth
table 350, a further logical link, [., indicates that the owner
of car C-IDN=2 1s the person P-IDN=P of table 320. It was
assumed by the structure of table 350 that each car can have
only one owner and one serial number.

Consider, however, what happens 1f a new government
regulation comes into being allowing for more than one
owner per car or requiring multiple identification numbers
for each car. The {fifth table 350 may have to be restructured
to add new columns (1.e., 354, 355, efc.; not shown) which
would allow for the implication of such new relations. This
means that the access control modules 120d* which define
the “meaning” of each data field (subsection) within table
350 would have to be revised. Referring back to FIG. 1 1t can
be seen that modification to the control code 120d* will
usually occur first 1n the original source code 112, which 1s
then compiled 114 as indicated i FIG. 1, debugged to
correct programming errors (not shown) and thereafter
repeatedly compiled 114 and debugged until all apparent
errors are removed. The process of restructuring relations
within a relational-type database system (300) therefore
tends to be time-consuming, costly, and prone to error.

A newer form of database organization, referred to some-
times as the “object oriented” approach, has been proposed
to solve some of the problems associated with reorganizing
and updating previous database systems. According to the
object-oriented approach, encapsulation bubbles are defined
to hide from external view, data which 1s encapsulated
within the bubble. Each bubble is referred to as an “object”
and the encapsulated information of the object 1s referred to
as the object’s “attributes.” One bubble may encapsulate a
second bubble which in turn encapsulates third, fourth and
further bubbles so that a relatively complex data structure
may be defined. Objects can be assigned to “classes™ and by
such assignment they can be made to automatically “inherit”
the attributes of other objects 1n the same class, even when
the class attributes are changed after creation of the objects.

There 1s still controversy 1n the field over what constitutes
“object oriented” and how such a concept may be practically
applied to database management systems. Experimental
versions of object-oriented systems are often too slow in
performing update and inquiry servicing to be practical in
commercial settings. The present invention takes an
approach which might be considered a partial hybrid of the
object-oriented approach and the earlier-described relational
database methodology. It provides a database system which
1s capable of operating at commercially acceptable speeds
and which 1s easily restructured as well as updated. The
invention will be explained first conceptually and then by
concrete examples.

Referring to FIG. 4A, there 1s shown a relational graph or
“schema™ 400 which contains three egg-shaped bubbles

US RE40,063 E

17

labeled respectively as “Customer”, “Address” and
“Account”. These bubbles are not intended to represent
“objects” from the object-oriented school of thought, but
rather “classes’™ of entities. Each of these bubbles 1s referred
to as an “entity type” or “entity class”. The “Customer”
entity class generically covers all entities which might {it
under the broad descriptor “Customer”, regardless of
whether that enftity 1s a natural person, a business
corporation, an association or so forth. The “Address™ entity
class covers all entities which fit under the broad descriptor
“Address” regardless of whether the subject entity 1s a
residential address, a business address, a post-oflice mailing
address or so forth. Similarly, the “Account” entity class
covers all sorts of accounts including savings accounts,
checking accounts, trust accounts, efc.

Each entity bubble may contain one or more “instances”
of the entity class (i.e., Customer, Address, Account) which
it represents. By way of example, let 1t be assumed that there
are three customers whose names are “Customer-A”,
“Customer-B” and “Customer-C”. Let 1t be turther supposed
that because of a peculiar rule, the Customer bubble (also
labeled as entity class “E-17) 1s restricted to contain the
name of only one customer at a time, say “Customer-B”,
while the address bubble (E-2) can at the same time contain
many “addresses’™, each corresponding to that Customer-B.
If Customer-B 1s a person, the address instances might be
summer-home and winter-home addresses. If Customer-B 1s
the name of a business having a chain of stores, the plural
addresses 1n the second bubble (E-2) might be the mailing
addresses of those stores. The name “Customer-B” 1s an
example of a first instance, I,,.,, of the E-1 entity class and
1s 1llustrated conceptually in FIG. 4A as a small sphere I, .,
enclosed 1n the entity class bubble E-1. Three instances,
1,2, I,z and I5,., of entity class E-2 are similarly 1llus-
trated as three spheres 1nside of entity bubble E-2. It 1s also
assumed here that the Account bubble (E-3) 1s restricted by
a peculiar rule so that at any one time 1t may contain only
one account number (instance I,,.,) which 1s somehow
associated with Customer-B.

Until now we have been visualizing the instances, 1.,
1,25, 15,20, 13,2, and 1,y of respective entity classes, E-1,
E-2 and E-3 as 1solated spheres floating separate from one
another, without identifying any specific relation between
the instances. The present invention treats “‘relations™ as
being objects of equal substance to the entities they tie
together. There are relation “classes” and instances of a
specified relation class. Three arrow-shaped bubbles, R-1,
R-2 and R-3, are shown i FIG. 4A to be respectively
coupling the Customer entity class (E-1) to the Address
entity class (E-2), the Account enftity class (E-3) to the
Customer enftity class (E-1) and the Account entity class
(E-3) to the Address entity class (E-2). These linking
bubbles (R-1, R-2, R-3) are referred to here as “relationship™
types or classes. Each relation bubble R-x (where x 1s an
arbitrary identifier, 1, 2, 3, etc.) 1s visualized as having a
bulb-shaped Head portion, H, an elongated body portion B
and an arrow-shaped Tail portion, T. A “Head attribute can
be assigned by each relation bubble R-x to the entity bubble
(E-h) located at 1ts head end (H). A *“Tail attribute” can be
correspondingly assigned by each relationship bubble R-x to
the entity bubble (E-t) located near its tail end (T). The
combination of the Head-attribute, 1f any, plus the Tail-
attribute, 11 any, can be used to give the relationship bubble
(R-x) a “meaming”. This meaning is generated by associating
with the body portion B of each relationship bubble (R-x),
a “meaning-string” which preferably, but not necessarily,
has a head character-string and a tail character-string. The

10

15

20

25

30

35

40

45

50

55

60

65

18

combination of an “entity-class name” (ECN-h) associated
with the head entity type (E-h), the meaning-string (M-s) of
the connecting relation type (R-x) and another entity class
name (ECN-t) associated with the tail entity type (E-t) are
concatenated according to the formula, (ECN-h)+(M-s)+
(ECN-t), to expressly define a relational phrase. The
expressly defined phrase can be modified by changing any
one or all of its three components; (ECN-h), (M-s) and
(ECN-1).

In more concrete terms, the top relation bubble R-1 1s
shown to have the meaning string ‘“s business”. The
substring, “’s” 1

1s a head character-string while the substring
“business” 1s a tail character string. By 1tself, the meaning-
string (’s business) appears to be nonsensical, but 1n con-
junction with the class names its head and tail entities, E-1
(“Customer”) and E-2 (“Address™), this first relations
bubble, R-1, forms the relational phrase: “The Customer’s
business Address”. Instance I,,., 1s a specific customer’s
name (1.€., “Customer-B”) and instances 1, .., I, -, and 15, -,
are now defined as specific instances of that customer’s
business addresses (1.€., the addresses of individual stores in
a chain of stores owned by Customer-B).

Of importance, 1t 1s to be noted that the first entity bubble,
E-1 (Customer), does not itsell encapsulate the attribute of
possession as indicated by the apostrophed head character-
string “’s”. Instead, that attribute of possession 1s encapsu-
lated by the first relationship bubble, R-1. Furthermore, the
second entity, E-2 (Address), does not encapsulate the
moditying attribute “business”. Instead that attribute 1s also

encapsulated by the relation bubble R-1. Thus, each entity
bubble (E-1, E-2, E-3) is free of any narrowing attributes or
modifiers and 1instead, represents a relatively broad and
generic listing of data items which can come under the
heading of either “Customer” or “Address™ or “Account”.
The advantage of this structure will become apparent
shortly.

Consider for a moment what happens 1f the meaning-
string 1n relation bubble R-1 1s changed from ““’s business”
to ““’s headquarters”. Under this circumstance, the rules
change. The address bubble (E-2) should be restricted to at
any one time contain only a single instance (e.g., I,%,)
representing the “Customer’s headquarters Address™ rather
than many instances. Presumably each customer can have
only one headquarters address. Thus, the “cardinality” of
relations bubble R-1 must be changed from 1ts earlier
one-to-many {1:m} format, as was possible with business
addresses, to a one-to-one setting {1:1}. According to the
invention, each relation bubble, R-x, has a cardinality rule
(e.g., {11:1} or {1:m}) associated with its body B as well as
a meaning- string (e.g., “’s business™).

Consider, next what happens 1n a business database 1t
users are allowed to enter a customer name but leave out the
mailing address or telephone number of that customer. Most
companies operate under a strict rule which requires 1its
oflice workers to record at least one forwarding address or
telephone number when the name of a new customer 1s
entered. To enforce this requirement, each relation bubble
(R-1) turther incorporates a mandatory-coupling character
which can be either Y™ or “N”” (representing yes or no). I
it 1s required that at least one instance (I,,.,) of a tail enfity
class E-2 should be created whenever an 1nstance (I,,-,) of
a head entity class E-1 is created, then the mandatory-
coupling character of relation bubble R-1 1s set to “Y”. This
indicates that instance I, .., should not exist without instance
I,,z,. The “MC” lightning bolt shown emanating from I,,.,
represents this mandatory coupling of instances. On the
other hand, 11 such coupling 1s not mandatory, the coupling
character 1s set to “N” and there 1s no “MC” connection.

US RE40,063 E

19

As further examples of the concepts behind the invention,
the second relation bubble, R-2, 1s shown to contain 1n FIG.
4A the meaning string, “’s owning’, the cardinality rule,
{1:1}, and the mandatory-coupling character, “Y”
(presumably every account should have an owner). The third
relation bubble, R-3, 1s shown to contain the meaning string,
“’s statement mailing”, the cardinality rule, {1:1}, and the
mandatory-coupling character, “N”” (presumably an account
holder can pick up his/her statement rather than having it
mailed). Instances of entity E-1 which satisfy the relation-
ship created by relation bubble R-2 are read as “The
Account’s owning Customer”. Instances of entity E-2 which
comply with the relationship created by relation bubble R-3
satisty the descriptive phrase, “Account’s statement mailing
Address”, or stated otherwise, the address to which account
statements are mailed for the particular instance I,,-; of the
Account enfity class E-3.

By changing the meaning-string within a relation bubble
R-x, 1t 1s possible to create new relational phrases although
the Head and Tail entity classes remain the same. By
changing either or both of the Head and Tail entity classes
(E-h or E-t), it 1s possible to again create new relational
phrases although the relation bubble R-x remains

unchanged.

Consider what happens for example when the meaning-
string of relation bubble R-3 i1s changed to the phrase:
“which 1s managed at bank branch having”. Then the
combination of the class names or meanings associated with
entity bubble E-3, relation bubble R-3 and entity bubble E-2
provides for an inquiry path allowing one to find the Account
which has a specific bank branch address as its managing,
branch. Consider what happens i1f the tail portion T of
relation bubble R-3 where moved from E-2 to a new entity
bubble (not shown) which 1s labeled “Managing Officer”
rather than “Address”. Then the relational phrase becomes
“Account which 1s managed at bank branch having [this
person as its| Managing Officer”. It can be seen that an
entirely different inquiry path 1s formed with each change of
a head entity type, tail entity type or relation type.

Inquiry paths can be defined to extend through pluralities
of entity and relation bubbles as well as between just two
entity bubbles. Still referring to FIG. 4A, suppose that a
bank officer finds an important document bearing only an
account number on 1t. The bank officer needs to immediately
contact a person who 1s authorized to manage that account
for more details about the document. In such a case, the bank
oflicer would turn to a database processing engine according
to the invention (explained later with reference to FIG. 9),
start at the known 1nstance of the account number, I, ..,
which 1s shown contained within the Account bubble (E-3),
jump through the relation bubble R-2 (°s owner) to the
Customer bubble (E-1) in order to learn who the owning
customer 1s (instance I,,-,) and then with that new infor-
mation (I,,-,) serving as a stepping stone, jump from the
Customer bubble (E-1) through the relation bubble R-1 (s
business) to the Address bubble (E-2) to learn the address at
which he may contact the account manager. This 1s merely
an example, inquiry paths can include many more bubbles,
they can branch out to form a tree rather than being serial
and they can produce many pieces of information which are
uselul for solving a puzzle rather than just one piece of target
information.

Relation bubbles (R-x) do not have to be single tailed.
Referring to FIG. 4B, further vanations of the concept
behind the invention are 1llustrated. A fourth relation bubble,
R-4, 1s shown to have a plurality of tail ends, T1, T2 and T3,
so that a single meaning-string (e.g., “’s business™) can

5

10

15

20

25

30

35

40

45

50

55

60

65

20

simultaneously couple a common Head entity (Customer) to
a plurality of Tail enfities (e.g., Address, Account and
Telephone). Moreover, a relation bubble does not need to
span between different entity bubbles. FIG. 4B shows
another relation bubble, R-5, which folds back 1n a loop so
that the Head entity (Customer) 1s also the Tail entity. In the
illustrated example, the relation bubble R-5 contains the
meaning string s largest”. Given the name of a first
customer, this back-looping relation bubble R-35 allows one
to find that customer’s largest customer. The loop may be
followed around ad infinitum to obtain a long list of largest

customers belonging to other largest customers.

With the above-mentioned conceptual models 1in mind, a
concrete embodiment of the mvention now will be con-
structed piece by piece. Referring to FIG. S, there 1s shown
a first table 500 which 1s referred to as an entity definition
table or 1n abbreviated form, ENT.DEF Table 500. This
entity definition table 500 1s stored within a data strong area
130-RP of a database engine 1n accordance with the mven-
tion. Data storing area 130-RP preferably resides within a

bulk storage means 130* such as diagrammed 1n later-to-be
described FIG. 8. Unlike the earlier described tables

310-350 of the relational system shown in FIG. 3, which
relied on a purely key-sequenced organization, the entity
definition table 500 of FIG. § can rely on a relative table
organization (abbreviated here as “RT0O”) which features
faster data access properties and 1s also adaptable to key-
sequenced search algorithms (but not key-sequenced update
methods). Each row of the ENT.DEF table 500 1s of a fixed
bit length and has two columns. The first (left) columns 500a
stores a two character field (e.g., “CU,” “AD,” “AC” or
“SU”) which 1s an abbreviation of an enftity class name. The
abbreviation “EA” will be used here to mean “the abbrevi-
ated form of the entity class name” (Entity-name
Abbreviation). By way of example, slot number 1 1s shown
to contain the two-character abbreviation “CU”

(representing the entity name “Customer’) 1n 1ts left column
500a.

For expedience sake, a matrix notation 1s used here to
identify the columns of table 500 with letters, a, b, c, . . .,
ctc. and the rows with a numeral preceeded by a period. The

symbol 500a.1 thus refers to the box 1n table 500 at column
500a and row 500.1.

As further seen 1n FIG. 5, the abbreviation “AD” 1s stored
in box 500a2 to represent the entity name “Address”. Box
500a.3 holds the abbreviation “AC” for “Account” and box
500a.4 stores the abbreviation “SU” for “Supplier”. The slot
or row numbers, .1, .2, .3 and .4 of table 500 do not occupy
storage space within memory means 130-RP. They merely

represent the physical or logical address of their respective
rows, 500.1, 500.2, 500.3 and 500.4.

In the corresponding right column 500b of the ENT.DEF
table 500 there 1s stored, for each slot (.1, .2, .3, 4, etc.) the
name of a single other table where nstances of the named
entity class are stored. The abbreviation “Ei'1” (Entity-
instances-Table) will be used here to mean the table where
instances of the entity class are stored. Again by way of
example, box 500b.1 1s shown to reference an Ei1T called
“T.Companies” as the single table where 1nstances of the
entity class “Customer” are stored. The entry 1 box 500b.2
1s “T.Addresses” and the entry i box 3500b.3 1s “T.Ac-
counts”. Note that the entry 1n box 500b.4 1s “T.Companies”
just as 1t 1s for box 300b.1. Instances belonging to two
different entity classes (e.g., “CU” and “SU”’) may be stored
in one 1nstances table (E1T) under situations where the data
structures of the 1mstances are compatible to the structure of
that E1T (e.g., the entity instances table has enough columns

US RE40,063 E

21

ol appropriate widths to support the descriptions of each
entity instances).

Each enftity class can be referenced not only by its
abbreviated name (e.g., EA=“AD") but also by the slot
number (e.g., slot .2) where 1t 1s stored 1n the entity defini-
tion table 500. The slot number may function as an “entity
type number” (abbreviated here as ETN) for numerically
identifying 1ts corresponding entity class. Alternatively, an
additional “type number” column (not shown) may be added
to the ENT.DEF table, 500, umique type numbers may then
be entered into each row of the type number column and
these can serve as the ETN’s. Thus, the “Address™ entity
class may be referenced not only by the abbreviation
EA=“AD” but also by an entity type number whose value,
ETN=2. For the relative table organization (RTO) shown 1n
FIG. 5, the ETN happens to be the same as the slot number
(e.g. slot 500.2) where the entity name abbreviation (e.g.,
AD) 1s stored 1n the ENT.DEF table together with the name
of the corresponding EiT (e.g., T. Addresses). For the case
where an additional type number column (not shown) 1s
added, the unique ETN’s can be assigned arbitrarily such as
according to the alphabetic ordering of the EA’s 1n which
case the ETN’s may be used as sort keys for alphabetically
ordering the ENT.DEF table rows according to entity class
names (e.g. using threaded-list techniques).

Referring next to FIG. 6, there 1s shown another table 600
which 1s also stored within the data storage area 130-RP of
an engine according to the invention. This table 600 may
also have a relative-table organization (RTO) and it 1s
referred to as a relations-definition table, or REL.DEF table
600 for short. As before, a matrix notation 1s used here to
identify vertical columns of the REL.DEF table as 600a,
600b, 600c, etc.; horizontal rows as 600.1, 600.2, 600.3, etc.:
and individual boxes as 600a.1, 600a.2, 600b.1, 600b.2, etc.

The left-most column 600a holds a two character abbre-
viation representing the class name and/or meaning-string of
a relation bubble. The mnemonic, RA, will be used here to
designate such a relationship abbreviation. By way of
example, box 600a.1 holds the abbreviation “-BU-" which
represents the meaning-string ““’s Business”. (Hyphens
embrace the relation abbreviations here to distinguish them
from entity abbreviations [EA’s].) Box number 600a2 stores
the abbreviation “-OW-"" to represent the meaning-string *’s
Owning”’. Box number 600a.3 stores the abbreviation
“-SM-"" to represent the meaning-string “’s Statement Mail-
ing”. Box number 600a.4 holds the abbreviation “-HQ-" to
represent the meaning-string “’s Main Headquarters™.

Each row of the REL.DEF table 600 may also identified
numerically by a “relationship type number” (RTN) which
in the 1llustrated example happens to be the same as the slot
number (.1, .2, .3, etc.) where its corresponding two char-
acter code (-BU-, -OW-, -SM-, efc.) 1s stored. Alternatively,
a type number column (not shown) may be added to the
REL.DEF table 600 and unique RTN’s may be assigned
according to any desired, unique number generating scheme,
such as according the alphabetic ordering of the RA’s. In the
latter case, the RTN’s can also function as sort keys for
ordering the rows of the REL.DEF table (using threaded list
techniques) alphabetically according to relationship class
names (RA’s). Thus, when given a specific RTN, one can
quickly calculate the physical or sequence to the logical
address 1n the REL.DEF table 600 where details about the
corresponding relation class are stored so as to quickly
retrieve those details.

In the second column 600b of the REL.DEF table, there
1s stored, for each slot (.1, .2, .3, etc.), the name of a single

10

15

20

25

30

35

40

45

50

55

60

65

22

table where 1nstances of the named relation class are stored.
The mnemonic, “RiT” (Relation instances Table), 1s used

here to represent such a table. By way of example, the
entries 1n boxes 600b.1, 600b.2, 600b.3 and 600b.4 are

respectively: “T.Rel-17, “T-Rel-2”, “T.Rel-3” and “T.Rel-1".
Note that the entries of box numbers 600b.1 and 600b.4 are
the same. Compatible instances of two different relation
classes may be represented by two corresponding rows of
data stored mn a common relation-instances holding table

(RiT).

The third column 600c of the REL.DEF table stores the
type number (ETN,) of a head entity (E-h). Here, the entity
type number (ETN,) 1s the same as an ETN assigned to a
corresponding row in the ENT.DEF table 500 where the
abbreviated class name (EA) of that head enfity bubble 1s
stored. Similarly, the fourth column 600d of the REL.DEF
table stores the type number (ETN,,) of a corresponding first
tail entity (E-t1).

Note that the first three rows (600.1, 600.2 and 600.3) 1n
FIG. 6 A correspond to the relations schema shown 1n FIG.
4A. When row number 600.1 1s read across using the column
sequence: ¢, a, d, 1t corresponds to the relationship descriptor
phrase “Customers’ business Address”. Box 600b.2 tells us

that instances of this relationship are stored 1n an RiT table
called “T.Rel-1".

Similarly, row number 600.2, columns ¢, a, d correspond
to the relationship descriptor phrase “Account’s owning
Customer”. Box 600b.2 tells us that instances of this relation
are stored 1n table T.Rel-2. Row number 600.3 likewise
corresponds to the relationship describing phrase
“Account’s statement mailing Address” and tells us that
instances of this relation are found 1n the T.Rel-3 table.

The REL.DEF table 600 can be updated indefinitely by
adding new rows to 1ts bottom so as to encompass a great
number of further relation classes. There 1s no need to
physically order the data describing each of the relational
classes and thus descriptions of new classes can be added to
the bottom or other empty slots of the REL.DEF table 600
sporadically as the need arises over time. Relation classes
which become obsolete can be deleted to leave behind an
empty slot. Similarly, there 1s no need to order the enfity
classes defined by the ENT.DEF table 500. The ENT.DEF
table can be updated by arbitrarily adding new entity class
describing rows to 1ts bottom or other empty slots or by
deleting obsolete entries as the need arises. Accordingly,
when demands on the database system of the invention
change over time, new relation classes may be defined 1n
combination with new head and tail entity classes. The
schema of the mnvention can be continuously restructured as

the need arises simply by updating the REL.DEF and
ENT.DEF tables, 600 and 500.

The fifth columnar region 600e of FIG. 6A represents a
plurality of additional columns within the REL.DEF table
600. The names of multiple tail entities which are activated
in addition to or 1n substitution for the first ETN, of column
600d may be optionally entered 1n this region 600¢. Refer-
ring brietly to FIG. 6B, an exploded view of this fiith region
600¢ 1s illustrated. In the example, each relation class R-x
can have as many as five tail entities (11, 12, T3, T4, T5).
The invention 1s, of course, not limited to five. Column 600d
identifies the first tail enftity, T1, while extension columns
602 through 605 in region 600¢ 1dentily the optional, other
tail entities, T2—T15. The opening phrase “Customer’s busi-
ness . .. of slot number 600.1 columns, ¢ and a, may apply
to the first tail entity T1="*Address” and/or to a second tail
entity T2="Supplier” and/or to a third tail entity T3="Area”,
etc.

US RE40,063 E

23

Extension region 600¢ 1s shown to include a tail activating
column 606 which functions as a mask to activate or

deactivate each of the corresponding tail entity columns
600d, 602—605. In the illustrated example, a dark filled circle
means that the corresponding tail entity of that slot (row) 1s
active while an unshaded circle means that the respective tail
entity 1s deactivated. As an alternate embodiment, the mask
column 606 may be dispensed with and the lack of an ETN
entry (or a “null” entry) 1 a box of columns 602605 will
be regarded as indicating a deactivated tail while the inclu-
sion of an ETN value will be regarded as indication an active
tail. When two or more tail entities are activated, the relation
bubble takes on a multi-tailed form such as shown 1n FIG.
4B at R-4. The same meaning-string 1s applied to the plural
tail entity bubbles of the activated tails. Multiple copies of
a prespecified row 1n the REL.DEF table 600 may be added
to empty slots within the table 600 1n a boiler-plate stamping
manner with only the tail activation masks 606 being
modified or some ETN entries of columns 602—-6035 nulled
from copy to copy in order to generate a wide variety of
different relation classes.

Returming to FIG. 6A, the next column 600f of the
REL.DEF table holds a code indicating the cardinality of the
corresponding relation bubble (e.g., {1:m} or {1:1}). The
next following column 600g contains a one character code
indicating whether there 1s mandatory coupling (MC)
between an 1nstance of the head entity and an instance (or
instances) of the tail entity (or active tail entities).

Referring to FIG. 7 a broader view 700 of a relations-
processing storage area 130-RP 1n accordance with the
invention 1s now shown. Storage means 130-RP 1s coupled
to a data search-and-retrieval machine 815 by way of
address bus 131 and data bus 132. Starting at the bottom of
FIG. 7, we see that two relative-orgamized (RTO) tables are
shown: a T.Companies table 710 and T.Addresses table 720.
Both of these are Entity-instance Tables (E1T-1 and E11-2,
respectively). The T.Companies table 710 has one column
710a 1n whose numbered slots (710a.1, 710a.2, 710a.3, etc.)
are stored the names of various companies. The T.Addresses
table 720 has one column 720a in whose slots (720a.1,
720a.2, 720a.3, etc.) there are stored data fields representing
various street addresses. Each piece of “real” data such as
the name of a company (e.g., “Allen’s Automobiles™) 1s
referred to as an “Entity-instance™ or Fi1 for short. The slot

number where the Ei 1s stored defines an “Entity-instance
Number” or FiN {for short.

The broader view 700 reveals a third table 730 which 1s
labeled 1 FIG. 7 as the T.Rel-1 table and also as R1'T 730.
Each of the numbered slots, 730.1, 730.2, . . ., 730.6, etc.,
in this “Relation-nstances Table” (R11) 730 has five colum-
nar entries. They are respectively: (a) a head entity-type
identifier [ETN,]|, (b) a head-entity instance identifier
|EiN, |, (¢) a relationship class identifier [RTN], (d) a first
tail entity-type identifier [ETN_] and (e) a first tail-entity
instance identifier [ETN.]. For the sake of illustrative clarity
two-character abbreviation i1dentifiers are shown entered in
the vertical columns 730a, 730c and 730d of the T.REL-1
table 730. It 1s within the contemplation of the invention to
alternatively enter the corresponding entity or relation type
number (ETN or RTN) for these two-character abbrevia-
tions. This allows the retrieval machine 815 to quickly and
directly access the corresponding row of the ENT.DEF or
REL.DEF table where data of interest 1s stored using either
relative-table or key-sequenced access techniques.

Columns 730a and 730b 1n combination 1dentity particu-
lar instances of a head entity class (Head Fi1) while columns
730d and 730e in combination identily particular instances

10

15

20

25

30

35

40

45

50

55

60

65

24

of a tail entity class (Tail E1). Referring specifically to box
number 730a.2 of the T.REL-1 table 730, the “CU” (or

alternatively ETN,=.1) entry of this box directs the data
retrieval machine 815 of the invention to a first section 500.1
of the ENT.DEF table where there 1s stored the name of a
first table (E1T-1="T.Companies”) where instances of this

named entity class (“CU”) are stored. The logical link from
third table (R1T) 730 to table area 500.a 1s labeled as L 5;.

The link from table area 500.1 to the first table (E11-1) 710
1s labeled as L.

The second column 730b of the T.REL-1 table holds the
slot number or “Entity-instance Number” (EiN=.5 of box
730b.2 for example) of the indirectly referenced Entity-
instances table (T.Companies 710) within which a specific
instance (Ei=“Expert Electronics™) of the named head entity
class (EA=*CU”) 1s stored. In this example, box number
710a.5 of the first FaT 710 contains the name “Expert
Electronics” and this name-string 1s the enftity instance
referenced by the “CU.5” entries of boxes 730a.2 and
730b.2. The link from box 730b.2 to box 710a.5 1s labeled

as logical link L 5,.

Referring to columns 730d and 730¢ of slot number
730.2, a similar linkage 1s created to the instance of a tail
entity class. In the illustrated example, the “AD” entry of
box 730d.2 points to a second section 500.2 of the ENT.DEF
table (thereby defining link L-55) where a second pointer 1s
found to a second Entity-instances Table (E11-2) which 1n
this example 1s the T.Addresses table 720 (thereby defiming
link L-.,). Box 730a.2 holds the slot number (.4) of the
indirectly referenced table 720 1n which the target data “555
Transistor Lane” 1s stored (thereby defining link -,). Thus,
the 1llustrated Relationship-instances Table (RiT) 730
defines a connecting relationship (extending from the arrow-
head of L, to row 730.2 to the arrowhead of L-,,) which
jo1ns the mstance “Expert Electronics™ of entity class “Cus-
tomer” (CU) with the instance “355 Transistor Lane” of the
“Address” (AD) entity class. Each row of the RiT 730 1s
referred to as a “Relation-instance™ (abbreviated as Ri) and
the slot number of that row defines a corresponding
“Relation-instance Number” (RiN). (while not shown, it 1s
within the contemplation of the mvention to add a “instance
number” column to any of tables 710, 720 or 730 so as to
umquely 1dentily their rows by arbitrarily assigned instance
numbers, EiIN or RiN, rather than relying on an RTO slot
number, but the RTO slot number approach 1s believed to
result 1n faster data access.) Columns 730a—730b accord-
ingly define the head portion of a “Relation-instance” (Ri1)
and columns 730d—730¢ define a tail portion of the relations-
instance (as conceptually shown in FIG. 4A). Column 730c,
as will now be seen, defines the body portion of each
Relation-instance (R1).

Referring to the middle column, 730c, of the T.REL-1
table 730, this column holds an identifier pointing to a
corresponding row 1n the REL.DEF table 600 where the
relationship class of the mstant relationship (R1) 1s defined.
For the sake of illustrative clarity, the RA of each relation
class 1s shown entered i column 730c. It 1s within the
contemplation of the invention to alternatively enter the
corresponding slot number, RTN, of the REL.DEF table 60
so as to speed the access time of the retrieval machine 815.
By way of example, the entry “-BU-" 1n box 730c¢.2 1ndi-
cates that the relationship between the head instance,
Customer.5, and the tail instance, Address.4, 1s the ““s

Business” meaning-string associated with slot 600.1 of the
REL.DEF table (FIG. 6).

The relation instances table, T.REL-1 730, may contain
many rows, each of which has the identical head entity-

US RE40,063 E

25

instance entries (in col.s 730a and 730b), identical tail
entity-instance entries (1n col.s 730d and 730e¢), but different
relationship-defining entries (e.g., -BU-, -HQ-, -OW-, etc.)
in column 730c. Each of these almost 1dentical rows would
represent a different Relation-instance (Ri1). As an example,
the address instance AD.4 might be the “Business” address
of customer instance CU.5 as shown 1n slot 730.2. But it may
also be the headquarters address “-HQ-" of that same

customer CU.5 as shown 1n slot 730.6. Each of these is
considered a different relation mnstance (R1). The T.REL-1
table 730 1s accordingly shown to include two separate row
entries: 730.2=CU.5-BU-AD.4 and 730.6=CU.5-HQ-AD 4.
A relational query which asks the question, “What i1s the
headquarters address of my customer, Expert Electronics?”
would be answered by accessing row 730.6 of the T REL-1
table 730. The slightly different relational query, “What are
all the business addresses of my customer, Expert Electron-
ics?” would be answered by accessing all rows 1n the
T.REL-1 table 730 beginning with the entries, “CU.5-BU-",
which 1n the illustrated case includes rows 730.2 and 730.5.

With the illustrated structuring of a Relation-instances
Table (RiT 730), all sorts of relational inquiries can be
answered by starting with a known first instance of a first
entity class, 1irrespective of whether the class 1s a head entity
class or tail entity class, and searching through the RiT 730
to locate all relationship-instances (Ri’s) of which that
starting instance 1s a member. Once the matching Ri rows
are found within a designated Relation-instances Table
(R1T), 1t becomes a simple matter to scan horizontally across
the row from the starting instance through the relation
descriptor of column 730c to find the corresponding, but
until now, unknown instances of the opposed tail and head
entity classes.

The uncovered instances can then serve as stepping stones
for answering further parts of a compound query. Consider
for example the two-level query, “What are all the business
addresses of my customer Expert Electronics, and once you
know that, what other customers use those addresses as their
business addresses?” There may be a plurality of business
addresses satistying the first part (Level-1) of the question
and each such answer would serve as a new stepping stone
leading to the answers which satisiy the second part (Level-
2) of the question.

In accordance with the invention compound queries are
answered by defining one or more question lines in an
inquiry-definition (INQ.DEF) table 740. Each question line
1s 1dentified as belonging to either a one level question or to
a particular level of a compound question. A first column
740a of the INQ.DEF table 1s provided for holding the entity
type numbers (ETN) of one or more entity classes, regard-
less of whether they are known at the start of a query. A
second column 740b of the INQ.DEF table 1s provided for
holding corresponding instance-identification numbers
(E1N), again regardless of whether they are known at the
start of a query. A third column 740c 1s provided for holding
one or more relation type numbers (RTN) while a fourth
column 740d 1s provided for holding corresponding relation-
instance numbers (RiN), some of which may be known and
others not known at the start of a query. Fifth column 740¢
defines the level of each question row relative to preceding
question rows.

An RTN wvalue, which if known, 1s entered 1n a box of
third column 740c 1n order to indicate to the retrieval
machine 815 a corresponding row in the REL.DEF table 600
from which the retrieval machine 815 can obtain the name
of the single table (R1T-x) where all instances of the named

relation type (RTN) reside. The 1dentified table, RiT-x, can

10

15

20

25

30

35

40

45

50

55

60

65

26

then be searched for one or more Ri rows which hold
information relevant to a posed query. When found, the RiN
values of those rows are entered 1into one or more boxes of
fourth columns 740d. The specific Ri rows (e.g., row 730.2)
which are fully specified by filled in RTN-RiN data pairs of
the INQ.DEF table 740 can then be accessed to direct the

retrieval machine 8135 to the corresponding head and tail
entity instances ol interest (e.g., the CU.5 and AD.4)
instances which are related to one another by the -BU-entry

of box 730c.2).

If a specific Ri row 1s not fully identified at the beginning,
of a query within a row of the INQ.DEF table 740 by a
completed RTN-RiN pair, the Ri1 row or rows of interest can

be nonetheless located by partially filling 1n a row within the
INQ.DEF table 740 and then searching the REL.DEF or

ENT.DEF tables for additional information. Row 740.2 of
the INQ.DEF table 1s shown to have the question line,
“?77.7-HQ-7" which may mean “Please 1dentily the Head-
quarter addresses of all my customers”. In such a case, all
rows ol the T.REL-1 table 730 which have the entry -HQ- 1n
their middle column 730c¢ would provide the required infor-
mation. Fach such -HQ- row of RiT 730 would pair an
identified instance of a Customer (head E1) with an 1dentified
instance ol a headquarters Address (Tail(1) Ei1). It 1s to be
appreciated that for cases of multi-tailed relation classes, the
corresponding Ri1T would have columns for identifying the
other tail entity instances (e.g., Tail(2) Fi, Tai1l(3) Ei, etc., not
shown).

Sometimes a question 1s more specilic. By way of
example, let it be assumed that an inquiring user has a
specific but fragmentary piece of starting imnformation such
as the street address “553 Transistor Lane”. The inquiring
user wishes to find out the names of one or more companies
for whom *“355 Transistor Lane™ 1s a “Business Address”.
The user 1dentifies the fragmentary information to the data
retrieval machine 815 as belonging to the “Address™ entity
class. In response, the machine 815 searches through the
ENT.DEF table 500 to locate the entity type number “ETN”
of the named class and the Entity-instances Table “E11”
where all instances of this “Address™ entity class are stored.
It should be recalled that the 1llustrated relative-table orga-
nization “RTO” of the ENT.DEF table 500 i1s not mutually
exclusive of a key-sequenced organization “KSO”. Accord-
ing to the invention, the EA column 500a of the ENT.DEF
table 1s threaded alphabetically so that the row of a desired
entity class (e.g., EA=“AD”) can be easily found using
known key-sequenced search algorithms. A different table
(not shown) can serve as an abbreviation to full name
look-up table for converting between the entity name abbre-
viation (EA) and the full name or narrative description of the
entity class (ECN) 1f desired or, alternatively, the ENT.DEF
table 500 may include one or more additional columns (not
shown) for providing this search and conversion function.

Once the corresponding type number (ETN) of the entity
class 1s 1dentified, mn this case ETN=.2 referencing slot
500.2, the retrieval machine 815 places this first puzzle piece
into an appropriate box of the INQ.DEF table. In this
example 1t will be box 740a.3 of INQ.DEF question line
740.3 which 1s for illustrative purposes filled with the
corresponding EA=“AD".

The retrieval machine 8135 then obtains from box 500b.2
of the ENT.DEF table the name of the corresponding Ei1T
where it 1s to search for the occurrence of the fragmentary
information “5535 Transistor Lane”. The EiT’s can be key-
sequence organized (KSO) in addition to their RTO struc-

turing to facilitate such searching. After the corresponding
E1T (1n this case, the T.Addresses table 720) 1s searched and

US RE40,063 E

27

the row of the fragmentary imformation 1s found, 1ts corre-
sponding FiN, 1n this case .4, 1s entered as an entity-instance

number (EiN) 1n box 740b.3 of the INQ.DEF table 740.

The earlier found entity type number (ETN) which cor-
responds to EA="AD” now combines with the FiN=.4 of
INQ.DEF row 740.3 to define the “starting instance” for

resolving question line 740.3. The starting instance 1s AD.4.

The relationship type number (RTN) of the relationship
under question (-BU-) 1s entered 1n box 740c¢.3. If the RTN
value 1s not known, the REL.DEF table 600 1s first searched
to generate the appropriate RIN. While not shown, the
REL.DEF table or some other table will include a full name
or narrative column for converting between a relationship’s
tull name/description and its abbreviated form (RA). Box
740d.3 1s now the last puzzle piece to be filled 1n as indicated
by a question mark i FIG. 7.

Since the ETN.EiN-RTN- entries of boxes 740a.3, 740b.3
and 740c.3 are now all known, the retrieval machine 815
searches through the corresponding R1T (T.REL-1 table 730)
to locate all relation-instances (R1’s) which have the corre-
sponding E'TN plus Fin in the tail entity mstances columns
730d and 730¢ and the corresponding RTN 1n column 730c.
The REL.DEF table 600 identifies the starting entity class of
the AD.4-BU-? question as being a tail entity. (When there
1s more than one tail entity, the RiT will have plural columns
for 1dentitying first, second, etc. tail instances and the
REL.DEF table 600 will specity which of these tail columns
1s to be searched.) In the illustrated example, row 730.2 of
the T.REL-1 table will be found to have matching informa-
tion. The retrieval machine 815 can now fill the last empty
box 740d.3 of the INQ.DEF row 740.3 with the information
RiN=.2. Once question row 740.3 1s completely filled, the
retriecval machine 815 may use the information of this
INQ.DEF row 740.3 to retrieve the detailed information
about the head entity instance, Ei="Expert Electronics™ from
table row 710a.5 of the T.Companies table.

The ETN.EiN identifiers of the uncovered Level-1
answer, “Expert Electronics” can now serve as stepping
stones which fuel a second part of a compound query. For
example, the full query might have been “Who has business
address, 355 Transistor Lane and what bank accounts belong
to the enftity or enfities that satisty the first part of this
question?”” The first part 1s defined

here as “Level-1” of the
question and the second part as “Level-2”. Column 740¢ of
the INQ.DEF table 1s shown to identify the level number.
Referring to a feedback link L-,, shown i FIG. 7, the
Level-1 answer (ECN="CU” and EiN=.5) can now be fed
back as an entry to a subsequent inquiry-defining row 740.4
so that the multi-level inquiry path may continue. Inquiry
box 740c.4 1s shown already filled with the relationship
identifier (-OW-) for locating account owners. The answer to
inquiry row 740.4 may be used to fuel yet a further level
(Level-3, not shown) of a compound inquiry and the answer
or answers to that inquiry may fuel yet further inquiry rows.

Referring to FIG. 8, a block diagram of a database system
800 1n accordance with the invention 1s shown. Bulk storage
means 130* 1s indicated to include a relation-processing
region 130-RP 1n accordance with the invention. The bulk
storage means 130* may also include previously-utilized
relational tables for defining “implied” relationships
between enfities. Such “implied” relationships are not
incompatible with the “explicit” relationships that are

defined by the REL.DEF table 600 of the invention. As
shown 1n region 130-RP of FIG. 8, the REL.DEF table and
ENT.DEF table may be used to define a continuously
expandable backbone which supports various relationships

5

10

15

20

25

30

35

40

45

50

55

60

65

28

(R1T-1, R1T-2, etc.) between various entity instances (E1T-1,
E1T-2, E1T-3, etc.). The INQ.DEF table may be visualized as

having two legs (dashed vertical lines) which sequentially
step from a starting instance table (E11-1), across a starting
table of relationship mnstances (R11-1) to an explicitly linked
table which holds relationship- opposed instances (F11-2) of
the starting instances. The opposing instances (ol EiT-2)
then become starting instances for a next inquiry step over
yet a further set of relationship instances (Ri11-2).

Since the REL.DEF and ENT.DEF tables may be
expanded as desired by adding new entries to empty middle
or bottom slots found within them, a lay user can create new
entities, new relation classes and restructure the schema of
explicitly-defined relationships and entities forever without
having to reprogram the database system 800 at the source
or object code level. Instead, the lay user supplies schema
restructuring commands, 1n an appropriate structured
language, as indicated at 870 for restructuring the schema
whenever needed. The access control program 820d of the
retrieval machine 8135 may remain fixed while the entity-to-
explicit-relationship schema of region 130-RP is forever
changed. Accordingly, object-code compilation 814 needs to
occur only once. The source code listing 812 of this access
control program needs to be developed and debugged only
once. Substantial cost savings are realized, especially as
time progresses and new entity-relationship schemes are
required.

In some commercial applications, the ENT.DEF table and
REL.DEF table may be relatively short, having for example
less than 1000 rows each (e.g., the ENT.DEF table may have
30 rows or less and the REL.DEF table may have approxi-
mately 100 rows or less). For such cases 1t has been found
advantageous to “copy” the ENT.DEF and REL.DEF tables
from the bulk storage means 130* to a higher speed memory
arca within first memory means 120 1n order to shorten
processing time. The copied versions of the ENT.DEF and
REL.DEF tables can be purely-key-sequenced 1f an addi-
tional “type number” column 1s added for storing the respec-
tive EIN’s and RTN’s of each row. The higher data access
speed of the first memory means 120 more than compensates
for any speed reduction which might be caused by switching
to a purely key-sequenced organization. These “mirror”
copies of the ENT.DEF and REL.DEF tables are then
accessed by the CPU 110 1n place of the original ENT.DEF
and REL.DEF tables. It 1s advisable to periodically check
the original ENT.DEF and REL.DEF tables for possible
revisions, since lay users may update that original tables at
any time, and when such revisions are detected, to 1mme-
diately recopy the ENT.DEF and REL.DEF tables into the
first memory means 120 so that the mirror tables faithfully
reproduce the contents of the original tables.

The CPU 110 in combination with the various modules of
the object code 820d can be visualized as one or more
machine means for performing data-altering functions as
specified by the object code 820d. A Microfiche Appendix 1s
included here listing sample modules written 1n Tandem
COBOL’85™ and TANDEM SCREEN COBOL™ for
execution on a Tandem NONSTOP™ computer system
running under Tandem NonSTOP SQL™, TMF™,
Pathway™, SCOBOLX™ and Guardian™ systems (all
available from Tandem Computers of Cupertino, Calif.). It 1s
to be understood that the sample modules disclosed in the
Microfiche Appendix are merely exemplary. The mvention
may be practiced using different computer hardware and/or
software.

Referring to FIG. 9, a schematic diagram of an inquiry
processing engine 900 in accordance with the mvention 1s

US RE40,063 E

29

shown. The engine 900 comprises an inquiry guide means
910 which 1s coupled to a relationship defining means 960,
a relationship storage and search means 970 and to an
intermediate-answers recerving means 980. The intermedi-
ate answers means 980 feeds abbreviated answers back to
the imnquiry guide means 910 after such answers are pro-
duced by the relation storage means 970. Desired ones of all
produced results are sent from the imquiry guide means 910

to an abbreviated results gathering means 915 which then

Entity

Person
Person

Person
Person
Person

Person

expands them into full result details by sending an entity
type signal sETN_ to an Entity Define means 950 which
includes within itself, the earlier described ENT.DEF table
500. The sETN, signal 1s converted by the entity define
means 950 1nto an entity table selecting signal sE1T which
1s fed 1nto an entity storage means 920 that includes within
itsell a plurality of entity-instances tables (E11-1, E11-2, etc.)
such as earlier described. Results gathering means 915 also
feeds an 1instance row selecting signal, sEiN, to enfity
storage means 920. Details from the addressed entity
instance row are then transmitted through a details filter 985
and portions of the details which are selected by the filter
985 are then printed on a detailed results display (e.g. a
video monitor) 990.

Relationship inquiry 1n general 1s a two step operation:
path selection (to create an Inquiry) and inquiry execution.
On a Path Selection screen (not shown) the operator selects
starting and optionally ending entity types and supplies

detailed description of the path to follow. Each path is
defined 1n terms of:

a starting entity type to initiate the query path,

a connecting relationship type which will lead to an
intermediate entity type and then to another connecting
relationship type and another intermediate entity type,
and so forth until

a last connecting relationship type leads to a terminating

entity type
Taking out all but the key words from the above, we get

the form structure:

<starting entity type>
<connecting relationship type> <intermediate

entity type>
<connecting relationship type> <intermediate

entity type>

<connecting relationship type> <terminating entity
types

30

A single mquiry definition may imtiate several parallel
paths which extend from a starting entity type to an ending
entity type. When the ending enftity type has not been
specified 1n the header of the path-selecting screen then all

> these parallel paths can end with different entity types. For
example, an mnquiry to show a person’s total involvement
with all accounts held at a bank could be defined as shown
in the following Table I:
TABLE 1
Level-1 Connected Level-2 Connected
Relationship Entity Relationship Entity
Account ---> Account
Holder
Loan ---> Account
Guarantor
Signatory ---> Account
Card Holder ---> Account
Group Member --> Jomnt ---> Account ---> Account
Party Holder
Group Member --> Joint ---> Card Holder --> Account
Party

25

30

35

40

45

50

55

60

65

Each of the above lines 1s a separate path generated by one
inquiry form. The results of the mquiry would show all
Accounts a Person had influence over, either directly or as

a member of a partnership.
For simplicity the above inquiry 1s shown on the screen as
in the following Table II:

TABLE 11
Level Relationship Entity

1 Account Holder Account

1 L.oan Guarantor Account

1 Signatory Account

1 Card Holder Card

1 Group Member Joint Party
2 Account Holder Account

2 Card Holder Card

Note that level numbers are used to determine which
entity types are intermediate to a path, which entity types
terminate a path, and which relationship types commence a
new parallel path. A line containing a level number which 1s
the same as that of an immediately previous line indicates a
parallel path separate from the previous line. A level number
greater than that on the previous line indicates the entity on
the previous line 1s an intermediate entity (1.e. the path 1s an
association, and will follow several relationship links before
terminating the path.)

Once a set of paths have been stored as an inquiry and
recorded 1n the system 1t may be executed. Each unique set
of inquires 1s given a unique name, stored as such in the
inquiry-definition table (INQ.DEF) and may be recalled for
execution repeatedly at any time without need to go through
the path selection process again. Before executing the pre-
defined inquiry, the operator must select one or more starting
entity instances for which the query 1s to run. Hence for each
execution of an inquiry, the operator must choose which
occurrence of the Starting Enftity Type to use. Using the
previous sample mquiry to investigate persons of the names,
“John Smith” and “Bill Brown”, the operator would execute
the same mquiry once using “John Smith™ as the Starting
Entity instance and once using “Bill Brown” as the Starting
Entity mnstance.

US RE40,063 E

31

The Inquiry 1s executed by examining each of the defined
paths 1n turn. Starting with the selected entity and following,
the first relationship, a list of intermediate (or target) entities
1s assembled. For each of the intermediate entities the next
leg of the path 1s followed through the level 2 relationship
etc. until the 1inquiry operation arrives at the ending entity
type at which time the results of the entire path (with all
intermediate entities and relationships) may be displayed to
the operator.

If the ending entity type has been specified during inquiry
definition, then at execution time the operator may select not
only the starting entity occurrence of interest but also the
occurrence of an ending entity. In this case the mquiry will
return results from only the paths that satisiy this termina-
tion condition.

Reusable inquiry sets would normally only be created by
privileged users. However, each inquiry set that i1s created
for subsequent executions may be given its own security
settings and attached to 1ts own menu. Hence where sensi-
tive data was involved, normal operators would be given
access to only those inquiry sets they specifically need for
their day to day business operations.

Despite 1ts complexity, the inquiry engine 900 of the
invention can operate at high speed because the E1T and R1T
structures, while they may be large 1n size rely on relative
tables. Relative table structures have always oflered high
performance for Random memory access (as opposed to
key-sequenced access) but presented many complications
and difliculties 1n other areas of use (e.g. updating). Because
of this, conventional wisdom has been to use purely Key-
Sequenced structures almost exclusively. Key-Sequenced
structures pay performance penalties for the use of extra
indexing levels.

The first problem with Relative structures was that with
some early versions, deleted row locations (or slots) could
not be re-used without file (table) reorganization. Reorga-
nization ol Relative structures in this case meant compress-
ing the file (table) to regain unused slots. This process can
change the relative addresses from their original values,
which can cause corruption of the database. Reorgamization
1s no longer required because Relative structures such as

offered 1n Tandem’s NonSTOP SQL™ system allow deleted
row slots to be reused immediately. The Tandem system
actually ensures that vacated slots are used again and again.
Relative tables in NonSTOP SQL™ can be partitioned and
re-partitioned without risk of corrupting the database, but
table compression 1s no longer necessary or allowed. Parti-
tioming a table means that the table can be split across a
plurality of data storage devices, usually disks, transparent
to the object code of the application program running under
NonSTOP SQL™,

The second problem with Relative structures was imple-
menting meaningiul keys that allowed access to the data in
a sequence based on indicative data, such as numerical order
ol account number or alphabetical order of customer name.
However, by using Alternate Key index tables 1t 1s possible
to provide meaningiul sequential access of entities stored
within Relative Tables.

The Relationships Processor or “engine” of the present
invention 1s a “Closed Loop” system 1n that all explicit
schema definitions are stored within the system. The finite
set of tables and their meanings are also defined within the
system. This provides an infrastructure that makes the Table
Structures transparent to users and developers. Hence, Rela-
tive tables can be used for performance improvements while
avoiding any usability penalties that once existed.

Hence this invention has gone against conventional atti-
tudes because of new data processing techniques used by the
invention.

10

15

20

25

30

35

40

45

50

55

60

65

32

The above advances i Relative structure techniques,
coupled with the closed loop nature of the Relationships
Processor has allowed Relative tables to be used m a
controlled and meaningful way, destroying the premise that
Key-Sequenced structures are the best way to store relation-
ships.

A benchmark was run on a Tandem NonSTOP SQL™
system to test the system’s performance capabilities. The
benchmark was to simulate the normal processing require-
ments of an extremely large bank’s Customer Information
System.

The database used 14 Gigabytes of disk storage space, and
was populated with 5 million Customers, 7 million Cards, 9
million Addresses, 10 million Accounts and 67 million
relationships.

The benchmark simulated 1000 simultaneous users
(tellers), with each user executing 100 typical on-line trans-
actions.

The invented system achieved a rate of 64 transactions per
second with less than 2.6 second response time for 90% of
all transactions which included all screen formatting. This 1s
quite remarkable for a database system of this size and
complexity.

The invented system was also benchmarked for batch
processing at rates of hundreds of transactions per second.
This shows that the system 1s able to process inquiries at
commercially acceptable rates.

Retferring to FIG. 9, an inquiry begins by transmitting a
signal representing the starting entity instance and relation
information (e.g., “Level-1=ETN,-EiN,-RTN,-?") from an
input form means 901 to the imnquiry guide means 910. The
data of this starting instances and relationship signal, 902, 1s
stored 1in an mquiry-defining table 740 provided within the
inquiry guide means 910. The inquiry guide means 910
transmits a starting relationship type signal sRTN, to the
relation defining means 960 and a relationship instance
defining signal sRi=FETN, and/or EiN, and/or RTN;, to the
relationship storage and search means 970. The relation
defining means 960, which includes REL.DEF table 600,
transmits a Relation-instances table selecting signal sRi1T, to
the relationship storage means 970 1n order to select one of
a plurality of Relation-instances tables, R1T,, RiT,, RiTj,
ctc. stored within the relation storage means 970. The
relation defining means 960 further transmits a head or tail
identifying signal, H/T, to the relation storage means 970 to
identify a head or tail instance defining column, Ei-h or Fi-t,
which should be searched for information matching the
ETN, and/or EiN, information of the starting instance
signal, sR1. (While not shown, each Ri1T can have multiple
columns specifying a plurality of tail entity instances, 1.e.,
Ei-t1, Ei-t2, etc. and 1n such a case, the H/T signal also
indicates which one or more tail columns of the target RiT
are to be searched for matching information.) In response,
the relationship storage and search means 970 searches
through the selected relationship instances table RiT-x to
find mnformation matching that of the input signals, sR1, sR1T
and H/T. Signals 971 representing the opposing entity
instances (E1-0) of each matched row are then transmitted to
an intermediate answer gathering means 980 which com-
piles within 1ts memory area a list of entity mstances, Ei-o0,,
Ei-0,, FE1-04, etc., which oppose the starting entity mstances
found in matching rows of the referenced RiT (730). The
collected mntermediate answers are then fed back along path
981 to the mnquiry guide means 910 1n order to {ill stepping-
stone boxes (shown as still open question, ?7?7) in a next
level query row (e.g. Lvl-2). The next query row (e.g.
L.v1-2) now becomes the new starting row and its contained

US RE40,063 E

33

information, Ei1-0,-RTN,-?, 1s now fed as the new sRi signal
to the relation storage means 970 and the relation define
means 960. The mquiry loop repeats until an inquiry path
terminates on 1ts own or a terminating entity 1s struck.

34

specific embodiment described herein, but rather by the
following claims.

What 1s claimed 1s:

1. In a computer system, a data processing system for

After termination, the results of the mnquiry loop are fed 5 maintaining cardinality 1n a relational database, said data

through signal bus 911 to an abbreviated results compiling
means 915 which orders the results according to their level
number and interrelation. By way of example, a first Level-2
inquiry may produce intermediate answer, Fi1-2a. That inter-
mediate answer together with 1ts forward-connecting rela-
tion (RTN,) may produce a plurality of intermediate answers
at Level-3, namely, Fi1-32a.1, Ei-32a.2, etc. Each of these
Level-3 answers may then result in a larger plurality of
Level-4 answers (not shown) and so forth. Likewise the
Level-2 answer Ei1-2b may produce a plurality of Level-3
answers, E1-32b.1, E1-32b.2, F1-32b.3, etc. Fach of these
answers 1s recorded as a paired set of an entity class number
ETN and an enfity instance number FiN. The abbreviated
results are then expanded 1nto user-understandable results by
sending an entity type number signal, sETN, to the entity
definition means 950 and a corresponding entity instance
signal, sEiN to the entity storage means 920. In response the
entity storage means 920 then produces detailed information
from the referenced entity instances tables. Often, the data-
base user may not wish to see all of the detailed information
within a row, but rather wishes to see only prespecified
columns of the referenced row and wishes the data to be
displayed according to a predetermined display format. The
details filter 985 filters out information from undesired
columns and orders the remaiming data according to a
predetermined display format selected by the user. The
desired “real” information then appears in the selected
format on display means 990.

Referring to FIG. 10, 1t will now be explained how a
single starting instance can lead to the production of a large
plurality of answers. A database user has a first account
number (instance 1 ,,) from which the user wishes to find
all persons, groups or compames which are holders of that
account, and once known, all other accounts held by those
persons, groups or companies; and further, where a person 1s
a member of a group or a group has many persons as 1ts
members or where a company has subsidiary companies, the
accounts held by these entities. As shown 1n FIG. 10, the
relationship instance 1 ,,,, has three tails, T1, T2 and T3,
only one of which will be active for a given 1nstance of the
head entity I ,,. Tail T1 points to person mstance I, ... Tail
T2 points to group instance I, ,,.,. Tail T3 points to company
instance I, ... These mstances of person, group and com-
pany represent intermediate instances which lead to the
desired answer, namely, the accounts held by such persons.
One person 1, ,-,, may hold many other accounts as indicated
by the multiple instances of the ’s Holder relationship
instances, Iz, Lz, Iyr1. €tc. Each of these relationship
instances has a corresponding account instance at its head
(H) end. In FIG. 10, these are I, z, 1z, 1;/z,, etc. The rest
of FIG. 10 1s self-explanatory. A person can belong to
several groups and each of those groups may hold several
accounts. A group may have many members and each of
those members may have several accounts. A company may
be a subsidiary of many other companies and each of those
companies can hold several accounts. Thus, the list of
ending 1nstances shown in FIG. 10, I, . z-1, ..z, can be
quite long compared to the starting instance I ., which
started the inquiry.

A variety of modifications will become apparent to those
skilled 1n the art 1n light of the above description. The scope
of the claimed invention 1s accordingly, defined, not by any

10

15

20

25

30

35

40

45

50

55

60

65

processing system comprising:
memory means containing (1) relation defimition table
means comprised of at least one relation type record
wherein each relation type record defines a relation
type and includes cardinality data defining cardinality
of said relation type and (i11) relation instance table
means comprised of at least one relation instance
record, wherein said relation definition table means and

said relation instance table means are a part of said
relational database;

means, operatively coupled to said relation definition
table means and said relation 1nstance table means, for
storing a plurality of relation instance records 1n said
relation instance table means, wherein each relation
instance record defines a relation of one of said relation
types and further wherein said relation 1s between two
entities; and
means, operatively coupled to said relation instance
record storing means, for detecting a cardinality viola-
tion for a first relation type, said means for detecting
comprising,
means for determining whether said relation instance
table means contains a first relation instance record,
that defines a first relation of said first relation type
between a first entity and a second entity; and
means for determining whether said relation instance
table means contains a second relation instance
record that defines a second relation of said first
relation type between said first entity and a third
enfity.
2. The data processing system of claim 1 wherein each
relation instance record defines a relation between a head
entity and a tail entity; and

turther wherein said first entity 1s a head entity and said
second and third entities are tail entities.
3. The data processing system of claim 1 wherein each
relation instance record defines a relation between a head
entity and a tail enftity; and

turther wherein said first entity 1s a tail entity and said
second and third entities are head entities.
4. A computer method for maintaining cardinality 1n a
relational database, said method comprising:

storing 1n relation definition table means of said relational
database a plurality of relation type records wherein
cach said relation type record defines a relation type
and includes cardinality data defining cardinality of
said relation type;

storing 1n relation instance table means of said relational
database a plurality of relation instance records wherein
cach said relation instance record defines a relation of
a relation type defined by one of said relation type
records and further wherein said relation 1s between
two entities; and

detecting a cardinality violation for a first relation type
wherein said step of detecting comprises
determining whether said relation instance table means
contains a {first relation instance record defining a
first relation of a first relation type between a first
entity and a second entity; and
determining whether said relation instance table means
contains a second relation instance record that

US RE40,063 E

35

defines a second relation of said first relation type
between said first entity and a third entity.

5. The method of claim 4 wherein each relation instance
record defines a relation between a head entity and a tail
entity; and

further wherein said first entity 1s a head entity and said

second and third entities are tail enfities.

36

6. The method of claim 4 wherein each relation instance
record defines a relation between a head entity and a tail
entity; and

turther wherein said first entity 1s a tail entity and said
second and third entities are head entities.

	Front Page
	Drawings
	Specification
	Claims

