USOORE39837E
(19) United States
12y Reissued Patent (10) Patent Number: US RE39.837 E
Marisetty 45) Date of Reissued Patent: Sep. 11, 2007
(54) METHOD AND APPARATUS FOR (56) References Cited
ADJUSTING A POWER CONSUMPTION -
LEVEL BASED ON THE AMOUNT OF TIME U.5. PATENT DOCUMENTS
A PROCESSOR CLOCK IS STOPPED 5,167,024 A * 11/1992 Smith et al. ................ 395/375
5,189,647 A * 2/1993 Suzuki et al. ............... 713/321
(75) Inventor: Suresh K. N[arisettyj San Jose, CA 5,276,888 A * 1/1994 Kardach et al. ............ 710/261
(US) 5,404,321 A * 4/1995 Mattox ....coevvviinvininnnn. 341/23
5,404,546 A * 4/1995 Stewart .......cooeninnnnnn. 395/750
(73) Assignee: Intel Corporationj Santa ClElI'Elj CA 5,560,022 A : 9/1996 Dunstan et al. ............. 713/300
(US) 6,079,025 A 6/2000 Fung .....c.cooveviviininnnn.. 713/320
6,173,409 Bl * 1/2001 Watts et al. ................ 713/322
6,193,422 B1 * 2/2001 Beltetal. ................... 713/320
(21) Appl. No.: 10/081,659 6,317,841 Bl * 11/2001 Nagae et al. ............... 713/300
(22) Filed: Feb. 21, 2002 OTHER PUBLICATIONS
Related U.S. Patent Documents ISnteli(joq?oritlon,, Powei Management Coordinator API
. pecification”, Apr. 1994.
Reissue of:
(64) Patent No.: 5,590,342 * cited by examiner
Issued: | Dec. 31, 1996 Primary Examiner—Glenn A. Auve
Appl. No.: 08/346,040 (74) Attorney, Agent, or Firm—FEnk M. Metzger
Filed: Nov. 29, 1994

U.S. Applications:

(63)

(1)

(52)

(58)

Continuation of application No. 09/224,620, filed on Dec.
31, 1998.

Int. ClL.

GO6l 1/32 (2006.01)

GOl 15/00 (2006.01)

US.CL ...l 713/324; 713/323; 713/322;
719/324; 710/100

Field of Classification Search ................. 713/300,

713/320, 322,323, 324, 601
See application file for complete search history.

(57) ABSTRACT

A power management mechanism for use i a computer
system having a bus, a memory for storing data and
instructions, and a central processing unit (CPU). The CPU
runs an operating system having a power management
virtual device dnver (PMVxD) responsible for performing
1idle detection for devices. The PMV xD performs i1dle detec-
tion using event timers that provide an indicator as to the
activity level. The PMVxD places 1dle local devices in a
reduced power consumption state when no activity has
occurred for a predetermined period of time.

35 Claims, 7 Drawing Sheets

WINDOWS 3.1 075

PMVxD

LAYER TIMERS

401

SOFTWARE SPEED-UP SLOW CLOCK | | @

TIMER

402
t SLOW CLOCK

NMI
SMI

— EVENT

o | SYSTEM
| EVENTS

IRQ<x>

IRQO ‘—-‘4
A
TIMERO RTC
4 405

\*

SYSTEM
HALT EVENT
CPU
404
HARDWARE
LAYER




US RE39,837 E

Sheet 1 of 7

Sep. 11, 2007

ot GH bit S0l JuvmauvH
JHYMAHVH
JHVMAYVH O/ IHVYMQYVH O/) INIFWIDVNYIN (3TI0HINOD
a3TIOHINOD QXA Q31I0HLINOD XA HIMO SO NV
_ 0]
S0I8 WaV SHIAVT
JUYMOHVH
LNINTFOVNVYI HIAIHA DA
H3IMOd 0*XANWd — - H3OVNVYIN INd B WdV SHIAVY
4 ~ OLNOD JHYMLIOS
/ N d-N-d s
/ AN
N
// a0l

H3AIHA 30IA30
JHYMV-HIMOJ

NOILYOlldd¥
JEVYMVYNN-HIMOa

I I I I.l 1.l —_——

NOILLYOI 1ddV

NOILYOI1ddY
JHYMY-HIMOd

JHYMVY-H3IMOd

NOILYOI lddV

NOILYOIddV
JHYMVYNN-43MOd

um_%g.(z:-mmBOm -
INIFWIOVNVYIN HIMOd Q3T10HINOD JHVMLIOS

e e ————————————————— e S e

U.S. Patent



U.S. Patent Sep. 11, 2007 Sheet 2 of 7 US RE39.837 E

ACTIVE
Y EVICE ACTIVITY
SYSTEMFULLY 2 LOCAL DEVICE
STATE O (LOCAL STANDBY)
DLE STATE 1
SYSTEM SYSTEM
IDLE ACTIVITY
DETECTED DETECTED

PUT SYSTEM
IN SLEEP MODE
(GLOBAL STANDBY)
STATE 2

IDLE

Fl1G.




US RE39,837 E

Sheet 3 of 7

Sep. 11, 2007

U.S. Patent

FHVYMILACS
g0t

(3LVYNYI8H
WILSAS

NOILYNH38IH

FHYMOUVH
¢t

(swss = OOHI) - XOIL HIWIL WILSAS

JHYMLIOS

JHE
HIOVNYIN Nd

&

AGANVYLS
W00 .
JOV4HILNI
SINIAS
W01
* YL
SINIA3
SOIHAVHD
3OV4HILNI
o |
y
AGANVLS “
OO “.
N{ 39v4H3INI
AGANYLS “
WEO19 “‘
ANER eI
SINIA3
W01

IN3AG

IN3A3 '}

IN3AT 1

INJA3 D



U.S. Patent Sep. 11, 2007 Sheet 4 of 7 US RE39.837 E

WINDOWS 3.1 O/5

SOFTWARE SPEED-UP SLOW CLOCK
LAYER TIMERS 401 TIMER 402
SLOW CLOCK
| EVENT

SYSTEM
HALT EVENT
SYSTEM
404
IRQO HARDWARE

LAYER

40
405 406




US RE39,837 E

Sheet 5 of 7

Sep. 11, 2007

U.S. Patent

dNIL

i 1rrrr

44— NO 440 O

[

440

AO01D
NdO

11vH
dO

WI010
NdO



US RE39,837 E

Sheet 6 of 7

Sep. 11, 2007

U.S. Patent

e ] I |

9

JHYMQHVYH
S3IOINHIS NILSAS
—| 0 HNIY
AHOWIW 3QOW Tv3H QIHYHS
S710 SMOONIM
NOLLYOITddY SOG NOLLYOMddV SO 110 SMO

H

SNOILYOITddV SMOGONIM
NA SOd WA SO0 WA W3LSAS



U.S. Patent Sep. 11, 2007 Sheet 7 of 7 US RE39.837 E

ﬂ_—ﬂ_———_—_-—ﬂ_-—_*“

|
MAIN READ ONLY MASS STORAGE
DISPLAY ? I MEMORY MEMORY DEVICE
121 ) 104 700 Q7
|
|
|

KEYBOARD
(22
CURSOR
CONTROL
lad

HARD COPY
DEVICE

124

PROCESSOR

'



US RE39,837 E

1

METHOD AND APPARATUS FOR
ADJUSTING A POWER CONSUMPTION
LEVEL BASED ON THE AMOUNT OF TIME
A PROCESSOR CLOCK IS STOPPED

Matter enclosed in heavy brackets [ ] appears in the
original patent but forms no part of this reissue specifi-
cation; matter printed in italics indicates the additions
made by reissue.

This is a continuation of application Ser. No. 09/224,620
filed on Dec. 31, 1998.

FIELD OF THE INVENTION

The present invention relates to the field of computer
systems; more particularly, the present invention relates to
reducing power consumption in a computer system using
device drivers.

BACKGROUND OF THE INVENTION

Typically, a computer system contains a processor, a bus,
and other peripheral devices. The processor 1s responsible
for executing instructions using data in the computer system.
The bus 1s used by the processor and the peripheral devices
for transferring information between one another. The 1nfor-
mation on the bus usually includes data, address and control
signals. The peripheral devices comprise storage devices,
iput/output (I/O) devices, etc. Generally, all operations
being performed 1n the computer system occur at the same
frequency.

Many of today’s computer systems include power man-
agement capabilities. Power management 1s used to reduce
the dynamic and static power consumption of a system to
increase the battery life of a mobile personal computer (PC)
or to reduce the energy costs associated with a desktop PC.
Dynamic power 1s consumed by all components during state
switching of internal electronic circuits, while static power
1s consumed due to the leakage currents of electronic
devices.

The existing power-management techniques 1n a typical
notebook and desktop PC use specific hardware mechanisms
to provide maximum power savings. These hardware
mechanisms use processor specific interrupts (e.g., System
Management Interrupt (SMI)) and other system activity
monitoring hardware (e.g., 1dle timers and hardware trap-
ping mechanisms) to provide a reasonable amount of power
conservation.

Alternatively, some software mechanisms exist, which are
used today to detect CPU 1dle conditions 1n order to put the
system 1n an optimum power conservation mode (e.g.,
Windows APM drniver, DOS POWER.EXE, etc.). Although
the available software techniques provide for about seventy
to eighty percent of power conservation, they do not power
manage a system beyond CPU idleness. That 1s, they do not
detect 1dleness of I/O devices nor turn off i1dle I/O devices
during system operation or slow the CPU clock rate, eftc.

In existing power management architecture’s, there are

several dynamic and static power conservation states. One of

these states 1s referred to as a fully on or full power on state,
in which all the components of a typical system are powered.
In this state, all the clocks 1n the system will be running at
tull speed. This state oflers no power savings. Another state
1s referred to as a local stand-by, or partially powered-on,
state, 1n which certain temporarily idle local devices 1n the
system, such as a floppy device, graphics devices (e.g.,

LCD, CRT), hard disk device, etc. are powered down. The

10

15

20

25

30

35

40

45

50

55

60

65

2

power to these turned off devices i1s restored when an
internal to external system event requires the services of
these resources. The system maintains 1dle timers for each of
these power-manageable devices. The idle timers enter an
expired time-out state when they detect i1dleness of these
devices after a pre-defined period of mactivity, and notifies
the power management software. This state oflers the mini-
mal amount of power savings 1n a system. Another state 1s
referred to as a global stand-by state, 1n which most of the
system devices are powered down with the exception of the
CPU and the system DRAM memory. The clock to the CPU
1s stopped with the DRAM memory operating in an
extended power conservation mode, sometimes referred to
as stand-by mode with self refresh. At this point 1n time, the
CPU and DRAM are ready to be activated when a system
event occurs. An example of such a system event 1s a
keyboard/mouse click or other system interrupts (e.g.,
IRQO-IRQ13, NMI, SMI, etc.). The last power management
state 1s referred to as hibernation, where the system 1s put 1n
the power-oil state. When a system detects an 1dle condition,
alter a predetermined period of time 1n the global stand-by
mode, 1t can initiate a transfer to the hibernation state. In
such a state, complete system state 1s saved to the hard disk.
When the system 1s turned back on, the hibernation state
restores the system back to exactly the same state as 1t was
betore.

Dynamic clock throttling 1s the state where the dynamic
power consumed by a CPU 1s reduced by slowing 1ts clock
rate. A slow clock to the CPU 1s emulated by periodic
assertion and de-assertion of a stpclk (stop clock) signal.
This slow clock emulation leads to less power consumption
by the overall system. This mode 1s activated during normal
operation of a system and 1t 1s overlapped with a fully-on
state to offer additional power savings during the fully-on
state.

As shown above, the prior art system of power manage-
ment requires the detection of local and global system
events. This 1s typically handled by special hardware or
power-aware applications and device drivers. The detection
of system idleness for global stand-by 1s accomplished by
monitoring their interrupt activity in software or hardware
using existing methods. If none of the system interrupts are
activated 1n a predetermined of time, a global stand-by event
1s generated by the chosen hardware or software mechanism.
Local activity of individual I/O devices 1s detected mostly
by dedicated power management hardware. The hardware
snoops on I/O device resources (e.g., I/O addresses and
IRQx, etc.). The mapping of the resources 1s static and
deterministic and known at system boot-up time. These 1/O
resource mappings do not change over the lifetime of the
current system boot. In certain power management
implementations, the snoop I/0O addresses are programmable
in the I/O hardware, while they are fixed 1n other systems.
The deterministic nature of the mappings of these 1/O
resources of the local devices (as per PC-AT/DOS standards)
makes 1t easy to design standard hardware which 1s consis-
tent across all PC DOS platforms.

These described methodologies have several inherent
problems. For instance, each of the I/O devices needs an 1dle
timer to monitor the activity. This imposes a restriction on a
number of hardware timers that can be designed into the
system. Also, most implementations hardcode the 1/O trap-
ping address of the 1/O devices to save “gates™. This makes
a system more sensitive to remapping of the I/O resources.
Furthermore, the existing mechanisms assume that all I/O
devices use standard 1/0 resource mappings over the life-
time of the system, 1.e., static I/O and IRQx mapping. This,




US RE39,837 E

3

in fact, places a severe restriction on the usage of the system
resources and demands perfect hardware compatibility
across all platforms.

Power management soiftware in the traditional system 1s
completely decoupled from the operating system and appli-
cation. This makes the system prone to the operating system
and power management soltware performing activities, with
neither of them being aware of the activities being per-
formed by the other. This may lead to system crashes where
a power management interrupt, such as SMI, takes control
away from the operating system while 1t 1s executing in the
middle of a critical section of code.

The current generation of device drivers in operating
systems virtualize 1/O ports. When the I/O ports are
virtualized, 1t becomes diflicult, and in some cases
impossible, for the power management software and hard-
ware to detect any possible remappings. This leads the
power management hardware to monitor and trap on invalid
I/0 device addresses, thereby generating improper events 1n
the system.

In a plug-and-play environment, 1t 1s assumed that the I/O
device resource mappings (I/O and IR(Qx) are no longer
deterministic or visible to the power management solftware
at system boot-up time. Current and future generations of
operating systems will be based on plug-and-play
architectures, where the 1/0 resource mapping can and will
change dynamically during the lifetime of the current system
boot. When these dynamic remappings of I/O devices do
occur, there 1s currently no easy way to communicate to the
power management hardware and software.

Also, the existing software power-management tech-
niques assume that the applications of the associated device
drivers 1n the system are APM and PMC aware. This makes
it dithicult to manage a system with applications and drivers
which are not power aware.

SUMMARY OF THE INVENTION

A power management mechanism for use 1n a computer
system 1s described. The computer system comprises a bus,
a memory lor storing data and instructions, and a central
processing unit (CPU). The CPU runs an operating system
having a power management virtual device driver (PMV xD)
responsible for performing idle detection for devices. The
PMVxD performs 1dle detection using event timers that
provide an indicator as to the activity level. The PMVxD
places 1dle local devices 1n a reduced power consumption
state when no activity has occurred for a predetermined
period ol time.

BRIEF DESCRIPTION OF THE DRAWINGS

The present mnvention will be understood more fully from
the detailed description given below and from the accom-
panying drawings of various embodiments of the invention,
which, however, should not be taken to limit the invention
to the specific embodiments, but are for explanation and
understanding only.

FIG. 1 1llustrates one embodiment of the power manage-
ment architecture of the present invention.

FI1G. 2 1llustrates one embodiment of the power manage-
ment states ol the present invention.

FIG. 3 illustrates an embodiment of the power manage-
ment control of the present invention.

FI1G. 4 1llustrates one embodiment of the dynamic clock
throttling mechamsm of the present invention.

FIG. 5 illustrates a timing diagram of the CPU clock
throttling.

10

15

20

25

30

35

40

45

50

55

60

65

4

FIG. 6 a conceptual diagram of the Windows operating
system 1n enhanced mode.

FIG. 7 1s a block diagram of one embodiment of the
computer system of the present invention.

DETAILED DESCRIPTION OF THE PRESENT
INVENTION

A method and apparatus for reducing power consumption
in a computer system 1s described. In the following detailed
description of the present mvention numerous specific
details are set forth, such as types of I/O devices, 1dle time
periods, terrupt types, power management states, etc., in
order to provide a thorough understanding of the present
invention. However, 1t will be appreciated by one skilled 1n
the art that the present invention may be practiced without
these specific details. In other instances, well-known struc-
tures and devices are shown 1n block diagram form, rather
than 1n detail, 1n order to avoid obscuring the present
invention.

Some portions of the detailed descriptions which follow
are presented 1n terms of algorithms and symbolic repre-
sentations of operations on data bits within a computer
memory. These algorithmic descriptions and representations
are the means used by those skilled 1n the data processing
arts to most eflectively convey the substance of their work
to others skilled in the art. An algorithm 1s here, and
generally, concerved to be a self-consistent sequence of steps
leading to a desired result. The steps are those requiring
physical manipulations of physical quantities. Usually,
though not necessarily, these quantities take the form of
clectrical or magnetic signals capable of being stored, trans-
terred combined, compared, and otherwise manipulated. It
has proven convenient at times, principally for reasons of
common usage, to refer to these signals as bits, values,
clements, symbols, characters, terms, numbers, or the like.

It should be borne 1n mind, however, that all of these and
similar terms are to be associated with the appropriate
physical quantities and are merely convenient labels applied
to these quantities. Unless specifically stated otherwise as
apparent from the following discussions, 1t 1s appreciated
that throughout the present invention, discussions utilizing
terms such as “processing” or “computing’ or “calculating’™
or “determining” or “displaying” or the like, refer to the
action and processes of a computer system, or similar
clectronic computing device, that manipulates and trans-
forms data represented as physical (electronic) quantities
within the computer system’s registers and memories nto
other data similarly represented as physical quantities within
the computer system memories or registers or other such
information storage, transmission or display devices.

The present mvention also relates to apparatus for per-
forming the operations herein. This apparatus may be spe-
cially constructed for the required purposes, or it may
comprise a general purpose computer selectively activated
or reconfigured by a computer program stored in the com-
puter. The algorithms and displays presented herein are not
inherently related to any particular computer or other appa-
ratus. Various general purpose machines may be used with
programs 1n accordance with the teachings herein, or it may
prove convenient to construct more specialized apparatus to
perform the required method steps. The required structure
for a variety of these machines will appear from the descrip-
tion below. In addition, the present invention 1s not
described with reference to any particular programming
language. It will be appreciated that a variety of program-
ming languages may be used to implement the teachings of
the invention as described herein.




US RE39,837 E

S

Overview ol the Present Invention

The present mnvention provides for power management in
a computer system using virtual device drivers (VxDs). In
one embodiment, the VxDs of the present invention are
provided in the Windows™ operating system manufactured
by Microsoit® Corporation of Redmond, Wash. The present
invention provides a power management VxD that controls
at least a portion of the power management 1n the computer
system. Power management in the present invention 1s
tacilitated by the I/O/interrupt/VxD trapping capabilities of
the VxDs running 1n the protected mode of the CPU at the
highest privileged level of the operating system 1n an
operating system co-operative manner. The VxD operates at
the CPU’s highest privileged level (ring 0). Therefore, the
VxD of the present invention has access and control over
system hardware and software components. This enables 1t
to operate and respond to power management events much
faster, with low task switching overheads. In one
embodiment, not only does the VxD interface to other
soltware (e.g., applications), but 1t also provides an API
interface to both real/protected mode programs.

The present invention allows software to power-manage a
system with application and device drivers which are not
power-aware. In addition, soiftware operates cooperatively
with the existing power-management software infrastructure
such as, for istance, Advanced Power Management speci-
fication (APM 1.1), Power Management Coordinator
(PMC), etc.

The Windows Environment

The Microsoft® Windows operating environment pro-
vides a graphical user interface (GUI) which makes Win-
dows application programs ecasier to use.
Microsolt® Windows environment runs Windows applica-
tions located 1n the extended area of memory above the 1
megabyte boundary using the protected mode of a processor,
such as an Intel Architecture Microprocessor, manufactured
by Intel Corporation of Santa Clara, Calif., the corporate
assignee ol the present invention.

The Microsoit® Windows 3.1 system can operate 1n one
of two modes: “standard” mode and “enhanced” mode. The
standard mode exists so that personal computers equipped
with older 80286 processors can use the Windows environ-
ment. The enhanced mode of Microsoft® Windows 1s used
when Microsoft® Windows 1s run on a computer system
which uses an 80386 microprocessor or more recently
available microprocessors such as, for instance, the 1486™
Processor.

The enhanced mode of Microsoft® Windows operates in
the protected mode of the Intel Architecture Microproces-
sors (e.g., 1386™ processor, 1486™ processor, etc.). In this
manner, the enhanced mode of Microsoft® Windows takes
advantage of features in the Intel Architecture Microproces-
sors to offer virtual memory and multitasking operation. The
processor hardware supports execution of several Windows
applications 1n protected mode.

The enhanced mode of Microsoft® Windows supports
DOS applications using “DOS virtual machines.” In a DOS
Virtual Machine, the Intel Architecture Microprocessor
operates 1n Virtual 8086 mode and uses the virtual memory
teature to provide DOS, device drnivers, and Terminate and
Stay Resident (TSR) programs originally loaded into the

computer to a DOS virtual machine in extended memory.
Windows uses the virtual memory system to make the
application area and the DOS, device drnivers, and TSR
programs appear to be a single contiguous block of real
mode memory. When the microprocessor 1s operating in
Virtual 8086 mode within the address area of DOS virtual

5

10

15

20

25

30

35

40

45

50

55

60

65

6

machine, the Virtual 8086 mode microprocessor in unaware
of any memory outside of the DOS virtual machine.

FIG. 6 provides a conceptual diagram of the Windows
system 1n enhanced mode. Referring to FIG. 6, the computer
system hardware 1s represented as a level. The Ring 0 level
with the Kernel and virtual device drivers (VxDs) 1s also
shown, along with the system virtual machine and the
various DOS virtual machines. Windows creates DOS vir-
tual machines by mapping DOS, device drivers, and TSR
programs in the system VM into the DOS VMs. Therelore,
all the virtual machines share a region of memory called the
shared real mode memory.

The Virtual device drivers (VxDs) at ring 0 are a special
feature of Microsoft® Windows enhanced mode. A virtual
device driver 1s actually a routine which manages a system
resource such that more than one application can use the
system resource at a time. Virtual device drivers therefore
support Windows’ ability to act as a multitasking operating
system. The virtual device drivers, including the VxD of the
present 1mvention, have access to a wide range of kernel
services, including those for hardware management,
memory management, task scheduling, and communicating
with other virtual devices.

As 1llustrated 1n FIG. 6, all the Windows applications run
within the system virtual machine which operates 1 pro-
tected mode. The Windows Dynamic Link Libraries (DLLs)
which support Windows applications also run within the
system virtual machine.

Each DOS application 1n FIG. 6 runs within its own DOS
virtual machine. Since the DOS virtual machines usually
operate 1n the Virtual 8086 mode of the microprocessor, the
DOS applications generally only address the 1 Megabyte of
memory in the DOS virtual machine.

Power Management Architecture

The power management architecture of the present mnven-
tion 1s shown in FIG. 1. Refernng to FIG. 1, various
power-aware applications (101, 102) shown make use of an
APM/PMC device driver 103 at the operating system soft-
ware layer. A power-aware device driver 106 also makes use
of APM/PMC device driver 103 at the operating system
software layer. The APM BIOS (Basic Input/Output System)
hardware 104 controls the APM/PMC device driver 103.
The APM BIOS 104 also controls hardware 105.

Also shown in FIG. 1, power-unaware applications
110-112 communicate with PMVxD power management
software 113. The PMVxD power management software
113 communicates with a Plug-n-Play (P-n-P) configuration
manager 114 and the APM/PMC device driver 103 1n the
operating system software layer. The PMVxD power man-
agement soltware 113 controls hardware. The PMVxD
power management software 113 controls the VxD con-
trolled hardware 115 and 116 as well as the power manage-
ment hardware 117 at the hardware layer. In one
embodiment, the VxD controlled hardware 115 and 116
have built-in power management capabilities in the form of
a switch and only needs some type of signal to enable them.
In one embodiment, the power management hardware 117
may include hardware necessary for placing certain 1/O
devices 1n a reduced power consumption state.

The present mvention provides for placing a computer
system 1n various power management states, or modes of
operation, using a virtual device driver (VxD) that has 1/0,
device driver and interrupt trapping capabilities. In one
embodiment, the VxD provides support for four power
management modes: fully-on, local standby, global standby
and hibernation. The PMVxD of the present invention also
provides support for clock throttling. The present invention



US RE39,837 E

7

may support, only one or more of these modes. Furthermore,
the use of the clock throttling mode depends on whether the
processor in a computer system includes the required func-
tionality to provide such a feature (1.e., repeatedly 1ssuing a
HALT command to the CPU). One embodiment of the
power management states of the present imnvention are illus-
trated in the state diagram in FIG. 2.

Referring to FIG. 2, state 1 1s the fully powered-on state.
While the system 1s active, the computer system remains 1n
the fully powered-on state. Whether the system 1s active 1s
based on device activity of local devices as well as system
activity (e.g., keyboard stroke, mouse movement, etc.) Once
one or more local devices are determined to be idle, the
computer system transitions to state 2 where each 1dle local
device 1s powered ofl, such that the computer system enters
the local standby state with respect to those powered down
devices. The computer system remains 1n local standby
while a local device 1s 1dle. As soon as the local device 1s no
longer 1dle, the computer system transitions back to the fully
powered on state. When the computer system determines
that the entire system 1s 1dle (e.g., all the local devices are
idle), the computer system transitions to state 2 to enter
global standby. In global standby, the system 1s placed 1n
sleep mode, where i1t remains until system activity 1s
detected. At that time, the computer system returns to the
tully powered on state (0).

In another embodiment, the system transitions from the
local standby state directly to the global standby state. That
1s, the computer system does not reenter the fully powered
on state before entering global standby.

The Power Management Virtual Device Driver (PMVxD)

The present invention comprises a power management
virtual device driver (PMVxD) and a set of data structures.
The data structures are 1nitialized at system boot-up time to
provide command/status information to the PMVxD. The
PMV xD controls power management and comprises several
software 1dle timers, one for each enabled I/O device. The
idleness of a particular device 1s detected by monitoring the
activity of each of the enabled I/O devices. The monitoring
of the enabled I/O devices may be performed by one of the
following: I/O port address trapping, chaining into I1/0
device interrupt handlers, trapping on I/O devices driver
(VxD) accesses, and chaining mto I/O protection fault
handler, each of which 1s well-known 1n the art.

Most of these capabilities are provided to the VxD as a set
of VMM and VxD service calls, which are standard Win-
dows™ device driver support.

The PMVxD 1s chained into the system timer interrupt,
which provides the time base for all PMVxD counters. In
one embodiment, the PMVxD uses the occurrence of the
IRQO to indicate when to monitor the activity of each I/O
device and also the overall system activity for local and
global standby modes. In one embodiment, the IRQ0 occurs
every 55 ms. Thus, 1n this embodiment, a power manage-
ment manager of the PMVxD checks every 55 ms to
determine whether the local devices have been or are active
and whether the system as a whole has been or 1s active. If
a device has been inactive for a predetermined period of
time, the power management manager of the PMVxD con-
trols the powering down of the device. The predetermined
period of time may be of variable length and is set based on
the desired power savings. Different periods of time may be
associated with different devices.

The PMVxD 1nstalls handlers for 1/O trapping to the 1/O
port of each device. Anytime an I/O port access 1s trapped,
a corresponding counter 1s updated (increment/decrement)
to reflect the activity status. For I/O devices whose 1/O

10

15

20

25

30

35

40

45

50

55

60

65

8

addresses are virtualized, PMVxD interrupt handler stubs
(e.g., small pieces of code stored 1n memory at all times) can
be chained into the original interrupt handlers for each
specific I/O device. This PMV D stub handler maintains the
idleness of an I/O device, for example, Floppy Disk interrupt
OEh. The use and operation of a stub handler 1s well-known
in the art.

FIG. 3 illustrates the power management control over-
view. Referring to FIG. 3, the PMVxD 301 1s shown
controlling hardware 302. Software 303 also controls hard-
ware 302 and places hardware 302 in hibernation mode in
cooperation with hibernation timer 304. The PMVxD 301
comprises soltware timers, including a system events timer
301A and multiple local events timers, such as a floppy
events timer 301B, graphics events timer 301C and 1/0
device timer 301D. Each of the local events timers (e.g.,
301B-D) monitor local events via an I/O trap handler, a
device driver hook handler or a chained-interrupt trap
handler, as an interface. This interface increments and
decrements the software timers. The system events timer
301 A monitors global events via an interface, which may
also be either an I/O trap handler, a device driver hook
handler or a chained-interrupt trap handler. Note that 1n one
embodiment only one of these 1s employed for each global
or local events timer.

At a regular interval, such as at every 55 ms correspond-
ing to the occurrence of the IRQO, the power management
(PM) manager 301E checks the status of each of the events
timers (e.g., 301 A-D). When an events timer times-out, the
PMVxD may turn off the power to the I/O device. That 1s,
PM manager 301F causes a handler for that event timer to
be called. This handler controls the dedicated hardware in
hardware 302 for removing power to the I/O device. When
activity 1s detected, PM manager 301E calls the handler
again to power up the device. Similarly 11 the system events
timer times out, PM manager 103E calls the global standby
handler associated with the system events timer, which when
run causes the clock to the CPU to be stopped 1n a manner
well-known 1n the art, such that the CPU 1s halted.

When the CPU has been halted, the hibernation timer 304
1s started. If the hibernation timer times out, an interrupt
occurs, such as a system management interrupt (SMI) 1n one
embodiment. Software 303 for the interrupt places the
system 1n a hibernated state. In response to a system event
such as, for instance, a keyboard imput or cursor control
device movement, the computer system exits the hibernation
state and the global standby state.

PMVxD 301 also includes a slow clock timer 310 for use
with the clock throttling mode. The slow clock timer 310 1s
described below.

With respect to Plug-and-Play Compliance, the PMVxD
1s part of the O/S and appears as a device driver 1n the
system. In a Plug-and-play environment, when the system
resources are remapped to the I/O devices, the PMVXD 1s
informed of the changes by the O/S specific configuration
manager or resource manager. This well-defined interface
mechanism between the O/S and PMVxD allows it to
dynamically adapt itself to the changes gracefully. The
present ivention provides such capability by having the
PMV D register with the configuration manager (CM) and
instructs the configuration manager to notify it when there
has been a configuration change. The PMVxD responds to
the notification in the same manner as when examimng the
data structures at system boot-up time.

Dynamic Clock Throttling

FIG. 4 1llustrates the dynamic clock throttling mechanism

of the present invention. Referring to FIG. 4, dynamic clock




US RE39,837 E

9

throttling 1s accomplished by the PMVxD operating in the
Windows 3.1 O/S 400 with support from the standard PC
hardware. Periodic assertion of CPU HALT to CPU 404 by
the slow clock timer 402 emulates a slower clock timer
event. CPU 404 being responsive to the HALT command
causes a reduction 1n power consumption. FIG. 5 1llustrates
a timing diagram of the CPU clock throttling. Using speed
up timers 401, the slow clock timer 402 1s de-asserted by a

variable and periodic interrupt event from the system timer
405 or real-time clock (RTC) 406.

Data Structures of the PMVxD

The following tables illustrate one embodiment of the
data structures of a PMVxD according to the teachings of
the present invention. These data structures have a one-to-
one correspondence to the programmable hardware power
management Ifeatures of the 1486SL SuperSet. In one
embodiment, a graphical user interface (GUI) permits

changes to be made to default values as per the needs of an
end user. Tables 1 and 2 below illustrates the PMVxD
initialization data structures of local devices.

TABLE 1

Struct Local  Device  Struct Local DEvents Struct Local  DStatus

1 1 {

IntFloppyEn/Di; IntFloppy 10/Intr/VxD;  IntFloppy On/Oif

Int Harddisk En/Di; Int Harddisk Int Harddisk On/Off;
[O/Intr/VXD;

Int Graphics En/Di; Int Graphics Out Graphics On/Off,
[O/Intr/VXD;

IntEthernet En/Di;
IntCOM1 En/Di;
IntCOM?2 En/Di;
IntLPT En/Du;

Int Keyboard En/Di;

IntEthernet IO/Intr/VXD:;
InCOM1 I1O/Intr/VXD:;
InCOM?2 10/Intr/VXD:;
IntLPT IO/Intr/VXD:;
Int Keyboard
[O/Intr/VxD;
IntCPU En/Du; IntCPU IO/Intr/VXD; IntCPU On/Of;

Int Misc En/Di; Int Misc IO/Intr/VXD; Int Misc On/Off;

1 1 ]

Note: Indicates that Note: Indicates the Note: Indicates the
Local Device Local Device Local Device Power

IntEthernet On/Off,
IntCOM1 On/Off,
IntCOM?2 On/Off;
IntLPT On/Off;

Int Keyboard On/Off,

Monitoring 1s En- Events that are On/Off Status
abled or Disabled Monitored
TABLE 2

Struct Struct
Struct Local _Activity Local_ DintNum Local_D.I.O. Range
{ {
IntFloppy Yes/No IntFloppy Num, IntFloppy IO Range,
IntHarddisk Yes/No; IntHarddisk Num; IntHarddisk IO Range;
IntGraphics Yes/No; IntGraphics Num; IntGraphics 10 Range;
IntEthernet Yes/No, IntEthernet Num, IntEthernet IO Range,

IntCOM1 Yes/No;
IntCOM?2 Yes/No;
Int LFT Yes/No:
Int Keyboard Yes/No;
Int CPU Yes/No;
Int Misc Yes/No:

h

Note: Indicates that
Local Device

18 Active/In-

active since last
sampling by PM
manager

IntCOM1 Num;
IntCOM?Z Num;
Int LFT Num;

Int Keyboard Num;
Int CPU Num;

Int Misc Num;

h

Note: Indicates the
Local Device
Interrupt Number
to be monitored

as BEvent

IntCOM 10 Range;
IntCOM?2 10O Range;

Int LFT IO Range;

Int Keyboard IO Range;
Int CPU IO Range

Int Misc IO Range;

Note: Indicates the
Local Device 10O
Range as 16-bit

Start/End Addr. Pair

5

10

15

20

25

30

35

40

45

50

55

60

65

10

Table 3 below illustrates the PMVxD i1nitialization data
structures for global events.

TABLE 3

StructGlobal__ Sys. StructSys_ Break.

Events Events StructSuspend__Status

1 1 1

IntAPM_ Msg. En/Di; IntAPM_ Msg. En/Di; IntLocal Standby
On/Off;

IntNMI En/Du; IntNMI En/Du; IntGlobal-Standby
On/Oft;

IntRING En/Dia; IntRING En/Du; IntFully_ On On/Of;

IntIRQ<0.15> En/D1, IntIRQ<0.15> En/Di, IntHibernation On/Off,
Int Misc En/Du, Int Misc En/Diu, Int Misc On/OHf,

h h h

Note: Indicates that Note: Indicates that Note: Indicates the
System Events System Events System Power Miser
Monitoring i1s En- Enabled as Break Mode Status

abled or Disabled Events

In one embodiment, a user interface for programming the
power management features 1s available at an end-user level.
Such an interface enables the user to specity data for the data
structures shown above. Note that in one embodiment, this
may be invisible to the user

In one embodiment, hardware 1s manipulated directly, for
example, when the VxD and VMM service calls provided by
Windows are limited. For instance, in one embodiment, it
may be necessary to disable the system timer interrupt
during Standby mode.

In one embodiment, 1n order to trap I/O address :ranges
which are virtualized by other VxDs, interrupt chaining or
use of a device driver hook handler 1s required.

Power Managed Hardware and An Exemplary Computer
System

The various components of a system that may be power
managed 1nclude, but are not limited to, the CPU, generic
I/O controllers (e.g., graphics, tfloppy, hard disk, keyboard,
etc.), sertal and parallel interfaces and their associated
devices (e.g., modem, mouse, trackball, trackpad, printers,
LAN), LAN mterfaces, and DRAM memory systems. An
exemplary computer system 1s described 1n FIG. 7 below.

Referring to FIG. 7, one embodiment of the computer
system of the present invention 1s implemented 1s shown as
700. Computer system 700 comprises a bus or other com-
munication means 701 for communicating mnformation, and
a processor 702 coupled with bus 701 for processing infor-
mation. Processor 702 includes, but 1s not limited to micro-
processors such as the Intel™ Architecture Microprocessor,
manufactured by Intel Corporation of Santa Clara, Calif., the
corporate assignee of the present invention, PowerPC™,
Alpha™, etc.

System 700 further comprises a random access memory
(RAM) or other dynamic storage device 704 (referred to as
main memory), coupled to bus 701 for storing information
and 1nstructions to be executed by processor 702. Main
memory 704 also may be used for storing temporary vari-
ables or other intermediate information during execution of
instructions by processor 702. Computer system 700 also
comprises a read only memory (ROM) and/or other static
storage device 706 coupled to bus 101 for storing static
information and instructions for processor 702, and a data
storage device 707 such as a magnetic disk or optical disk
and 1ts corresponding disk drive. Data storage device 707 1s
coupled to bus 701 for storing information and instructions.

Computer system 700 may further be coupled to a display
device 721, such as a cathode ray tube (CRT) or liquid
crystal display (LCD) coupled to bus 701 for displaying




US RE39,837 E

11

information to a computer user. An alphanumeric input
device 722, including alphanumeric and other keys, may
also be coupled to bus 701 for communicating information
and command selections to processor 702. An additional
user input device 1s cursor control 723, such as a mouse, a
trackball, stylus, or cursor direction keys, coupled to bus 701
for communicating direction nformation and command
selections to processor 702, and for controlling cursor move-
ment on display 721. Another device which may be coupled
to bus 701 1s hard copy device 724 which may be used for
printing instructions, data, or other information on a medium
such as paper, film, or similar types of media. Furthermore,
a sound recording and playback device, such as a speaker
and microphone may optionally be coupled to bus 701 for
interfacing with computer system 700.

Note that any or all of the components of system 700 and
associated hardware may be used, however, it can be appre-
ciated that any type of configuration of the system may be
used for various purposes as the user requires.

The PMVxD of the present invention requires none or
very minimal hardware support to achieve comparable or
better level of power conservation, relative to the prior art
dedicated hardware (SMM) power management techniques
discussed above.

The present invention provides power management using,
less hardware. Because less hardware 1s required, there 1s
less power consumption. Thus, the power management
provided by the present invention 1s a power saver.

As opposed to the prior art, the present mnvention allows
more room for expansion without any hardware penalty.
Also the I/0O devices used 1n the present invention are not
required to use standard I/O addresses over the life of the
system.

The power management mechanism of the present inven-
tion 1s closely coupled to the operating system, such that
cach 1s aware of the other’s actions. This allows the present
invention to avoid system crashes (e.g., when the power
management software interrupts and takes control from the
operating system when 1t 1s executing a critical section of
code). In other words, the PMVxD of the present invention
climinates system crash problems by eliminating blind
spots. Also, the close coupling allows the PMVxD to be
aware ol dynamic changes 1n the I/O device state changes.
Furthermore, the present imnvention does not have to virtu-
alize I/O ports. There 1s no difliculty for the PMVxD to
detect 1t as such. Thus, the present invention prevents
monitoring and trapping on invalid I/O device addresses and
the generation of improper events in the system.

When I/O device addresses do change dynamically during
the life time of the current system boot, the present invention
provides an easy environment in which to update and
reorganize 1t by simply modifying the data structures and
their I/O address ranges.

Moreover, the present mvention operates with existing
solftware power management techniques (e.g., APM 1.1
spec.) that assumes that applications and the associated
device drivers 1n the system be APM-aware to monitor and
control power management. Thus, the PMVxD of the
present mvention power manages a system which has tra-
ditional applications and device drivers, one of which 1s not
power-aware. The PMVxD makes the non-power-aware
Windows applications and device drivers “virtually power
aware’.

The present mvention may be extended to operating
systems like IBM OS/2, Microsoft® Windows NT, Unix,
etc.

Although the above description focused on notebook
computer system power management, the present mnvention

10

15

20

25

30

35

40

45

50

55

60

65

12

may be applied to desktop and home computer systems as
well. Alternatively, the present invention may be used to
power manage PCMCIA hardware and for thermal control
of future generation CPU’s.

Note that for Real Mode DOS or Standard Mode Win-
dows environments, 1t may be appropriate to use POWER-
EXE for real mode power management.

Thus, a method and apparatus for reducing power con-
sumption 1 a computer system using virtual device drivers
has been described.

I claim:

[1. A computer system comprising:

a bus;

at least one memory coupled to the bus for storing data,
including an operating system; and

a central processing unit (CPU) coupled to the bus run-
ning the operating system with a virtual device driver
(VxD), wherein the virtual device driver performs
device 1dle detection using one or more events timers
indicating the activity level of at least one local device,
and further wherein the virtual device driver places 1dle
local devices 1 a reduced power consumption state
when associated events timers indicate that no activity
has occurred for a predetermined period of time.]

[2. The computer system defined in claim 1 wherein the

virtual device driver performs system idle detection.]

[3. The computer system defined in claim 1 wherein the
virtual device driver comprises /O trapping capabilities to
perform idle detection.]

[4. The computer system defined in claim 1 wherein the
virtual device driver comprises a VxD trap handler to
perform idle detection.]

[5. The computer system defined in claim 1 wherein the
virtual device driver comprises a chained-interrupt trap
handler to perform idle detection.]

[6. The computer system defined in claim 1 wherein the
memory stores data structures indicating enabled local
devices being monitored by the device driver.}

[7. The computer system defined in claim 1 wherein the
memory stores data structures indicating events being moni-
tored by the device driver.]

[8. The computer system defined in claim 1 wherein the
memory stores data structures indicating I/O address ranges
for local devices.]

[9. The computer system defined in claim 1 wherein the
memory stores data structures indicating activity level of
local devices to the device driver.}

[10. The computer system defined in claim 1 wherein the
memory stores data structures indicating power manage-
ment states into which the device driver may place the
computer system.}

[11. A computer system comprising:

a bus;

a central processing unit (CPU) coupled to the bus run-
ning an operating system and at least one power-
unaware application, wherein the operating system has
a virtual device driver performing device 1dle detection
using one or more events timers mdicating the activity
level of at least one local device, and further wherein
the virtual device driver places 1dle local devices 1 a
reduced power consumption state when associated
events timers indicate that no activity has occurred for
a predetermined period of time transparent to said at
least one power-unaware application.]

[12. The computer system defined in claim 11 wherein the

virtual device driver performs system idle detection.]



US RE39,837 E

13

[13. The computer system defined in claim 11 wherein the
virtual device driver comprises I/O trapping capabilities to
perform idle detection.]

[14. The computer system defined in claim 11 wherein the
virtual device driver comprises a VxD trap handler to
perform idle detection.]

[15. The computer system defined in claim 11 wherein the
virtual device driver comprises a chained-interrupt trap
handler to perform idle detection.]

[16. The computer system defined in claim 11 wherein the
memory stores data structures indicating enabled local
devices being monitored by the virtual device driver.]

[17. The computer system defined in claim 11 wherein the
memory stores data structures indicating events being moni-
tored by the virtual device driver.]

[18. The computer system defined in claim 11 wherein the
memory stores data structures indicating I/O address ranges
for local devices.]

[19. The computer system defined in claim 11 wherein the
memory stores data structures indicating activity level of
local devices to the virtual device driver.]

[20. The computer system defined in claim 11 wherein the
memory stores data structures indicating power manage-
ment states ito which the virtual device driver may place
the computer system.]

[21. A computer system comprising:

at least one bus;
a memory coupled to said at least one bus;
a device coupled to said at least one bus;

a processor coupled to said at least one bus, wherein the
processor 1s configured to execute a virtual device
driver to control placement of said device into a
reduced power consumption state.]

[22. The computer system defined in claim 21 wherein the

virtual device driver performs idle detection for the device.]

[23. The computer system defined in claim 21 wherein the
virtual device driver performs 1dle detection for the device
using at least one event timer indicating the activity level of
the device.}

[24. The computer system defined in claim 23 wherein the
virtual device driver places the device 1n a reduced power
consumption state when said at least one events timer
indicates that no activity has occurred for a predetermined
period of time.]

[25. The computer system defined in claim 21 wherein the
processor runs at least one power-unaware application and
the virtual device driver places the device in the reduced
power consumption state transparent to said at least one
power-unaware application.]

[26. The computer system defined in claim 21 wherein the
memory stores data structures indicating enabled local
devices being monitored by the virtual device driver, events
being monitored by the virtual device driver, I/O address
ranges for local devices, and activity level of local devices
to the virtual device driver.]

[27. The computer system defined in claim 21 wherein the
virtual device driver comprises a VxD trap handler to
perform idle detection.]

[28. The computer system defined in claim 21 wherein the
device comprises an 1/O device. ]

[29. A method for controlling an input/output (I/O)
device, said method comprising the steps of:

executing a virtual device driver;
monitoring activity of the I/O device;

detecting the I/O device being inactive for a predeter-
mined period of time; and

5

10

15

20

25

30

35

40

45

50

55

60

65

14

the virtual device driver placing the I/O device in a
reduced power consumption state in response to the I/O
device being detected as inactive.]

[30. The method defined in claim 29 further comprising
the step of 1mtializing, at boot-up time, a plurality of data
structures associated with the virtual device driver.]

[31. The method defined in claim 29 wherein the step of
monitoring comprises the virtual device driver monitoring
activity of the I/O device at the occurrence of a system timer
interrupt.]

[32. The method defined in claim 29 further comprising
the step of varying the predetermined period of time.]

[33. The method defined in claim 32 wherein the prede-
termined period of time 1s varied based on desired power
savings. ]

[34. The method defined in claim 29 further comprising
the step of the virtual device driver adjusting an events timer
according to activity of the device.]

[35. The method defined in claim 29 further comprising
the steps of:

a configuration manager notifying the wvirtual device
driver of system resources being remapped; and

the virtual device driver examining 1ts data structures to
adapt itself to the remapped system resources.}
36. A machine-readable medium having stoved theveon
instructions, which if executed by a machine, cause said
machine to perform operations comprising:

determining an amount of time a processor is in a first
power consumption state, said amount of time said
processor is in said first power consumption state
comprising a period of time in which a clock of said
processor is stopped;

reducing a voltage level applied to said processor in

response to said amount of time said processor is in
said first power consumption state.

37. The machine-readable medium of claim 36 wherein
reducing said voltage level applied to said processor is
performed in response to said amount of time exceeding a
selected amount of time.

38. The machine-readable medium of claim 37 wherein
determining comprises reading a timer to determine said
amount of time said processor is in said first power con-
sumption state.

39. The machine-readable medium of claim 38 wherein
said reducing said voltage level comprises placing said
processor in a power-off state.

40. The machine-readable medium of claim 36 wherein
determining the amount of time said processor is in the first
power consumption state comprises monitoring an activity
level demand within a computer system.

41. The machine-readable medium of claim 40 wherein
reducing the voltage level applied to the processor com-
prises operating said processorv in a reduced power con-
sumption state while satisfving said activity level demand.

42. A machine-readable medium having storved theveon
instructions, which if executed by a machine, cause said
machine to perform operations comprising.

determining an amount of time a clock of a processor is
stopped.;
placing said processor into a reduced power consumption
state in vesponse to said amount of time said clock of
said processor is stopped.
43. The machine-readable medium of claim 42 wherein
said placing comprises veducing a voltage of said processor.
44. The machine-readable medium of claim 43 wherein
said determining an amount of time said clock of said
processor is stopped contributes to determining a system
idle time.



US RE39,837 E

15

45. The machine-readable medium of claim 44 wherein
said clock of said processor is stopped when the processor
is in a sleep state.

46. The machine-readable medium of claim 45 wherein a
timer is rvead to determine said amount of time said proces-
sor is in said first power consumption state.

47. The machine-readable medium of claim 46 wherein
said reduced power consumption state is a power-off state.

48. The machine-readable medium of claim 43 wherein
reducing said voltage of said processor is performed in
response to said amount of time said clock of said processor
is stopped exceeding a selected amount of time.

49. An apparatus comprising:

a power management module to determine an amount of

time a processor is in a first power consumption state,
said first power consumption state comprising a period
in which said processor is stopped,

a power reduction module to place said processor into a
reduced power consumption state in response to said
amount of time said processor is in said first power
consumption state.

50. The apparatus of claim 49 wherein said power reduc-

tion module comprises a software routine.

51. The apparatus of claim 50 wherein said power man-
agement module comprises a timer.

52. The apparatus of claim 51 wherein said power reduc-
tion module is enabled to reduce a voltage applied to said
processor.

53. The apparatus of claim 52 wherein said power reduc-
tion module is enabled to reduce said voltage in vesponse to
said amount of time exceeding a selected amount of time.

54. The apparatus of claim 53 wherein said power man-
agement module comprises a software routine.

55. The apparatus of claim 54 wherein said first power
consumption state is a sleep state.

56. The apparatus of claim 35 wherein said reduced
power consumption state is a power-off state.

57. The apparatus of claim 49 whevrein said power man-
agement module comprises a timer.

58. An apparatus comprising.

a power management module to determine an amount of

time a processor is in a first power consumption state,
said first power consumption state comprising a period
in which said processor is stopped;

a power reduction module to place said processor into a
reduced power consumption state in vesponse to said
amount of time said processor is in said first power
consumption state, said power veduction module com-
prising a software routine, said power management
module comprising a timer.

59. A system comprising.

a memory;
a processor coupled to said memory;

a power management module to detect an amount of time
said processor is in a first power consumption state,
said first power consumption state comprising a period
of time in which a clock of said processor is stopped,
said processor being placed into a reduced power
consumption state in vesponse to said amount of time
said processor is in said first power consumption state.

60. The system of claim 59 wherein said reduced power

consumption state comprises a veduced voltage state of said
Dprocessor.

61. The system of claim 60 wherein said reduced voltage

state comprises a power-off state.

62. The system of claim 61 wherein said power manage-

ment module is enabled to determine a system idle time.

10

15

20

25

30

35

40

45

50

55

60

65

16

63. The system of claim 62 wherein said system idle time
is represented by said amount of time said processor is in
said first power consumption state.

64. The system of claim 63 wherein said first power
consumption state is a sleep state.

65. The system of claim 64 wherein said power manage-
ment module comprises a software routine.

66. The system of claim 65 wherein said power manage-
ment module further comprises a timer.

67. The system of claim 59 wherein said power manage-
ment module comprises a software routine.

68. The system of claim 59 wherein said power manage-
ment module further comprises a timer.

69. The system of claim 59 further comprising a config-
urable device;

power management software to power manage said con-
figurable device.
70. The system of claim 69 further comprising.

power management softwarve to cooperate with said
device manager to allow power management of a
plurality of devices in the system which are config-
urable devices, and to manage a power level for each
of the plurality of devices in the system, the power
management software being capable of placing one or
movre of said plurality of devices in a reduced power
consumption state.

71. The system of claim 70 further comprising a plug and
play manager.

72. The system of claim 71 wherein said power manage-
ment software is to communicate with said plug and play
manager to update data structurves if configuration changes
occur to allow power management of dyvnamically rveconfig-
urable devices.

73. The system of claim 72 wherein said power manage-
ment software registers with said device manager to be
notified of configuration changes.

74. The system of claim 73 wherein said power manage-
ment software is to provide system level power management
including the use of multiple system level power manage-
ment states for said system, and to provide multiple power
management states for said plurality of devices.

75. The system of claim 73 wherein said power manage-
ment software is to provide support for idle detection for at
least one of said plurality of devices.

76. The system of claim 73 wherein said power manage-
ment software is to place the system in a sleep state when the
svstem is idle and to keep said system in said sleep state until
activity is detected, and whevein the sleep state is one of a
plurality of system power management states, and further
wherein said system stops a clock for a system processor in
said sleep state.

77. A method comprising:

determining an amount of time a clock of a processor is

stopped;

placing said processor into a reduced power consumption

state in vesponse to said amount of time said clock of
said processor is stopped.

78. The method of claim 77 wherein said placing com-
prises reducing a voltage of said processor.

79. The method of claim 78 wherein said determining said
amount of time said clock of said processor is stopped
contributes to determining a system idle time.

80. The method of claim 79 wherein said clock of said
processor is stopped when the processor is in a sleep state.

81. The method of claim 80 wherein a timer is vead to
determine said amount of time said processor is in a first
power consumption state.



US RE39,837 E

17

82. The method of claim 81 wherein said reduced power
consumption state is a power-off state.
83. The method of claim 82 wherein reducing said voltage

of said processor is performed in response to said amount of

18

87. The method of claim 86 further comprising registering
power management software with said device manager to be
notified of configuration changes.

88. The method of claim 87 wherein said power managing

time said clock of said processor is stopped exceeding a 5 comprises supporting idle detection for at least one of said

selected amount of time.

84. The method of claim 83 further comprising power
managing in cooperation with a device manager a plurality
of devices in a system which are configurable devices; and
managing a power level for each of the plurality of devices
in the system, the power managing comprising placing one
or movre of said plurality of devices in a reduced power
consumption state.

83. The method of claim 84 wherein said system com-
prises a plug and play manager.

86. The method of claim 85 wherein said power managing
comprises communicating with said plug and play manager
to update data structures if configuration changes occur to
allow power management of dynamically reconfigurable
devices.

plurality of devices.

89. The method of claim 87 wherein said power managing
comprises placing the system in a sleep state when the
svstem is idle and to keep said system in said sleep state until

10 activity is detected, and wherein the sleep state is one of a

15

plurality of system power management states, and further
wherein said system stops a clock for a system processor in
said sleep state.

90. The system of claim 86 wherein said power managing
comprises providing system level power management
including the use of multiple system level power manage-
ment states for said system, and to provide multiple power
management states for said plurality of devices.

x x * x x



UNITED STATES PATENT AND TRADEMARK OFFICE
CERTIFICATE OF CORRECTION

PATENT NO. : RE 39,837 E Page 1 of 1
APPLICATION NO. : 10/081659

DATED . September 11, 2007

INVENTOR(S) . Marisetty

It is certified that error appears in the above-identified patent and that said Letters Patent Is
hereby corrected as shown below:

In column 2, at line 2, delete ““to” and insert --or--.

Signed and Sealed this

Twenty-fifth Day of December, 2007

W D)k

JON W. DUDAS
Director of the United States Patent and Trademark Office



	Front Page
	Drawings
	Specification
	Claims
	Corrections/Annotated Pages

