

(19) United States (12) **Reissued Patent** Banholzer et al.

US RE39,820 E (10) **Patent Number:** (45) **Date of Reissued Patent:** Sep. 4, 2007

- ESTERS OF THIENYL CARBOXYLIC ACIDS (54)AND AMINO ALCOHOLS AND THEIR **QUATERNIZATION PRODUCTS**
- Inventors: Rolf Banholzer, Stuttgart (DE); Rudolf (75)Bauer, Ockenheim (DE); Richard **Reichl**, Gau-Algesheim (DE)
- **Boehringer Ingelheim Pharma GmbH** (73)Assignee: & Co. KG, Ingelheim (DE)

Frank & Maclaren, The Use of an Anticholinergic Drug in the treatment of Asthma, ANN. Allergy, 15(3):261–9 (1957).*

Nyberg et al., Investigations of Dithienylglycolic Esters, Acta Chem. Scan. 24:1590-1596 (1970).*

Rusillo & Clark, The Pharmacology of the Anticholinergic Quaternary Ammonium compound Benzomethamine [N–Diethyllaminoethyl–N'–Methyl–Benzilamide Methobromide (MC 3199)] with a Note on the Tertiary Amine Analogue (MC 3137), J. Pharmacol. Exp. Ther., 11(1):54-62 (1955).* The Merck Index, 11th ed (1989) Merck and Co. Inc. p. 242 and 802-803.* Banholzer et al. "preparation of tropanyl..." CA 119:28006 (1993).*Nyberg et al., "Investigations of Diethienylglycolic Esters," Acta Chem. Scand., 24 (1970) No. 5, pp. 1590–1596. Atkinson et al., J. Med. Chem. 1977, vol. 20, No. 12, 1612 - 17.Sterling Drug, Inc., Chem. Abstracts, vol. 61, No. 1839f (1964). N–Butylscopolammonium Bromide (Buscopan), Merck Index, 10th Edition, pp. 219–220 (1983).

Appl. No.: 11/254,213 (21)

Oct. 18, 2005 (22)Filed:

Related U.S. Patent Documents

Reissue of:

Patent No.:	5,610,163
Issued:	Mar. 11, 1997
Appl. No.:	08/405,111
Filed:	Mar. 16, 1995
	Issued: Appl. No.:

U.S. Applications:

Continuation of application No. 08/254,324, filed on Jun. 6, (63)1994, now abandoned, which is a continuation of application No. 08/100,822, filed on Aug. 2, 1993, now abandoned, which is a continuation of application No. 07/838,724, filed on Mar. 13, 1992, now abandoned.

(30)**Foreign Application Priority Data**

Sep. 16, 1989	(DE)	
Sep. 8, 1990	(EP)	PCT/EP90/01517

N–Butylscopolammonium Bromide (Buscopan), Merck Index, 11th Edition, p. 242 (1989).

Valpin, Goodman & Gilman, The Pharmacological Basis of Therapeutics, 6th Edition, p. 130 (MacMillan 1980).

(Continued)

Primary Examiner—Celia Chang

(51)	Int. Cl.	
	A61K 31/435	(2006.01)
	C07D 451/12	(2006.01)

- (52)546/91; 546/125
- (58)546/18, 91, 125; 514/291, 304 See application file for complete search history.
- **References Cited** (56)

U.S. PATENT DOCUMENTS

3,673,195 A	6/1972	Yoneda et al.
3,808,263 A	4/1974	Yoneda
4,353,922 A	* 10/1982	Pfister 514/339

4,353,922 A 8/1989 Grimminger 4,855,422 A

FOREIGN PATENT DOCUMENTS

DE	1 166 787	4/1964	
DE	1166787	* 4/1964	
EP	418716	4/1994	
GB	845056	8/1960	
GB	955535	4/1964	
GB	1350928	4/1974	

(74) Attorney, Agent, or Firm-Michael P. Morris; Timothy X. Witkowski; Wendy A. Petka

(57)ABSTRACT

Compounds of the formula

of which, in exemplary compounds, the thienyl group is attached via the 2-position and;

- (a) A is 3α -(6 β , 7 β -epoxy)-tropanyl methobromide and R_1 is 2-thienyl;
- (b) A is 3α -(6, 7dehydro)-tropanyl methobromide and R₁ is 2-thienyl;

(c) A is 3β -tropanyl methobromide and R_1 is 2-thienyl; and,

OTHER PUBLICATIONS

CAS Accession No. 1983:34827 (Pfister et al.).* CAS Accession No. 1992:20937 (Banholzer et al.).* Wilhelm, The Chemistry of Polycyclic Psycho-active Drugs: Serendipity or Systematic Investigation?, Pharm. J., 214:414-416 (1975).*

(d) A is 3α -(N-isopropyl)-nortropanyl methobromide and R_1 is cyclopentyl.

There are anticholinergics. Administered by inhalation, they are useful for the treatment of chronic obstructive bronchitis or slight to moderately severe asthma. Administered by the intravenous or oral routes, they are useful for the treatment of vagally induced sinus bradycardia.

16 Claims, No Drawings

Page 2

OTHER PUBLICATIONS

Ipratropium Bromide (Atrovent), *Merck Index*, 10th Edition, p. 733 (1983).

Ipratropium Bromide (Atrovent), *Merck Index*, 10th Edition, pp. 802–803 (1989).

Foster et al., "Further New Tropine Derivatives," *Journal of the Chemical Society*, p. 3575–3578 (1957).

Jun. 2, 1992 Examination Report from European Patent Application No. 90117554.7 (EP 418716) and English translation.

Feb. 5, 1993 Examination Report from European Patent Application No. 90117554.7 (EP 418716) and English translation.

Apr. 23, 1993 Reply to Examination Report from European Patent Application No. 90117554.7 (EP 418716) and English translation.

International Search Report mailed Jan. 10, 1991 from PCT/EP90/01517 (WO 91/04252).

Dec. 1, 1992 Reply to Examination Report from European Patent Application No. 90117554.7 (EP 418716) and English translation.

* cited by examiner

1

ESTERS OF THIENYL CARBOXYLIC ACIDS AND AMINO ALCOHOLS AND THEIR QUATERNIZATION PRODUCTS

Matter enclosed in heavy brackets [] appears in the 5 original patent but forms no part of this reissue specification; matter printed in italics indicates the additions made by reissue.

This is a continuation of application Ser. No. 08/254,324, ¹⁰ filed on Jun. 6, 1994, now abandoned which is a continuation of application Ser. No. 08/100,822, filed on Aug. 2, 1993, now abandoned, which is a continuation of application Ser. No. 07/838,724, filed on Mar. 13, 1992, now abandoned. ¹⁵ The invention relates to novel thienylcarboxylates of amino alcohols and their quaternary products and to the preparation of the novel compounds and their use as active ingredients in medicaments.

2

In the compounds of formula I, R_1 preferably represents thienyl, R_2 preferably represents OH. The group —OA preferably has the α -configuration and is derived from, for example scopine, tropine, granatoline or 6,7-dehydrotropine or the corresponding nor-compounds; however, —OA may also have the β -configuration, as in pseudotropine, pseudoscopine.

Corresponding radicals are, for example

The novel compounds correspond to the formula

in which A represents the group

 $(CH_2)_m - CH_2$ $-CH \qquad Q'$

30

(II)

20

25

(I)

The substituent R is preferably a lower alkyl radical, such as CH_3 , C_2H_5 , $n-C_3H_7$, $i-C_3H_7$, R' is preferably CH_3 . R and R' together are, for example $-(CH_2)_5$. As halogen substituents for R, F or, as second choice, Cl are suitable.

35 If R denotes a halogen-substituted or hydroxy-substituted

wherein

m and n independently of one another denote 1 or 2, Q represents one of the double-bonding groups

 $-CH_2-CH_2-, -CH_2-CH_2-CH_2-,$ -CH=CH-, -CH-CH-

- alkyl radical, it is preferably $-CH_2-CH_2F$ or $-CH_2-CH_2OH$. Accordingly, the group A represents, for example the radicals of scopine, N-ethylnorscopine, N-isopropylnorscopine, tropine, N-isopropylnortropine, 6,7-dehydrotropine, N- β -fluoroethylnortropine, N-isopropyl-6, 7-dehydronortropine, N-methylgranatoline or the corresponding quaternary compounds, wherein the anion is preferably Br⁻ or $CH_3SO_3^-$.
- 45 As the acid radical

(III)

and

- Q' represents the group =NR or the group =NRR', ⁵⁰ wherein
- R denotes H or an optionally halogen-substituted or hydroxy-substituted C_1 - C_4 -alkyl radical, R' denotes a C_1 - C_4 -alkyl radical and R and R' together may also form a C_4 - C_6 -alkylene radical, and wherein, in the case of quaternary compounds, one equivalent of an anion
- the following are particularly suitable:

(X⁻)opposes the positive charge of the N atom,
 R₁ represents a thienyl, phenyl, furyl, cyclopentyl or cyclohexyl radical, wherein these radicals may also be 60 methyl-substituted, thienyl and phenyl may also be fluoro-substituted or chloro-substituted,

 R_2 represents hydrogen, OH, C_1 - C_4 -alkoxy or C_1 - C_4 -alkyl,

 R_a represents H, F, Cl or CH_3 and, if =NR denotes a 65 secondary or tertiary amino group, also the acid addition salts.

10

25

2. Tablets	
Active ingredient according to the invention	0.05
Colloidal silicic acid	0.95
Lactose	65.00
Potato starch	28.00
Polyvinylpyrrolidone	3.00
Na cellulose glycolate	2.00
Magnesium stearate	1.00

The constituents are processed in conventional manner to give tablets of 200 mg.

The quaternary compounds are particularly suitable for therapeutic application, whereas the tertiary compounds are important not only as active ingredients but also as intermediate products.

The compounds of the invention are strong anticholinergic agents and have prolonged action. Action lasting at least 24 hours is achieved at inhaled dosages in the μ g range. In addition, the toxicity is in the same range as the commercial product Ipratropium bromide, while at the same 30 time the therapeutic effect is stronger.

The novel compounds are suitable, in accordance with their anti-cholinergic nature, for example for the treatment of chronic obstructive bronchitis and (slight to moderately severe) asthma, also for the treatment of vagally induced ³⁵ sinus bradycardia.

The advantageous properties of the novel compounds are shown, for example, in the inhibition of broncholysis in the rabbit (acetylcholine spasms intravenously). After intravenous administration of the novel active ingredients (dosage 3 µg/kg intravenously), the maximum effect occurred after 10 to 40 minutes. After 5 hours the inhibiting effect had still not been reduced to half, that is to say the half effect time is more, in some cases considerably more, than 5 hours, as made clear by the residual effects after 5 hours listed below:

Compound	Residual effect in %	
A B C D E F	76 76 81 61 68 72	
F G	73 69	

Compounds of the formula

Whereas application of the novel active ingredients (in particular the quaternary compounds) by inhalation is mainly recommended for respiratory tract diseases, as a result of which side-effects are largely eliminated, the application for sinus bradycardia is preferably carried out intravenously or orally. It has thus proved to be advantageous that the novel compounds leave the gastro/intestinal motility largely unaffected.

For administration the compounds of the invention are processed using known auxiliaries and/or excipients to give conventional galenic preparations, for example inhalation solutions, suspensions in liquified propellants, preparations containing liposomes or proliposomes, injection solutions, 50 tablets, coated tablets, capsules, inhalation powders for use in conventional inhalation apparatus.

Formulation examples (measures in weight per cent):

thienyl

3-

thienyl

Active ingredient according to the invention Sorbitan trioleate monofluorotrichloromethane and Difluorodichloromethane 2:3

0.1 to 100

60

E

0.005

The suspension is poured into a conventional aerosol container with a dosage valve. 50 μ l of suspension are preferably dispensed per actuation. The active ingredient 65 may also be metered in a higher amount if required (for example 0.02 wt. %).

 $CH_3 \longrightarrow N^{\oplus} - CH_3$

(IV)

 (\mathbf{V})

5

6

lower alcohol from the equilibrium, the alcohol is optionally distilled off azeotropically. The transesterification takes place at temperatures which in general do not exceed 95° C. Transesterification often proceeds more favourably in a melt. If required, the free bases may be obtained in a manner known per se from acid addition salts of the tertiary amines using suitable basic compounds. Quaternisation is carried out in suitable solvents, for example acetonitrile or acetonitrile/methylene chloride, preferably at room temperature; a corresponding alkyl halide, for example alkyl bromide, is preferably used in the process as quaternising agent. Transesterification products wherein Q' represents NH are used as starting materials for those compounds in which P and Pl tagether represent a C. C. allydene group

Compound C

Notes:

1. The compounds in which R_1 is not 2-thienyl are racemates. 2. The compounds are 3α -compounds in each case.

Processes known per se are used to prepare the novel compounds.

An ester of the formula

- which R and R' together represent a C_4 - C_6 -alkylene group.
- 15 Conversion into the tertiary and then quaternary compound then takes place with the aid of suitable 1,4-dihaloalkanes, 1,5-dihaloalkanes or 1,6-dihaloalkanes without isolation of intermediates.

The starting materials may be obtained analogously to 20 known compounds—in as much as they have not already been described.

EXAMPLES

- methyl di-(2-thienyl)glycolate from dimethyl oxalate and 25 2-thienyl magnesium bromide;
 - ethyl di-(2-thienyl)glycolate from (2-thienyl)glyoxylic acid and 2-thienyl lithium;
- ethyl hydroxy-phenyl-(2-thienyl)acetate from methyl phenylglyoxylate and 2-thienyl magnesium bromide or from
 methyl (2-thienyl)glyoxylate and phenyl magnesium bromide.
- Methyl 2-thienylglyoxylate and cyclohexyl or cyclopentyl magnesium bromide may be reacted in a similar manner. Several processes are also available for the preparation of the amino alcohols.

wherein R" represents a C_1 - C_4 -alkyl radical, preferably a methyl or ethyl radical (R_1 , R_2 and R_a have the above meanings), is preferably transesterified using an amino alcohol of the formula

wherein m, n and Q have the above meanings, Q" represents
=NR or ==NH and the OH group is in the α- or β-position, in the presence of a conventional transesterification catalyst, and the compound obtained is optionally quaternised
a) if Q" denotes ==NR (R≢H), using a reactive monofunctionalised derivative Z-(C₁-C₄-alkyl) of a corre-

Pseudoscopine may be obtained in accordance with M. Polonovski et al., Bull. soc. chim. 43, 79 (1928). Pseudotropenol may be removed from the mixture, (fractional crystallisation or distillation) which is obtained, for example in accordance with V. Hayakawa et al., J. Amer. Chem. Soc. 1978, 100(6), 1786 or R. Noyori et al., J. Amer. Chem. Soc. 1974, 96(10), 3336.

The corresponding methyl esters may be prepared in a conventional manner starting from 2-furylglyoxylnitrile or 3-furylglyoxylnitrile via the 2-furylglyoxylic acid or 3-furylglyoxylic acid which can be obtained therefrom. The corresponding glycolates are obtained from these as described using the organometallic derivatives of 2-bromothiophene or 3-bromothiophene. The organometal-50 lic compounds which can be obtained from 2-, 3- or 4-halopyridine can be reacted with methyl 2-thienylglyoxylate or methyl 3-thienylglyoxylate to give the corresponding glycolates.

Thienylglycolates, in which the thiophene ring contains fluorine in the 2- or 3-position, are prepared, for example starting from 2-fluorothiophene or 3-fluorothiophene (bromination to give 2-bromo-3-fluorothiophene or 2-bromo-5-fluorothiophene), and after conversion to the corresponding organometallic compounds, reaction with suitable glyoxylates to give the glycolates. 2-Fluorothiophene and 3-fluorothiophene can be reacted analogously to give the corresponding glyoxylates Unterhalt, Arch. Pharm. 322, 839 (1989) which in turn, as already described, may be reacted with, for example 5 2-thienyl or 3-thienyl derivatives, to give glycolates. Symmetrically substituted di-thienylglycolates can be prepared analogously by selecting suitable components.

sponding alkane (Z=leaving group) or is optionally quaternised

b) if Q" denotes ==NH, using a terminally disubstituted 60 alkane Z-(C_4 - C_6 -alkylene)-Z without isolation of intermediates.

The transesterification is carried out with heat in an organic solvent, for example toluene, xylene, heptane, or in a melt, strong bases such as sodium methylate, sodium 65 ethylate, sodium hydride, metallic sodium, being used as catalyst. Reduced pressure is used to remove the released

25

30

7

A further route is available via a process analogous to the benzoin condensation and benzilic acid rearrangement.

The following examples illustrate the invention without limiting it.

EXAMPLE 1

EXAMPLE 1

Scopine di-(2-thienyl)glycolate

50.87 g (0.2 mole) of methyl di-(2-thienyl)glycolate and 31.04 g (0.2 mole) of scopine are dissolved in 100 ml of absolute toluene and reacted at a bath temperature of 90° C. with addition of 1.65 g (0.071 gram atom) of sodium in several portions. The resulting methanol is distilled off at a 15 reaction mixture temperature of 78°-90° C. under a pressure of 500 mbar. After a reaction time of about 5 hours, the reaction mixture is stirred into a mixture of ice and hydrochloric acid. The acid phase is separated off, rendered alkaline using sodium carbonate and the free base is 20 extracted using methylene chloride. After drying over sodium sulphate, the methylene chloride is distilled off under reduced pressure and the residue is recrystallised from acetonitrile; beige-coloured crystals (from acetonitrile).

8

ride of the basic ester crystallising out is filtered off under suction and washed using a small amount of water and a large amount of diethyl ether. The filtrate phases are separated off and the aqueous phase is extracted using diethyl ether. The hydrochloride filtered off under suction is suspended in the (acid) aqueous phase and converted to the base while monitoring the temperature and adding the corresponding amount of sodium carbonate; the base is extracted using methylene chloride. The combined methylene chloride ¹⁰ phases are dried over sodium sulphate. After distilling off the methylene chloride, crystals remain which are purified over active charcoal and recrystallised from acetonitrile. Pale yellow crystals (from acetonitrile), m.p. 148°-49° C.;

m.p. 149°-50° C. Yield: 33.79 g (44.7% of theoretical).

EXAMPLE 2

Scopine di-(2-thienyl)glycolate

12.72 g (0.05 mole) of methyl di-(2-thienyl)glycolate and 7.76 g (0.05 mole) of scopine are melted in a heating bath at 70° C. under a water jet vacuum. 2.70 g (0.05 mole) of sodium methylate are introduced into this melt and heated for 1 hour in a besting both at 70° C under a water jet

Yield: 39.71 g (70.1% of theoretical).

TABLE I

for a nour in a nearing bain at 70°C, under a water jet			granatanyi		
vacuum and subsequently for a further hour in a heating bath		6		2-thienyl	256
at 90° C. The solidified melt is taken up in a mixture of 100		7	nortropanyl 2 ci (68,78, circuit) N	2 thionyl	206
ml of water and 100 ml of methylene chloride while moni-		/	3α-(6β,7β-epoxy)-N- isopropyl-nortropanyl	2-thienyl	206
toring the temperature, and the methylene chloride phase is		8	3α -(6 β ,7 β -epoxy)-N-ethyl	2-thienyl	212-3
extracted several times using water. The methylene chloride	40		nortropanyl	r -	
phase is extracted using the corresponding amount of dilute		9	3α -(N-ethyl)-nortropanyl	2-thienyl	256-7
		10	3α-(N-N-methyl)-	2-thienyl	241
hydrochloric acid. The scopine di-(2-thienyl)glycolate is			granatanyl		
extracted from the combined aqueous phases using methyl-		11	3α-(6β,7β-epoxy)-N-β	2-thienyl	188-90
ene chloride after adding the corresponding amount of			fluoroethylnortropanyl		
sodium carbonate and dried over sodium sulphate. The		12	3α -(6 β ,7 β -epoxy)-N-n	2-thienyl	104-6
*			propylnortropanyl		
hydrochloride is prepared from the dried methylene chloride		13	3α -(6 β ,7 β -epoxy)-N-n	2-thienyl	225-7
solution in a conventional manner. The crystals are filtered			butylnortropanyl		
off under suction, washed using acetone and dried under		14		phenyl	246-7
reduced pressure at 35° C. Pale yellow crystals (from		15	3α-tropanyl	phenyl	243-4
	50	16	3α -(N- β -fluoroethyl)-	phenyl	219-20
methanol), m.p. 238°-41° C. (decomposition);			nortropanyl		
Yield: 10.99 g (53.1% of theoretical).		17	3α-(6,7-dehydro)-tropanyl	phenyl	181-3
		18	3α-(N-ethyl)-nortropanyl	phenyl	231-2
The hydrochloride may be converted to the base in a		19	3α-(N-isopropyl)-	phenyl	246-7
conventional manner.			nortropanyl		
	55	20	3α-tropanyl	cyclo-	260
EXAMPLE 3				hexyl	

 3α -(N- β -fluoroethyl)cyclo-21 hexvl nortronanyl

Scopine di-(2-thienyl)glycolate

38.15 g (0.15 mole) of methyl di-(2-thienyl)glycolate and 23.28 g (0.15 mole) of scopine are mixed, 0.34 g (0.015 60 gram atom) of sodium is added and the mixture is melted in a heating bath at 90° C. under a water jet vacuum. The reaction lasts 2.5 hours. 100 ml of absolute toluene are then added and the mixture is stirred at a heating bath temperature of 90° C. until a solution is produced. The reaction solution 65 is cooled to room temperature and stirred into a mixture of ice and hydrochloric acid cooled using ice. The hydrochlo-

	noruopanyi	псхуг	
22	3α -(6 β ,7 β -epoxy)-tropanyl	cyclo-	237
		pentyl	
23	3α-tropanyl	cyclo-	260
		pentyl	
24	3α -(N- β -fluoroethyl)-	cyclo-	182-3
	nortropanyl	pentyl	
25	3α-(N-ethyl)-nortropanyl	cyclo-	227-8
		pentyl	
26	3α-(N-isopropyl)-	cyclo-	174-5
	nortropanyl	pentyl	
27	$3\alpha - (6\beta, 7\beta - epoxy) - tropanyl$	2-thienyl	240-2
		~	

203-4

US RE39,820 E 9 10 TABLE I-continued TABLE II-continued Compounds of the formula Quaternary compounds of the formula 5 HO-Ċ-CO-OA но-с-со-оа 10 Ŕ₁ R_1 M.p. [° C.] M.p. [° C.] R_1 No. A

35

55

				Hydro-	-		
No.	Α	R ₁	Base	chloride	15	3	3α-(6,7-dehydro methobromide
28	3β-tropanyl	2-thienyl		217-9		4	3α -(N- β -fluoroet
29	3β -(6,7-dehydro)-tropanyl	2-thienyl		233-5			nortropanylmeth
30	3α-(6,7-dehydro)-trapanyl	3-thienyl		247-8		5	3α-tropanyl-β-
31	3α -(6 β ,7 β -epoxy)-tropanyl	3-thienyl		242-3			fluoroethobromic
32	3α -(6 β ,7 β -epoxy)-tropanyl	2-furyl				6	3α-(N-isopropyl
33	3α-(6,7-dehydro)-tropanyl	2-furyl			20		granatanyl metho
34	3α-tropanyl	2-furyl				7	3α-(N-isopropyl
35	3α-tropanyl	2-pyridyl					nortropanylmeth
36	3α -(6 β ,7 β -epoxy)-tropanyl	2-pyridyl				8	3α -(6 β ,7 β -epoxy
37	3α-(6,7-dehydro)-tropanyl	2-pyridyl					isopropyl-nortrop
38	3α-tropanyl	3-thienyl					methobromide
39	3α-(6,7-dehydro)-tropanyl	cyclo-			25	9	3α -(6 β ,7 β -epoxy
		pentyl					ethylnortropanyl
40	3α -(6 β ,7 β -epoxy)-tropanyl	cyclo-					methobromide
		hexyl				10	3α-(N-ethyl)-nor
41	3α-(6,7-dehydro)-tropanyl	cyclo-					methobromide
		hexyl				11	3α -(N-methyl)-g
					30		methobromide
Note:						12	3α-(6β,7β-epoxy
All hy	drochlorides melt with decor	nposition.					fluoroethyl-
							nortropanyl metl
						13	3α-(6β,7β-epoxy
	EXAMPLE 4						propylnortropany methobromide

3	3α-(6,7-dehydro)-tropanyl	2-thienyl	191-92
4	methobromide 3α-(N-β-fluoroethyl)-	2-thienyl	242-43
5	nortropanylmethobromide 3α-tropanyl-β-	2-thienyl	214-15
6	fluoroethobromide 3α-(N-isopropyl)-	2-thienyl	229-30
7	granatanyl methobromide 3α-(N-isopropyl)-	2-thienyl	245-46
-	nortropanylmethobromide		
8	3α-(6β,7β-epoxy)-N- isopropyl-nortropanyl methobromide	2-thienyl	223-24
9	3α-(6β,7β-epoxy)-N- ethylnortropanyl methobromide	2-thienyl	215-16
10	3α-(N-ethyl)-nortropanyl methobromide	2-thienyl	260-61
11	3α-(N-methyl)-granatanyl	2-thienyl	246-47
12	methobromide 3α-(6β,7β-epoxy)-N- fluoroethyl-	2-thienyl	182-83
	nortropanyl methobromide		
13	3α-(6β,7β-epoxy)-N-n- propylnortropanyl methobromide	2-thienyl	209-10
14	3α-tropanyl-β-	2-thienyl	231-32
15	hydroxyethobromide 3α-(6β,7β-epoxy)-tropanyl	phenyl	217-18
1.0	ethobromide		272 74
16 17	3α-tropanyl methobromide 3α-(N-β-fluoroethyl)-	phenyl phenyl	273-74
18	nortrapanylmethobromide 3α-(6,7-dehydro)-tropanyl methobromide	phenyl	110-71
19	3α -(N-ethyl)-nortropanyl	phenyl	249-50
20	methobromide 3α-(N-isopropyl)- nortropanyl methobromide	phenyl	259-60
21	3α -tropanyl ethobromide	phenyl	248-49
22	3α-(N-ethyl)-nortropanyl ethobromide	phenyl	244-45
23	3α -(6 β ,7 β -epoxy)-tropanyl ethobromide	phenyl	226
24	3α-tropanyl-β- fluoroethobromide	phenyl	241
25	3α -tropanyl methobromide	cyclohexyl	278
26	3α -(N- β -fluoroethyl)-	cyclohexyl	198
27	nortropanyl methobromide 3α-tropanyl-β- fluoroethobromide	cyclohexyl	233-34
28		evelopentyl	260
28 29	3α-tropanyl methobromide	cyclopentyl cyclopentyl	
	3α-tropanyl ethobromide	cyclopentyl cyclopentyl	235-36 251-52
30	3α-(N-ethyl)-nortropanyl methobromide	cyclopentyl	231-32
31	3α-(N-isopropyl)- nortropanyl-methobromide	cyclopentyl	244-45
32	3α -tropanyl- β - fluoroethobromide	cyclopentyl	189-90
33	3α -(N- β -fluoroethyl)-	cyclopentyl	226-27
34	nortropanyl-methobromide 3α-(6,7-dehydro)-tropanyl metho-methanesulphonate	2-thienyl	225-6

218-20

2-thienyl

Scopine di-(2-thienyl)glycolate methobromide

10.0 g (0.0265 mole) of scopine di-(2-thienyl)glycolate are dissolved in a mixture comprising 20 ml of anhydrous methylene chloride and 30 ml of anhydrous acetonitrile and treated with 12.8 g (0.1325 mole) of methyl bromide (as 50% strength solution in anhydrous acetonitrile), and the reaction mixture is allowed to stand for 24 hours at room temperature in a tightly sealed reaction vessel. Crystals are precipitated during this time. They are filtered off under suction, washed using methylene chloride and dried at 35° C. under reduced pressure. White crystals (from methanol/ acetone), m.p. 217°-8° C. (decomposition) after drying at 111° C. under reduced pressure. 50

TABLE II

Quaternary compounds of the formula

US RE39,820 E 11 12 TABLE II-continued TABLE IV Quaternary compounds of the formula Compounds of the formula 5 но—с́—со—оа 10 R_2 — \dot{C} —CO—O—A \dot{R}_1

No.	Α	R ₁	M.p. [° C.]			S		
36	3α-tropanyl methobromide	2-thienyl	243-4	15				
37	3α-(6,7-dehydro)-tropanyl methobromide	2-thienyl	211-4					M.p. [° C.]
38	3α-(6,7-dehydro)-tropanyl methobromide	3-thienyl	182-3*		No.	Α	R ₂	Hydrochloride
39	3α -(6 β ,7 β -epoxy)-tropanyl	3-thienyl	217-8	20 .				
	methobromide				1	3α -(6 β ,7 β -epoxy)-tropanyl	Η	
40	(+) enantiomer of No. 1				2	3α-(6,7-dehydro)-tropanyl	Η	
41	(-) enantiomer of No. 1				З	3α -(6 β ,7 β -epoxy)-tropanyl	methyl	
42	3α-(6β,7β-epoxy)-tropanyl methobromide	2-furyl		25	4	3α -(6,7-dehydro)-tropanyl	methyl	210-2.5
43	3α-(6,7-dehydro)-tropanyl methobromide	2-furyl			5	3α -(6 β ,7 β -epoxy)-tropanyl	methoxy	
44	3α -tropanyl methobromide	2-furyl			6	3α-(6,7-dehydro)-tropanyl	methoxy	
45	3α -(6 β ,7 β -epoxy)-tropanyl methobromide	2-pyridyl		20				
46	3α-(6,7-dehydro)-tropanyl methobromide	2-pyridyl		30		TABL	LE V	
47	3a-tropanyl methobromide	2-pyridyl		-		Compounds of	f the formula	
48	3a-tropanyl methobromide	3-thienyl				Compounds of		
49	3α-(6,7-dehydro)-tropanyl methobromide	cyclopentyl		35		• •		

- methobromide
- cyclohexyl 3α -(6 β ,7 β -epoxy)-tropanyl 50 methobromide
- 3a-(6,7-dehydro)-tropanyl cyclohexyl 51 methobromide
- cyclohexyl 3α -(6 β ,7 β -epoxy)-tropanyl 52 methobromide

*contains crystalline methanol

Note:

All compounds in the table melt with decomposition.

TABLE III

Compounds of the formula

	40	$R_{a} \xrightarrow{I} S$ $HO \xrightarrow{C} CO \xrightarrow{O} OA$ R_{1}								
		No.	Α	R ₂	R _a	M.p. [° C.]				
	45	1	3α-(6β,7β-epoxy)- tropanyl	2-thienyl	5-methyl					
		2	3α-(6,7-dehydro)- tropanyl	2-thienyl	5-methyl					
	50	3	3α-tropanyl	2-thienyl	5-methyl					
		4	3α-(6β,7β-epoxy)- tropanyl	2-(5-methyl)- thienyl	5-methyl					
		5	3α-(6,7-dehydro)- tropanyl	2-(5-methyl)- thienyl	5-methyl					
	55	6	3α-tropanyl thienyl	2-(5-methyl)-	5-methyl					
		7	3α-(6β,7β-epoxy)- tropanyl	2-thienyl	5-fluoro					
		8	3α -(6,7-dehydro)-	2-thienyl	5-fluoro					

2-thienyl

thienyl

thienyl

thienyl

2-(5-fluoro)-

2-(5-fluoro)-

2-(5-fluoro)-

5-fluoro

5-fluoro

5-fluoro

5-fluoro

No.	Α	R ₁	M.p. [° C.] Hydrochloride		9 10	tropanyl 3α-tropanyl 3α-(6β,7β-epoxy)-
1 2 3 4 5 6	3α -(6 β ,7 β -epoxy)-tropanyl 3α -(6,7-dehydro)-tropanyl 3α -(6 β ,7 β -epoxy)-tropanyl 3α -(6,7-dehydro)-tropanyl 3α -tropanyl 3α -(N-methyl)-granatanyl	phenyl phenyl 3-thienyl 3-thienyl 3-thienyl 3-thienyl	246-7 261-2	60 65	11 12	tropanyl 3α-(6,7-dehydro)- tropanyl 3α-tropanyl

			R _a	M.p. [° C.]					
No.	Α	R ₁			15	No.	Α	R ₂	M.p. [° C.]
1	3α-(6β,7β-epoxy)-tropanyl methobromide	2-thienyl	5-methyl			1	3α-(6β,7β-epoxy)-tropanyl methobromide	Η	
2	3α-(6,7-dehydro)-tropanyl methobromide	2-thienyl	5-methyl		20	2	3α-(6,7-dehydro)-tropanyl methobromide	Η	
3	3α -tropanyl-methobromide	2-thienyl	5-methyl			3	3α-(6β,7β-epoxy)-tropanyl methobromide	methyl	
4	3α -(6 β ,7 β -epoxy)-tropanyl methobromide	2-(5-methyl)- thienyl	5-methyl			4	3α-(6,7-dehydro)-tropanyl methobromide	methyl	206-8
5	3α-(6,7-dehydro)-tropanyl methobromide	2-(5-methyl)- thienyl	5-methyl		25	5 6	3α-tropanyl methobromide 3α-(N-methyl)-tropanyl	methoxy methoxy	
6	3α-tropanyl methobromide	2-(5-methyl)- thienyl	5-methyl		-		methobromide		
7	3α -(6 β ,7 β -epoxy)-tropanyl methobromide	2-thienyl	5-fluoro		30				
8	a-(6,7-dehydro)-tropanyl methobromide	2-thienyl	5-fluoro			We claim:			
9	3α-tropanyl methobromide	2-thienyl	5-fluoro			1. A compound of the formula			
		- · · ·							

35

10 3α -(6 β ,7 β -epoxy)-tropanyl 2-(5-fluoro)- 5-fluoro

- 2 3α-(6,7-dehydro)-tropanyl phenyl 158-60* methobromide
- 3 3α -(6 β ,7 β -epoxy)-tropanyl 3-thienyl methobromide
- 4 3α -(6,7-dehydro)-tropanyl 3-thienyl methobromide
- 5 3α -tropanyl methobromide 3-thienyl
- 6 3α-(N-methyl)-granatanyl 3-thienyl methobromide

*(with crystalline methanol)

R and R' are each independently C_1 - C_4 -alkyl;

65

60

ΗН

R₁ is thienyl, phenyl, cyclopentyl or cyclohexyl; and,

X⁻ is a physiologically acceptable anion.

15

2. A compound in accordance with claim 1, of the formula

7. A compound of the formula

16

10

35

5

8. A compound of the formula

 R_1

R₁, Q and X⁻ are as defined in claim 1.
3. A compound in accordance with claim 2 wherein R₁ is thienyl.

4. A compound in accordance with claim **2** wherein X^- is Br⁻ or [CH₃SO₃] *CH*₃SO₃⁻.

5. A compound of the formula

wherein R_1 is 2-thienyl and A is 3α -(6,7-dehydro)-tropanyl methobromide.

[9. A compound of the formula

wherein R₁ is 2-thienyl and A is 3β-tropanyl methobromide. [10. A compound of the formula

wherein X^- is a physiologically acceptable anion.

6. A compound of the formula

45 wherein R_1 is cyclopentyl and A is 3α -(N-isopropyl)nortropanyl methobromide.]

11. A method for treating chronic obstructive bronchitis which comprises administering, by inhalation, to a subject suffering from the same, a therapeutic amount of a compound in accordance with claims 1, 2, 3, 4, 6, 7, or 8[, 9, 10].
[12. A method for treating slight to moderately severe asthma which comprises administering, by inhalation, to a subject suffering from the same, a therapeutic amount of a compound in accordance with claims 1, 2, 3, 4, 6, 7, 8, 9, 55 10.]

13. A method for treating vagally induced sinus brady-cardia which comprises administering, by the intravenous or oral routes, to a subject suffering from the same, a therapeutic amount of a compound in accordance with claims 1,
60 2, 3, 4, 6, 7, or 8[, 9, 10].
14. A pharmaceutical composition, for administration by inhalation, suitable for the treatment of chronic obstructive bronchitis [or slight to moderately severe asthma], which comprises a compound in accordance with claims 1, 2, 3, 4,

wherein X^- is a physiologically acceptable onion.

65 6, 7, or 8[, 9, 10].
15. A pharmaceutical composition for oral administration, suitable for the treatment of vagally induced sinus

17

bradycardia, which comprises a compound in accordance with claims 1, 2, 3, 4, 6, 7, or 8[, 9, 10].

16. A pharmaceutical composition, for intravenous administration, suitable for the treatment of vagally induced sinus bradycardia, which comprises a compound in accor- 5 dance with claims 1, 2, 3, 4, 6, 7, or 8[, 9, 10].

17. A method for treating chronic obstructive bronchitis which comprises administering, by inhalation, to a subject suffering from the same, a therapeutic amount of a compound in accordance with claim 5.

18

18. A pharmaceutical composition, for administration by inhalation, suitable for the treatment of chronic obstructive bronchitis, which comprises a compound in accordance with claim 5.

19. A pharmaceutical composition, for administration by inhalation, suitable for the treatment of chronic obstructive bronchitis, comprising an inhalation powder comprising a compound in accordance with claim 5.

* * * * *

UNITED STATES PATENT AND TRADEMARK OFFICE CERTIFICATE OF CORRECTION

PATENT NO. : RE 39,820 E
APPLICATION NO. : 11/254213
DATED : September 4, 2007
INVENTOR(S) : Banholzer et al.

Page 1 of 1

It is certified that error appears in the above-identified patent and that said Letters Patent is hereby corrected as shown below:

Column 15, line 29, change " $[CH_3SO_3]CH_3SO_3$ -" to -- $[CH_3SO_3]CH_3SO_3$ -" to -- $[CH_3SO_3]CH_3SO_3$ ---

Column 15, line 67, change "onion." to --anion.--

Column 16, line 10, after the figure, insert --wherein R_1 is 2-thienyl and A is 3α -(6 β , 7 β -epoxy)-tropanyl methobromide.--

Column 16, line 50, change "1, 2, 3, 4, 6, 7, or 8 [,9, 10]" to --1, 2, 3, 4, 6, 7, or 8 [, 9 or 10]--

Column 16, line 54, change "1, 2, 3, 4, 6, 7, 8, 9, 10" to --1, 2, 3, 4, 6, 7, 8, 9 or 10--

Column 16, line 59, change "1, 2, 3, 4, 6, 7, or 8[, 9, 10]" to --1, 2, 3, 4, 6, 7, or 8 [, 9 or 10]--

Column 16, line 64, change "1, 2, 3, 4, 6, 7, or 8[, 9, 10]" to --1, 2, 3, 4, 6, 7, or 8 [, 9 or 10]--

Column 17, line 2, change "1, 2, 3, 4, 6, 7, or 8[, 9, 10]" to --1, 2, 3, 4, 6, 7, or 8 [, 9 or 10]--

Column 17, line 6, change "1, 2, 3, 4, 6, 7, or 8[, 9, 10]" to --1, 2, 3, 4, 6, 7, or 8 [, 9 or 10]--

Signed and Sealed this

Eighth Day of January, 2008

JON W. DUDAS

Director of the United States Patent and Trademark Office

UNITED STATES PATENT AND TRADEMARK OFFICE

Commissioner for Patents United States Patent and Trademark Office P.O. Box 1450 Alexandria, VA 22313-1450 www.uspto.gov

SEP 3 2007

Michael P. Morris Booehringer Ingelheim Corporation PO Box 368 900 Ridgebury Road Ridgefield CT 06877-0368

In Re: Patent Term Extension Application for U.S. Patent No. RE 39820

Dear Mr. Morris :

A certificate under 35 U.S.C. § 156 is enclosed extending the term of U.S. Patent No. RE 39820 for a period of 1,421 days. While a courtesy copy of this letter is being forwarded to the Food and Drug Administration (FDA), you should directly correspond with the FDA regarding any required changes to the patent expiration dates set forth in the Patent and Exclusivity Data Appendix of the Orange Book (Approved Drug Products with Therapeutic Equivalence Evaluations) or in the Patent Information set forth in the Green Book (FDA Approved Animal Drug Products). Effective August 18, 2003, patent submissions for publication in the Orange Book and Docket *95S-0117 need to be submitted on form FDA-3542 which may be downloaded from FDA's Electronic Forms Download Website: http://www.fda.gov/opacom/morechoices/fdaforms/default.html (http://www.fda.gov/opacom/morechoices/fdaforms/FDA-3542.pdf).

Inquiries regarding this communication should be directed to the undersigned by telephone at (571) 272-7755, or by e-mail at mary.till@uspto.gov.

Mary C. Till Legal Advisor Office of Patent Legal Administration Office of the Deputy Commissioner

for Patent Examination Policy

RE: Spiriva® HandiHaler® (tiotropium) Office of Regulatory Policy CC: **b**romide inhalation powder) HFD-7 FDA Docket No.: 2004E-0304 5600 Fishers Lane (Rockwall II Rm 1101) Rockville, MD 20857

Attention: Beverly Friedman

UNITED STATES PATENT AND TRADEMARK OFFICE

CERTIFICATE EXTENDING PATENT TERM (12)UNDER 35 U.S.C. § 156

RE 39820 PATENT NO. (68) :

September 4, 2007 REISSUED (45)

•

:

- INVENTOR (75)
- PATENT OWNER (73)
- Rolf Banholzer et al.
- Boehringer Ingelheim Pharma GMBH & Co. KG

Spiriva® HandiHaler® (tiotropium bromide PRODUCT (95) ٠ ٠ inhalation powder)

This is to certify that an application under 35 U.S.C. § 156 has been filed in the United States Patent and Trademark Office, requesting extension of the term of U.S. Patent No. RE 39820 based upon the regulatory review of the product Spiriva® HandiHaler® (tiotropium bromide inhalation powder) by the Food and Drug Administration. Since it appears that the requirements of the law have been met, this certificate extends the term of the patent for the period of

1,421 days (94)

from March 11, 2014, the original expiration date of the patent, subject to the payment of maintenance fees as provided by law, with all rights pertaining thereto as provided by 35 U.S.C. § 156(b).

I have caused the seal of the United States Patent and Trademark Office to be affixed this <u>12th day of September</u> <u>2007</u>.

