USOORE39610E
(19) United States
12y Reissued Patent (10) Patent Number: US RE39.610 E
McFarland 45) Date of Reissued Patent: May 1, 2007
(54) SYSTEMS AND METHODS FOR REPLACING 4,862,380 A 8/1989 Takagi
OPEN WINDOWS IN A GRAPHICAL USER 4,954,818 A 9/1990 Nakane et al.
INTERFACE 5,075,675 A * 12/1991 Barker et al. 715/794
5,305435 A * 4/1994 Bronsoncoe........ T15/777
(75) Inventor: Max McFarland, Sunnyvale, CA (US) 5.333.255 A 7/1994 Damouth
_ _ 5,377,317 A 12/1994 Bates et al.
(73) Assignee: Apple Computer Inc., Cupertino, CA 5412,775 A * 5/1995 Maeda et al. ..oo........... 715/797
(US) 5412,776 A 5/1995 Bloomfield et al
5479497 A 12/1995 Kovarik
(21) Appl. No.: 10/165,040 5,604,861 A * 2/1997 Douglas et al. 715/776
o 5,664,128 A * 9/1997 Bauerccccoovvvvinninnnn.. 715/708
(22) Filed:— Jun. 6, 2002 5956,030 A * 9/1999 Conrad et al. 715/769
Related U.S. Patent Documents
Reissue of: * cited by examiner
(64) Patent No.: 6,072,488
Issued: Jun. 6, 2000
Appl. No.: 08/435,375 Primary Examiner—Ba Huynh
Filed: May 5, 1995 (74) Attorney, Agent, or Firm—Fenwick & West LLP
(51) Int. CL (57) ABSTRACT
GO6F 3/00 (2006.01)
GO6F 9/00 (2006.01) Systems and methods for returning windows to an original
GO6F 17/00 (2006.01) location are described. When springing already open win-
dows to a new location on a display space, it 1s desired to
(52) US.CLcooeeiinn. 715/794;, 715/790; 715/807 return that window to its original location for certain situ-
(58) Field of Classification Search 715/790—797,J ations. A list 1s provided when the Springing Operation 1S

o 715/802, 806, 807_: 783, 7838 initialized which captures information used to return the

See application file for complete search history. sprung window. According to exemplary embodiments, the

(56) References Cited relocation of various windows 1s tracked to ensure that each
window 1s returned to an original location.

U.S. PATENT DOCUMENTS

4,819,189 A 4/1989 Kikuchi et al. 55 Claims, 6 Drawing Sheets
C 8EGIN
START AT
REARMOST 20
WINDOW
ON LIST
72 78
IS —
WINDOW 1D
TO BE RETURNEDN YES INCREMENT TO
= CURRENT N%T“ Vﬁ.'g?m -
WINDOW 1D
NO
74 80 - 84
END 1S THIS
OF YES WINDOW HoES
LIST SPRUNG
NO Fio) NO a5
INCREMENT TO PLACE WINDOW PLACE WINDOW
NEXT WINDOW TO BE RETURNED N TMOST
BEHIND CURRENT FRON
ON LIST WINDOW POSITION

US RE39,610 E

Sheet 1 of 6

May 1, 2007

U.S. Patent

(MY 10Lid)
ysni] |
4T
E Jojojndjp) 400qADLS JIPio4 joodS puooqdil) 1axsDg nQ

5[U R N R I R I

SO0UDJIIJBid POLDION SwaldnpDiS sepud wdSAS “\ SNOOI

=) O B O G

SWiay| nuay 8jddyy

SW3a}| ¢G

"uo1}D2]|ddD 9y} SRVDAWOIID
JOY} UO)DJUBWINOOP PDAL Of S18SN S§3| |1 aJdym “ysSIp
uotioalddo up uo apnjaul o} ybnoue |jows si }| ‘AD)dsip puD
Butlipa x84 saplao.d oy} uoljoanddo ||bws b S| (X314I03

- piooqdi|D moys
1Y §08j8G

JuBWINIOP 1X814Yd08]

MOGNIM
AALLOVNY

MOCONIM
JALLIV

HOSHND

W3l NN3W
N3ISOHD

N3N

4va NNIW

U.S. Patent May 1, 2007 Sheet 2 of 6 US RE39,610 E

One 2

l —4
l
-

O ltems 358 3MB in disk 14S494MB available

F/G 2 (Prior Arl)

F

Thf‘ee_—:—_ 1 =

| ltem 2554MB in disk I52.3MB available

B
o]
Fbur
!]
B

Wmdow 1D Location indicgtor

U.S. Patent May 1, 2007 Sheet 3 of 6 US RE39.610 E

E—J_E
5
0
A -
%
o
=
) D
P2
1¢ | 5
N 2 a .
o
_ 2) =
@
5 ®
D o
S S =
W <
[
L
o
£
: (13
=
o L
o \
O |
N

12

U.S. Patent May 1, 2007 Sheet 4 of 6 US RE39,610 E

24

16

18

30
 RAM s

2 |8

34 B
3

38

U.S. Patent May 1, 2007 Sheet 5 of 6 US RE39.610 E

C BEGIN

START AT
REARMOST 20
WINDOW
ON LIST
T2 78
1S
WINDOW 1D
70 BE RETURNED\ YES INCREMENT TO
WINDOW 1D
NO
4 84
END VES IS THIS END
OF WINDOW OF
LIST SPRUNG
NO o NO 86
INCREMENT TO PLACE WINDOW PLACE WINDOW

TO Bt RETURNED
BEHINDO CURRENT
WINDOW

NEXT WINDOW
ON LIST

IN FRONTMOST
POSITION

US RE39,610 E

Sheet 6 of 6

May 1, 2007

U.S. Patent

.

Ol

él

US RE39,610 E

1

SYSTEMS AND METHODS FOR REPLACING
OPEN WINDOWS IN A GRAPHICAL USER
INTERFACE

Matter enclosed in heavy brackets [] appears in the
original patent but forms no part of this reissue specifi-
cation; matter printed in italics indicates the additions
made by reissue.

BACKGROUND

The present invention relates generally to graphical user
interfaces for computer systems. More particularly, the
present invention relates to methods and systems for replac-
ing open windows which have been sprung to a new display
location as controlled by graphical user interfaces.

The evolution of the computer industry 1s arguably unpar-
alleled 1 its rate of growth and complexity. Personal
computers, for example, which began as little more than
teeble calculators with limited memory, tape-driven 1nput
and monochrome displays are now able to tackle almost any
data processing task. While this meteoric increase in power
was almost suflicient to satisiy the demand of application
programmers and end users alike, the corresponding
increase 1n complexity created an ease-of-use problem
which the industry was somewhat slower 1n solving. Thus,
designers were faced with a new challenge: to harness this
computing power 1 a form usable by even those with
relatively little computer training to smooth the transition of
other industries mto a computer-based information para-
digm.

As a result, 1 the early to mid-1980°s many new 1/O
philosophies, such as “user iriendly”, “WYSIWYG” and
“menu driven” came to the forefront of the industry. These
concepts are particularly applicable to microcomputers, also
known as personal computers, which are intended to appeal
to a broad audience of computer users, including those who
previously feared and mistrusted computers. An important
aspect of computers which employ these concepts was, and
continues to be, the intertace which allows the user to input
commands and data and receive results, which 1s commonly
referred to as a graphical user interface (GUI).

One type of GUI 1s based on a visual metaphor which uses
a monitor screen as a work surface called a “desktop” where
documents are presented in relocatable regions termed “win-
dows”. The user interacts with the computer by, for example,
moving objects on the desktop, choosing commands from
menus, and manipulating window controls, such as check-
boxes and scroll bars. An exemplary desktop screen is
reproduced as FIG. 1.

The success of this type of interface 1s evident from the
number of companies which have emulated the desktop
environment. Even successtul concepts, however, must con-
tinually be improved 1n order to keep pace with the rapid
growth 1n this industry. The advent of multimedia, especially
CD-ROM devices, has provided vast quantities of secondary
storage which have been used to provide video capabilities,
¢.g., live ammmation and video clips, as regular components
of application displays. With these new resources at their
disposal, application designers, and others, desire more and
more control over the appearance of the display, including

the desktop environment and, 1n particular, objects on the
desktop.

Windows, filing cabinets, folders and documents are
several examples of conventional desktop objects which
extend the desktop visual metaphor. Folder windows can be
configured to “spring” open when a user holds an 1tem over

10

15

20

25

30

35

40

45

50

55

60

65

2

a contaimner item (e.g., a disk, folder, catalog, mailbox,
viewer, server, or trash 1icon) which has one or more folders
therein. Folder windows that are sprung open are tempo-
rarily centered under the cursor or as close to this centered
position as possible while remaining on one monitor.

Occasionally, the folder windows which are sprung open
by the user’s actions relative to a container object are already
open elsewhere on the desktop. Consider, for example, that

a folder entitled “Five” 1s embedded in a hierarchical tree of
folders such that folder “One” holds folder “Two” which

holds folder “Three” which holds folder “Four” which holds
folder “Five”. That 1s, to open folder “Five”, a user would
open folders One, Two, Three, Four and Five in that order.
This could result, for example, 1n the cascaded series of open
folder windows shown in FIG. 2. Note that these folder
windows are numbered 1,2.3, 4 and 5, respectively, for ease
of reference 1n this text and that the folders and their
respective folder windows will both be referred to using the
same numbers.

Now suppose that a user springs open a container which
happens to include folder 3 therein. As mentioned above,
folder windows which are sprung open are drawn centered
at the cursor location, if possible. Thus, folder window 3 will
be closed at 1ts location 1n the display space between the
cascaded folder windows 2 and 4 and redrawn at a location
centered on the cursor. This example 1s 1llustrated in FI1G. 3.
Note that the folder windows 1, 2, 4, and 5 are opened 1n a
first portion 10 of the display space 12, but folder window
3 has been sprung open at a second portion 14 of the display
space 12 centered about a cursor (not shown). A gap 1s left
between windows 2 and 4 1n the position vacated by folder
window 3.

When the user releases the mouse button, or otherwise
completes the drag, only the destination folder and folders
that were open belfore the drag operation began remain open,
¢.g., folders 1-5 1n this example. IT folder 3 1s not the
destination folder, then this window would close at its
displayed location i portion 14 of display space 23.
Conventionally, folder window 3 would then be redrawn on
top of folder window 5 1n portion 10 of the display space 12
as seen 1n FIG. 4. However, this 1s considered to be
undesirable since folder 3 now appears out of order with
respect to folders 1, 2, 4 and 5 and blocks the view of the title
bars of the other folder windows.

SUMMARY

These and other problems and drawbacks of conventional
systems and methods for replacing windows 1n graphical
user interfaces are overcome according to the present inven-
tion. According to exemplary embodiments, open windows
which are sprung to a new location on the display space are
returned to their original location when the springing opera-
tion 1s concluded. A list or other data structure 1s created
when a springing operation 1s 1mtiated that identifies open
windows on the desktop, their relationship to other windows
in their original positions, and an indicator that tracks the
status of these windows as sprung or unsprung. When the
springing operation 1s concluded, sprung windows can be
returned to their original position using the information
found 1n the list or data structure which was created when
the springing operation commenced.

BRIEF DESCRIPTION OF THE DRAWINGS

The foregoing, and other, objects, features and advantages
ol the present invention will be more readily understood by
those skilled in the art upon reading the following detailed
description 1n conjunction with the drawings in which:

US RE39,610 E

3

FIG. 1 shows a conventional desktop screen;

FIG. 2 illustrates an exemplary set of cascaded open
windows used to describe exemplary embodiments of the
present mvention;

FIG. 3 shows the cascaded open windows of FIG. 2
lacking one of the windows which has been sprung open to
a new location on the display space;

FIG. 4 depicts the result of a conventional techmque for
returning the sprung window of FIG. 3;

FIG. 5(a) 1s a block diagram of an exemplary computer
system which can be used to implement the present inven-
tion;

FIG. 5(b) 1s a block diagram illustrating various exem-
plary tunctional units of the computer system of FIG. 5(a);

FIG. 6 illustrates an exemplary data structure used to
capture open window information according to an exem-
plary embodiment of the present invention;

FI1G. 7 1s a flowchart describing a technique for returning,
the sprung window of FIG. 3 back to 1ts original position as
seen 1n FIG. 2 according to an exemplary embodiment of the
present mvention; and

FIG. 8 illustrates another case wherein two windows are
sprung from their original positions.

DETAILED DESCRIPTION

Exemplary embodiments of the present invention will be
described 1n terms of various visual aspects created or drawn
in a display space controlled by a graphical user interface.
Those skilled in the art will appreciate that such an interface
can, for example, be used 1n conjunction with a computer
such as that illustrated 1n FIG. 5(a). Therein, a personal
computer 1s illustrated as having a box 16 which contains,
among other elements, circuit boards associated with the
computer’s functions, a keyboard 18, a pointing device 20
and a monitor 22 having a display space 24. The circuit
boards included 1n box 16 can include boards which accom-
modate functional units such as those 1llustrated by the block

diagram of FIG. 5(b). Therein RAM 30, ROM 32, processor
34, and IO 36 are all interconnected via system bus 38.

Of course the personal computer illustrated in FIGS. 5(a)
and 5(b) 1s purely exemplary of one type of computer system
in which graphical user interfaces according to the present
invention may be implemented. For example, although the
display space 24 of the system depicted 1n FIG. 5(a) consists
of that provided by monitor 22, those skilled in the art will
recognize that additional display devices could be arranged
proximate monitor 22 to create a display space bridging
several monitors. Moreover, although the present invention
1s described herein by way of exemplary, illustrative
embodiments, some ol which refer to graphical user inter-
faces implemented using the Macintosh® computer system
as a reference for explaining the present invention, those
those skilled in the art will readily appreciate that systems
and methods according to the present invention can be
applied to any type of display system having a user interface.
Those wishing additional immformation with respect to the
Macintosh® system are referred to Inside Macintosh, Vols.
1-6.

Returming now to the discussion of spring loaded folders,
according to exemplary embodiments of the present inven-
tion windows which were open at the beginning of a
springing operation be returned to their original location at
the end of the operation. In terms of the foregoing example,
window folder 3 will be returned to its original position
relative to folders 1, 2, 4 and 5 (as shown 1n FIG. 2) 1n the

10

15

20

25

30

35

40

45

50

55

60

65

4

portion 10 of the display space 12 rather than returning to
portion 10 of the display space 12 as the front window (as
shown 1n FIG. 4). Exemplary techniques for accomplishing,
this result will now be described with respect to FIGS. 6 and

7.

When a drag 1s imitialized, a data structure 1s created
which stores certain information relating to windows which
are open 1n the display space at that point 1n time. Although
the following text refers to this data structure as a “list”,
those skilled in the art will readily appreciate that any data
structure capable of holding such information could be used

for this purpose, ¢.g., a database, an array, etc. A list 60 used
to capture information relating to the example provided in
FIGS. 2 and 3 1s illustrated as FIG. 6. Therein each of the
folder windows 1-5 1s identified i the list 60 using a
“Window ID” field. Of course the actual numerical value of
this field will vary depending upon the system
implementation, but will sutlice to 1dentily the open window
and 1ts original location 1n display space 12. The order of the
open windows can be established 1n the list 60 by, for
example, listing these windows 1n front-to-back order. A
location 1ndicator 1s also associated with each open window
to keep track of its current status, 1.¢., sprung or unsprung.
Since folder windows 1-5 are all unsprung at the time of
drag i1mitialization, each of these indicators 1s set to a

Boolean value indicating that they are unsprung, depicted as
an “N”” 1n FIG. 6.

When folder window 3 1s sprung to the portion 14 of the
display space illustrated in FIG. 3, the list 60 of FIG. 6
changes to reflect the springing of folder window 3 by
changing the location indicator value to the Boolean value
associated with a sprung, rather than an original, position
¢.g., the letter “Y” for FIG. 6. When the user ends the drag
operation, and assuming that folder window 3 1s to be closed
in display space portion 14, folder window 3 will be returned
to 1ts original position among the cascaded, open windows
1,2, 4 and 5 using the information 1n the list 60 at that time.
This operation can be performed as 1llustrated in the exem-
plary flowchart of FIG. 7.

Initially, the process begins by examining the window
turthest to the back as rendered on the display space, e.g.,
WindowlID 1 of list 60, at block 70. The WindowID of this
window 1s compared, at decision block 72, with the Win-
dowlID of the window to be returned, in this case folder
window 3. Until a match 1s found (block 72) or the end of
the list 1s reached (block 74), the process iterates through
cach WindowID on the list from back to front by increment-
ing a list pointer after each set of decisions (at block 76) and
branching back to the top of the loop. If the end of the list
1s reached without a match (*“Yes™ at block 74), then the
process ends and the window to be returned 1s not redrawn
in this portion of the display space. This can occur, for
example, when a window which was not open at the time
that the springing operation began 1s processed according to
the present invention.

For the purposes of this example, however, a match will
occur on the third iteration when the current WindowlID has
been incremented to three. Then the flow proceeds to block
78 where the next WindowlID 1n the list 60 1s examined to
determine, at block 80, 1f folder window 4 has been sprung
by checking the status of the location indicator field of list
60. In this example, as seen 1n FIG. 3, folder window 4 has
not been sprung so the flow proceeds to block 82 where
folder window 3 1s redrawn behind window folder 4, 1.e.,
such that the configuration seen in FIG. 2 1s restored.

Consider now the case seen 1n FIG. 8. Therein, folder
window 4 has also been sprung and i1s shown beneath the

US RE39,610 E

S

sprung version of folder window 3 1n display space portion
14. Revisiting decision block 80 of FIG. 7, for the case

depicted 1in FIG. 8, the flow would proceed via the “Yes”
path to decision block 84 since folder window 4 has been
sprung and 1s not 1n 1ts original position 1n display space
portion 10 as would be indicated by an approprate location
identifier value for WindowID 4 1n list 60. If folder window
4 was at the end of the list 60, 1.e., the frontmost window 1n
the list, then the flow would proceed to block 86 where
folder window three would be drawn as the frontmost
window. However, this example includes window 5 1n list 60
so the flow 1nstead loops back to block 78 where window 5
1s now examined. Since window 5 has not been sprung,
window 3 1s placed behind window 5 such that the window
order from front to back 1n display space portion 10 will now
be 5,3,2 and 1. Note that by determiming whether a window
has been sprung prior to returming another window, the
situation 1s avoided where, for example, window folder 3 1s
redrawn behind folder window 4 in display space portion 14
rather than among the cascaded open windows 1n display

space portion 10.

The above-described exemplary embodiments are
intended to be 1illustrative 1n all respects, rather than
restrictive, of the present invention. For example, the present
invention 1s described herein by way of exemplary, 1llustra-
tive embodiments, some of which refer to graphical user
interfaces 1mplemented using the Macintosh® computer
system as a reference for explaining the present invention.
However, those skilled 1n the art will readily appreciate that
systems and methods according to the present invention can
be applied to any type of display system having a user
interface. Thus the present intention i1s capable of many
variations in detailed implementation that can be derived
from the description contained herein by a person skilled 1n
the art. All such variations and modifications are considered
to be within the scope and spirit of the present invention as
defined by the following claims.

What 1s claimed 1s:

1. A method for returning a window to an original position
among a plurality of cascaded windows which are rendered
on a display space, comprising the steps of:

generating a list which provides a front-to-back order of
said plurality of cascaded windows and an indicator of

whether each of said plurality of cascaded windows 1s
currently in its respective original, cascaded position;

storing an initial location and position for a window;
removing said window from said original position;

rendering said window at another location on said display
space;

receiving, at a graphical iterface, an indication that said
window 1s to be removed from said another location on
said display space; and

returning said window to said original position based
upon said list generated by said step ol generating.

2. The method of claim 1, wherein said step of returning,

turther comprises the steps of:

comparing an 1dentifier of said window with an 1dentifier
associated with each window 1n said list until a match

occurs; and

placing said window behind a window which 1s next in
order 1n said list after said match occurs.
3. The method of claim 2, wherein said step of placing
said window further comprises the step of:

placing said window behind said window which is next 1n
order 1n said list after said match occurs only if said
window 1s currently 1n its respective original, cascaded
position.

10

15

20

25

30

35

40

45

50

55

60

65

6

4. A method for placing a first window behind a second
window 1n a {irst portion of a display space, comprising the
steps of:

generating a list which indicates that said first window 1s

to be rendered behind said second window when both
said first and said second windows are rendered 1n said
first portion of said display space;

storing an initial location and position for the first win-

dow;

removing said first window from behind said second

window:

rendering said first window at a second portion of said

display space;

removing said first open window from said second portion

of said display space; and

placing said first window behind said second window 1n

said first portion of said display space by making
reference to said list.

5. The method of claim 4, wherein a third window 1s
disposed 1n front of both said second window and said {first
window when rendered 1n said first portion of said display
space, said method further comprising the steps of:

removing said second window from said first portion of
said display space;
rendering said second window 1n another portion of said
display space; and
placing said first window behind said third window 1n said
first portion of said display space.
6. In a computer having a display, a system for returning
a window object to its original location relative to at least
one other window object, comprising:

a data structure for storing information associated with
said window object and said at least one other window
object including an initial location of said window
object and a relative time-1mnvariant order of said win-
dow object with respect to said at least one other
window object;

a display on which said window object and said at least
one other window object are rendered;

a graphical user interface for receiving and generating
signals associated with said window object and said at
least one other window object, including a signal
indicating that said window object 1s to be returned to
said original position; and

a processor for recerving said signal and drawing said
window object on said display at said original position
using said information 1n said data structure.

7. The system of claim 6, wherein said data structure also
include information indicating a position of said at least one
other window object, and wherein said processor selectively
draws said window object 1n an overlapping relationship
with said other window object based upon said position
indicating information in said data structure.

8. A computer implemented method for maintaining an
order of a plurality of windows on a display, each window
having an initial location on the display and a position in the
order of the plurality of windows, the method comprising the
steps of.

storing the initial location and the position for each of the
plurality of windows;

springing one of the windows from its initial location to
a temporary location; and

removing the sprung window from its temporary location
and displaying the sprung window in its stored initial
location and position in the ovder of the plurality of
windows.

US RE39,610 E

7
9. The method of claim 8, wherein the ovder of the

plurality of windows is a front-to-back ovder.

10. The method of claim 8, wherein springing the window
further comprises rvemoving the window from its initial
location.

11. The method of claim 8, wherein the window sprung to
the temporary location is brought to a front position in the
order of the plurality of windows when sprung.

12. The method of claim 11, wherein the sprung window
is displayved in an original position in the ovder when the
sprung window is displayed in its initial location.

13. The method of claim 8, wherein springing of the one
of the windows is in vesponse to a user action.

14. The method of claim 13, wherein the user action
comprises placing an item over an icon on the display
associated with the window that is sprung.

15. A system for maintaining an ovder of a plurality of

windows on a display when one of the plurality of windows
is temporarily sprung to a temporary location on the display,
the system comprising:

a data structuve for storing for each of the plurality of

windows, an initial location on the display and a
position in the order of the plurality of windows;

a graphical user interface in which each window is
displaved in its initial location, and for receiving an
input from a user associated with a springing opera-
tion; and

computer program logic coupled to the data structure and
to the user interface, for displaving each of the plurality

of windows on the display, the computer program logic
adapted to spring one of the windows to a temporary

location on the display in vesponse to the user action,
and adapted to vemove the sprung window from its
temporary location, and display the sprung window in
its initial location and position according to the data
structure.

16. The system of claim 15, whervein the user action
resulting in a springing operation is placing an item over an
icon on the display associated with the window that is
Sprung.

17. The system of claim 15, wherein the ovder of the
plurality of windows is a front-to-back ovder.

18. The system of claim 15, wherein the computer pro-
gram logic vemoves the window from its initial location
when springing the window to its temporary location.

19. The system of claim 15, wherein computer program
logic displays the sprung window in a front position in the
order of the windows.

20. The system of claim 15, wherein computer program
logic displays the sprung window in an oviginal position in
the ovder when it displays the sprung window in its initial
location.

21. The system of claim 15, wherein the user action
comprises placing an item over an icon on the display
associated with the window that is sprung.

22. A computer implemented method for maintaining an
order of a plurality of windows on a display, each window
having an initial location on the display and a position in the
order of the plurality of windows, the method comprising the

steps of.

vesponsive to detecting a user’s intevest in one of the
windows:
storing an initial location and position for the window;
and

moving the window from its initial location to a tem-
porary location; and

responsive to detecting the end of the user’s intevest in the
window, removing the window from its temporary loca-

10

15

20

25

30

35

40

45

50

55

60

65

8

tion and displaving the window in its initial location
and position in the ovder of the plurality of windows.

23. The method of claim 22, wherein detecting a user’s
interest in one of the windows comprises detecting user inpuit
in connection with the window.

24. The method of claim 22, wherein detecting a user’s
interest in one of the windows comprises detecting a cursor
being held over the window, and wherein detecting the end
of the user’s intervest in the window comprises detecting a
cursor not being held over the window.

25. The method of claim 22, wherein detecting a user’s
interest in one of the windows comprises detecting an
activation command within the window, and wherein detect-
ing the end of the user’s interest in the window comprises
detecting an activation command outside the window.

26. The method of claim 25, wherein each activation
command comprises a mouse click.

27. The method of claim 22, wherein detecting a user’s
interest in one of the windows comprises detecting place-

ment of an item over an icon associated with the window.
28. The method of claim 22, wherein the ovder of the
plurality of windows is a front-to-back ovder.
29. The method of claim 28, wherein moving the window

further comprises vemoving the window from its initial

[ocation.
30. The method of claim 28, wherein moving the window

further comprises bringing the window to a front position in

the ovder of the plurality of windows.
31. A system for maintaining an ovder of a plurality of
windows on a display, each window having an initial loca-
tion on the display and a position in the ovder of the plurality
of windows, the system comprising the steps of:
an output device for displaving the plurality of windows;
an input device for detecting a user’s interest in one of the
windows;

computer program logic coupled to the input device, for:

responsive to the input device detecting a user’s intevest
in one of the windows,

storing an initial location and position for the window;
and

causing the output device to move the window from its
initial location to a temporary location,; and

responsive to the input device detecting the end of the
user’s interest in the window, causing the output device
to remove the window from its temporary location and
to display the window in its initial location and position
in the ovder of the plurality of windows.

32. The system of claim 31, wherein detecting a user’s
interest in one of the windows comprises detecting usev inptuit
in connection with the window.

33. The system of claim 31, wherein the input device
detects a user’s interest in one of the windows by detecting
a cursor being held over the window, and wherein the input
device detects the end of the user’s interest in the window by
detecting a cursov not being held over the window.

34. The system of claim 31, wherein the input device
detects a user’s intervest in one of the windows by detecting
an activation command within the window, and wherein the
input device detects the end of the user’s intevest in the
window by detecting an activation command outside the
window.

35. The system of claim 34, wherein each activation
command comprises a mouse click.

36. The system of claim 31, wherein the input device
detects a user’s interest in one of the windows by detecting
placement of an item over an icon associated with the
window.

US RE39,610 E

9

37. The system of claim 31, wherein the ovder of the
plurality of windows is a front-to-back order.

38. The system of claim 37, wherein the computer pro-
gram logic further causes the output device to rvemove the
window from its initial location.

39. The system of claim 37, wherein the computer pro-
gram logic further causes the output device to bring the

window to a front position in the order of the plurality of

windows.

40. A computer program product for maintaining an ovder
of a plurality of windows on a display, each window having
an initial location on the display and a position in the order
of the plurality of windows, the computer program product
COmprising:

a computer-readable medium; and

computer program code, encoded on the medium, for:

storing the initial location and the position for each of the
plurality of windows;

springing one of the windows from its initial location to
a temporary location; and

removing the sprung window from its temporary location
and displayving the sprung window in its stored initial

location and position in the ovder of the plurality of

windows.

41. The computer program product of claim 40, wherein
the order of the plurality of windows in a front-to-back order.

42. The computer program product of claim 40, wherein
the computer program code for springing the window fur-
ther comprises computer program code for removing the
window from its initial location.

43. The computer program product of claim 40, wherein
the window sprung to the temporary location is brought to
a front position in the ovder of the plurality of windows when
Sprung.

44. The computer program product of claim 43, wherein
the sprung window is displaved in an original position in the
order when the sprung window is displaved in its initial
location.

45. The computer program product of claim 40, wherein
the computer program code for springing of the one of the
windows operates in response to a user action.

46. The computer program product of claim 45, wherein
the user action comprises placing an item over an icon on
the display associated with the window that is sprung.

47. A computer program product for maintaining an ovder
of a plurality of windows on a display, each window having
an initial location on the display and a position in the order
of the plurality of windows, the computer program product
COMpPrising:

10

15

20

25

30

35

40

45

10

a computer-readable medium; and
computer program code, encoded on the medium, for:
responsive to detecting a user’s intevest in one of the
windows:
storing an initial location and position for the window;,

and
moving the window from its initial location to a tem-

porary location; and

responsive to detecting the end of the user’s interest in the
window, removing the window from its temporary loca-
tion and displaying the window in its initial location
and position in the ovder of the plurality of windows.

48. The computer program product of claim 47, wherein
the computer program code for detecting a user’s interest in
one of the windows comprises computer program code for
detecting user input in connection with the window.

49. The computer program product of claim 47, wherein
the computer program code for detecting a user’s interest in
one of the windows comprises computer program code for
detecting a cursor being held over the window, and wherein
the computer program code for detecting the end of the
user’s intevest in the window comprises computer program
code for detecting a cursor not being held over the window.

50. The computer program product of claim 47, wherein
the computer program code for detecting a user’s interest in
one of the windows comprises computer program code for
detecting an activation command within the window, and
wherein the computer program code for detecting the end of
the user’s interest in the window comprises compuiter pro-
gram code for detecting an activation command outside the
window.

51. The computer program product of claim 50, wherein
each activation command comprises a mouse click.

52. The computer program product of claim 47, wherein
the computer program code for detecting a user’s interest in
one of the windows comprises computer program code for
detecting placement of an item over an icon associated with
the window.

53. The computer program product of claim 47, wherein
the order of the plurality of windows is a front-to-back order.

54. The computer program product of claim 53, wherein
the computer program code for moving the window further
comprises computer program code for removing the window
from its initial location.

55. The computer program product of claim 53, wherein
the computer program code for moving the window further
comprises computer program code for bringing the window
to a front position in the order of the plurality of windows.

	Front Page
	Drawings
	Specification
	Claims

