(19) United States
12y Reissued Patent

(10) Patent Number:
Lu 45) Date of Reissued Patent:

USOORE39578E

US RE39,578 E

(54) PIPELINED CARRY-LOOKAHEAD
GENERATION FOR A FAST INCREMENTER

(75) Inventor: Wei-Ping Lu, Saratoga, CA (US)

(73) Assignee: Faust Communications, LLC, Las
Vegas, NV (US)

(21) Appl. No.: 11/176,885

(22) Filed: Jul. 7, 2005
Related U.S. Patent Documents
Reissue of:
(64) Patent No.: 6,591,286
Issued: Jul. 8, 2003
Appl. No.: 09/683,563
Filed: Jan. 18, 2002
(51) Imt. CL.
GO6F 7/508 (2006.01)
(52) US.CL e, 708/672
(58) Field of Classification Search 708/6772
See application file for complete search history.
(56) References Cited
U.S. PATENT DOCUMENTS
4,084,254 A * 4/1978 Buney et al. 708/655
4,110,832 A * &/1978 Leininger et al. 708/708
4,153939 A * 5/1979 Kudoucceevevenennnnn 708/672
4,486,851 A * 12/1984 Chrnstopher et al. 708/672
4,623982 A * 11/1986 Warecoovvvevinininnn. 708/714
4,685,078 A * 8/1987 Torrescocvvvevivnnennnn. 708/672
4,858,168 A * 8/1989 Hwangcceevvnennnnn 708/713
4,956,802 A * 9/1990 Priemcoovvviiinininnn. 708/711
5,027,310 A * 6/1991 Dalrymple 708/672
5,062,057 A * 10/1991 Blacken et al. 345/567

Apr. 17, 2007
5,095458 A * 3/1992 Lynch et al. 708/713
5119494 A * 6/1992 Garman 711/202
5,208,770 A * 5/1993 IO oovevrrerverreereerernenn. 708/670
5,280,579 A * 1/1994 Nye .oocorvrververreernans. 345/564
5,375,079 A * 12/1994 Uramoto et al. 708/709
5,384,724 A * 1/1995 Jaginicoooeoveeveennnnn. 708/672
5,517,440 A * 5/1996 Widigen et al. 708/708
5,548,546 A * /1996 Jang etal.c.......... 708/706
5,555,517 A * 9/1996 Agrawal et al. 708/672
5,619441 A * 4/1997 Barthingcoeeeene.. 708/672
5045974 A * 81999 Sharma et al. 345/98
6,101,620 A * 82000 Ranganathan 714/718
6,199,090 Bl * 3/2001 Mansingh et al. 708/672
6,279,024 B1 * &/2001 Chappell et al. 708/672
6,347,327 BL * 2/2002 Petro et al. 708/672
6,516,335 Bl * 2/2003 Martin et al. 708/672

* cited by examiner

Primary Examiner—D. H. Malzahn
(57) ABSTRACT

An incrementer pipelines the generation of carry lookahead
signals. Count registers hold a current count of the incre-
menter. The current count 1s fed back as inputs to sum logic,
which generates sum bits that are latched into the count
registers as a next count. All-ones detect logic detects when
all lesser-significance bits in the current count are ones.
When all lesser bits are ones, the sum logic toggles the count
bit to generate the sum bit for that bit position. Pre-carry
logic generates pre-carry lookahead signals from the sum
bits. The pre-carry lookahead signals are latched 1nto pipe-
lined carry registers. The pipelined carry registers drive
pipelined carry lookahead signals to the all-ones detect
logic. Thus carry lookahead signals are generated from a
prior sum but used 1n a next clock cycle to generate then next

S UITI.

74 Claims, 6 Drawing Sheets

U.S. Patent

Apr. 17,2007

Y

A4

Sheet 1 of 6

FIG. 1

PRIOR ART

AG

US RE39,578 E

Cld

U.S. Patent Apr. 17,2007 Sheet 2 of 6 US RE39,578 E

AD A1 A2

U.S. Patent Apr. 17, 2007 Sheet 3 of 6 US RE39.578 E

CURRENT NEXT
STATE A STATE S
0000 0001
0001 0010
0010 0011
0011 0100
0100 0101
0101 0110
LOW BITS
0110 =141 0111

XORWITH 1001
HIGH BIT 1010

U.S. Patent Apr. 17,2007 Sheet 4 of 6 US RE39,578 E

AQ Q(1)=A(1)

FI1G. 6

U.S. Patent Apr. 17,2007 Sheet 5 of 6 US RE39,578 E

U.S. Patent Apr. 17, 2007 Sheet 6 of 6 US RE39.578 E

30
FlG 8 RS CLK l

US RE39,578 E

1

PIPELINED CARRY-LOOKAHEAD
GENERATION FOR A FAST INCREMENTER

Matter enclosed in heavy brackets [] appears in the
original patent but forms no part of this reissue specifi-
cation; matter printed in italics indicates the additions
made by reissue.

BACKGROUND OF INVENTION

This invention relates to computer arithmetic devices, and
more particularly to incrementers.

Many types of computing systems include an arithmetic-
logic-unit (ALU). The ALU may be capable of performing
sophisticated logical and arithmetic operations including
multiply and divide. Special logic blocks may be added to
speed up the more complex operations. A dedicated multi-
plier can rapidly perform multiply operations, while an
integer divider can perform divide operations that otherwise
would require thousands of clock cycles of the basic ALU.

These auxiliary math units may themselves contain sev-
eral smaller blocks, such as shifters, adders, and leading-
zero and other condition detectors. In particular, a divider
may use an adder to increment a value such as for rounding,
a value from a floating point datapath. A general-purpose
adder could be used for this sub-function.

Adders are often constructed from a one-bit adder cell
known as a half-adder. FIG. 1 shows a prior-art half-adder
cell. The one-bit input A of bit position (1) 1s added to a
carry-1n mput CI from the next lower bit position (1-1).

Both a sum S and a carry-out CO to the next higher bit
position (1+1) are generated by half-adder cell 10. The sum
at position (1) of A and CI can be generated by exclusive-OR
(XOR) gate 14, while the carry out CO to position (1+1) 1s
generated by AND gate 12.

This 1s known as a half-adder cell because to perform a
tull add of two mputs X, Y, two such half-adder cells are
needed for each bit position. One half-adder cell adds bit (1)
of mnputs X and Y to generate A(1), while the second
half-adder cell adds the intermediate result A(1) to the carry
CI(1) to generate the final sum.

While a full adder can be used to increment a binary
number, a dedicated incrementer can be constructed. This
incrementer can only add 1 or O to an 1nput; 1t cannot add an
arbitrary number as can a full adder. However, the amount
of logic inside the incrementer can be less than the logic
inside a full adder. A single half-adder cell 1s needed for each
bit position in the incrementer, while two half-adder cells are
required for each bit position 1n the full adder.

FIG. 2 shows a dedicated ripple-carry incrementer. Seven
half-adder cells 10 are strung together to form a 7-bit
incrementer. The carry-input CI to the lowest (least-
significant bit or LSB) halt-adder cell 10 1s set to 1 to
perform an increment. This LSB carry input may also be set
to zero when no increment 1s desired.

The LSB half-adder cell 10 adds this lowest CI to the LSB
of mput A, A(0), to form sum bit S(0). The carry output of
bit 0 1s coupled to the carry mput CI of the half-adder cell
10 adding the next higher bit, A(1). This second half-adder
cell 10 generates sum S(1) and a carry out CI that is

connected to the carry mput CI of the third half-adder cell
10.

The carry output generated by each half-adder cell 1s
applied to the carry mput of the next higher half-adder cell.
The final carry output CO(6) from bit 6 can be discarded, or

it can signal on overtlow when 1t 1s a 1.

10

15

20

25

30

35

40

45

50

55

60

65

2

Since the carries are propagated through an AND gate in
cach halt-adder cell 10, the LSB carry bit may have to pass
through seven AND gates to reach the final carry out of bit
6 in a worst-case delay path. This 1s known as a ripple carry
since the carry signal ripples through all bits of the adder or
incrementer.

In full adders, various techniques have been used to
reduce this worst-case delay of the carry nppling through all
the bits of the adder. For example, look-ahead logic can be
used to generate an intermediate carry by looking at the
binary-number mputs and carry into a group of bits.

What 1s desired 1s a look-ahead for an incrementer rather
than for a full adder. An incrementer with a carry-lookahead
1s desired to reduce carry ripple delays 1n a fast incrementer.
A pipelined incrementer 1s desired to further reduce delays
that occur within a clock cycle.

BRIEF DESCRIPTION OF DRAWINGS

FIG. 1 shows a prior-art half-adder cell.

FIG. 2 shows a dedicated ripple-carry incrementer.
FIG. 3 1s a diagram of an incrementer with a carry-

lookahead.

FIG. 4 1s a table showing the sequence of states of a binary
incrementer.

FIG. 5 1llustrates detection of the all-ones condition for a
bit-position 1 of an 1ncrementer.

FIG. 6 shows pipelining of carry-lookahead generation
for an incrementer.

FIG. 7 1s a diagram of a 7-bit incrementer with pipelined
carry-lookahead generation.

FIG. 8 1s a diagram of a 7-bit incrementer with pipelined
carry-lookahead generation and synchronous reset.

DETAILED DESCRIPTION

The present invention relates to an improvement 1n fast
incrementers. The following description 1s presented to
enable one of ordinary skill 1n the art to make and use the
invention as provided in the context of a particular applica-
tion and 1ts requirements. Various modifications to the
preferred embodiment will be apparent to those with skill in
the art, and the general principles defined herein may be
applied to other embodiments. Theretfore, the present inven-
tion 1s not intended to be limited to the particular embodi-
ments shown and described, but 1s to be accorded the widest
scope consistent with the principles and novel features
herein disclosed.

FIG. 3—Carry Lookahead for an Incrementer

FIG. 3 1s a diagram of an incrementer with a carry-
lookahead. Rather than ripple the carry through each bit of
the incrementer, logic can be added to generate intermediate

carries.
The LSB carry input CI(0) 1s added to bit 0 of input word

A by the first half-adder cell 10, generating the LSB of the
sum, S(0). The carry output from bit-position 0 1s coupled to
the carry mput of the halt-adder cell 10 at bit position 1,
where 1t 1s added to A(1) to generate S(1) and CO(1). The
carry output CO(1) 1s applied as the carry input to bait-
position 2. The third half-adder cell 10 adds A(2) to CI(2) to
generate S(2) and CO(3).

The LSB carry mput CI(0) thus ripples up through bit
positions 0, 1, 2. There 1s a delay of 2 AND gates from CI(0)
to CI(2).

Rather than use CO(2) as the carry input CI(3) to hali-
adder cell 10 at bit position 3, a lookahead carry 1s generated

by AND gate 16. AND gate 16 receives inputs A(0), A(1),

US RE39,578 E

3

A(2) from the binary mput word A. If 1t 1s assumed that the
incrementer always increments, then CI(0) 1s always 1 and

never 0. Then the carry output from bit position 2 1s A(0) &
A(l) & A(2), where “&” represents a logical AND opera-

tion. Thus AND gate 16 generates CI(3) to the half-adder
cell 10 at bit position 3.

Using AND gate 16 to generate CI(3) rather than the carry
output CO(2) from the third haltf-adder cell 10 reduces delay.
There are 3 AND gate delays from CI(0) to CO(2), while
only one AND-gate delay to CI3 when AND gate 16 1s used.
Thus the carry-lookahead provided by AND gate 16 reduces
the CI(3) delay.

The intermediate carry CI3 generated by AND gate 16 1s
rippled through half-adder cells 10 for bit positions 3 and 4.

However, the carry output CO(4) from bit position 4 1s not
used but instead discarded. A second intermediate carry-
lookahead CI5 1s generated by AND gate 18 for bit 5. This
carry-lookahead CI5 1s applied to carry mput CI(5) of
half-adder cell 10 for bit position 5. The second intermediate
carry CI5 1s rippled through the last 2 bit positions that

generate sum bits S(5,6).
AND gate 18 receives A(3) and A(4) from the binary-

word mput A. When both these input bits are 1, the carry
input to bit-position 3, CI3, 1s propagated by AND gate 18,
which also received CI3 as an input. CI3 1s generated by
AND gate 16 from A(0), A(1), A(2). Thus CIS 1s high when
all five input bits A(1) to A(4) are high.

In general, for an incrementer that always increments, a
lookahead carry input for any bit-position 1s high when all
lower-position 1mput bits are high. Any bit-position’s carry
lookahead could be generated by ANDing the binary-input
bits below that position.

Since the incrementer has only one binary-word input, the
carry-lookahead logic 1s much simpler than for a 2-1nput tull
adder. Only input bits from one binary input word need to be
considered 1n the lookahead logic.

FIG. 4—Fixed Sequence of Incrementer States

FI1G. 4 15 a table showing the sequence of states of a binary
incrementer. When the output of an incrementer 1s fed back
to 1ts input, the incrementer sequences through a series of
states, or counts upward. A current state 1s represented by the
binary-input word A and 1s shown 1n the left column of FIG.
4. The sum bits from the incrementer represent a next state
that 1s generated by the incrementer when the mput A 1s
applied. Since the output, sum S, 1s fed back to the input A,
the sequence counts upward 1n an increasing binary-number
sequence.

For example, when mput A 1s 0000, the sum 1s 0001, as
shown 1n the first row. The sum 0001 1s applied to the input
A for the next clock cycle, as shown 1n the second row. The
incrementer then generates the sum 0010 as the next state
shown 1n the second row. Once the sequence reaches 1111,
the next state or sum wraps back to 0000 as shown 1n the last
row.

For any bit position (1), when all lower bits 1n an mput A
are high, then the carry-lookahead to the bit position (1) 1s
high. The sum bit for bit position (1) 1s the XOR of the carry
input CI(1) and the binary input A(i1). Thus when the
111 ... 1 condition occurs 1n the lower bits, the current sum
bit 1s generated by XORing the carry 1in (which 1s a 1) with
the current mput bit A(1).

This 1s shown 1n the table 1n the 8th and 16th rows. The
lower bits are 111, causing the carry in to be high. The mnput
bit A(3) 1s XORed with the carry in, causing the uppermost
input bit to toggle. Thus input 0111 produces the sum 1000,
while the mnput 1111 produces the sum 0000.

For other rows, the lower bits are not all ones. The carry
iput CI3 1s low, so the uppermost bit does not change. The
uppermost bit only changes when the lower bits are all ones.

5

10

15

20

25

30

35

40

45

50

55

60

65

4

FIG. 5—Detection of All-Ones Condition

The inventor detects this all-ones condition, further sim-
plifying the incrementer’s logic. FIG. § illustrates detection
of the all-ones condition for a bit-position 1 of an incre-
menter. When all lower bits A(i-1), AG1-2), ... Ad), A(0)
of the input A are high, AND gate 22 outputs a high as carry
iput CI(1). This1s the 1111 . . . 11 condition when the upper
bit 1 toggles.

XOR gate 24 receives CI(1) from AND gate 22 and
toggles A(1) when CI(1) 1s high.

Otherwise, XOR gate 24 passes iput A1) through with-
out change as the sum bit S(1) for this bit-position 1.

The state of sum bit S(1) from XOR gate 24 1s latched by
tlip-tflop 20 when clock CLK rises. The latched sum bit 1s
output by tlip-tlop 20 as output Q(1), and 1s fed back to the
incrementer’s mput A as iput bit A(1). Signals Q1) and A1)
can be the same signal. The logic of FIG. 5 can be repeated
for other bit-positions in the incrementer so that each
tlip-flop 20 stores a different bit-position of the sum S.
However, loading of the lower mput lines, especially A(0)
and A(1), can significantly increase delays in carry genera-
tion. Larger incrementers with many bit positions are espe-
cially effected. For example, a 32-bit incrementer could have
A(0) fan out to as many as 31 AND gates 22. Driving such
a large load increases delays.

FIG. 6—Pipelining of Carry-Lookahead

FIG. 6 shows pipelining of carry-lookahead generation
for an incrementer. To reduce delays, some of the lower
input bits can be combined together before being input to
AND gates 22 of the many other bit positions. However, the
carry-generation delays may still be too large for higher-
speed incrementers that use a short clock period 1n which the
logic paths must be propagated.

The inventor has realized that the carry generation can be
pipelined. Since the incrementer sequences through a fixed
series of states or binary counts, the next several states are
known 1n advance. An incrementer cannot jump from 1001
to 1110 without passing through 1010, 1011, 1100, and 1101.
The mventor uses this knowledge of the sequence of states
to pipeline carry generation.

AND gate 22 detects the 1111 condition of the lower input
bits A(1-1), A(1-2), etc. to generate CI(1). C(1) causes A(1) to
be toggled by XOR gate 24 to generate sum bit S(1), which
1s latched by flip-flop 20.

However, the lowest 5 mput bits A(0), A(1), A2), A(3),
and A(4) are not mput to AND gate 22. Instead, pipelined
carry lookahead signal C0, C1 are input to AND gate 22.
This reduces the number of mputs to AND gate 22 and 1ts
complexity and propagation delay.

While carry lookahead signal C0 could be generated by
ANDing mput signal A(0), A1), and A(2), it 1s instead
generated by ANDing the corresponding sum signals during
the previous clock cycle. Thus AND gate 34 ANDs sum bits
S(0), S(1), S(2) to generate LCI0, which 1s input to tlip-flop
30 and latched. Likewise, AND gate 36 ANDs sum bits S(3),
S(4) to generate LCI1, which 1s input to flip-tlop 32 and
latched to generate pipelined carry lookahead signal C1.

The output of flip-flop 30 1s pipelined carry lookahead
signal CO that 1s mput to AND gate 22. Sum bits S rather
than mput bits A are combined to generate the pipelined
carry-lookahead signals since the sum bits become the mnput
bits after the next rnising clock edge.

AND gate 22, XOR gate 24, and tlip-flop 20 can be
replicated for other bit-positions of the incrementer.
However, carry lookahead generation by AND gates 34, 36
and pipeliming thip-tlops 30, 32 can be 1nstantiated only once
and shared by many bit-positions.

US RE39,578 E

S

FIG. 7—7-bit Incrementer with Pipelined Carry-Lookahead

FIG. 7 1s a diagram of a 7-bit incrementer with pipelined
carry-lookahead generation. Flip-flops 40—46 store sum bits
S(0) to S(6) on the nising edge of clock CLK, causing these
sum bits to be output as Q(0) to Q(6) over the next clock
pertod. These latched sum bits are fed back as the incre-
menter’s input bits.

Carry-lookahead generation 1s pipelined. AND gate 34
receives lower sum bits S(0), S(1), S(2). The output of AND
gate 34 1s applied to the D mput of tlip-tflop 30, which latches
the pre-lookahead and drives the pipelined carry lookahead
signal CO during the following clock cycle. Likewise, AND

gate 36 receives lower sum bits S(3), S(4). The output of
AND gate 36 1s applied to the D nput of tlip-tlop 32, which

latches this second pre-lookahead signal and drives the
second pipelined carry lookahead signal C1 during the

following clock cycle.
The LSB sum bit S(0) 1s toggled each clock cycle by
iverter 38, which recerves QQ from flip-tflop 40 and also

drives the D-input to thp-flop 40. XOR gate 51 receives ()
(0) and Q(1) and toggles Q(1) when Q(0) 1s hugh. Otherwise
(1) 1s passed through to the D-1nput of flip-tlop 41 as S(1).

AND gate 62 drives the upper input to XOR gate 52 high
when both Q(0) and Q(1) are high. This 1s the 11 carry-in
condition. XOR gate 52 receives this carry in generated by
AND gate 62 and toggles (Q(2) when the output of AND gate
62 1s high. Otherwise Q(2) 1s passed through to the D-input
of flip-flop 42 as S(2).

The pipelined carry lookahead signal C0 from thp-flop 30
1s applied to the upper mput of XOR gate 53. When
pipelined carry lookahead signal C0 1s high (sum bits S(0),
S(1), S(2) were all high 1n the prior clock period) XOR gate
53 toggles Q(3) from the Q-output of tlip-tlop 43 to generate
sum S(3) to the D-nput of tlip-tlop 43. Otherwise XOR gate
53 passes Q(3) through unchanged as S(3) to flip-tlop 43.

AND gate 64 drives the upper input to XOR gate 34 high
when both pipelined carry lookahead signal C0 and Q(3) are
high. This 1s the 1111 carry-in condition. XOR gate 34
receives this composite carry-in generated by AND gate 64
and toggles Q(4) when the output of AND gate 64 1s high.
Otherwise Q(4) 1s passed through to the D-mput of thp-flop
44 as S(4).

For bit-position 5, AND gate 66 drives the upper input to
XOR gate 55 high when both pipelined carry lookahead
signal C0 and C1 are high. This 1s the 11111 carry-in
condition when all five lower sum bits were high 1n the prior
clock cycle. XOR gate 55 receives this composite carry-in
generated by AND gate 66 and toggles Q(5) when the output
of AND gate 66 1s high. Otherwise Q(3) 1s passed through
to the D-1nput of tlip-tflop 45 as S(5).

For the most-significant-bit (MSB) bit-position (6), AND
gate 68 drives the upper mput to XOR gate 56 high when
both pipelined carry lookahead signal C0 and C1 are high
and Q(5) 1s high. This 1s the 111111 carry-in condition when
all s1x lower sum bits are high. XOR gate 56 receives this

composite carry-in generated by AND gate 68 and toggles
(Q(6) when the output of AND gate 68 1s high. Otherwise

(Q(6) 1s passed through to the D-1nput of tlip-tflop 46 as S(6).
FIG. 8—Resetable 7-bit Incrementer with Pipelined Carry-
Lookahead

FIG. 8 1s a diagram of a 7-bit incrementer with pipelined
carry-lookahead generation and synchronous reset. Flip-
flops 40—46 store sum bits S(0) to S(6) on the rising edge of
clock CLK, causing these sum bits to be output as Q(0) to
Q(6) over the next clock period. These latched sum bits are

ted back as the incrementer’s 1nput bits.
Inverting NAND gates 62', 64', 66', 68' operate as AND

gates 62, 64, 66, 68 described earlier for FIG. 7, but with an

5

10

15

20

25

30

35

40

45

50

55

60

65

6

active-low output to the XOR gates 52, 54, 55, 56. Inverters
92, 94, 95, 96 invert the fed-back mputs Q(2), Q(4), Q(5),
Q(6) to XOR gates 52, 54, 55, 56. This allows the sum bits
to have the same (positive or active-high) polarity as
described before. XOR gates 52, 54, 55, 56 invert the
input when the carry-in from the NAND gate 1s high
(1nactive).

A synchronous reset 1s added by inserting inverters 80—86
and NOR gates 7076 between the sum bits S(0:6) and the
D-inputs to tlip-tlops 40—46. The lower mputs to NOR gates
70-76 1s an active-high reset signal RS. When RS 1s high,
NOR gates 70-76 drive a low to the D-mnputs of flip-tlops
40-46. Otherwise the sum bits are passed through after a
double inversion.

NAND gates 34', 36' perform the same function as AND
gates 34, 36 described earlier, and are followed by NOR
gates 77, 78 which drive a low to the D-inputs of tlip-tlops
30, 32 when reset signal RS 1s high. Thus pipelined carry
lookahead signals C0, C1 are also resetable.

ALTERNATE EMBODIMENTS

Several other embodiments are contemplated by the
inventor. For example the incrementer can count upward or
downward (decrement) and the increment can be a value
other than 1, such as +2, +4, -4, etc. The incrementer can
count 1n binary or 1n gray code or in some other sequence.
Falling-edge-triggered flip-flops could be substituted for
rising-edge tlip-tlops. Various logic iversions and applica-
tions of DeMorgan’s theorem could be applied to adjust the
logic gates. Rather than XOR gates, exclusive-NOR

(XNOR) gates could be employed without inverters on the
Q 1nput to the XNOR gate.

Different groupings of sum bits into the pipelined carry
lookahead signals can be substituted, and the pipelined
carry-lookahead logic can be combined or rippled together
betfore or after the flip-flops. More than two pipelined carry
lookahead signals could be generated and latched. Reset
logic can be added to the incrementer, such as by making all
tlip-flops settable or resetable, either asynchronously or
synchronously. The incrementer could be reset to a value
other than zero, such as to a non-zero starting address or
pomnter. Other logic can be added or inserted for other
functions, such as to vary the increment amount or direction
of counting. The clock could be a free-running clock, or 1t
could be paused or gated so that the incrementer stops
counting for periods of time.

The abstract of the disclosure 1s provided to comply with
the rules requiring an abstract, which will allow a searcher
to quickly ascertain the subject matter of the technical
disclosure of any patent 1ssued from this disclosure. It 1s
submitted with the understanding that it will not be used to
interpret or limit the scope or meaning of the claims. 37
C.F.R. §1.72(b). Any advantages and benefits described may
not apply to all embodiments of the invention. When the
word “means” 1s recited 1n a claam element, Applicant
intends for the claim element to fall under 35 USC §112,
paragraph 6. Often a label of one or more words precedes the
word “means” The word or words preceding the word
“means” 1s a label itended to ease referencing of claims
clements and 1s not mntended to convey a structural limita-
tion. Such means-plus-function claims are imtended to cover
not only the structures described herein performing the
function and their structural equivalents, but also equivalent
structures. For example, although a nail and a screw have
different structures, they are equivalent structures since they
both perform the function of fastening. Claims that do not
use the word means are not intended to fall under 35 USC

US RE39,578 E

7

§112, paragraph 6. Signals are typically electronic signals,
but may be optical signals such as can be carried over a fiber
optic line.

The foregoing description of the embodiments of the
invention has been presented for the purposes of illustration
and description. It 1s not intended to be exhaustive or to limat
the mnvention to the precise form disclosed. Many modifi-
cations and variations are possible 1 light of the above
teaching. It 1s intended that the scope of the invention be
limited not by this detailed description, but rather by the
claims appended hereto.

What 1s claimed 1s:

1. A pipelined incrementer, comprising:

count registers for storing a current count of the pipelined
incrementer, the count registers receiving sum bits that
are stored as the current count in response to a clock
input;

pre-carry registers, receiving pre-carry signals that are
stored as pipelined carry lookahead signals 1n response
to the clock input;

pre-carry logic, receiving at least some of the sum bits, for
generating the pre-carry signals as a function of a next
count indicated by the sum bits, the next count being
aiter the current count 1n a pre-determined sequence;
and

sum logic, receiving the current count from the count
registers, and receiving the pipelined carry lookahead
signals from the pre-carry registers, for generating the
sum bits that indicate the next count,

whereby carry signals are generated from the sum bits that

indicate the next count, stored in the pre-carry register,

and used by the sum logic 1n a following clock cycle.

2. The pipelined incrementer of claim 1 wherein the sum

logic further comprises for at least some bit-positions of the
current count:

toggle logic, receiving a count bit for a giver bit-position
of the current count from one of the current count
registers, and receiving a local carry-in signal for the
given bit-position, the toggle logic toggling the count
bit to generate the sum bit for the bit-position in
response to the local carry-in signal for the given
bit-position; and

all-ones detect logic, receiving count bits for lesser bit-
positions from some of the current count registers,
[and] wherein for some of the bit-positions of the
current count [receiving], the all-ones detect logic
receives one orv more of the pipelined carry lookahead
signals instead of [some of] count bits for lesser-
significant bit-positions of the current count, anrd
wherein the all-ones detect logic is configured lor
activating the local carry-in signal for the given bit
position when all lesser-significant bit-positions tzar
the given bit position are logical one,

whereby a count bit for a bit-position 1s toggled when all
lesser-significant bit-positions of the current count are
logical one as indicated by the count bits or the pipe-
lined carry lookahead signals.

3. The pipelined incrementer of claim 2 wheremn the
toggle logic 1s replicated for all bit-positions of the current
count above a least-significant bit-position;

wherein the all-ones detect logic 1s replicated for bit-
positions of the current count above two least-
significant bit-positions,

whereby toggle and all-ones detect logic 1s replicated for
several bit-positions.

10

15

20

25

30

35

40

45

50

55

60

65

8

4. The pipelined incrementer of claam 2 wherein the
all-ones detect logic 1s not replicated for an upper bait-
position of the current count that corresponds to a first
pipelined carry lookahead signal that 1s generated from all
bit-positions below the upper bit-position.

5. The pipelined incrementer of claim 2 wherein the
toggle logic for a bit-position comprises an exclusive-OR
(XOR) gate or an exclusive-NOR (XNOR) gate.

6. The pipelined incrementer of claim 2 wheremn the
all-ones detect logic for a bit-position comprises an AND
gate or a NAND gate that receives a group of mputs selected
from the count bits and the pipelined carry lookahead
signals.

7. The pipelined incrementer of claim 6 wherein the
pre-carry logic comprises a first AND or NAND gate that
receives as mputs a first group of lowest-significance bit-
positions of the sum bits, and a second AND or NAND gate
that recerves as inputs a second group of next-lowest-
significance bit-positions of the sum bits that are 1n more
significant bit-positions than the first group.

8. The pipelined incrementer of claim 7 wherein the sum
bits comprise at least 7 bits and the count bits comprise at
least 7 bits and the pipelined carry lookahead signals com-
prise at least 2 signals,

whereby the pipelined incrementer 1s at least a 7-bit
counter.

9. The pipelined incrementer of claim 8 wherein the next

count follows the current count 1n a binary-number

sequence.
10. The pipelined incrementer of claim 2 further com-

prising:
reset logic, coupled to the count registers and to the
pre-carry registers, for resetting the current count to an
initial value 1n response to a reset signal.

11. The pipelined incrementer of claim 10 wherein the
reset logic comprises NOR gates between the sum bits and
inputs to the count registers, the NOR gates receiving the
reset signal,

whereby reset 1s synchronous to the clock mput.
12. A sequencer comprising:

sequence register means, responsive to a clock, for storing
sum bits input to the sequence register means as current
state bits 1n response to the clock;

first carry register means, responsive to the clock, for
storing a first pre-carry signal that 1s mput to the first
carry register means, and for outputting a first pipelined
carry signal;

first pre-carry logic means, receiving a first group of the
sum bits, for generating the first pre-carry signal;

second carry register means, responsive to the clock, for
storing a second pre-carry signal that 1s input to the
second carry register means, and for outputting a sec-
ond pipelined carry signal;

second pre-carry logic means, receiving a second group of
the sum bats, for generating the second pre-carry signal;
and

combinatorial logic means, receiving the current state bits
from the sequence register means and receiving the first
and second pipelined carry signals, for generating the
sum bits,

whereby pre-carry signals are generated from the sum bits
and stored for use 1n a next cycle of the clock.
13. The sequencer of claim 12 wherein the combinatorial
logic means further comprises:

toggle means for each sum bit, each toggle means receiv-
ing a current state bit and generating a sum bit for a

US RE39,578 E

9

different bit-position, the toggle means for inverting a
logical state of the current state bit to generate the sum
bit.

14. The sequencer of claim 13 wherein the toggle means
for a least-significant-bit (LSB) of the sum bits 1s an inverter
that inverts the current state bit to generate the sum bit for
a LSB bit-position;

wherein the toggle means for bit-positions above the LSB

bit-position each comprise an exclusive-OR (XOR)
gate that has a second control input, the second control
input being activated to cause the toggle means to
invert the current state bit, but being de-activated to
cause the toggle means to not invert the current state
bit.

15. The sequencer of claim 14 wherein the sum bits and
the current state bits include a first group, a second group,
and a third group of bit-positions;

wherein the combinatorial logic means further comprises
a first logic grouping that generates sum bits in the first
group, a second logic grouping that generates sum baits

in the second group, and a third logic grouping that
generates sum bits in the third group;

wherein the first logic grouping of the combinatorial logic
means does not receive the first and second pipelined
carry signals but only receives current state bits from
the first group;

wherein the second logic grouping of the combinatorial
logic means does not receive the second pipelined carry
signal but only receives current state bits from the
second group and receives the first pipelined carry
signal;

wherein the third logic grouping of the combinatorial

logic means receives the first and second pipelined
carry signals and receives current state bits from only
the third group.

16. The sequencer of claim 15 wherein a lowest bait-
position in the second logic grouping has a toggle means that
receives the current state bit for the bit-position and receives
the first pipelined carry signal as the second control 1nput;

wherein other bit-positions in the second logic grouping
have a toggle means with a second control mnput driven
by a detect means for detecting when all lower bit-
positions are 1n a pre-determined state that toggles the
sum bit 1n the bit-position.

17. The sequencer of claim 15 wherein each bit-position

in the third logic grouping comprises:

toggle means, receiving the current state bit for the
bit-position, for toggling the current state bit to gener-
ate the sum bit in response to a second control input that
1s driven by a control signal for the bit-position; and

detect means, driving the control signal to the toggle
means, for detecting when all when all lower bit-
positions are in a pre-determined state that toggles the
sum bit 1n the bit-position;
wherein a lowest bit-position 1n the third logic grouping
has a detect means that receives the first and second
pipelined carry signals;
wherein other bit-positions 1n the third logic grouping
have a detect means that receives the first and second
pipelined carry signals and at least one of the current
state bits 1n the third group.
18. The sequencer of claim 17 wherein the toggle means
comprises an exclusive-OR (XOR) gate and wherein the
detect means comprises an AND gate.

10

15

20

25

30

35

40

45

50

55

60

65

10

19. A pipelined-carry incrementer comprising;

a first state register receiving a first sum bit and outputting
a first state bit synchronized to a clock;

a second state register receiving a second sum bit and
outputting a second state bit synchronized to the clock;

a third state register receiving a third sum bit and output-
ting a third state bit synchronized to the clock;

a fourth state register receiving a fourth sum bit and
outputting a fourth state bit synchronized to the clock;

a fifth state register recerving a fifth sum bit and output-
ting a fifth state bit synchronized to the clock;

a sixth state register receiving a sixth sum bit and out-
putting a sixth state bit synchronized to the clock;

a seventh state register receiving a seventh sum bit and
outputting a seventh state bit synchronized to the clock;

a first carry register receirving a first pre-carry and out-
putting a first pipelined carry synchronized to the clock;

a second carry register receiving a second pre-carry and
outputting a second pipelined carry synchronized to the
clock:

a 1irst pre-carry gate, recerving the first, second, and third
sum bits and outputting the first pre-carry;

a second pre-carry gate, receiving the fourth and fifth sum
bits and outputting the second pre-carry;

second toggle logic that toggles the second state bit to
generate the second sum bit when the first state bit 1s
high;

third toggle logic that toggles the third state bit to generate
the third sum bit when the first state bit and the second
state bit are both high;

fourth toggle logic that toggles the fourth state bit to
generate the fourth sum bit when the first pipelined
carry 1s high;

fifth toggle logic that toggles the fifth state bit to generate

the fifth sum bit when the first pipelined carry and the
fourth state bit are both high;

sixth toggle logic that toggles the sixth state bit to
generate the sixth sum bit when the first pipelined carry
and the second pipelined carry are both high;

seventh toggle logic that toggles the seventh state bit to
generate the seventh sum bit when the first pipelined
carry and the second pipelined carry and the sixth state
bit are all high.

20. The pipelined-carry incrementer of claim 19 wherein
the third, fifth, sixth, and seventh toggle logic comprise an
AND gate that drives an input to an exclusive-OR (XOR)
gate;

wherein the second and fourth toggle logic comprise an

XOR gate.

21. A pipelined sequencer, comprising.

sequence state storage logic configured to store sequence
state bits as a currvent sequence state of the pipelined
sequencer in vesponse to a clock input;

carry lookahead storage logic configured to stove one or
movre pre-carry signals as pipelined carry lookahead
signals in vesponse to the clock input;

pre-carry logic configured to receive at least some of the
sequence state bits and to genervate the one or more
pre-carry signals as a function of a next sequence state
indicated by the sequence state bits; and

sequence state generation logic configured to generate
the sequence state bits indicative of the next sequence
state dependent upon the current sequence state and the
pipelined carry lookahead signals.

US RE39,578 E

11

22. The pipelined sequencer of claim 21, wherein to
generate the sequence state bits indicative of the next
sequence state, the sequence state genervation logic is further
configured to increment the current sequence state by an
arithmetic value of 1.

23. The pipelined sequencer of claim 21, wherein to
generate the sequence state bits indicative of the next
sequence state, the sequence state genervation logic is further
configured to increment the current sequence state by an
arithmetic value other than 1.

24. The pipelined sequencer of claim 21, wherein to
generate the sequence state bits indicative of the next
sequence state, the sequence state genervation logic is further
configured to decrement the current sequence state by an
arithmetic value of 1.

25. The pipelined sequencer of claim 21, wherein to
generate the sequence state bits indicative of the next
sequence state, the sequence state genervation logic is further
configured to decvement the current sequence state by an
arithmetic value other than 1.

26. The pipelined sequencer of claim 21, wherein the
currvent sequence state and the next sequence state are
encoded as binary numbers.

27. The pipelined sequencer of claim 26, wherein the next
sequence state follows the current sequence state in a
binary-number sequence.

28. The pipelined sequencer of claim 21, wherein the
current sequence state and the next sequence state are
encoded as values in a Gray code.

29. The pipelined sequencer of claim 21, further compris-
ing reset logic configured to reset the sequence state storage
logic and the carry lookahead stovage logic to a reset value
in response to a reset signal.

30. The pipelined sequencer of claim 21, wherein the
sequence state generation logic includes all-ones detection
logic configured to determine whether all less-significant bit
positions than a given bit position of the current sequence
state have a value of logical one.

31. The pipelined sequencer of claim 30, wherein for
certain less-significant bit positions than the given bit
position, the all-ones detection logic is configured to receive
one orv more pipelined carry lookahead signals covrespond-
ing to certain bit positions of the current sequence state

instead of the values of the corresponding bits positions of

the current sequence state.
32. A method, comprising:

10

15

20

25

30

35

40

12

36. The method of claim 32, wherein generating sequence
state bits indicative of the next sequence state includes
decrementing the current sequence state by an arithmetic
value other than 1.

37. The method of claim 32, wherein the curvent sequence
state and the next sequence state ave encoded as binary
numbers.

38. The method of claim 37, wherein the next sequence
state follows the current sequence state in a binary-number
sequence.

39. The method of claim 32, wherein the curvent sequence
state and the next sequence state are encoded as values in
a Gray code.

40. The method of claim 32, further comprising rvesetting
the sequence state storvage logic and the carry lookahead
storage logic to a reset value in vesponse to a reset signal.

41. The method of claim 32, wherein generating the
sequence state bits indicative of the next sequence state
includes determining whether all less-significant bit posi-
tions than a given bit position of the current sequence state
have a value of logical one.

42. The method of claim 41, wherein for certain less-
significant bit positions than the given bit position, deter-
mining whether the certain less-significant bit positions
have a value of logic one is dependent upon one or more
pipelined carry lookahead signals corresponding to certain
bit positions of the current sequence state instead of the
values of the corresponding bits positions of the curvent
sequence sitate.

43. A pipelined incrementer, comprising:
incrementer count storage logic configured to stove incre-

menter count bits as a curvent incvementer count of the
pipelined incrementer in vesponse to a clock input;

carry lookahead stovage logic configured to store one or

movre pre-carry signals as pipelined carry lookahead
signals in vesponse to the clock input;

pre-carry logic configured to receive at least some of the
incrementer count bits and to generate the one ov more
pre-carry signals as a function of a next incrementer
count indicated by the incrementer count bits; and

incrementer count generation logic configured to gener-
ate the incrementer count bits indicative of the next
incrementer count dependent upon the current incre-
menter count and the pipelined carry lookahead sig-
nals.

44. The pipelined incrementer of claim 43, wherein to
generate the incrementer count bits indicative of the next

storing sequence state bits as a current sequence state of 45 incrementer count, the incrementer count generation logic is

a pipelined sequencer in vesponse to a clock input;

storing one or movre pre-carrvy signals as pipelined carry
lookahead signals in response to the clock input;

from at least some of the sequence state bits, generating
the one or move pre-carry signals as a function of a
next sequence state indicated by the sequence state
bits: and

generating the sequence state bits indicative of the next
sequence state dependent upon the current sequence
state and the pipelined carry lookahead signals.

33. The method of claim 32, wherein generating sequence
state bits indicative of the next sequence state includes
incrementing the current sequence state by an arithmetic
value of 1.

34. The method of claim 32, wherein generating sequence
state bits indicative of the next sequence state includes
incrementing the curvent sequence state by an avithmetic
value other than 1.

35. The method of claim 32, wherein generating sequence
state bits indicative of the next sequence state includes
decrementing the currvent sequence state by an arithmetic

value of 1.

50

55

60

65

further comfigured to increment the curvent incrementer
count by an arithmetic value of 1.

45. The pipelined incrementer of claim 43, wherein to
generate the increment count bits indicative of the next
incrementer count, the incvementer count genevation logic is
further comnfigured to increment the curvent incrementer
count by an arithmetic value other than 1.

46. The pipelined incrvementer of claim 43, wherein to
generate the incrementer count bits indicative of the next
incrementer count, the incvementer count genevation logic is
further configurved to decrvement the current incrementer
count by an arithmetic value of 1.

47. The pipelined incrementer of claim 43, wherein to
generate the incrementer count bits indicative of the next
incrementer count, the incvementer count genevation logic is
further comfigcured to decrvement the current incrementer
count by an arithmetic value other than 1.

48. The pipelined incrementer of claim 43, wherein the
current incrementer count and the next incrementer count
are encoded as binary numbers.

49. The pipelined incrementer of claim 48, wherein the
next incrementer count follows the curvent incrementer
count in a binary-number sequence.

US RE39,578 E

13

50. The pipelined incrementer of claim 43, further com-
prising reset logic configured to veset the incrementer count
storage logic and the carry lookahead storage logic to a
reset value in rvesponse to a reset signal.

51. The pipelined incrementer of claim 43, wherein the
incrementer count generation logic includes all-ones detec-
tion logic configured to determine whether all less-
significant bit positions than a given bit position of the
curvent incrementer count have a value of logical one.

52. The pipelined incrementer of claim 51, wherein for
certain less-significant bit positions than the given bit
position, the all-ones detection logic is configured to receive
one or more pipelined carry lookahead signals covrespond-
ing to certain bit positions of the current incrementer count

instead of the values of the corresponding bits positions of

the current incrementer count.
53. A arithmetic logic unit including a pipelined
sequencer, wherein the pipelined sequencer comprises:

sequence state storage logic configured to store sequence
state bits as a current sequence state of the pipelined
sequencer in vesponse to a clock input;

carry lookahead storage logic configured to stove one or
more pre-carry signals as pipelined carry lookahead
signals in vesponse to the clock input;

pre-carry logic configured to rveceive at least some of the
sequence state bits and to genervate the one ov more

pre-carry signals as a function of a next sequence state
indicated by the sequence state bits; and

sequence state generation logic configured to generate
the sequence state bits indicative of the next sequence
state dependent upon the currvent sequence state and the
pipelined carry lookahead signals.

54. The arithmetic logic unit of claim 33, wherein to
generate the sequence state bits indicative of the next
sequence state, the sequence state genervation logic is further
configured to increment the current sequence state by an
arithmetic value of 1.

55. The arithmetic logic unit of claim 33, wherein to
generate the sequence state bits indicative of the next
sequence state, the sequence state genervation logic is further
configured to increment the current sequence state by an
arithmetic value other than 1.

56. The arithmetic logic unit of claim 33, wherein to
generate the sequence state bits indicative of the next
sequence state, the sequence state genervation logic is further
configured to decrement the current sequence state by an
arithmetic value of 1.

57. The arithmetic logic unit of claim 33, wherein to
generate the sequence state bits indicative of the next
sequence state, the sequence state genervation logic is further
configured to decvement the current sequence state by an
arithmetic value other than 1.

58. The arithmetic logic unit of claim 53, wherein the
currvent sequence state and the next sequence state are
encoded as binary numbers.

59. The arithmetic logic unit of claim 58, wherein the next
sequence state follows the current sequence state in a
binary-number sequence.

60. The arithmetic logic unit of claim 53, wherein the
current sequence state and the next sequence state are
encoded as values in a Gray code.

61. The arithmetic logic unit of claim 53, further com-
prising rveset logic configured to reset the sequence state
storage logic and the carry lookahead storage logic to a
reset value in vesponse to a reset signal.

62. The arithmetic logic unit of claim 53, wherein the
sequence state generation logic includes all-ones detection
logic configured to determine whether all less-significant bit
positions than a given bit position of the current sequence
state have a value of logical one.

10

15

20

25

30

35

40

45

50

55

60

65

14

63. The arithmetic logic unit of claim 62, wherein for
certain less-significant bit positions than the given bit
position, the all-ones detection logic is configured to receive
one orv more pipelined carry lookahead signals covrespond-
ing to certain bit positions of the current sequence state
instead of the values of the corresponding bits positions of
the curvent sequence state.

64. A computer system including a pipelined sequencer,
wherein the pipelined sequencer comprises.

sequence state storvage logic configured to stove sequence

state bits as a curvent sequence state of the pipelined

sequencer in vesponse to a clock input;

carry lookahead storage logic configured to stove one or
movre pre-carry signals as pipelined carry lookahead
signals in vesponse to the clock input;

pre-carry logic configured to receive at least some of the
sequence state bits and to genervate the one or more
pre-carry signals as a function of a next sequence state
indicated by the sequence state bits; and

sequence state generation logic configured to generate
the sequence state bits indicative of the next sequence
state dependent upon the current sequence state and the
pipelined carry lookahead signals.

65. The computer system of claim 64, wherein to generate
the sequence state bits indicative of the next sequence state,
the sequence state generation logic is further configured to
increment the curvent sequence state by an arithmetic value
of 1.

66. The computer system of claim 64, wherein to generate
the sequence state bits indicative of the next sequence state,
the sequence state generation logic is further configured to
increment the curvent sequence state by an arithmetic value
other than 1.

67. The computer system of claim 64, wherein to generate
the sequence state bits indicative of the next sequence state,
the sequence state generation logic is further configured to
decrement the current sequence state by an arithmetic value
of 1.

68. The computer system of claim 64, wherein to generate
the sequence state bits indicative of the next sequence state,
the sequence state generation logic is further configured to
decrement the current sequence state by an arithmetic value
other than 1.

69. The computer system of claim 64, wherein the current
sequence state and the next sequence state are encoded as
binary numbers.

70. The computer system of claim 69, wherein the next
sequence state follows the current sequence state in a
binary-number sequence.

71. The computer system of claim 64, wherein the current
sequence state and the next sequence state are encoded as
values in a Gray code.

72. The computer system of claim 64, further comprising
reset logic configured to reset the sequence state storage
logic and the carry lookahead storvage logic to a veset value
in rvesponse to a reset signal.

73. The computer system of claim 64, wherein the
sequence state genervation logic includes all-ones detection
logic configured to determine whether all less-significant bit
positions than a given bit position of the current sequence
state have a value of logical one.

74. The computer system of claim 73, wherein for certain
less-significant bit positions than the given bit position, the
all-ones detection logic is configured to receive one or more
pipelined carry lookahead signals corrvesponding to certain
bit positions of the current sequence state instead of the
values of the corresponding bits positions of the curvent
sequence siate.

	Front Page
	Drawings
	Specification
	Claims

