(19) United States

12) Reissued Patent
Minami et al.

(10) Patent Number:
45) Date of Reissued Patent:

USOORE39501E

US RE39,501 E
Mar. 6, 2007

(54) MULTIPLE NETWORK PROTOCOL
ENCODER/DECODER AND DATA
PROCESSOR

(75) Inventors: John Shigeto Minami, Honolulu, HI
(US); Ryo Koyama, Palo Alto, CA
(US); Michael Ward Johnson,
Livermore, CA (US); Masaru
Shinohara, Fremont, CA (US); Thomas
C. Poff, Santa Clara, CA (US); Daniel
F. Burkes, San Francisco, CA (US)

(73) Assignee: NVIDIA Corporation, Santa Clara, CA
(US)

(21)  Appl. No.: 10/093,340

(22) Filed: Mar. 6, 2002
Related U.S. Patent Documents

Reissue of:
(64) Patent No.: 6,034,963

Issued: Mar. 7, 2000

Appl. No.: 08/742.,085

Filed: Oct. 31, 1996
(51) Int. CI.

GOoF 13/00 (2006.01)

GOoF 15/16 (2006.01)
(52) US.CL ..., 370/401; 370/466; 709/230;

710/105

(58) Field of Classification Search ................. 3°70/389,

370/395.1, 392, 401, 420, 463, 466, 467,
3770/469; 709/223, 224, 230, 232, 237, 710/105;
711/117, 118

See application file for complete search history.

(56) References Cited
U.S. PATENT DOCUMENTS

5,012,489 A * 4/1991 Burton et al. .................. 375/8
5,161,193 A * 11/1992 Lampson et al. ............. 380/49
(Continued)
3

o1

Neiwork

Protocal
Loyar

» PPP

« TCP

* P

+ Row Socket

+ UDP

Network
Pocket

External
Device —
Input

Memory Control

Pocket

OTHER PUBLICATTIONS

G. Chesson, et al.; XTP—Protocol Engine VLSI for Real-
Time LANs;, 1988; EFOC/LAN-88: The Sixth European
Fibre Optic Communications and Local Area Networks
Exposition.

Greg Chesson; The Protocol Engine;, Sep. 1987; UNIX
Review.

(Continued)

Primary Examiner—Alpus H. Hsu
(74) Attorney, Agent, or Firm—Silicon Valley IP Group,

PC; Kevin J. Zilka
(37) ABSTRACT

A multiple network protocol encoder/decoder comprising a
network protocol layer, data handler, O.S. State machine,
and memory manager state machines implemented at a
hardware gate level. Network packets are recerved from a
physical transport level mechamism by the network protocol
layer state machine which decodes network protocols such
as TCP, IP, User Datagram Protocol (UDP), PPP, and Raw
Socket concurrently as each byte 1s received. Each protocol
handler parses and strips header information immediately
from the packet, requiring no intermediate memory. The
resulting data are passed to the data handler which consists
of data state machines that decode data formats such as
email, graphics, Hypertext Transfer Protocol (HTTP), Java,
and Hypertext Markup Language (HI'ML). Each data state
machine reacts accordingly to the pertinent data, and any
data that are required by more than one data state machine
1s provided to each state machine concurrently, and any data
required more than once by a specific data state machine, are
placed 1n a specific memory location with a pointer desig-
nating such data (thereby ensuring minimal memory usage).
Resulting display data are immediately passed to a display
controller. Any outgoing network packets are created by the
data state machines and passed through the network protocol
state machine which adds header information and forwards
the resulting network packet via a transport level mecha-
nism.

44 Claims, 14 Drawing Sheets

Display
Doto

Doto Handler

s+ SMTP
+ POP3

Data »+ JMAP4

« JPEG
e GIF

+ JAVA
s HTTP
¢ MTML

User
Input

D.5. State Machine

Device Control



US RE39,501 E

Page 2

U.S. PATENT DOCUMENTS OTHER PUBLICATTONS
5,303,344 A 4/1994 Yokoyama et al. ......... 395/200 Greg Chesson; Protocol Engine Design; Proceedings of the
5307413 A * 4/1994 Denzer .....cccoevvvvuvnnn.n. 380/49 Summer 1987 USENIX Conference.
5,426,694 A * 6/1995 Hebert .....ccevvevvennnnnn... 379/242 (Girish P Chandranmenon and George Varhese; Trgdf}gg
5,430,727 A * T7/1995 Callon ..................... 370/85.13 Packet Headergfoy Packgt P}ﬂocessfng; IEEE/ACM Trans_
5,440,551 A o 8/1995 SUZUk_l ........................ 370/60 actions On Networking; VO]. 4; Apr' 1996‘
5,495,480 A ) 2/1996 Yoshida .....coovevevvnen.n... 370/389 KJ ersti Moldeklevj Espen Klovning, and Oivind Kure: The
5,499,353 A 3/1996 Ka(.ilec e_t al. ..ol 395/445 Eﬁ"ecr OfE}"Zd Sysfem Har’dware and Sofmare on TCP/]P
5,519,704 A * 5/1996 Farinacci et al. ........ 370/85.13

Throughout Performance Over a Local ATM Network.

5,546,453 A * 8/1996 Hebert ....coovvvvveen.... 179/242 qqe e .

| William S. Marcus, Ilija Hadzic, Anthony J. McAully, and
5,566,170 A 10/1996 Bakke ...covvvevnvvvinannnn... 370/392 . _

- . Jonathan M. Smith; Protocol Boosters: Applyving Program-
5,577,105 A 11/1996 Baum et al. .................. 379/93 o A on
5577172 A 11/1996 Vatland .........oovvon.. 358/1.15  mability to Network Infrastructures; IEEE Communications
5577237 A 11/1996 Lin eveveeeeereeroerieeennn, 713/500 ~ Magazine; Oct. 1998.

5,598,410 A 1/1997 SON€ wevvveereereereerennnn, 370/469  Deborah F. Kornblum; Protocol Implementation and Other
5,619,650 A 4/1997 Bach .oooovvveeeeerveeeeennn.s 709/246 Performance Issues for Local and Metropolitan Area Net-
5,625,678 A * 4/1997 Blomfield-Brown ......... 379/93 works; IEEE; 1988.

5,625,825 A 4/1997 ROStOKEr .evoverveveeenen. 710/242  David C. Feldmeiser, Anthony McAuley, Jonathan M.
5,634,015 A 5/1997 Chang .......cccoevvvvnenen.n. 710/310 Smith, Deborah S. Bakin, William S. Marcus, and Thomas
5,636,371 A * 6/1997 Yu RRRSRRITI IS 395/500 M. E{alelgh:j Protocol Doosters, 1IEEE Journal on Selected
5,640,394 A * 6/1997 Schrier et al. .............. 370/389 Areas 1n Communicati(jﬂs! vol. 163 No. 3, Apr 1908,
5,663,951 A ) 9/1997 Danneels ....c..coeen....n. 370/230 P. Camarda, F. Pipio, and G. Piscitelli; Performance Evalu-
5,666,362 A ) 9/1997 Chen et al. ................. 370/420 ation Of TCP/]P P?”OTOCOZ ]mplemematmns in Eﬂd SySTEI?’ES
5,675,507 A 10/1997 ]3'0]:)0,| | | 364/514 R IEE PI,,OC _Computlng Dlglt T@Ch VO] 146 NO 1 Jall
5,687,314 A 11/1997 OSmMan .....ooeeveveveneevennns 714/49 1999

5,696.899 A 12/1997 Kalwitz ....oovvvevnnvnen.n... 709/228

e wVI Peter Druschel, Mark B. Abbott, Michael a. Pagels, and
5,699,350 A 12/1997 Kraslavsky ................. 370/254
5701316 A 12/1997 AIferness ........ocoovvvn... 714/807  Larty L. Peterson; Network Subsystem Design; IEEE Net-
5727149 A 3/1998 Hirata ..o.ooooovvovvonn. 700250  Work; Jul. 1993.

5,734,865 A % 3/1998 YU oveevreeereereerrerrennnn, 395/500 Mohammad Mansour and Ayman Kayssi; FPGA-Based
5,748,905 A * 5/1998 Hauser et al. ......... 395/200.79  Inernet Protocol Version 6 Router, 1998 1EEL.

5754540 A * 5/1998 Liuetal. .....ccooeeernnn.... 370/315 Piyush Shivam; Pete Wyckofl; Dhableswar Panda; EMP:
5,761,281 A * 6/1998 Baum et al. ............. 379/93.29 Zevo—Coopy OS—Bypass NIC-Driven Gigabit Ethernet Mes-
5,790,546 A * §/1998 Dobbins et al. ............ 370/400 sage Passfng; SC 2001; Nov. 2001.

5,790,676 A * 8/1998 Ganesan et al. ............. 380/23 Fed Eady; Embedded Internet Part 2: TCP/IP and a 16-Bit
5,802,278 A : 9/1998 Isteld et al. ........... 395/200.02 Compiler, Embedded PC; Jun. 1999.

gﬂgggﬂggg i ) g;}ggg Eostoker etal. ... 332?2%8052 F. Mora, and A. Sebastia; Electronic Design of a High

SO URE o, | Performance Interface to z‘hje SCI Network, IEEE 1998.
5,805,816 A 0/1998 PICAZO .oevvvieeeiineninnnnn, 709/223
5.809.235 A * 9/1998 Sharma et al. ........... 395/200.6  Chan Kim, Jong—Arm Jun, Kyou-Ho Lee, Hyup—Jong Kim:
5815516 A 0/1998 AAKEr wooovveeeeeeereeeann) 714/807  Design and Implementation of an AIM Segmentation
5818935 A * 10/1998 Maa wevveeeeeereereeeeeerennnnn. 380/20 Engine with PCI Interface; IEEE 1998.

5,826,032 A 10/1998 Finn .....ccooevvvnervennnnnnn. 709/236 Chan Kim, Jong—Arm Jun, Yeong—Ho Park, Kyu—Ho Lee,
5,870,549 A * 2/1999 Bobo, II ................ 395/200.36 Hyup__]ong Klm,, Degfg}g and ]mplgmgnfaffo}g Of(l Hggk_
gaggiaig i ) i//{ iggg gacliielangj ---------------- 3957/2% 22(8) Speed ATM Host Interface Controller.

: : ade ¢t al. ............ . 0 _ )
5009546 A 6/1999 OSHOME .evveveovsroe. 00012 > Vara(:'a.’ i%;nf’ j‘nd D. Bvans; Data and Bufjer Mar
5,920,732 A 7/1999 Riddle ...oovvveereereinnnnn 710/56 agement in YSLents. |
5035268 A 8/1999 Weaver ... 714/758 ~ Kenneth G. Yocum; Jeflery S. Chase, Andrew J. Gallatin,
5,937,169 A 8/1999 CONNETY +eevevverveeeenen.. 709/250  and Alvin R. Lebeck; Cut—Through Delivery in Trapeze: An
5,941,988 A 8/1999 Bhagwat .........coveuuenee.. 713/201 Lixercise in Low—Latency Messaging, 1997 IEELE.

5,943,481 A 8/1999 Wakeland ................... 709/230 George Orphano, Alexios Birbas, Nikos Petrellis, Ionnis
5,974,518 A 10/1999 NOgl'Eldl ...................... 711/173 MOUtZOUfiSi Andreas Malatarasj Angus GO]dﬁﬂChj John
gﬂg?zﬂggg i l%//{éggg ﬁtcilg """""""""""""" ;83@33 Brosnan, and Uros Janko; Compensating for Moderate

. . L ) N . . 10G : :
6,061,742 A 5/2000 Stewart ..................... 709/250 ﬁﬁn ective 1. Ig‘)ug%géat the Desktop; IEEE communications
6,076,115 A 6/2000 Sambamurthy ............. 709/250 dgdzIle, ApL. 2UVU. |
6,081,846 A 6/2000 Hyder .......o..coooovv.... 709250  John Legg: Choosing and Implementing an Embedded 1CP/
6,092,110 A 7/2000 MAria wovveeereerveerennne., 709/225 1P Stack; Electronic Product Design Jan. 1999.

6,092,229 A 7/2000 Boyle .....covvvveeeerennnnen, 714/748 Richard Ames; Building an Embedded Web Server from
6,098,188 A 8/2000 Kalmanek ................... 714/746 Scratck; Circuit Cellar INK; Issue 91; Feb. 1998.
6,101,543 A 8/2000 Alden ....oovvevvvvveenn..... 709/229 Ronald P. Luijten; An OC—12 ATM Switch Adapter’ Ckxpset;
6,;51,625 A 11/2000 Swales ..covvevvrivnninnnnnn. 709/218 1998 TEEE.

6,__557,955 A_ 12/2000 Narad ....covvevnnivinannnn... 709/228 W.K. Giloi and P. Behr: AN IPC Protocol and its Hardware
6,172,980 Bl 1/2001 Flanders .....covvvennn...... 370/401 Roali ITioh S J Distributed Mul

6,172,090 Bl 1/2001 Deb ..cooeeveverereean.. 370/474 calization for a High-Speed Distributed Multicomputer
6,173,333 Bl 1/2001 JOMHZ woovvveveereereerrenrnns 709/240  oystem; 1981 IEEE.

6,182,228 Bl 1/2001 Boden ........cvvevenen... 713/201 Pankaj Gupta and Nick McKeown; A/gorithms for Packet
6,230,193 B1 * 5/2001 Arunkumar et al. ........ 709/218 Clasxﬁcatmn IEEE Network: Mar/Apr 2001.




US RE39,501 E
Page 3

Peter a. Steenkiste; 4 Systematic Approach to Host Interface
Design for High—Speed Networks; IEEE Mar. 1994,

Larry D. Wittie and Fanyuan Ma; A TCP/IP Communication
Subsystem in Micros; 1987 1EEE.
Lucas Womack, Ronald Mraz, and Abraham Mendelson; A4
study of Virtual Memory MTU Reassembly Within the Pow-
erPC Architecture; 1997 IEEE.

Gr.A. Doumenis, G.E. Konstantoulakis, D.I. Reisis, G.I.
Stassinopoulos; A Personal Computer Hosted Ierminal
Adapter for the Braodband Integrated Services Digital
Network and Applications.

Michael J.K. Nielsen; TURBOchannel, 1991 IEEE.
Hemant Kanakia, and David R. Cheriton; The VMP Netwrok
Adapter Board (NAB) High—Performance Network Commui-
nication for Multiprocessors, 1988 ACM.

Zubin D. Dittia, Guru M. Parulkar, and Jerome R. Cox, Jr.;
The APIC Approach to High Performance Network [ nterface
Design: Protected DMA and Other lechniques; 1997 IEEE.
Erich Rutsche; The Architecture of aGb/s Multimedia Pro-
tocol Adapter, Computer ACM SIGCOMM Communication
Review.

Kan Toyoshima, Kazuhiro Shirakawa, and Kazuhiro
Havashi; Programmable ATM Adapter: Rapid Prototyping
of Cell Processing Equipment fpr ATM Network, 1997 IEEE.
Matthias A. Blumrich, Cezary Dubnicki, Edward W. Felten,
and Kai1 Li; Protected User—Level DMA for the SHRIMP
Network ]merﬁzce; 1996 IEEE.

T. V. Lakshman, and U. Madhow; Performance Analysis of

Window—Based Flow Control Using TCP/IP: Effect of High
Bandwidth—Delay Products and Random Loss; High Perfor-
mance Networking, 1994 IFIP.

K. K. Ramakrishnan; Performance Considerations in
Desxgmng Network Interfaces; IEEE Journal on Selected
Areas in Communications, vol. 11, No. 2; Feb. 1993.
Jau—Hsiung Huang, and Chi—Wen Chen; On Performance
Measurements of TCP/IP and its Device Driver 1992 IEEE.
Martin Siegel, Mark Williams, and George Robler; Over-
coming Bottlenecks in High—Speed Transport Systems; 1991
IEEE.
Gerald w. Neufeld, Mabo Robert Ito, Murray Goldberg,
Mark J. McCutcheon, and Stuart Ritchie; Parallel Host
Interface for an ATM Network; Host systems will not be able
to take advantage of very—high—speed networks without

parallel protocol systems; IEEE Network; Jul. 1993.
K. Maly, S. Khanna, R. Mukkamala, C.M. Overstreet, R.

Yerraballi, E.C. Foudniat, and B. Madan; Parallel TCP/IP
for Multiprocessor Workstations; Oct. 29, 1992.

C. Brendan S. Traw, nd Jonathan M. Smith; Hardware/
Software Organization of a High—Performance ATM Host
Interface; 1993; IEEE.
David . Preston Internet Protocols Migrate to Silicon for
Networking Devices—Moving Internet standards tOnto
ASOCs will bring the “Internet Toaster”
Consumer Applications; E ectrical Design; Apr. 14, 1997.
V.S. Inanov—Loshkanov, S.F. Sevast’yanov, M.N. Semenov,
[.M. Timofeev, V.A. Fogel, and A.M. Frenkel; Network
Microprocessor Adapter; Avtomatika 1 Vychislitel’naya

Tekhnika, vol. 17, No. 5; 1983.

to a Variety of

William Frederick Jolitz; High—Speed Nettworking, Header
prediciton and forward—ervor corrvection for very high—

speed data transfer, Dr. Dobb’s Journal; Aug. 1992.

Dave Chiswell, Implementation Challenges for 155Mbit
ATM Adapters.

Takahiko Nagata, Yasuhiro Hosada and Hiroyuki Yamashita;
High—Performance TCP/IP/ATM Communications Boavrd,
NTT Review; vol. 9, No. 6; Nov. 1997,

Jonathan M. Smith and C. Brendan S. Traw; Giving Appli-
catiosn Access to (Gb/s Networking; Design tradeoffs in an
ATM to Gb/s host interface and its operating—system support
have profound implications for applications performance;

IFEE Network; Jul. 1993,

Gr.A. Doumenis, D.I. Reisis, G.I. Stassinopoulos; Efficient
Implementation of the SAR Sublaver and the ATM Laver in
High Speed Broadband ISDN Data Terminal Adapters; 1993
IEEE.
Hanaly E. Meleis, and Dimitrios N. Serpanos; Designing
communication Subsysrems for High—Speed Networks, IEEE

Network; Jul. 1992.

Peter Steenkaste; Design, Implementation, and Evaluation of
a Single—copoy Protocol Stack, Spitware—Practice and
Experience, vol. 28; Jun. 1998.

David D. Calrk, Van Jacobson, John Romkey, and Howard

Salwen; An Analysis of TCP Processing Overhead; 1IEEE
Communications magazine; Jun. 1989.

David D. Clark, John Romkey, and Howard Salwen;Arn
Analysis of TCP Processing Overhead, 1988 IEEE.

Chris Dalton, Greg Watson, David Banks, Costas Calam-
vokis, Aled Edwards, and John Lumley; Afterburner; A

network—independent card provides architectural support
for high—performance protocols, IEEE Network; Jul. 1993.

Peter Steenkiste; 4 High—Speed Network Interface for Dis-

tributed—Memory Systems.: Architecture and Applications;
ACM Transactions on Computer Systems; vol. 15, No. 1;
Feb. 1997.

David Banks, and Michael Prudence; 4 High—Performance
Network Architecture for a PA—RISC Workstation; 1EEE
Journal on Selected Areas in Communications, vol. 11, No.

2; Feb. 1993.

Michael Yang and Ahmed Tantawy, A Design Methodology
for Protocol Processors, 1995 IEE.

Wright; Intelligent Ethernet Boavrds; EDN Jun. 23, 1988.

Johnson et al, “Internet Tuner”, New Media News, <http://
www.newmedianews.com/020197/ts__Inettuner.html>, Jan.

1997 .*

Kelly, T., “Cheap Internet Hardware that Fits in Everything”,
ZDNet, <http://www.zdnet.co.uk/news/1998/44/
ns—5998.html>, Nov. 1998 .*

Kittadeya et al., “Matsushita Launches Web1V Internet
Connection Terminal”, <http://www.mei.co.jp/corp/news/

official.data/data.dir/en981112—1/en981112—1 .html>, Nov.
1998.*

IReady Product Data Sheet, Internet Turner.*

L

* cited by examiner



t

US RE39,501 E

Sheet 1 of 14

i

Mar. 6, 2007

U.S. Patent

A

g1

yndut
J3s()

TNLH *
dllH *
VAV *
I0 *
Jddl *
PdVAL *

€dOd *
dlNS *

18 | pUDH D}0(

D}bd
Ap|dsi g

101}U0) 83]A8(

8U|YoON 94D4S 'S0

010(
19390

104{u0) AJouep

0/

19005 MDY

1ndug
321 A3(]
|OUJ3}X ]

dan

1090}04
{1OM} BN

WO

et

}9X30d
%JOM] N



US RE39,501 E

|10W3 pa}oibajuy
auibul LH
auibu3 dj(H

1asKOIg Rid 13][013U0)

,400 914J01), ¢
101JU07) 331A3(] *
21007 anj9 waysAg »

JUIOBN 238315 'S0

1
: i
I |
i .
= “ n
- | feyds1q “
a : _
_ _
3 JEYEF[JEMT), “ :
3 2P0 9348 “ S1GOTR BABf [02710) | %10y HoisiAdlal ¢
“ £I0Wa : 910y YOA ¢
o ﬁmﬁcoﬁu_m 1) m h m
S 90J3Uwo)) _ e 13131d SETA | ﬁ ddd *
M, .w.,u:o “ 1244 110] (0903044 F10K}3) m 19%208 ;om_ “
m d | | dI/doLs
“ 10J}102 1A |
| |
_ !
.

U.S. Patent



US RE39,501 E

Sheet 3 of 14

Mar. 6, 2007

U.S. Patent

- P E g e B

".I'. L
|
,
_
_
w
m
!
|
;
i
:
:
:
!
:
|
|
:
;
|
|
.m
:
|

rr ry 1IN 2}

423

it

43|]043U0JD
K1owap patjiufn

13)ing
£JOWap paljiun

9UIYION VAVP

T I XL IR RE LY RN L g L

$08
“wapop_|[wpoN A0 | NOST _|[13uidi3

Foerryw e T T L4t T I LI Rl LR L -lil.lll appld kSR IPR AW EEA SRR AR E S FRF A RES S b ER 1 wa il g

. 980D} J8}UT }Jodsuplt] |DAISAYd

. L

18407 ddd

19407 dI
13407 421

£4)

It

S)00|q 220jJaju} WO}sSN3 sajoud(,

(FIRIRRE YL T AL R L LA L

jual|Q dLIH| | #dVNI/€d0d

|10W]

118]|04}U0)
fo| dsi(

ey T Y Y R T T Y TN RR LN L R L LR R L L L L o

» & 2l ¢ & HE #RE B T

EY Ty o A L LD T Y1 -1 1 RN

SIL LI AL LI IR LY, | Ll & L (o2 L3 J 1 0 L1 LR

CIIVELLI

[ TTERR TR F L T 10 _ 1 B 1 [ J L)

9103S 'S0

F b o= g - e m .

o
&Lt
g
=,

el B S ww ad b+ iy o wars =N ]

« 90D} J3}UT
10883901 4"

£ 990} 191 U]
3SNON

300} J3}VUT
D100qQA8Y,
9E

GIg

kwkpk g4 & 3o

Ap|dsi(] OVQ olipny

4
¥
1
!
’
i

e massessovansmeved

W e A el el S ———

LL ol

emumxmnzw,
1055390140421

p100qAd)

AWYHS
—

44



US RE39,501 E

yASSASED A4

Sheet 4 of 14

060t

Mar. 6, 2007

13qUNN 321A3(0 = #(

U.S. Patent

g 914

ASA
¢

%5 Cl
Al

v

456

/A4



y O1d

US RE39,501 E

s rrrrsrrrrrsrrrrirrrrrriirrirrrririssrrrrrrrrrz - DLV RO L DRV Ie B 10 A PO9Y! ~—_ §0F

- 94Nn133}1YoJ4D |DUOI}IPDJ]
= peJinbes ew]] 80
o au| )
“nu...w [P2Z222 7277727727227l 2 0l pno OC_EDO._.._.MIPISV
P22 7727777727l 3p093(] —-— g0t
g P7722224 | DOO_C30D (><—..l_flm%
R op033(] —=——— 07
s ——————¢
rm VIS VLSS IS SIS 4 UOO_ u 3Oﬁ_ muu ﬂ___) .JI..IIM-.%
> ZzzA | apodsQ ————20F

~—e
22 pooj uMoQ THLH <,

1Jodsupt} euoyde|e} Dujunssy 1

U.S. Patent



US RE39,501 E

oll!]

5 60S
\
sJ3fojd QgAQ
S sauydow auob
M $aX0q-9| Q02
m 305 saoupi|ddp do}-}8s
/ =

SUOISIAQ|3] }JDUS

—

U.S. Patent

SYOA sauoyda| 9} JouS (S

¢ ‘HId
N%/
9d H40M}aN
603 ./ RN
b05 $99| AP
/ p| 9YpUDH

]

—J
W.’ 4




US RE39,501 E

Sheet 7 of 14

Mar. 6, 2007

U.S. Patent

s|bubjg
jsoopDpo.g

jeun|
o__us_

“xw

SO |pPDY

m sauoyd

J

IK

\wmcm

s|oubig jeulseju)

Jeun|
*o=ho*=_

Ea ®mm (©

O
oew

saauol|ddo doy-}ag

=

30| AJp
_u._ 94YpubH

S $80UD| |ddy
_H_ Appey jeudeju|

703
| o B3

SUOISIA3| 3} }JOUS

s|oubig
} §DIpDOJE

©

leun|
UO|S]AB|B]

“ mco_n_>o_op




US RE39,501 E

Sheet 8 of 14

Mar. 6, 2007

U.S. Patent

¢ "OId
apo) 1oy 19487 YBIH
+ SOUIYODN 904 ©]qoppequ]

SOU|4IDN 84D}S 8|qOPPEqU]

8U|YODW DAD(

19]]043U0)

m——mm—————— e —me . Jaj|04juo) Aoy dsi Q

Phi~_ | Ko|dsi( 404

195M0JEG MMM 50

St 1043U0)

LLIETY

|04}U0)
SLTET §04

Ul YID|N DAD[ a0/

|
)
“
|
"
|
“
i
|
“
m ;oxo.h_o; o §19}94049}U]
| |030101d HJOM}aN 10/
m
| |suiyooN 8301S 'S0
3 804

13407

§19}aJdJalu] 1000}014 YJOM}oN

9. a0

10J}U02 321A3(]

Lh 9UIYODW 8101S "S'0

104




- T S T

19]]0J3U0)
Ao|dsi(

J3]10J}U0)
Ap|dsi

US RE39,501 E

|04}U0)
KJOWaN

|0J}U0)

AJowap 008

k1104 pig

._ i
| ||
| -
| |
| |
| |
| o
_ NON “ " 1088590140491 W
; |
| |

| |

_ |
| |

| -
“ “
|

194AD7 19£07
1000301 %JOM}ON 1090301d HIOMIBN N._ e
- m
M 10J3U0D 931A8(] o:"““wﬂo“uww_m%.nm_.o "
3uI YD 9}D}S 'S O .
@ e RS SOme o4 I 1108
s lmemmmee oo TS —
72
13}]0J}U02)
AojdsiQ
S big
gl
> 101}U0% Jd
w% GIB
>

19407

|000}01d YJOM}aN

8

10J}U0D 33} A3(]
SUIYIDN 3103S "S°0

I
\
|
_
_
)
|
{
!
|
A1owap |
_
_
_
_
_
_
_
_
_
_
|
_
_

0% 8 914

U.S. Patent



ﬁ_ IIIIII - ey g mmb Gl S =

US RE39,501 E

80N} } 0S

|

|

|

|

_

|

TIULUEL I b
Ayi04 pig jJodsuni| m
|
l
|
)
!
!
_

- 194D

- 1020304 }JOM}aN

S 1] 04409013 |N

— Buy}s|x3

3

e

9 9.

~ v T IR
| ] |

m i |

< | iomgjog |1 WSJUOYIRN |

S ' fuog pi¢ | paodsupsp

M “ T—ﬂm ﬂ _m 1| i
| B “
| | .m

19 |0J}U020J2 |\

bujisixy

U.S. Patent

H6

6 014

9J0A}}0S

Afdod I 25 | UDY 9B

|
l
|
i
|
_
|
|
“
: | J0dsun |
|
|
|
]
]
|
|
|
|
|
!
)

J9||0J{U030JI| N

Bujys1x3 13407

1090}044 %JOM}3N

5991A8(Q P|OYPuUPLH

&
&

1.'._-' t'lll'l—lil"llll

i
|
3
i
|
_
|
|
|
|
|
|
|




US RE39,501 E

Sheet 11 of 14

Mar. 6, 2007

U.S. Patent

juel|s jlou3
Ayiod pig

4014

10J3U03 931A3(
8UlYIDN 33103S 'S "0

ot 21y
)
|
S00IN  jayj013u09
TS ST T T “ Aoidsi@ 037
| 19]1013u0) m e
- Aojdsiq Q37 ?nm “
_
” 10J}U0Y 19407 " | 1944H9)
m K Jowap 10901034 %JOM} N m " }i0dsupd |
“ " |
_ _
| |
_ !
| _
_ _

T P e e gl

|043U0D 321A3(
oUILYIDN 33D1S 'S "0

_
|
|
|
_
_
|
_
!
_
J

800}

sauoyda|a} }Joug
600/

g00/

4004



US RE39,501 E

Sheet 12 of 14

Mar. 6, 2007

U.S. Patent

13]|043U0)
AojdsiQ

4]

10J3U0)

il AJOWBN
10559204d0J01U

18407
10903044 %JOM}aN
§cH

|0JJUOD 3D1A3(]
SUIYIoON 910S 'S0

r—--- o 0
| IR

| o e |
_ 13||04}U0)

“ JISMOJE MMM 0] ds1

| T

|043u0)
A10WaN

Ul YID|N DAD[

1000304d HJOM}aN

| (1ouo1ydo) |0J}U0D 331A3(]
|DWa 8UlYyoD 903§ "S'C

13}}043U09) m
o hoydsig ]

— B cmg gy o SN SE I SRS AN VRS S S e D G S

104}U09

AJOWDN b0l

10903014 4JOM}aN
r—e0M

10J}U0D 321A3(
BUIYODN 810315 "S' 0

13110J}u0) (AQ m/_Fsz
M g
S9u| Yooy euob
s104D1d (AQ
SYOA
$0X0Q~8|q0?
SUOISIA9|8) }IDUS

bEo9I1d



3718YN3 93df

013147vivQ dol

US RE39,501 E

318VN3 dllH

013147V1iva dI

)
- J78YNI ¥3AVT dOL
g 013147V1V0 " ddd
7).
J18YNI"YIAVT dI
= 378YNI~¥3IAVT ddd
g
v 91Aq }40}§
: p|3l 4 1020}04d ddd n_
. p|3l § }iod dIl
z [} P191d 1020j01d dI— |

x| § (a1 ] v]vo] On 0003 3 af3a ] § § e oo xe] o) oo} (oot iz 00]g0 4] 3¢
B e I S

94 dd | V1VQ Di3dl 18pD3H Jidl J3pDaH dIl i3pbeH dI 13pD8H ddd

07314 vivd dol

01314 VIVQ dI

d1314 ViVQ ddd c

U.S. Patent

d



U.S. Patent Mar. 6, 2007 Sheet 14 of 14 US RE39.501 E

PORT3/ |JPEG_ENABLE JPLG
HTTP DECODER

TCF' I""‘|"|""‘||"‘|"‘|“|“‘|“|“‘|“||“|l

INCOMING DATA

TCP_DATA_FIELD
HTTP_ENABLE

IP_ATA_FIELD
TCP_ENABLE

PPP_DATA_FIELD
IP_ENABLE

FIG. 13



US RE39,501 E

1

MULTIPLE NETWORK PROTOCOL
ENCODER/DECODER AND DATA
PROCESSOR

Matter enclosed in heavy brackets [ ] appears in the
original patent but forms no part of this reissue specifi-
cation; matter printed in italics indicates the additions
made by reissue.

BACKGROUND OF THE INVENTION

1. Technical Field

The invention relates to network protocols and data
packets. More particularly, the invention relates to the
decoding of network protocols and processing of packet data
during packet reception without the time-consuming over-
head of software or software/hardware implementations. In
addition, the invention allows one pass parsing of the data,
climinating the bullering of data packets for different stacks,
and thus minimizing the memory usage.

2. Description of the Prior Art

Computer networks necessitate the provision of various
communication protocols to transmit and receive data.
Typically, a computer network comprises a system of
devices such as computers, printers and other computer
peripherals, communicatively connected together. Data are
transferred between each of these devices through data
packets which are communicated through the network using,
a communication protocol standard. Many different protocol
standards are in current use today. Examples of popular
protocols are Internet Protocol (IP), Internetwork Packet
Exchange (IPX), Sequenced Packet Exchange (SPX), Trans-
mission Control Protocol (TCP), and Point to Point Protocol
(PPP). Each network device contains a combination of

hardware and software that translates protocols and process
data.

An example 1s a computer attached to a Local Area
Network (LAN) system, wherein a network device uses
hardware to handle the Link Layer protocol, and software to
handle the Network, Transport, and Communication Proto-
cols and information data handling. The network device
normally implements the one Link Layer protocol in
hardware, limiting the attached computer to only that par-
ticular LAN protocol. The higher protocols, e.g. Network,
Transport, and Communication protocols, along with the
Data handlers, are implemented as soitware programs which
process the data once they are passed through the network
device hardware 1nto system memory. The advantage to this
implementation 1s that 1t allows a general purpose device
such as the computer to be used in many different network
setups and support any arbitrary network application that
may be needed. The result of this implementation, however,
1s that the system requires a high processor overhead, a large
amount of system memory, complicated configuration setup
on the part of the computer user to coordinate the different
soltware protocol and data handlers communicating to the
computer’s Operating System (0O.S.) and computer and
network hardware.

This ligh overhead required 1n processing time 1s dem-
onstrated 1n U.S. Pat. No. 5,485,460 1ssued to Schrier et al
on Jan. 16, 1996, which teaches a method of operating
multiple software protocol stacks implementing the same
protocol on a device. This type of implementation 1s used in
Disk Operating System (DOS) based machines running
Microsoit Windows. During normal operation, once the
hardware verifies the transport or link layer protocol, the
resulting data packet 1s sent to a software layer which

10

15

20

25

30

35

40

45

50

55

60

65

2

determines the packets frame format and strips any specific
frame headers. The packet 1s then sent to different protocol
stacks where 1t 1s evaluated for the specific protocol.
However, the packet may be sent to several protocols stacks
betore 1t 1s accepted or rejected. The time lag created by
soltware protocol stacks prevent audio and video transmis-
s10ms to be processed 1n real-time; the data must be builered
before playback. It 1s evident that the amount of processing
overhead required to process a protocol i1s very high and
extremely cumbersome and lends itself to applications with
a powerful Central Processing Unit (CPU) and a large
amount ol memory.

Consumer products that do not fit in the traditional models
ol a network device are entering the market. A few examples
ol these products are pagers, cellular phones, game
machines, smart telephones, and televisions. Most of these
products have small footprints, 8-bit controllers, limited
memory or require a very limited form factor. Consumer
products such as these are simplistic and require low cost
and low power consumption. The previously mentioned
protocol 1implementations require too much hardware and
processor power to meet these requirements. The complex-

ity of such implementations are difficult to incorporate nto
consumer products in a cost eflective way. If network access
can be simplified such that 1t may be easily manufactured on
a low-cost, low-power, and small form-factor device, these
products can access network services, such as the Internet.

SUMMARY OF THE INVENTION

The imvention provides a low-cost, low-power, ecasily
manufacturable, small form-factor network access module
which has a low memory demand and provides a highly
ellicient protocol decode. The invention comprises a
hardware-integrated system that both decodes multiple net-
work protocols 1n a byte-streaming manner concurrently and
processes packet data 1n one pass, thereby reducing system
memory and form factor requirements, while also eliminat-
ing software CPU overhead.

The preferred embodiment of the invention comprises a
network protocol layer, data handler, O.S. State Machine,
and memory manager state machines implemented at a
hardware gate level. Network packets are recerved from a
physical transport level mechamism by the network protocol
layer state machine. The protocol state machine decodes
network protocols such as TCP, IP, User Datagram Protocol
(UDP), PPP, and Raw Socket concurrently as each byte 1s
received. Each protocol handler parses, interprets, and strips
header information immediately from the packet, requiring
no intermediate memory. The resulting data are passed to the
next protocol layer or data handler for which the latter case
consists of data state machines that decode data formats such
as email, graphics, Hypertext Transier Protocol (HTTP),
Java, and Hypertext Markup Language (HTML). Each data
state machine reacts accordingly to the pertinent data, and
any data that are required by more than one data state
machine are provided to each state machine concurrently.
Any data that are required more than once by a specific data
state machine, are placed 1n a specific memory location with
a pointer designating such data (thereby ensuring minimal
memory usage). Resulting display data are immediately
passed preformatted to a display controller. Any outgoing
network packets are created by the data state machines and
passed through the network protocol state machine which
adds formats to the packet, and checksums the information
header information, and forwards the resulting network
packet via a physical transport level mechanism.

The preferred embodiment does not necessarily require a
CPU and software to process the network packets, thereby




US RE39,501 E

3

greatly reducing system cost. The hardware gate level imple-
mentation provides a modular, embeddable design where-
upon the designer may pick and choose the functionality that
the particular application requires and still retain a low cost,
low power, small form factor.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 1s a high-level data tlow diagram of the core system
according to the mvention;

FIG. 2 1s a high-level block diagram of a system accord-
ing to the mvention;

FI1G. 3 1s a functional block diagram of a complete system
implementation according to the invention;

FIG. 3A 1s a functional block diagram of the UMA
memory controller according to the mvention;

FIG. 4 1s a time comparison chart illustrating data task
time requirements for a traditional architecture and the
invention.

FI1G. 35 illustrates the possible progression of applications
according to the mvention;

FIG. 6 1llustrates the concept of an Internet Tuner accord-
ing to the mvention;

FIG. 7 illustrates two implementations according to the
invention;

FIG. 8 1llustrates Network PC implementations according,
to the invention;

FIG. 9 illustrates Handheld Devices implementations
according to the mvention;

FIG. 10 illustrates Smart Telephone implementations
according to the mvention;

FIG. 11 1illustrates Smart Television, cable-box, Video
Cassette Recorder (VCR), Dagital Video Disc (DVD) and
game machine implementations according to the invention;
and

FIG. 12 1s a timing diagram sharing a received packet
according to the mvention; and

FI1G. 13 1s a block schematic diagram showing signal flow
for the packet of claim 12 according to the invention.

DETAILED DESCRIPTION OF TH.
INVENTION

Referring to FIG. 1, the imnvention comprises a Network
Protocol Layer 101, a Data Handler 102, a Memory Control
module 103, and an Operating System (O.S.) State Machine
module 104, each implemented at the hardware gate level.
The Network Protocol Layer 101 decodes incoming and
encodes outgoing network packets. The Network Protocol
Layer 101 comprises a plurality of state machines repre-
senting different network protocol stacks (1.e. PPP, TCP, IP,
UDP, and Raw Socket) which simultaneously decode
incoming network packets. The implementation of the pro-
tocol stacks 1n gate level logic allows the real time decoding,
of the network packet as the packet 1s received, thereby
requiring no temporary memory storage. After all of the
packet header information 1s stripped out and verified by the
state machines, the resulting data 1s passed to the Data
Handler 102. The Data Handler 102 comprises a plurality of
state machines, each of which process a specific data type
(1.e. HT'TP, email formats (Post Oflice Protocol (POP3),
Internet Message Access Protocol (IMAP4), Simple Mail
Transtier Protocol (SMTP)), graphics standards (Joint Pho-
tographic Experts Group (JPEG), Graphics Interchange For-
mat (GIF)), Java, and HTML). The gate level implementa-
tion of the data handlers enable the invention to concurrently

L1l

10

15

20

25

30

35

40

45

50

55

60

65

4

process received data 1n real time and 1s especially suitable
for applications which handle streams of data as they are
recetved, 1.e. Java, HT ML, POP3 email, and audio and video
applications. Any data that are required by more than one
data state machine are provided 1n a concurrent manner. Any
data required more than once by a specific data state
machine are placed in a specific memory location with a
pointer designating them. All memory accesses are arbi-
trated through the Memory Control module 103. Any result-
ing display data are also routed through the Memory Control
module 103. The O.S. State Machine 104, acts as an
arbitrator between all of the state machines for resource
control, system, and user interface. Any user 1mput 1s nter-
preted by the O.S. State Machine and routed to the Data
Handler 102.

As an example, a data handler that interprets HIML
format could decode the HI'ML tags using a Cyclic Redun-
dancy Check (CRC) calculation. HIML format contains
character strings known as tags, which control the format-
ting of a subsequent block of text when displayed on a video
output device. These tags may be ethiciently decoded by
generating a CRC number for a given tag and using said
number to enable a formatting 1nstruction. Such a decoding
algorithm 1s suited for gate level implementation and pro-
vides for an HTML encoded document to be displayed on a
video output device much more quickly than 1s currently
possible.

Although the mmvention i1s described as being at the
hardware gate level, one skilled in the art can readily
appreciate that these functions may be implemented 1n many
other ways such as Programmable Array Logic (PALs),
General Array Logic (GALs), Read Only Memory (ROMs),
and software. Additionally, specific protocols and data types
have been indicated and one skilled in the art can readily
appreciate that the modularity of the invention does not limait
it to those specific protocols or data types.

Turning to FIG. 2, the mvention 1s represented in a
high-level block diagram. This diagram describes the opera-
tional task of each module 1n a full implementation of the
invention. The O.S. State Machine 208, contains the system
“olue” logic, and the device control interface, and acts as a
“traflic cop” between the state machines of the other mod-
ules. The Network Protocol Layer 207, contains state
machines for TCP/IP, UDP, Raw Socket, and PPP protocols.
The Memory Control module 206 contains the logic for the
Unified Memory Architecture (UMA) which allows the
system and video display memory to reside in the same
memory area. A Display Controller 205 provides control of
a VGA, television standard, or other type of display. Four
data handlers are used 1n this implementation. An Email data
handler 201 mterprets both POP3 and IMAP4 formats.
Interpreters 202 are implemented which decode JPEG and
GIF formats (commerce and telephony standards may also
be decoded). A Java Machine 203 is also included which
interprets the Java language byte codes. The World-Wide
Web (WWW) Browser 204, contains an HTML decoder/
accelerator, HT'TP Data handler and an integrated email state
machine.

As an example, an incoming JPEG 1mage packet 1s traced
through the system, assuming a MODEM physical transport.
The request starts with the user indicating a desire to
download a given JPEG 1image by typing on keyboard 321.
This mput 1s mterpreted by the keyboard interface 316 and
passed to the O.S. State machine 315. O.S. State machine
315 processes the input and passes it as a command to the
HTTP client 311. The HT'TP client creates a request packet
and passes 1t via the Port Decoder 309 to the TCP Layer 308.




US RE39,501 E

S

The TCP Layer prepends the appropriate TCP header and
passes 1t to the IP Layer 307. The IP layer then prepends the
appropriate IP header and passes the packet to the PPP layer
306. The PPP Layer prepends the appropriate header,
appends an FCS, and passes the data to the Physical Trans-
port Interface 305. The Physical Transport Interface serial-
1zes the data into a bit stream and sends the packet to the
MODEM unit 304. When the request 1s accepted by the host
server, 1t sends the requested JPEG image back to the client
system. The data are first received by the MODEM 304
which indicates to the Physical Transport Interface 305 that
data are present. The Physical Transport interface then reads
the bit serial data from the MODEM, converts 1t to a parallel
byte data, and indicates to the PPP Layer 306 that data are
present. The PPP Layer reads 1n the received bytes. When 1t
detects a valid start byte, 1t begins to parse the incoming
bytes. When the byte stream reaches the PPP protocol field,
the PPP Layer decodes 1t, and in this example decodes the
embedded packet as being of type IP. In response to this
protocol byte, the PPP Layer enables the IP Layer 307 and
indicates to 1t that IP data are being received. All further data
bytes received are now passed directly to the IP Layer. The
IP Layer then begins to parse the incoming data bytes. When
it comes to the IP header protocol field, 1t determines which
higher protocol to enable. In this example, the IP Layer
decodes the protocol field as being of type TCP. At this
point, the IP Layer enables the TCP Layer 308 and indicates
to 1t when TCP data are being received. When this indicator
goes active, all further data bytes 1n the recerved packets are
sent to both the IP and TCP Layers (IP Layer needs the data
bytes to complete checksum calculations). The TCP Layer
then begins to parse the incoming data bytes. When 1t comes
to the TCP header destination port field, it determines which
data handler to enable. In this example, the PORT field
decodes to the HITP client 311. At this point, the PORT
decoder enables the HTTP client and indicate to 1t that HTTP
requested data are being received. The HTTP client then
begins to parse received data bytes. When the HT'TP client
determines that the packet 1s of type JPEG 1mage, the HT'TP
client enables the JPEG decoder 313. At this point, all data
bytes are now routed to the JPEG decoder. The JPEG
decoder then receives all further incoming data bytes and
processes them accordingly. The resulting decoded 1mage 1s
sent to the display memory via the Memory Controller 312
to be processed by the Display Controller 324 for output to
display device 326.

As also noted 1 FIG. 3, various layers need access to a
shared memory resource. All memory accesses are arbitrated
by a single memory controller. This memory controller
determines which layer or handler has access at any given
cycle to the unified memory bufler. This memory controller
1s needed due to the fact that all system and display memory
buflers are shared within a single memory bufler unit. The
unified memory controller 312 takes read and write requests
from the various layers, arbitrates the requests based on a
dynamic rotating arbitration scheme with fixed priority

weighting. This algorithm 1s depicted 1n FIG. 3A. If, 1n the
pictured configuration, device D2 302A and device D3 303A
both request memory access at the same time, then the

arbitor 307 A awards the cycle to the device that has not .

had
the most recent memory access. The arbitor 307A then
passes 1ts memory request to the A mput arbitor 309A. If the
B mput on arbitor 309 A 1s i1dle, then the request 1s passed up
to the B input of arbitor 310A. If the A input to the arbitor
310A 1s 1dle, then the request 1s made to the memory unait.
All arbitration determinations are performed using combi-
natorial logic, thereby eliminating any wait states to any

10

15

20

25

30

35

40

45

50

55

60

65

6

device 1 no other memory requests are being made. Priority
weighting 1s assigned by configuring the arbitration tree
structure. In FIG. 3A, Device DO 300A and Device D1
301A each have 25% priority weighting meaning that 1t all
devices requested constant memory usage, they would each
win the arbitration 25% of the time. Devices D2 302A, D3
303A, D4 304A, and DS 305A cach have 12.5% priority
weighting. The memory controller design 1s simplified by
having each of the individual arbitration units having the
same logic structure. In this scheme, the number of request-
ing devices, and their priority weighting can easily be
configured by adding and arranging arbitor unaits.

Turning to FIG. 4, the speed advantages that the invention
offers are much higher than the traditional architecture
currently in use. The figure represents the time needed to

complete each task. For a series of packets that require an
HTML download 401, decode of the HIML 402, JPEG

download 403, decode of the JPEG 404, JAVA download
405, decode of the JAVA bytes 406, and streaming audio
407, the total time required for these tasks 1s shown for the
traditional architecture 408 and the invention (1Ready
architecture) 409. The invention 409 1s significantly faster
for these tasks than the traditional architecture 408.

Turning to FIG. 5, the progression of applications for this
type of network access 1s shown. Presently, the traditional
model of the network client 1s being used, namely the
computer 501. The consumer appliance concepts of the
Network PC 502, handheld devices 503, smart telephones
504, set-top appliances 505, and smart televisions 506 are
now becoming a reality. The invention provides these prod-
ucts with a cost-eflective, space, speed, and power conscious
network access.

Referring to FIG. 6, the mvention operates much like a
television 602 or radio tuner 611—the signals (packets) are
processed immediately without delay and sent to a display or
audio output. The term Internet Tuner 608 1s used to describe
the nvention as an analogy to such signal processing
devices. The Internet Tuner 608 acts as the interface between
the Internet signals 609 and application products such as
smart televisions 604, set-top appliances 605, smart tele-
phones 606, and handheld devices 607. It processes Internet
signals 609 in real-time as do television 602 and radio tuners

611.

FIG. 7 1llustrates that a full implementation of the mven-
tion using the O.S. State Machine 701, Network Protocol
Layer 702, Memory Control 703, Display Controller 704,
email data handler 708, Interpreters 707, Java Machine 706,
and WWW Browser 705 may be separated into two separate

modules. The modularity of the invention allows functions
such as the data handlers 713 (email data handler 717,

Interpreters 716, Java Machine 715, and WWW Browser
714) to be separated and placed mto a high-level ROM code

for certain applications.

The following application examples further illustrate the
versatility of the modular design of the imnvention.

FIG. 8 demonstrates the possible configurations of the
invention for a Network PC. One variation includes the O.S.
State Machine 801, Network Protocol Layer 802, Memory
Control 803, Display Controller 804, email data handler
808, Interpreters 807, Java Machine 806, and the WWW
Browser 805. This can be varied by placing the data handlers
for email 817. Interpreters 816, Java Machine 815, and
WWW Browser 814 code into high-level ROM running on
a microprocessor 813. The microprocessor 813 communi-
cates through the O.S. State Machine 809 for network and
display functions. A third variation allows a microprocessor



US RE39,501 E

7

822 runnming off of a 3rd Party ROM 823 to interpret the data

coming from the Network Protocol Layer 819 and O.S. State
Machine 818. The microprocessor 822 displays data through
the Display Controller 821.

Turning to FIG. 9, a handheld device may use only the
Network Protocol Layer 901 and interface 1t to a custom
Transport Mechanism 902 and Existing Microcontroller

904. Email functions may be added by including the email
data handler 905 1n the configuration. Further demonstrating
the modularity of the invention, the Network Protocol Layer
911 and Java Machine 910 may be added to a handheld

device, thereby allowing 1t to process Java applets.

Referring to FIG. 10, smart telephones may add email
capabilities by implementing the O.S. State Machine 1001,
Network Protocol Layer 1002, Memory Control 1003, email
data handler 1006, and Display Controller 1004. The Dis-
play Controller 1004 1s capable of controlling Light Emit-
ting Diode (LED), Liquid Crystal Display (LCD) displays,
or big-mapped displays. A Physical Transport Control 1005
may optionally be added, depending on the connectivity
requirements of the smart telephone. The O.S. State
Machine 1007, Network Protocol Layer 1008, and Memory
Controller 1009 may be added to smart telephones with an
existing microcontroller 1010. The microcontroller 1010
performs email functions using a 3rd Party email client code

1011.

Turning finally to FIG. 11, smart televisions, cable-boxes,
Video Cassette Recorders (VCRs), Digital Video Disc
(DVD) players, and game machines can take advantage of
the network accessibility offereNety the invention. The O.S.
State Machine 1102, Network Protocol Layer 1103, Memory
Controller 1104, WWW Browser 1107, Java Machine 1106,
and (optionally) the Display Controller 1105 are interfaced
to an existing controller 1101. If a controller 1101 1s not
present, the Display Controller 1105 1s used. Email 1115
functions are easily added due to the modularity of the
invention. As noted previously, the data handlers for email
1124, Interpreters 1123, Java Machine 1122, and WWW
Browser 1121 code are optionally placed imto high level
ROM running on a microprocessor 1120. The microproces-
sor 1120 commumnicates through the O.S. State Machine
1116 for network and display functions.

Example of Packet Reception

FIG. 12 depicts a received network packet. The packet
contains the following i1tems as shown from leit to right:

PPP header

IP header

TCP header

JPEG Data

PPP FCS (Field Checksum)

The line labeled PPP LAYER ENABLE 1s activated when
a valid start byte 1s detected, and 1s generated within the PPP
block 1n FI1G. 13. Once this line goes high, the rest of the PPP
block 1s activated. Within the PPP header 1s a field indicating,
the type of protocol that the PPP packet 1s encapsulating. In
an uncompressed PPP header, these are bytes 4 and 5
(counting the start byte Ox7¢). In FIG. 12, these bytes are
0x00 and 0x21 indicating that the encapsulated data 1s an IP
packet. After decoding this field, the PPP block activates the
IP LAYER ENABLE and PPP DATA FIELD signals, which
together enable the IP block mm FIG. 13. The IP LAYER
ENABLE line 1s decoded from the PPP protocol field, and
the PPP DATA FIELD line indicates that the incoming data
byte stream 1s 1n the data field portion of the network packet.
These two lines must be active for the IP block to be enabled.
Once the IP block 1s enabled, 1t starts to parse the mncoming
data bytes. Referring back to FIG. 12, the data immediately

10

15

20

25

30

35

40

45

50

55

60

65

8

following the PPP header 1s the IP header. Within the IP
header 1s a field indicating the type of data that 1s encapsu-
lated within the IP packet. In FIG. 12, this field 1s shown to
be Ox06 indicating that the encapsulated data 1s a TCP
packet. The TCP LAYER ENABLE line i1s activated in
response to the IP block decoding this field. The IP DATA

FIELD line goes active a couple of bytes later, because there
are some bytes that come between the IP header protocol

field and the start of the IP data field. The IP DATA FIELD
signal indicates that the incoming data byte streams 1s 1n the
data field portion of the network packet. Both the TCP
LAYER ENABLE and IP DATA FIELD lines must be active
in order for the TCP block i FIG. 13 to be enabled. Once
the TCP block 1s enabled, it starts to parse incoming data
bytes. Referring back to FIG. 12, the data immediately
tollowing the IP header 1s the TCP header. Within the TCP
header 1s a 2 byte field for the destination port. This field
indicates which application or data handler the encapsulated
data 1s meant for. In FIG. 12, this field decodes to port
0x0003. In FIG. 13, port 3 1s designated as the HT'TP port.
After decoding the destination port field within the TCP
header, the HI'TP ENABLE line 1s activated. The TCP
DATA FIELD line 1s activated a couple of bytes later
because there are some intermediate bytes between the
destination port field and the start of the TCP data field. Both
the HI'TP ENABLE and TCP DATA FIELD lines must be
active for the HT'TP/PORT3 block 1n FIG. 13 to be enabled.
Once the HTTP block 1s enabled, it starts to parse incoming
data bytes. When 1t decodes the JPEG header, it enables the
JPEG decoder block 1n FIG. 13. Once the JPEG decoder 1s
enabled, 1t starts to process incoming bytes. The JPEG
enable line 1s the only line needed to enable the JPEG block.

Although the invention 1s described herein with reference
to the preferred embodiment, one skilled in the art will
readily appreciate that other applications may be substituted
for those set forth herein without departing from the spirit
and scope of the present invention. Accordingly, the inven-
tion should only be limited by the Claims included below.

We claim:

1. An apparatus for decoding and encoding network

protocols and data, comprising;:

a network protocol layer module for receiving and trans-
mitting network packets and for encoding and decoding
network packets [bytes] which comprise packet data;

a data handler module for exchanging said packet data
with said network protocol layer module and for pro-
cessing [a] at least one specific data type or protocol:

a memory control module 1n communication with said
data handler module for arbitrating memory accesses
[and for providing display data]; and

[an operating system (o0.s.)] at least one state machine
module that 1s optimized for a single selected network
protocol, said [o.s.] at least one state machine module
in communication with said data handler module [and
providing resource control and system and user inter-
faces];

wherein said network protocol layer module, said data
handler module, said memory control module, and said
[operating system (0.s.)] at least one state machine
module comprise corresponding dedicated havdware
structures that are implemented in [hardware] gate
level circuitry.

2. The apparatus of claim 1, wherein said network pro-
tocol layer module comprises a plurality of state machines
representing different network protocolls] stacks.

3. The apparatus of claim [2] /, wherein said network
protocol layer module implements one or more of the




US RE39,501 E

9

following network protocols: Point to Point Protocol (PPP),
Internetwork Packet (IP), Transmission Control Protocol
(TCP), Raw Socket, and/or User Datagram Protocol (UDP).

4. The apparatus of claim [2] /, wherein said network
packets [bytes] are processed in real time.

5. The apparatus of claim [2] /, wherein said network
packets [bytes] are processed concurrently.

6. The apparatus of claim [2] /., wherein said network
packets [bytes] are processed [byte-]serially.

7. The apparatus of claim 1, wherein any data required
more than once by a specific said state machine 1s placed in
a specific memory location with a pointer designating said
memory location.

8. The apparatus of claim 1, wherein said data handler
module comprises at least one state machine which pro-
cesses a specific data type.

9. The apparatus of claim 8, wherein said data handler
module processes one or more of the following protocols:
Hypertext Transfer Protocol (HTTP), Hypertext Markup
Language (HTML), Post Office Protocol (POP3), Internet
Message Access Protocol (IMAP4), Simple Mail Transfer
Protocol (SMTP), Joint Photographic Experts Group
(JPEG), Graphics Interchange Format (GIF), and/or Java
language.

10. The apparatus of claim 8, wherein said data type 1s
processed 1n real time.

11. The apparatus of claim 8, wherein said data type 1s
processed concurrently.

12. The apparatus of claim 8, wherein said data type 1s
processed [byte] serially.

13. The apparatus of claim 8, wherein any data shared by
said at least one state machine or required more than once by
a specific said state machine 1s placed 1n a specific memory
location with a pointer designating said memory location.

14. The apparatus of claim 8, wherein any data shared by
said at least one state machine 1s provided to said state
machine(s) concurrently.

15. The apparatus of claim 1, whereimn said memory
control module arbitrates all memory accesses.

16. The apparatus of claim 1, whereimn said memory
control module contains a Unified Memory Architecture
(UMA) which allows a system memory and a video memory
to reside 1n a same memory area.

17. The apparatus of claim 1, whereimn said memory
control module 1s comprised of one or more arbiter logic
blocks where an arbiter block arbitrates according to a
dynamic rotating algorithm between two devices.

18. The apparatus of claim 1, wherein said memory
control module 1s comprised of one or more arbiter logic
blocks arranged 1n such a manner as to give a fixed weighted
priority to each of a plurality of devices for memory access
based on a given arbiter tree structure.

19. The apparatus of claim 1, [wherein said o.s.] further
comprising an arbitrator state machine that acts as an
arbitrator between said network protocol layer module, said
data handler module, and said memory control module for
resource control, system and user interface.

20. The apparatus of claim 1, further comprising:

a display controller.

21. The apparatus of claim 20, wheremn said display
controller controls one of the following types of displays:
VGA, television, Liquid Crystal Display (LCD), or Light
Emitting Diode (LED).

22. The apparatus of claim 1, wherein said apparatus acts
as an interface between Internet signals and application
products by processing Internet signals in real-time and
sending said processed Internet signals to said application
products.

10

15

20

25

30

35

40

45

50

55

60

65

10

23. A process for decoding and encoding network proto-
cols and data, said process comprising the steps of:

providing a network protocol layer module for receiving
and transmitting network packets and for encoding and
decoding network packets [bytes] which comprise
packet data;

providing a data handler module for exchanging said
packet data with said network protocol layer module
and for processing [a] az least one specific data type or
protocol,

providing a memory control module in communication
with said data handler module for arbitrating memory
accesses [and for providing display data]; and

providing [an operating system (0.s.)] at least one state
machine module that is [implemented in hardware and
that is] optimized for a single selected network
protocol, said [o.s.] at least one state machine module
in communication with said data handler module [and
providing resource control and system and user inter-
faces];

wherein said network protocol layer module, said data
handler module, said memory control module, and said
[operating system (0.s.)] at least one state machine
module comprise corresponding dedicated havdware
structures that are implemented in [hardware] gate
level circuitry.
24. The process of claim 23, wherein said [step of
encoding and decoding network packet bytes] network pro-
tocol layer module further comprises the step of:

representing different network protocol[s] stacks using a
plurality of state machines.
25. The process of claim 24, wherein said [step of
encoding and decoding network packet bytes] nerwork pro-
tocol layer module Turther comprises the step of:

encoding and decoding one or more of the following
network protocols: Point to Point Protocol (PPP), Inter-
network Packet (IP), Transmission Control Protocol
(TCP), Raw Socket, and/or User Datagram Protocol
(UDP).
26. The process of claim 23, wherein said network pro-
tocol layer module [step of encoding and decoding network
packet bytes] further comprises the step of:

processing network packets [bytes] in real time.

27. The process of claim 23, wherein said [step of
encoding and decoding network packet bytes] network pro-
tocol layer module Turther comprises the step of:

processing network packets [bytes] concurrently.

28. The process of claim 23, wherein said [step of
encoding and decoding network packet bytes] network pro-
tocol layer module Turther comprise the steps of:

processing network [packet bytes] packets in a [byte}
serial fashion.
29. The process of claim 23, wherein said [step of
processing packet data bytes] data handler module further
comprises the step of:

processing specific data type(s) using at least one state
machine.
30. The process of claim 29, wherein said [step of
processing packet data bytes] data handler module further
comprises the step of:

use of a CRC algorithm to decode data fields.

31. The process of claim 29, wherein said [step of
processing packet data bytes] data handler module further
comprises the step of:

processing one or more of the following protocols: Hyper-
text Transter Protocol (HTTP), Hypertext Markup Lan-



US RE39,501 E

11

guage (HI'ML), Post Oflice Protocol (POP3), Internet
Message Access Protocol (IMAP4), Simple Mail
Transier Protocol (SMTP), Joint Photographic Experts
Group (JPEG), Graphics Interchange Format (GIF),
and/or Java language.
32. The process of claim 29, wherein said [step of
processing packet data bytes] data handler module further
comprises the step of:

processing packet data [bytes] in real time.

33. The process of claim 29, wherein said [step of 10

processing packet data bytes] data handler module further
comprises the step of:

processing packet data [bytes] concurrently.

34. The process of claim 29, wherein said [step of
processing packet data bytes] data handler module further
comprises the step of:

processing packet data [bytes] in a [byte] serial fashion.

35. The process of claim 29, wherein said [step of
processing packet data bytes] data handler module further
comprises the step of:

placing any data more than once by a specific one of said
at least one state machine 1n a specific memory location
with a pointer designating said memory location.

36. The process of claim 23, wherein said [step of
controlling memory accesses further comprises the step of:}
memory control module arbitratfing]es all memory accesses.

37. The process of claim 23, wherein said [step of
controlling memory accesses further comprises the step of’}

5

15

20

25

memory control module allow[ing]s a system memory and a 3

video memory to reside in a same memory area using a
Unified Memory Architecture (UMA).

38. The process of claim 23, [wherein said step of
controlling state machine sequencing] further
compris|es]ing the step of:

12

arbitrating between said [step of encoding and decoding
network packet bytes] network protocol layer module,
said [step of processing packet data bytes] data handler
module, and said [step of controlling memory accesses}
memory control module for resource control, system
and user interface.
39. The process of claim 23, [wherein said step of
controlling state machine sequencing] further
compris|[es]ing the step of:

interpreting system and user mput for the purpose of
controlling data handler modules and network protocol
layer modules.

40. The process of claim 23, further comprising the step
of:

displaying output data.
41. The process of claim 40, wherein said step of dis-
playing output data further comprises the step of:

controlling one of the following types of displays: VGA,
television, Liquid Crystal Display (LCD), or Light
Emitting Diode (LED).

42. The process of claim 23, wherein said process 1s used
to 1mplement an interface between Internet signals and
application products by processing Internet signals in real-
time and sending said processed Internet signals to said

application products.

43. The apparatus of claim I, wherein said memory
control module provides display data.

44. The process of claim 23, wherein said memory control
module provides display data.

¥ o # ¥ ¥



UNITED STATES PATENT AND TRADEMARK OFFICE
CERTIFICATE OF CORRECTION

PATENT NO. : RE 39,501 E Page 1 of 1
APPLICATION NO. : 10/093340

DATED : March 6, 2007

INVENTOR(S) : Minami et al.

It is certified that error appears in the above-identified patent and that said Letters Patent is hereby corrected as shown below:

In the specification: Col. 1, Line 3,
Please insert the following paragraph after the title of the invention on page 1 as follows:

--Related Application(s)

The present application 1s a reissue of U.S. Application No. 08/742,085 filed on 10/31/1996 now U.S.
Pat. (6,034,963); and is also related to U.S. Application number 10/862,125 filed on 6/4/2004
(pending).--

Signed and Sealed this

Seventh Day of September, 2010

Lo ST s ppes

David J. Kappos
Director of the United States Patent and Trademark Office



	Front Page
	Drawings
	Specification
	Claims
	Corrections/Annotated Pages

