USOORE39360FE
(19) United States
12 Reissued Patent (10) Patent Number: US RE39.360 E
Aziz et al. 45) Date of Reissued Patent: Oct. 17, 2006
(54) SYSTEM FOR SIGNATURELESS FOREIGN PATENT DOCUMENTS
TRANSMISSION AND RECEPTION OF DATA 041 A7 <1007
PACKETS BETWEEN COMPUTER WO 0> 00005 % &/1009
NETWORKS

OTHER PUBLICATTONS

(75) Inventors: Ashar Aziz, Fremont, CA (US); ‘ _ ‘ |
Geoffrey Mulligan, Fremont, CA (US); Chuck Semerna, Understanding IP Addressing: Everything

Martin Patterson, Grenoble (FR): You Ever Wanted to Know. 1996. 3Com CorOporation. ™
Glenn Scott Sunriyvale CA (Us)j Forne et al., “Hardware Implementation of a Secure Bridge
! j in Ethernet Enwrenments ” Nov. 29, 1993, IEEE.
(73) Assignee: Sun Microsystems, Inc., Santa Clara, O’Higgins, et al, “Securing Information in X.25 Networks,”
CA (US) Dec. 2-5, 1990, Globecom 90 IEEFE Global Telecommuni-

cations Conference & Exhibition.

Sharp et al., “Network Security 1n a Heterogeneous Envi-

(21) Appl. No.: 09/136,954 ronment,” Sep. 1994, AT&T Technical Journal.

(22) Filed: Aug. 19, 1998 Yamaguchi et al., “A design for LAN cipher communica-
tions,” Jan. 21, 1994, Technical Report of IEICE, vol. 93,
Related U.S. Patent Documents No. 436.
Reissue of* Japanese Oflice Action dated Mar. 15, 2005, from corre-
(64) Patent No.: 5,548,646 sponding Japanese Application No. 262037/93.
Issued: Aug. 20, 1996 ¥ cited by exantiner
Appl. No.: 08/306,337 M
Filed: Sep. 15, 1994 Primary Examiner—Hosuk Song
(51) Int. CI. (74) Attorney, Agent, or Firm—Beyer Weaver & Thomas,
HO4L 9/00 (2006.01) LLP
(37) ABSTRACT
(52) US.CL ..., 713/150; 380/21; 380/49;
380/277; 713/151; 713/153; 713/154; 713/160; A system for automatically encrypting and decrypting data
713/162 packet sent from a source host to a destination host across a
(58) Field of Classification Search 380749, Public internetwork. A tunnelling bridge 1s positioned at

220/21 277 713/151. 153-154. 160163 cach network, and intercepts all packets transmitted to or

 713/150. 200-201: 709/200. 217 from its associated network. The tunnelling bridge includes
’ ’ ’ tables indicated pairs of hosts or pairs of networks between
which packets should be encrypted. When a packet 1s
transmitted from a first host, the tunnelling bridge of that

See application file for complete search history.

(56) References Cited host’s network intercepts the packet, and determines from its
header information whether packets from that host that are
U.S. PATENT DOCUMENTS directed to the specified destination host should be
5,161,192 A * 11/1992 Carter et al. w...oo....... g0 X Snerypted; or, alternatively, whether packets irom the source
5204961 A * 4/1993 Barlowoooevevvevenn.. 380/25 ~ host’s network that are directed to the destination host’s
5303303 A * 4/1994 White ..ooovovevvveeeren.. 380/49 hetwork should be encrypted. If so, the packet is encrypted,
5,416,842 A % 5/1995 AZIZ vevverrereeerereereeenn, 380/4 and transmitted to the destination network along with an
5442708 A * 81995 Adams, Jr. et al. 380/49 encapsulation header indicating source and destination
5444782 A * 8/1995 Adams, Jr. et al. 380/49 information: either source and destination host addresses, or
N1
30
HOST
A
100
40
TB1

TB3

N3

60
80

10

US RE39,360 E
Page 2

the broadcast addresses of the source and destination net-
works (1n the latter case, concealing by encryption the hosts’
respective addresses). An 1dentifier of the source network’s
tunnelling bridge may also be included 1n the encapsulation
header. At the destination network, the associated tunnelling,
bridge intercepts the packet, inspects the encapsulation
header, from an 1nternal table determines whether the packet
was encrypted, and from either the source (host or network)
address or the tunnelling bridge identifier determines
whether and how the packet was encrypted. If the packet
was encrypted, it 1s now decrypted using a key stored 1n the
destination tunnelling bridge’s memory, and 1s sent on to the

destination host. The tunnelling bridge identifier 1s used
particularly 1n an embodiment where a given network has
more than one tunnelling bridge, and hence multiple pos-
sible encryption/decryption schemes and keys. In an alter-
native embodiment, the automatic encryption and decryp-
tion may be carried out by the source and destination hosts
themselves, without the use of additional tunnelling bridges,
in which case the encapsulation header includes the source
and destination host addresses.

48 Claims, 7 Drawing Sheets

U.S. Patent Oct. 17, 2006 Sheet 1 of 7 US RE39.360 E

N1

7 N H-
HOST
B

FIG. 1

HOST A PROCESSOR
MEMORY NETWORK

CONNECTION

NETWORK
CONNECTION

FIG. 2

U.S. Patent Oct. 17, 2006 Sheet 2 of 7 US RE39.360 E

N1

100

TB1

B3 B2
N3

60
a0

70 [
80

FIG. 3

U.S. Patent Oct. 17, 2006 Sheet 3 of 7 US RE39.360 E

N1

AN
PROCESSOR 181
MEMORY
HOST TABLE
83 TB2
l PROCESSOR I PROCESSOR
MEMORY MEMORY

B

HOSTS TABLE I HOSTS TABLE

FIG. 4

U.S. Patent Oct. 17, 2006 Sheet 4 of 7 US RE39.360 E

N4 NS

7]

N6 ff*"““ax
V “
7/ \
/ \
| \
(TS PUBLIC l
' NETWORK p
\\ ;
\ /
\ V 4
“~ ~ _ - ”
HOST
D
N7 N8

FIG. 5

U.S. Patent Oct. 17, 2006 Sheet 5 of 7 US RE39.360 E

GENERATE DATA PACKET 200

TRANSMIT DATA PACKET 210
INTERCEPT PACKET AT TBt 220

LOOK UP HOST A AND HOST B 230
240

NO ARE
HOST A — HOST B PACKETS
TO BE ENCRYPTED?

YES

300

WAS
PACKET ENCRYPTED?

NO

YES
DETERMINE ENCRYPTION MECHANISM 320
DECRYPT PACKET 330

340
FIG. 6

U.S. Patent Oct. 17, 2006 Sheet 6 of 7 US RE39.360 E

420 410

T
400

FIG. 7

450 (440) (420) (410)

@% E OATA =
H_/;___w___J

430 (400)

FIG. 8

470 460 (440) (420) (410)

T

U.S. Patent Oct. 17, 2006 Sheet 7 of 7 US RE39.360 E

470 (440) (420) (410)
t’i’t :‘:‘:' // (D ATA) <_Z— 404
FIG. 11
NS
TB6

N10

TB7
N11

TB8
N12

FIG. 12

US RE39,360 E

1

SYSTEM FOR SIGNATURELESS
TRANSMISSION AND RECEPTION OF DATA
PACKETS BETWEEN COMPUTER
NETWORKS

5
Matter enclosed in heavy brackets [] appears in the

original patent but forms no part of this reissue specifi-
cation; matter printed in italics indicates the additions

made by reissue.
10
Cross-reference is made to U.S. application Ser. No.
10/147,933 which is a continuation Reissue Application of
U.S. Pat. No. 5,548,646.

BACKGROUND OF THE INVENTION

The present invention relates to the field of secure trans-
mission of data packets, and 1n particular to a new system for
automatically encrypting and decrypting data packets
between sites on the Internet or other networks of computer
networks.

It 1s becoming increasingly useful for businesses to trans-
mit sensitive information via networks such as the Internet
from one site to another, and concomitantly more urgent that
such information be secured from uninvited eyes as it
traverses the internetwork. At present, unsecured data 1s
replicated at many sites in the process of being transmitted
to a destination site, and trade secret or other private
information, unless secured, 1s thereby made available to the
public.

It 1s possible for a user at the sending host to encrypt the
data to be sent, and to inform the user who 1s to receive the
data of the encryption mechanism used, along with the key
necessary to decrypt. However, this requires communication
and coordinated eflort on the parts of both the sending and
receiving users, and often the users will not take the requisite
trouble and the packets will go unencrypted.

Even when these packets are encrypted, the very fact of
theirr being transmitted from user A to user B may be
sensitive, and a system 1s needed that will also make this
information private. 40

FIG. 1 1llustrates a network of computer networks, includ-
ing networks N1, N2 and N3 interconnected via a public
network 10 (such as the Internet). When network N1 1s
designed in conventional fashion, 1t includes several to
many computers (hosts), such as host A and additional hosts 45
20 and 30. Likewise, network N2 includes host B and
additional hosts 40 and 50, while network N3 includes hosts
60-90. There may be many hosts on each network, and
many more individual networks than shown here.

When a user at host A wishes to send a file, email or the 59
like to host B, the file 1s split into packets, each of which
typically has a structure such as network 400 shown 1n FIG.

7, including data 410 and a header 420. For sending over the
Internet, the header 420 will be an internet protocol (IP)
header contaiming the address of the receipt (destination) 55
host B. In conventional fashion, each data packet 1s routed
via the internetwork 10 to the recerving network N2, and
ultimately to the receiving host B.

As indicated above, even if the user at host A encrypts the
file or data packets before sending, and user B 1s equipped 60
with the necessary key to decrypt them, the 1dentities of the
sending and recerving hosts are easily discernible from the
Internet Protocol (IP) addresses 1n the headers of the pack-
ets. Current internetworks do not provide an architecture or
method for keeping this information private. More basically, 65
they do not even provide a system for automatic encryption
and decryption of data packets sent from one host to another.

15

20

25

30

35

2
SUMMARY OF THE INVENTION

The system of the invention includes a tunnelling bridge
positioned at the interface between a private network and a
public network (or internetwork) for each of a number of
such private networks. Each tunnelling bridge 1s a stand-
alone computer with a processor and a memory, and 1n each
tunnelling bridge’s memory 1s a hosts table i1dentifying
which hosts should have their data packets (sent or received)
encrypted. Alternatively, a networks table could be used,
indicating whether data packets to and from particular
networks should be encrypted; or other predetermined cri-
terta may be stored that indicate whether particular data
packets should be encrypted.

The tunnelling bridge for a given private network (or
subnetwork of a private network) intercepts all packets sent
outside the network, and automatically determines from the
tables whether each such packet should be encrypted. If so,
then the tunnelling bridge encrypts the packet using an
encryption method and key appropriate for the destination
host, adds an encapsulation header with source and desti-
nation address information (either host address or IP broad-
cast address for the network) and sends the packet out onto
the 1internetwork.

At the destination host, another tunnelling bridge inter-
cepts all imncoming data packets, mspects the source and
destination address information, and determines from its
local hosts (or networks) table whether the packet should be
decrypted, and if so, by what method and using what key.
The packet 1s decrypted, i1 necessary, and sent on to the
destination host.

In this way, all messages that are predetermined to require
encryption, e.g. all messages from a given host A to another
host B, are automatically encrypted, without any separate
action on the part of the user. In this way, no one on the
public internetwork can determine the contents of the pack-
cts. If the encapsulation header utilizes the network IP
source and destination addresses, with the source and des-
tination host addresses encrypted, then the host identities are
also concealed, and an intervening observer can discern only
the networks’ 1dentities.

The encapsulation header may include a field with an
identifier of the source tunnelling bridge. This 1s particularly
usetul 1f more than one tunnelling bridge 1s to be used for a
given network (each tunnelling bridge having difierent
encryption requirements and information), and 1n this case
the receiving tunnelling bridge decrypts the data packets
according to locally stored information indicating the
encryption type and decryption key for all packets coming
from the source tunnelling bridge.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 1s a diagram of a network of computer networks 1n
conjunction with which the system of the present invention
may be used.

FIG. 2 1s a block diagram of a host computer A on
computer network N1 shown 1n FIG. 1.

FIG. 3 1s a diagram of a network of computer networks
incorporating tunnelling bridges according to the present
invention.

FIG. 4 1s a block diagram of several tunnelling bridges of
the present invention 1 a network of computer networks
N1-N3 as shown 1n FIG. 3.

FIG. 5 1s a diagram of another configuration of networks
incorporating tunnelling bridges according to the present
invention.

US RE39,360 E

3

FIG. 6 1s a flow chart illustrating the method of signa-
tureless tunnelling of the present invention.

FIG. 7 i1llustrates a conventional data structure for a data
packet.

FIGS. 811 illustrate modified data structures for use in
different embodiments of the system of the mvention.

FIG. 12 1s a block diagram of a network of computer
networks including two tunnelling bridges of the invention
on a single computer network.

DESCRIPTION OF THE PREFERRED
EMBODIMENTS

The system of the present mvention i1s designed to be
implemented 1 existing computer networks, and in the
preferred embodiment uses the addition of a tunnelling
bridge at junctions between local computer networks and
public or larger-scale networks such as the Internet. The
mechanisms for carrying out the method of the mnvention are
implemented by computers acting as these tunnelling
bridges, incorporating program instructions stored 1n memo-
ries of the tunnelling bridges and appropriate (standard)
network connections and communications protocols.

FIG. 3 shows a network 100 of networks N1, N2 and N3
according to the mvention, where each network includes a
tunnelling bridge—T1TB1, TB2 and TB3, respectively—
which intercepts all data packets from or to the respective
networks. Networks N1-N3 may 1n other respects be 1den-
tical to networks N1-N3 1n conventional designs. In the
tollowing description, any references to networks N1-N3 or
hosts A and B should be taken as referring to the configu-
ration shown 1 FIG. 3, unless specified otherwise.

In this system, there are several modes of operation,
numbered and discussed below as modes 1, 2, 2A, 3 and 3A.
Mode 1 uses the configuration of FIG. 1, while the other
modes all use the configuration of FIG. 3. The features of the
tunnelling bridges TB1 and TB2 (including their program
instructions, actions taken, etc.) in modes 2—3A are, 1n mode
1, features of, respectively, hosts A and B.

Each of the tunnelling bridges TB1-1TB3 1s preferably
implemented 1n a separate, conventional computer having a
processor and a memory, as shown 1n FIG. 4. The memory
may be some combination of random-access-memory
(RAM), read-only-memory (ROM), and other storage
media, such as disk dnives, CD-ROMs, etc. The program
instructions for each of the bridges TB1-TB3 are stored 1n
their respective memories, and are executed by their respec-
tive microprocessors. The method of the present invention 1s
carried out by a combination of steps executed as necessary
by each of the processors of the sending host A, the
tunnelling bridges TB1 and TB2, and the receiving host B.

Encryption of data 1s an important step in the overall
method of the ivention, but the particular encryption
mechanism used 1s not critical. It 1s preferable to use a
flexible, powertul encryption approach such as the Diflie-
Hellman method (see W. Difhie and M. Hellman, “New
Directions 1n Cryptography”, IEEE Transactions of Infor-
mation Theory, November 1976). (The use of encryption in
connection with IP data transfers 1s discussed 1n some detail
in applicant’s copending patent application, “Method and
Apparatus for Key-Management Scheme for Use With Inter-
net Protocols at Site Firewalls™ by A. Aziz, Ser. No. 08/258,
344 filed Jun. 10, 1994, which application 1s incorporated
herein by reference.) However, any encryption scheme that
provides for encryption by a first machine, which sends the
data packets, and decryption by a recerving machine, will be
appropriate.

10

15

20

25

30

35

40

45

50

55

60

65

4

FI1G. 6 illustrates the method of the invention, and com-
mences with the generation of data packets at the sending
host A. The user at host A enters conventional commands for
transmitting a file or the like from host A to host B, and the
host computer A carries out the standard procedures for
breaking the file down 1nto data packets as 1n FIG. 7, each
including both the data 410 and a header 400. In the case of
transmissions over the Internet, this will be the IP header.
Though the current discussion will be directed 1n large part
to IP-specific implementations, it should be understood that
any network protocol may be used in conjunction with the
present 1nvention.

At box 200, the user at host A (see FIGS. 3 and 6) enters
the conventional command for sending the file, email, or the
like to a recipient, and host A generates data packets for
sending over the Internet 1n the normal fashion. Each data
packet 1mtially has a structure like that of data packet 400
shown 1n FIG. 7, including a data field 410 and a header field
420. The header 420 includes the destination address, 1n this
example the IP address of host B.

The data packets are transmitted by host A at box 210,
again 1n conventional fashion. However, at box 220, each
packet 1s intercepted by the tunnelling bridge TB1 (see
FIGS. 3 and 4), when any of the modes 2, 2A, 3 or 3A 1s used
(see discussion below). When mode 1 (described below) 1s
used, steps 220 and 280 are omitted, since this mode does
not use tunnelling bridges; istead, the actions taken by the
tunnelling bridges in modes 2-3A are all accomplished by
the source and destination hosts themselves in mode 1. Thus,
in the following discussion, wherever TB1 or TB2 is
mentioned, 1t should be understood that 1n the case of mode
1, the same feature will be present 1n host A or host B,
respectively.

Stored 1n the memory of TB1 (or host A, for mode 1) 1s
a look-up table (not separately shown) of the addresses of
hosts, both on the local network N1 and on remote networks
such as N2 and N3, and an indication for each network
whether data packets from or to that host should be
encrypted. For instance, 1n this case the hosts table of TB1
indicates that any messages sent from host A to host B
should be encrypted. Thus, bridge TB1 (or host A) looks up
hosts A and B 1n 1ts tables, and determines that the data

packets to be transmitted must first be encrypted, as indi-
cated at boxes 230 and 240 of FIG. 6.

Alternatively, the table could stored the network 1dent-
fiers (e.g. broadcast addresses) or networks N1 and N2,
indicating that anything sent from network N1 to network
N2 1s to be encrypted. In this case, the table need not list
each host in each network, which makes the table smaller
and easier to maintain.

I each host 1s listed, however, greater flexibility can be
retained, since 1t may be that messages to or from particular
hosts need or should not be encrypted. In an alternative
embodiment, the look-up table lists the networks N1 and N2
as networks to and from which packets should be encrypted,
and also includes a hosts sections of the table indicating
exceptions to the normal encryption rule for these networks.
Thus, 11 networks N1 and N2 are listed 1n the look-up table,
then packets travelling from N1 to N2 should normally be
encrypted; however, 1f there 1s an “exceptions” subtable
indicating that no packets from host A are to be encrypted,
then the normal rule 1s superseded. The exceptions can, of
course, go both ways: where the normal rule 1s that the
packets for a given network pair should/should not be
encrypted, and the exception 1s that for this given host
(source or recipient) or host pair, the packet should not/

US RE39,360 E

S

should nonetheless be encrypted. In this embodiment, the
small size and ease of maintenance of the network tables 1s
by and large retained, while the flexibility of the hosts table

1s achieved.

If the data to be transmitted from host A to host B (or
network N1 to network N2) should not be encrypted, then
the method proceeds directly to step 270, and the packet in

question 1s transmitted unencrypted to the destination, via
the Internet (or other intervening network).

In this example, the packets are encrypted at box 250.
This 1s carded out by the tunnelling bridge TB1, according
to whichever predetermined encryption scheme was
selected, the primary requirement being that of ensuring that
TB2 1s provided with the same encryption scheme so that 1t
can decrypt the data packets. TB2 must also be provided 1n
advance with the appropriate key or keys for decryption.

The Encapsulation Header

At box 260, an encapsulation header i1s appended to the
encrypted data packet. This header can take one of several
alternative forms, according to the requirements of the user.
Several modes of packet modification can be accommodated
using the same basic data structure (but with differences in
the information that 1s appended in the encapsulation
header), such as the following:

Mode Appended information

1 Encryption key management information (itself
unencrypted) New IP header including originally
generated IP addresses of source and destination
hosts (unencrypted)

2 Encryption key management information (in encrypted

form) Tunnelling bridge 1dentifier for sender

(unencrypted) New IP header including broadcast

addresses of source and destination networks

(unencrypted)

(Same as mode 2, but without the tunnelling bridge

identifier.)

3 Encryption key management information (encrypted)

Optional: tunnelling bridge 1dentifier for sender

(unencrypted) New IP header including originally

generated IP addresses of source and destination

hosts (unencrypted)

(Same as mode 3, but without the tunnelling

bridge identifier.)

2A

3A

Data structures for modes 1, 2 and 3 are depicted in FIGS.
8, 9 and 10, respectively, wherein like reference numerals
indicate similar features, as described below. The data
structure for mode 2A 1s illustrated 1n FIG. 11, and mode 3A

may use the data structure of FIG. 8.

The data structure 402 for mode 1 1s represented 1n FIG.
8. The orniginal data 410 and original header 420 are now
encrypted, indicated as (410) and (420). Encryption key
management information 440 1s appended (1n encrypted
form) as pan of the new encapsulation header 430, along
with a new IP header 450, including the addresses of the
source and destination hosts. The information 430 includes
indicates which encryption scheme was used.

Key management information can include a variety of
data, depending upon the key management and encryption
schemes used. For instance, 1t would be appropriate to use
applicant’s Simple Key-Management for Internet Protocols

(SKIP), which 1s described 1n detail 1n the attached Appen-
dix A.

In FIGS. 7-11, the fields with reference numerals 1n
parentheses are encrypted, and the other fields are unen-

10

15

20

25

30

35

40

45

50

55

60

65

6

crypted. Thus, in FIG. 8, the original data field 410 and
address field 420 are encrypted, while the new encapsulation
header 430, including the key management information 440
and the IP header 450, 1s not encrypted.

In this embodiment, the tunnelling bridges TB1 and TB2
might not be used at all, but rather the hosts A and B could
include all the instruction, tables, etc. necessary to encrypt,
decrypt, and determine which packets are to be encrypted
and using which encryption scheme. Mode 1 allows any
intervening observer to 1dentity the source and destination
hosts, and thus does not provide the highest level of security.
It does, however, provide eflicient and automatic encryption
and decryption for data packets between hosts A and B,

without the need for additional computers to serve as TB1
and TB2.

Alternatively, 1n mode 1 field 440 could include the IP
broadcast addresses of the source and destination networks
(1nstead of that of the hosts themselves), and 1n addition may
include a code 1n the encryption key management informa-
tion indicating which encryption scheme was used. This
information would then be used by an intercepting computer
(such as a tunnelling bridge) on the destination network,
which decrypts the data packet and sends it on to the
destination host.

In mode 2, a data structure 404 1s used, and includes a new
encapsulation header 432. It includes key encryption man-
agement information 440, which 1s appended to the original
data packet 400, and both are encrypted, resulting in
encrypted fields (410), (420) and (440) shown 1n FIG. 9. A
new IP header 470 including the broadcast addresses of the
source and destination networks (not the addresses of the
hosts, as 1n field 450 1n FIG. 8) 1s appended. In addition, a
tunnelling bridge 1dentifier field 460 1s appended as part of
the encapsulation header 432. Here, fields 410, 420 and 440
in this embodiment are all encrypted, while fields 460 and
470 are not.

The tunnelling bridge 1dentifier 1dentifies the source tun-
nelling bridge, 1.e. the tunnelling bridge at the network
containing the host from which the packet was sent. The
recipient tunnelling bridge contains a tunnelling bridge
look-up table, indicating for each known tunnelling bridge
any necessary information for decryption, most notably the
decryption method and key.

An appropriate tunnelling bridge i1dentifier might be a
three-byte field, giving 224 or over 16 million unique
tunnelling bridge 1dentifiers. An arbitrarily large number of
individual tunnelling bridges may each be given a unique
identifier 1n this way, simply by making the field as large as
necessary, and indeed the field may be of a user-selected
arbitrarily variable size. If desired, a four-byte field can be
used, which will accommodate over 4 billion tunnelling
bridges, far exceeding present needs.

Using mode 2, any observer along the circuit taken by a
given data packet can discern only the tunnelling bridge
identifier and the IP broadcast addresses for the source and
destination networks.

The IP broadcast address for the destination network waill
typically be something like “129.144.0.0”, which represents
a particular network (1in this case, “Eng.Sun.COM™) but not
any specific host. Thus, at intermediate points on the route
of the packet, it can be discerned that a message 1s traveling
from, say, “washington.edu” to “Eng.Sun.COM”, and the
identification number of the receiving tunnelling bridge can
be determined, but that 1s the extent of 1t; the source and
destination hosts, the key management information, and the
contents of the data packet are all hidden.

US RE39,360 E

7

Mode 2A uses the data structure shown in FIG. 11,
wherein the IP broadcast addresses for the source and
recipient networks N1 and N2 are included in the encapsu-
lation header field 470, but no tunnelling bridge 1dentifier 1s
used. This embodiment 1s particularly suitable for networks
where there i1s only one tunnelling bridge for the entire
network, or indeed for several networks, as illustrated in

FIG. 3.

In FIG. §, a packet sent from host C to host D will first be
sent from network N4 to network NS5, and will then be
intercepted by the tunnelling bridge TB4, which intercepts
all messages entering or leaving these two networks. TB4
will encrypt the packet or not, as indicated by 1ts hosts
look-up table. The packet traverses the public network and
1s routed to network N7, first being intercepted by tunnelling
bridge TBS (which intercepts all messages entering or
leaving networks N6—N8), and at that point being decrypted
il necessary.

In this embodiment or any embodiment where a packet 1s
sent from a tunnelling bridge on a network where a single
tunnelling bridge 1s used for the entire source network or for
multiple networks which include the source network, a
tunnelling bridge 1dentifier 1s not a necessary field in the
encapsulation header. Since 1n this case only a given tun-
nelling bridge could have intercepted packets from a given
host (e.g., TB4 for host C in FIG. 5), the identity of the
source tunnelling bridge 1s unambiguous, and the destination
tunnelling bridge TBS will include a table of hosts and/or
networks cross-correlated with TB4. Having determined that
tunnelling bridge TB4 was the source tunnelling bridge, TB5
then proceeds with the correct decryption.

This approach has certain advantages, namely that it
climinates the need to “name” or number tunnelling bridges,
and reduces the sizes of the data packets by eliminating a
field. However, a tunnelling bridge i1dentifier field provides
flexibility. For instance, in FIG. 12, subnetworks N11 and
N12 are part of one larger network N10, and each subnet-
work N11 and N12 has its own assigned tunnelling bridge
(TB7 and TBS8, respectively). Thus, subnetworks N11 and
N12 can be subjected to different types ol encryption,
automatically, and that encryption can be altered at will for
one subnetwork, without altering 1t for the other.

A packet traveling from host F to host E 1n FIG. 12 will
include a source tunnelling bridge i1dentifier (TB7) so that,
when 1t reaches TB6 at network N9, 1t 1s 1dentified correctly
as having been encrypted by TB7 and not TBS8. In this way,
tunnelling bridge TB6 need maintain a table only the infor-
mation pertaining to the tunnelling bridges, and does not
need to maintain encryption/decryption specifies for the host
or network level. (Note that TB6 still maintains information
relating to whether to encrypt messages sent between host A
and host B or network N1 and network N2, as the case may
be, as discussed above.)

The tunnelling bridge 1dentifier may be used for a variety
ol other purposes relating to the source tunnelling bridge,
such as statistics recording the number of packets received
from that tunnelling bridge, their dates and times of
transmission, sizes of packets, efc.

An alternative to the use of hosts or networks tables in the
memories of the source and destination tunnelling bridges
(or source and destination hosts, as the case may be) would
be any information identifying one or more predetermined
criteria by which the source host or source tunnelling bridge
determines whether to encrypt a given data packet. Such
criteria need not merely be source and destination
information, but could include packet contents, time of

10

15

20

25

30

35

40

45

50

55

60

65

8

transmission, subject header information, user 1d., presence
of a key word (such as “encrypt”) in the body of the packet,
or other criteria.

Mode 3 uses a data structure 406 as shown in FIG. 10,
which 1s 1dentical to the data structure 402 except for the
addition of field 460 containing the tunnelling bridge
identifier, which 1s the same as the tunnelling bridge 1den-
tifier discussed above relative 1t mode 2.

In this embodiment, as 1n mode 1, field 450 includes the
original host IP addresses for the source and destination
hosts (not the addresses of the networks, as 1n mode 2), and
thus an observer of a mode 3 packet will be able to determine
both the original sender of the data packet and the intended
receiver. Either mode contains suflicient information to
route packets through an internet to recipient network’s
tunnelling bridge for decryption and ultimate delivery to the
recipient host.

Mode 3A may use the data structure shown 1n FIG. 8, 1n
conjunction with a network configuration such as those
shown 1 FIGS. 3 or 12. The mechamisms and relative
advantages are 1dentical to those described above for mode

2A, while the structure reveals the source and destination
host addresses.

Whichever encapsulation header 1s added at box 260 (sec
FIG. 6), the packet 1s, at box 270, then transmitted to the
destination network. At box 280, the destination network’s
tunnelling bridge (here, TB2 shown 1n FIG. 3) intercepts the
packet, which 1s accomplished by an 1nstruction routine by
which all packets are intercepted and inspected for encap-
sulation header information indicating encryption.

Thus, at box 290, the encapsulation header of the packet
1s read, and at box 300 1t 1s determined whether the packet
was encrypted. If a tunnelling bridge identifier forms a part
of the encapsulated packet, then the method of encryption
and decryption key are determined from the destination
tunnelling bridge’s (or destination host’s, 1n the case of
mode 1) local tables.

If no encryption was carried out on the packet, then it 1s
sent on without further action to the correct host, as 1ndi-
cated at box 340. Otherwise, 1ts encryption method 1is
determined (box 320), and the packet 1s decrypted accord-
ingly (box 330), and then sent on as in box 340.

APPENDIX A

Simple Key-Management For Internet Protocols
(SKIP) Abstract

—

There are occasions where it 1s advantageous to put
authenticity and privacy features at the network layer. The
vast majority of the privacy and authentication protocols in
the literature deal with session orniented key-management
schemes. However, many of the commonly used network
layer protocols (e.g IP and IPng) are session-less datagram
oriented protocols. We describe a key-management scheme
that 1s particularly well suited for use in conjunction with a
session-less datagram protocol like IP or IPng. We also
describe how this protocol may be used in the context of
Internet multicasting protocols. This key-management

scheme 1s designed to be plugged into the IP Security
Protocol (IPSP) or 1Png.

1.0 Overview

Any kind of scalable and robust key-management scheme
that needs to scale to the number of nodes possible 1 the
Internet needs to be based on an underlying public-key

US RE39,360 E

9

certificate based infrastructure. This 1s the direction that, e.g,
the key-management scheme for secure Internet e-mail,

Privacy Enhanced Mail or PEM [1], is taking.

The certificates used by PEM are RSA public key certifi-
cates. Use of RSA public key certificates also enable the
establishment of an authenticated session key [2,3]. (By an
RS A public key certificate, what 1s meant here 1s that the key
being certified 1s an RSA public key.)

One way to obtain authenticity and privacy at a datagram
layer like IP 1s to use RSA public key certificates. (In the
following description we use the term IP, although IP 1is
replacable by IPng in this context).

There are two ways RSA certificates can be used to
provide authenticity and privacy for a datagram protocol.
The first way 1s to use out-of-band establishment of an
authenticated session key, using one of several session key
establishment protocols. This session key can then be used
to encrypt IP data traflic. Such a scheme has the disadvan-
tage of establishing and maintaining a pseudo session state
underneath a session-less protocol. The IP source would
need to first communicate with the IP destination in order to
acquire this session key.

Also, as and when the session key needs to be changed,
the IP source and the IP destination need to communicate
again 1n order to make this happen. Each such communica-
tion 1nvolves the use of a computationally expensive public-
key operation.

The second way an RSA certificate can be used 1s to do
in-band signalling of the packet encryption key, where the
packet encryption key 1s encrypted in the recipient’s public
key. This 1s the way, e.g, PEM and other public-key based
secure e-mail systems do message encryption. Although this
avoids the session state establishment requirement, and also
does not require the two parties to communicate 1n order to
set up and change packet encryption keys, this scheme has
the disadvantage of having to carry the packet encryption
key encrypted 1n the recipient’s public key 1n every packet.

Since an RSA encrypted key would mimimally need to be
64 bytes, and can be 128 bytes, this scheme incurs the
overhead of 64-128 bytes of keying information in every
packet. (As time progresses, the RSA block size would need
to be closer to 128 bytes simply for security reasons.) Also,
as and when the packet encryption key changes, a public key
operation would need to be performed 1n order to recover the
new packet encryption key. Thus both the protocol and
computational overhead of such a scheme 1s high.

Use of certified Diflie-Hellman (DH) [4] public-keys can
avoid the pseudo session state establishment and the com-
munications requirement between the two ends 1n order to
acquire and change packet encrypting keys. Furthermore,
this scheme does not incur the overhead of carrying 64—128
bytes of keying information 1n every packet.

This kind of key-management scheme 1s better suited to
protocols like IP, because it doesn’t even require the remote
side to be up 1n order to establish and change packet
encryption keys. This scheme 1s described in more detail
below.

2.0 Simple Key-Management for Internet Protocols
(SKIP)

We stipulate that each IP based source and destination has
a certified Dithe-Hellman public key. This public-key 1is
distributed 1n the form of a certificate. The certificate can be
signed using either an RSA or DSA signature algorithm.
How the certificates are managed 1s described 1n more detail
later.

10

15

20

25

30

35

40

45

50

55

60

65

10

Thus each IP source or destination I has a secret value 1,
and a public value g**1 mod p. Similarly, IP node J has a
secret value 1 and a public value g**; mod p.

Each pair of IP source and destination I and J can acquire
a shared secret g**1) mod p. They can acquire this shared
secret without actually having to communicate, as long as
the certificate of each IP node 1s known to all the other IP
nodes. Since the public-key 1s obtained from a certificate,
one natural way for all parties to discover the relevant
public-keys 1s to distribute these certificates using a direc-
tory service.

This computable shared secret 1s used as the basis for a
key-encrypting-key to provide for IP packet based authen-
tication and encryption. Thus we call g**1) mod p the

long-term secret, and derive from 1t a key Kij. K17 15 used as
the key for a shared-key cryptosystem (SKCS) like DES or
RC2.

K1ij 1s dernived from g**11 mod p by taking the high order
key-size bits of g**1) mod p. Since g**1) mod p 1s minimally
going to be 512 bits and for greater security 1s going to be
1024 bits or higher, we can always derive enough bits for use
as Ki; which 1s a key for a SKCS. SKCS key sizes are
typically in the range of 40-256 bits.

An 1mportant point here 1s that K11 1s an implicit pair-wise
shared key. It does not need to be sent in every packet or
negotiated out-of-band. Simply by examining the source of
an IP packet, the destination IP node can compute this shared
key K11. Because this key 1s implicit, and 1s used as a master
key, 1ts length can be made as long as desired, without any
additional protocol overhead, in order to make cryptanalysis
of K17 arbitrarily dithicult.

We use Kij to encrypt a transient key, which we call Kp
(for packet key). Kp 1s then used to encrypt/authenticate an
IP packet or collection of packets. This 1s done in order to
limit the actual amount of data in the long-term key. Since
we would like to keep the long-term key for a relatively long
period of time, say one or two years, we don’t encrypt the
actual IP data traflic 1n key Kij.

Instead we only encrypt transient keys 1n this long-term
key, and use the transient keys to encrypt/authenticate IP
data traflic. This limits the amount of data encrypted 1n the
long-term key to a relatively small amount even over a long

period of time like, say, one year.

Thus the first time an IP source I, which has a secret value
1, needs to communicate with IP destination J, which has a
secret value 1, 1t computes the shared secret g**1; mod p. It
can then derive from this shared secret the long-term key
Kij. IP source 1 then generates a random key Kp and
encrypts this key using Kij. It encrypts the relevant portion
of the IP packet in key Kp (which may be the entire IP packet
or just the payload of the IP packet depending on the
next-protocol field i IPSP protected data potion).

The value of the SAID field 1s used by SKIP to indicate
the mode of processing and to identify the implicit inter-

change key. Typical modes of processing are encrypted,
encrypted-authenticated, authenticated, compression eftc.

The modes of operation are 1dentified by the upper 6 bits
of the SAID field. The meanings of these upper 6 bits 1s
specified 1n section 2.5 below on SAID derived processing

modes. The low 22 bits of the SAID field are zero.

If the next protocol field 1s IP, (in other words IPSP 1s
operating 1n encrypted-encapsulated mode), the packet looks
as follows. It sends the encrypted IP packet, the encrypted
key Kp, encapsulated 1n a clear outer IP Header.

US RE39,360 E

IP protocol = [PSP
Beginning of IPSP header

/ Kp encrypted in Kij / (typically 8—16 bytes)
/ Message Indicator (eg IV) / (typically 8 bytes)

/ Protected IPSP Payload /

/ /

In order to prepare this packet for emission on the
outbound side of IP node I, no communication was neces-
sary with IP node 1.

When IP node I recerves this packet, it also computes the
shared secret Kij and caches it for later use. (In order to do
this, 1f 1t didn’t already possess I’s certificate, it may have
obtained this from the local directory service.) Using Kij 1t

obtains Kp, and using Kp 1t obtains the original IP packet,
which 1t then delivers to the appropriate place which 1s either
a local transport entity or another outbound interface.

The Message Indicator (MI) 1s a field that 1s needed to
preserve the statelessness of the protocol. IT a single key 1s
used 1n order to encrypt multiple packets, (which 1s highly
desirable since changing the key on a per packet basis
constitutes too much overhead) then the packets need to be
decryptable regardless of lost or out-of-order packets. The
message 1ndicator field serves this purpose.

The actual content of the MI field 1s dependent on the
choice of SKCS used for Kp and its operating mode. If Kp
refers to a block cipher (e.g., DES) operating 1in Cipher-
Block-Chaiming (CBC) mode, then the MI for the first
packet encrypted in key Kp 1s the Initialization Vector (IV).
For subsequent packets, the MI 1s the last blocksize-bits of
ciphertext of the last (1n transmit order) packet. For DES or
RC2 this would be last 64 bits of the last packet. For stream
ciphers like RC4, the MI 1s simply the count of bytes that
have already been encrypted 1n key Kp (and can be 64 bits
long also).

If the source IP node (I 1n this case) decides to change the
packet encryption key Kp, the receiving IP node J can
discover this fact without having to perform a public-key
operation. It uses the cached value Kij to decrypt the
encrypted packet key Kp, and this 1s a shared-key crypto-
system operation. Thus, without requiting communication
between transmitting and recerving ends, and without neces-
sitating the use of a public-key operation, the packet
encrypting key can be changed by the transmitting side.

Since the public keys 1n the certificates are DH public
keys, the nodes themselves have no public-key signature
algorithm. This 1s not a major problem, since signing on a
per-packet basis using a public-key cryptosystem 1s too
cumbersome 1n any case. The integrity of the packets is
determined 1n a pairwise fasion using a symmetric crypto-
system.

2.1 SKIP for Packet Authentication

In order to achieve authentication in the absence of
privacy, SKIP compliant implementation use the encrypted

10

15

20

25

30

35

40

45

50

55

60

65

12

packet key Kp to encrypt a message-digest of the packet,
instead of the packet itself. This encrypted digest is
appended at the end of the data portion of the IPSP. As
before, Kij alg and Kp alg identify the two encryption
algorithms for keys K11 and Kp. MD alg 1s a 1 byte identifier
for the message digest algorithm.

This mode of operation 1s indicated by the SAID value
which 1s further specified in Section 2.x.

0 1 2 3
/ Clear IP Header /
IP protocol = IPSP
T " T SAID Beginning of IPSP header

(1 byte for each algorithm ID)

/ Kp encrypted in Kij / (typically 8—16 bytes)
/ Protected IPSP Payload /
/ /

/ Message Digest encrypted in Kp / (typically 8-16 bytes)

2.2 Intruder 1n the Middle Attacks

[l

Unauthenticated Diflie-Hellman 1s susceptible to an
intruder 1in the middle attack. To overcome this, authenti-
cated Dithe-Hellman schemes have been proposed, that
include a signature operation with the parties private signa-
ture keys.

SKIP 1s not susceptible to mtruder 1n the middle types of
attacks. This 1s because the Dithe-Hellman public param-
cters are long-term and certified. Intruder 1n the muaddle
attacks on Dithe-Hellman assume that the parties cannot
determine who the public Diflie-Hellman keys belong to.
Certified Difhie-Hellman public keys eliminate this
possibility, without requiting any exchange of messages
between the two parties or incurring the computational
overhead of large exponent exponentiations (e.g., RSA
signatures).

2.3 Storage of Cached Keys

Since the Kij values need to be cached for efliciency,
reasonable sateguards need to be taken to protect these keys.

One possible way to do this 1s to provide a hardware
device to computer, store and perform operations using these
keys. This device can ensure that there are no interfaces to
extract the key from the device.

2.4 Manual Keying

As an imterim measure, 1n the absence of certification
hierarchies, nodes may wish to employ manually exchanged
keying mformation. To handle such cases, the pair key Kij
can be the key that 1s manually set up.

Since manual re-keying 1s a slow and awkward process,
it still makes sense to use the two level keying structure, and
encrypt the packets has the same benefit as before, namely
it avoids over-exposing the pair key which 1s advantageous
to maintain over relatively long periods of time. This 1s
particularly true for high-speed network links, where 1t 1s
casy to encrypt large amounts of data over a short period of
time.

US RE39,360 E

13
2.5 Processing Modes and SAID Values

The upper 6 bits of the SAID field are used to indicate the
processing mode. The processing modes defined so far are,
encryption, authentication, compression, and packet
sequencing (for playback protection). Since none of these
modes 1s mutually exclusive, multiple bits being on indicate
the employment of all the relevant processing modes.

Bit 22 Bit 23 Bit 25

Bit 24 Bit 26 Bit 27

Bit 22=1 if packet 1s encrypted, Bit 22=0 otherwise
Bit 23=1 i1 packet 1s authenticated, Bit 23=0 otherwise

Bit 24=1 1f packet 1s compressed before encryption, Bit
24=0 otherwise,

Bit 25=1 i1 packets are sequenced, Bit 25=0 otherwise

Bits 26 and 27 are reserved for future use, and shall be 0 until
specified.

For example, to indicate that a packet 1s encrypted and
authenticated, Bits 22 and 23 shall be one.

3.0 SKIP for Multicast IP

It 1s possible to use this kind of scheme 1n conjunction
with datagram multicasting protocols like IP (or IPng)
multicast [5]. This requires key-management awareness in
the establishment and joining process of multicast groups.

In order to distribute multicast keying material, the notion
of a group owner needs to exist. When secure multicasting
to multicast address M 1s required, a group membership
creation primitive will need to establish the group secret
value Km and the membership list of addresses that are
allowed to transmit and receive encrypted multicast data-
grams to and from group address M.

The group key Km 1s not used as a packet encryption key,
but rather as the group Interchange Key (IK).

Nodes wishing to transmit/receive encrypted datagrams to
multicast address M need to acquire the group IK Km. This
1s done by sending an encrypted/authenticated request to
join primitive to the group owner. If the requesting node’s
address 1s part of the group’s membership, then the group
owner will send the IK Km, and associated lifetime infor-
mation 1n an encrypted packet, using the pairwise secure
protocol described in Section 2 above.

Transmitting nodes to group address M will randomly
generate packet encryption keys Kp, and encrypt these keys
using Km. The packet structure i1s similar to the structure
used for encrypted unicast IPSP packets, except for the fact
that the packet keys Kp are not encrypted in the pair-wise
keys K1y, but instead are encrypted using the group IK Km.
An example encrypted multicast packet 1s shown below.

10

15

20

25

30

35

40

45

50

55

60

65

0 1 2 3
/ Clear IP Header /
IP protocol = [PSP
| Ver. ‘- ----- saAD Beginning of IPSP header
| Kpalg | 3bytesRsvd
/ Kp encrypted in Km / (typically 8-16 bytes)

There are two distinct advantages of this scheme. First,
every member of the multicast group can change packet
encryption keys as often as 1t desires, without mmvolving
key-setup communications overhead involving every mem-
ber of the group.

Second, since all the packet encryption keys are different,
there 1s no, problem 1n using stream-ciphers with multicast.
This 1s because each source of encrypted traflic uses a
different key-stream and thus there 1s no key-stream reuse
problem. If all members of the multicast group used the
same packet encryption key (as e.g stipulated 1n the current
draft of 802.10 key-management), then key-seeded stream
ciphers could not be used with multicast.

How the identity of the group owner 1s established and
communicated to the participating nodes 1s left to the
application layer. However, this also needs to be done in a
secure fashion, otherwise the underlying key-management

facility can be defeated.

4.0 Management of DH Certificates

Since the nodes’ public DH values are communicated in
the form of certificates, the same sort of multi-tier certifi-
cation structure that is being deployed for PEM [6] and also
by the European PASSWORD project can be used. Namely,
there can be a Top Level Certifying Authority (TLCA)
which may well be the same the Internet Policy Registration
Authority (IPRA), Policy Certitying Authorities (PCAs) at
the second tier and organizational CAs below that.

In addition to the 1dentity certificates, which are what are
part of PEM certificate infrastructure, we also need addi-
tional authorization certificates, in order to properly track the
ownership of IP addresses. Since we would like to directly
use IP addresses 1n the DH certificates, we cannot use name
subordination principles alone (as e.g used by PEM) 1in order
to determine if a particular CA has the authority to bind a
particular IP address to a DH public value.

We can still use the X.509/PEM certificate format, since
the subject Distinguished Name (DN) 1n the certificate can
be the numeric string representation of a list of IP addresses.

Since the nodes only have DH public keys, which have no
signature capability, the nodes are themselves unable to
1ssue certificates. This means that there 1s an algorithmic
termination of a certificate path in a leaf node, unlike the
certificate hierarchy employed 1n, e.g PEM, where every leal
node 1s potentially a rogue CA.

The node certificates are 1ssued by organizational CAs
which have jurisdiction over the range of IP addresses that

US RE39,360 E

15

are being certified. The PCAs will have to perform suitable
checks (in line with the advertised policy of that PCA) to
confirm that the organization which has jurisdiction over a
range of addresses 1s 1ssued a certificate giving it the
authority to certily the DH values of individual nodes with
those addresses. This authority will be delegated 1n the form
of a authorization certificate signed by the PCA. For the
purposes of authorization, the CA’s Distinguished Name
(DN) will be bound to the range of IP addresses over which
it has jurisdiction. The CA has either an RSA or DSA
certificate 1ssued by the PCA.

An authorization certificate will also contain mnformation
about whether the CA to whom authority 1s being delegated
can sub-delegate that authority. The CA which has delegat-
able authority over a range of IP addresses can delegate
authority over part of the range to a subordinate CA, by
signing another authorization certificate using 1ts own pri-
vate key. If the authority 1s non-delegatable, then the CA
cannot delegate authority for that range of addresses.

The range of IP addresses are identified in the authoriza-
tion certificate 1 the form of a list of IP address prefix,
length pairs.

5.0X.509 Encoding of SKIP DH Certificates

5.1 Encoding of DH Public Values

The encoding of a DH Public value 1n an X.509 certificate
will be 1n the form of an INTEGER. The algorithm inden-
tifier will be as defined in PKCS #3 [7]. Thus

DHPublicKey:=INTEGER

and from PKCS #3,

AlgornthmlIdentifier ::=
SEQUENCE ¢
algorithm OBJECT IDENTIFIER
SEQUENCE {
prime INTEGER, — p
base INTEGER, — g
privateValueLength INTEGER OPTIONAL

h

with the OBJECT IDENTIFIER value being

dhKeyAgreement OBJECT IDENTIFIER ::=
{iso(1) member-body(2) US(840)
rsadsi(113549) pkes(1) 3 1}

which 1s also taken from PKCS #3.

DHPublicKey 1s what gets encapsulated as the BIT
STRING 1n SubjectPublicKeyInio of an X.509 certificate 1n

the obvious manner.

5.2 Encoding of the Distinguished Name (DN)

The certificate 1s allowed to bind multiple IP addresses to
a single public value to accommodate cases where a single
IP node has multiple IP addresses. The SEQUENCE OF
construct 1n a DN readily allows for this. What 1s needed 1s
an OBJECT IDENTIFIER {for an AttributeType speciiying
an IP address. This 1s defined here as,

10

15

20

25

30

35

40

45

50

55

60

65

16

ipAddress ATTRIBUTE WITH ATTRIBUTE-SYNTAX
PrintableString (SIZE(1..nh-ip Address))
.= {ipsec-odd 1} — Need to register this XXX
The DN in the certificate can contain multiple

of these by 1terating on the SEQUENCE OF construct of the
Relative Distinguished Name Sequence.

The Printable string contains either the hexadecimal rep-
resentation or standard dot notation representation of an IP
address.

5.3 Encoding of an Authorization Certificate

An authorization certificate 1s associated with each CA

[

below the PCA level. The authorization certificate in effect
entitles a CA to bind IP addresses to DH public keys.

6.0 Conclusions

We have described a scheme, Simple Key-Management
for Internet Protocols (SKIP) that 1s particularly well suited
to connectionless datagram protocols like IP and 1ts replace-
ment candidate SIPP. Both the protocol and computational
overheads of this scheme are relatively low. In-band sig-
nalled keys incur the length overhead of the block size of a
shared-key cipher. Also, setting and changing packet
encrypting keys mvolves only a shared-key cipher opera-
tion. Yet the scheme has the scalability and robustness of a
public-key certificate based infrastructure.

A major advantage of this scheme 1s that establishing and
changing packet encrypting keys requires no communica-
tion between sending and receiving nodes and no establish-
ment of a pseudo-session state between the two sides 1s
required.

In many ways the key-management scheme here has
structural similarities with the scheme used by PEM [1].
Both use the concept of an inter-change key (1in our case that
1s the pair keys Kij) and data encrypting keys (the packet
encryption keys Kp). By using the Implicit shared secret
property of long-term DH public values, and treating the
resulting keys as keys for a SKCS, we have reduced the
protocol overhead substantially as compared to the overhead
of PEM when used in conjunction with an asymmetric
key-management system.

We have also described how this scheme may be used 1n
conjunction with datagram multicast protocols, allowing a
single encrypted datagram to be multicast to all the receiving
nodes.

References

1] IETF PEM RFCs 1421-1424

2] A. Aziz, W. Diflie, “Privacy and Authentication for
Wireless LANs”, IEEE Personal Communications, Feb
1994,

3] W. Diflie, M. Wiener, P. Oorschot, “Authentication and
Authenticated Key Exchanges”, in Designs Codes and
Cryptography, Kluwer Academic Publishers, 1991.

4] W. Diflie, M. Hellman, “New Directions in

Cryptography”, IEEE Transactions on Information

Theory
5] S. Deering, “IP Multicast”, Ref needed

6] S. Kent, “Certificate Based Key Management,” RFC
1422 for PEM

[7] “Public Key Cryptography Standards” 1-10 from RSA

Data Security Inc., Redwood City, Calif.

US RE39,360 E

17

Each of the above references 1s incorporated into this
Appendix A by reference.

What 1s claimed 1s:

1. A method for transmitting and receiving packets of data
via [a] ar internetwork from a first host computer on a first
computer network to a second host computer on a second
computer network, the first and second computer networks
including, respectively, first and second bridge computers,
cach of said first and second host computers and first and
second bridge computers including a processor and a
memory for storing instructions for execution by the
processor, each of said first and second bridge computers
turther including memory for storing at least one predeter-
mined encryption/decryption mechanism and information
identifyving a predetermined plurality of host computers as
hosts requiring security for packets transmitted between
them, the method being [carded] carried out [be] by means
of the instructions stored in said respective memories and
including the steps of:

(1) generating, by the first host computer, a first data
packet for transmission to the second host computer, a
portion of the first data packet including information
representing an internetwork address of the first host
computer and an internetwork address of the second
host computer;

(2) 1n the first bridge computer, mtercepting the first data
packet and determining whether the first and second
host computers are among the predetermined plurality
of host computers for which security 1s required, and 1f
not, proceeding to step 5, and 11 so, proceeding to step
3;

(3) encrypting the first data packet in the first bridge
computer;

(4) 1n the first bridge computer, generating and appending
to the encrypted first data packet an encapsulation
header, including;

(a) key management information [identifying] provid-
ing a mechanism for identifving the predetermined
encryption method, and

(b) a new address header representing the source and
destination for the first data packet, hereby generat-
ing a modified first data packet;

(3) transmitting the first data packet or the modified first
data packet Ifrom the first bridge computer via the

internetwork to the second computer network;

(6) intercepting the first data packet or the modified first
data packet at the second bridge computer;

(7) 1 the second bridge computer, if the encapsulation
header has been appended to the first data packet,
reading the encapsulation header, and determining
therefrom whether the first data packet was encrypted,
[and if not, proceeding to step 10, and if so, proceeding
to step 8] and if it is determined that the first data
packet has been encrypted, proceeding to step 8 and
otherwise proceeding to step 10;

(8) 1n the second brnidge computer, determining which
encryption mechanism was used to encrypt the first
data packet;

(9) decrypting the first data packet by the second bridge
computer;

(10) transmitting the first data packet from the second
bridge computer to the second host computer]|,]; and

(11) receiving the unencrypted first data packet at the

second host computer.

2. The method of claim 1, wherein the new address header
tor the modified first data packet includes the internetwork
broadcast addresses of the first and second computer net-
works.

10

15

20

25

30

35

40

45

50

55

60

65

18

3. The method of claim 2, wherein the new address header
for the modified first data packet includes an 1dentifier of the
second bridge computer.

4. The method of claim 1, wherein the new address header
of the modified first data packet includes the address of the
second host computer.

5. The method of claim 4, wherein the new address header
for the modified first data packet includes an identifier of the
second bridge computer.

6. A system for automatically encrypting and decrypting
data packets transmitted from a first host computer on a first
computer network to a second host computer on a second
computer network, including:

a first bridge computer coupled to the first computer
network for intercepting data packets transmitted from
said first computer network, the first bridge computer
including a first processor and a first memory storing
istructions for executing encryption of data packets
according to a predetermined encryption/decryption
mechanism;

a second bridge computer coupled to the second computer
network for intercepting data packets transmitted to
said second computer network, the second bridge com-
puter 1cluding a second processor and a second
memory storing instructions for executing decryption
of the data packets;

said first host computer including a third processor and a
third memory including instructions for transmitting a
first [said] data packet from said first to said second
host;

a first table stored 1n said first memory including a
correlation of at least one of the first host computer and
the first network with one of the second host computer
and the second network, respectively;

instructions stored in said first memory for intercepting
said first data packet before departure from said first
network, determining whether said correlation 1is
present 1n said first table, and 1f so, then executing
encryption of said first data packet according to said
predetermined encryption/decryption mechanism, gen-
crating a new address header including a mechanism
for identifying said predetermined encryption/
decryption mechanism and appending said new address
header to said encrypted first data packet, thereby
generating a modified first data packet, and transmitting
said modified data packet on to the second host com-
puter;

a second table stoved in said second memory including a
correlation of at least one of the first host computer and
the first network with one of the second host computer
and the second network, respectively; and

instruction stored 1n said second memory for intercepting

said modified first data packet upon arrival at said

second network, determining whether said correlation

1s present 1n said second table, and if so, then executing

decryption of said first data packet according to said

predetermined encryption/decryption mechanism, and

transmitting the first data packet to the second host
computer.

7. [The method of claim 6,] A4 system for automatically

encrypting and decrypting data packets transmitted from a

first host computer on a first computer network to a second

host computer on a second computer network, including:

a first bridge computer coupled to the first computer
network for intercepting data packets transmitted from
said first computer network, the first bridge computer

US RE39,360 E

19

including a first processor and a first memory stoving
instructions for executing encryption of data packets
according to a predetermined encryption/decryption
mechanism;

a second bridge computer coupled to the second computer
network for intercepting data packets transmitted to
said second computer network, the second bridge com-
puter including a second processor and a second

memory storving instructions for executing decryption
of the data packets;

said first host computer including a third processor and a

thivd memory including instructions for transmitting a
fivst data packet from said first host to said second host;

a first table stored in said first memory including a
correlation of at least one of the first host computer and
the first network with one of the second host computer
and the second network, respectively;

instructions stored in said first memory for intercepting
said first data packet before departure from said first
network, determining whether said correlation is
present in said first table, and if so, then executing
encryption of said first data packet according to said
predetermined encryption/decryption mechanism, gen-
erating a new address header and appending said new
address header to said encrypted first data packet,
thereby genervating a modified first data packet, and
transmitting said modified first data packet on to the
second host computer, wherein said new address header
includes [the] internetwork broadcast addresses of the
first and second computer networks]|.];

a second table stored in said second memory including a
correlation of at least one of the first host computer and
the first network with one of the second host computer
and the second network, respectively,; and

instructions stored in said second memory for intercepting
said modified first data packet upon arrival at said
second network, determining whether said correlation
is present in said second table, and if so, then executing
decryption of said first data packet according to said
predetermined encryption/decvyption mechanism, and
transmitting the first data packet to the second host
compulier.
8. The method of claim 7, wherein said new address
header includes an 1dentifier of the second bridge computer.
9. The method of claim 6, wherein said new address
header includes the address of the second host computer.
10. The method of claim 9, wherein said new address
header includes an 1dentifier of the second bridge computer.
11. A method for transmitting and receiving packets of
data via an internetwork from a first host computer on a {irst
computer network to a second host computer on a second
computer network, [the first and second computer
networks,] each of said first and second host computer
networks, each of said first and second host computers
including a processor and a memory for storing instructions
for execution by the processor, each said memory storing at
least Jon] a predetermined encryption/decryption mecha-
nism and a source/destination table identifying a predeter-
mined plurality of sources and destinations requiring secu-
rity for packets transmitted between them, the method being
[carded] carried out by means of the instructions stored in
said respective memories and including the steps of:

(1) generating, by the first host computer, a first data
packet for transmission to the second host computer, a
portion of the first data packet including information
representing an mternetwork address of a source of the

5

10

15

20

25

30

35

40

45

50

55

60

65

20

first data packet and an internetwork address of a
destination of the first data packet;

(2) 1n the first host computer, determining whether the
source and destination of the first data packet are
among the predetermined plurality of sources and des-
tinations 1dentified 1n said source/destination table for
which security 1s required, and 1f not, proceeding to
step 5, and 1f so, proceeding to step 3;

(3) encrypting the first data packet in the first host
computer;

(4) 1n the first host computer, generating and appending to
the encrypted first data packet an encapsulation header,
including:

(a) key management information providing a mecha-
nism for i1dentifying the predetermined encryption
method, and

(b) a new address header i1dentifying the source and
destination for the first data packet, hereby generat-
ing a modified first data packet;

(5) transmitting the first data packet or the modified first
data packet from the first host computer via the inter-
network to the second computer network;

(6) 1n the second host computer, if the encapsulation
header has been appended to the first data packet,
reading the encapsulation header, and determining
therefrom whether the first data packet was encrypted,
and if [not] the first data packet was not encrypted,
ending the method, and if [so] the first data packet was
encrypted, proceeding to step 7;

(7) 1n the second host computer, determining which

encryption mechamism was used to encrypt the first
data packet; and

(8) decrypting the first data packet by the second host

computer.

12. The method of claim 11, wherein the new address
header for the modified first data packet includes internet-
work broadcast addresses of the first and second computer
networks.

13. The method of claim 11, wherein the source/
destination table includes data identifying internetwork
addresses of the first and second host computers.

14. A system for automatically encrypting and decrypting
data packets transmitted from a first host computer on a first
computer network [and having a first host computer on a first
computer network and], tze first host computer having a first
processor and a first memory, via an internetwork to a
second host computer on a second computer network [and
having a second host computer on a second computer
network and], the second host computer having a second
processor and a second memory, the system including:

security data stored in said first and second memories
indicating that data packets meeting at least one pre-
determined criterion are to be encrypted;

a predetermined encryption/decryption mechanism stored
in said first and second memories;

a decryption key stored in said second memory;

instructions stored in said first memory for determining
whether to encrypt ome or more data packets, by
determining whether said at least one predetermined
criterion is met by said [data packet] ore or more data
packets;

instructions stored in said first memory for executing
encryption according to said predetermined encryption/
decryption mechanism of at least a first [said data
packet] ore of said one or more data packets,when said

US RE39,360 E

21

at least one predetermined criterion 1s met, for gener-
ating a new address header for said first data packet and
for appending an encapsulation header to said first data
packet and transmitting said first data packet to said
second host, said new address header identifving
broadcast addvesses of the first and second computer
networks, said encapsulation header including at least
sald new address header; and

instructions stored 1n said second memory for receiving
said first data packet, determining whether 1t has been
encrypted by reference to said security data i said
second memory, and 1f so then determining which
encryption/decryption mechanism was used for
encryption, and decrypting said first data packet by use
of said decryption key.

15. The system of claim 14, wherein:

said security data comprises correlation data stored in
each of said first and second memories [identifying at
least one of said first and second memories] identifying
at least one of said first host computer and said {first
network correlated with at least one of said second host
computer and said second network;

the system further including instructions stored in said
first memory for determining whether to encrypt data
packets by inspecting for a match between source and
destination addresses of said data packets with said
correlation data.

16. A system for automatically encrypting data packets for
transmission from a first host computer on a first computer
network to a second host computer on a second computer
network, said first host computer including a first processor
and a first memory including instructions for transmitting
said data packets from said first host to said second host, the
system 1ncluding:

a bridge computer coupled to the first computer network
for intercepting at least a first [said] data packet trans-
mitted from said first computer network, said bridge
computer including a second processor and a second
memory storing instructions for executing encryption
of said first data packet according to a predetermined
encryption/decryption mechanism;

information stored in said second memory correlating at
least one of the first host computer and the first network
with one of the second host computer and the second
network, respectively; and

instructions stored 1n said second memory for intercepting,
said first data packet before departure from said first
network, determining whether said correlation 1s
present, and if so, then executing encryption of said
first data packet according to said predetermined
encryption/decryption mechanism, generating a new
address header including a mechanism for identifving
said predetermined encryption/decvyption mechanism
and appending said new address header to said first data
packet, thereby generating a modified first data packet
on to the second host computer.

17. A method for transmitting packets of data via an
internetwork from a first host computer on a {irst computer
network to a second host computer on a second computer
network, the first computer networks including a first bridge
computer, each of said first and second host computers and
said bridge computer further including memory storing at
least one predetermined encryption/decryption mechanism
and information identitying a predetermined plurality of
host computers as hosts requiring security for packets trans-
mitted between them, the method being carried out accord-

10

15

20

25

30

35

40

45

50

55

60

65

22

ing to the istructions stored 1n said respective memories
and including the steps of:

(1) generating, by the first host computer, a first data
packet for transmission to the second host computer, a
portion of the first data packet including information
representing an internetwork address of the first host
computer and an internetwork address of the second
host computer;

(2) 1n the first bridge computer, itercepting the first data
packet and determining whether the first and second
host computers are among the predetermined plurality
of host computers for which security 1s required, and 1f
not, proceeding to step 3, and 11 so, proceeding to step
3;

(3) encrypting the first data packet in the first bridge
computer;

(4) 1n the first bridge computer, generating and appending
to the first data packet an encapsulation header, includ-
ng:

(a) key management information providing a mecha-
nism for i1dentifying the predetermined encryption
method, and

(b) a new address header representing the source and
destination for the data packet, thereby generating a
modified first data packet; and

(5) transmitting the first data packet or the modified first
data packet tfrom the first bridge computer via the
internetwork to the second computer network.

18. A system for automatically decrypting data packets
transmitted from a first computer to a second computer, the
system comprising:

a bridge coupled to the second computer for intevcepting

a data packet from the first computer, the data packet
having an address header and a body, the address
header including broadcast addresses of the first and
second computers, the bridge including a processor
and a memory that stores instructions for decrypting
data packets;

information storved in the memory of the bridge correlat-
ing the first and second computers; and

instructions stored in the memory for intercepting the data
packet, determining whether the information stored in
the memory of the bridge correlates the first and second
computers, and if so, decrypting at least a portion of the
data packet to generate a new data packet including a
new address header, and transmitting the new data
packet onto the second computer.

19. The system of claim 18, wherein the data packet
includes the new data packet in encrypted form.

20. The method of claim 18, wherein the new address
header includes information indicating the first computer is
a source of the new data packet and the second computer is
a destination of the new data packet.

21. A system for automatically decrypting data packets
transmitted from a first computer to a second computer, the
system comprising.

a bridge coupled to the second computer for intevcepting

a data packet from the first computer, the data packet
including a header stoving key management informa-
tion providing a mechanism for identifying an encryp-
tion method used to encrypt the data packet, the bridge
including a processor and a memory that storves
instructions for decrypting data packets;

information stoved in the memory of the bridge correlat-
ing the first and second computers; and

US RE39,360 E

23

instructions stored in the memory for intercepting the data
packet, determining whether the information stored in
the memory of the bridge correlates the first and second
computers, and if so, decrypting the data packet to
generate a new data packet including a new address
header, and transmitting the new data packet onto the
second computer.

22. A method for receiving data packets from a first
computer to a second computer through a bridge including
a processor and a memory that stores instructions for
decrypting data packets and information correlating the first
and second computers, the method being carvied out accorvd-
ing to instructions in the memory of the bridge and com-
prising:

intercepting a data packet from the first computer to the

second computer, the data packet including an address
header and a body, the address header including
broadcast addresses of the first and second computers
and the body including address information represent-
ing an internetwork address of the first computer and
an internetwork addrvess of the second computer,
wherein the address information is encrypted;

determining whether the information stored in the
memory of the bridge corrvelates the first and second
computers, and if so, decrypting the data packet to
generate a new data packet including a new address
header; and

transmitting the new data packet on to the second com-

puter.

23. The method of claim 22, wherein the body includes the
new data packet in encrypted form.

24. The method of claim 22, wherein the new address
header includes information indicating the first computer is
a source of the new data packet and the second computer is
a destination of the new data packet.

25. A method for receiving data packets from a first
computer to a second computer through a bridge including
a processov and a memory that stores instructions for
decrypting data packets and information correlating the first
and second computers, the method being carried out accord-
ing to instructions in the memory of the bridge and com-
prising:

intercepting a data packet from the first computer to the

second computer, the data packet including information
representing an internetwork address of the first com-
puter and an internetwork address of the second com-
puter;

determining whether the information stored in the

memory of the bridge corrvelates the first and second
computers, and if so, decrypting the data packet to
generate a new data packet including a new address
header; and

transmitting the new data packet on to the second com-
puter;

wherein the data packet includes a header storing key
management information providing a mechanism for
identifving an encryption method used to encrypt the

new data packet.
26. A method of encrypting data packets, comprising.

receiving a data packet from a source for a destination,
the data packet including a header section and a data
section, the header section storing a source identifier
and a destination identifier,

determining whether the data packet should be encrypted
upon reference to at least one of the source and
destination identifiers;

10

15

20

25

30

35

40

45

50

55

60

65

24

if the data packet should be encrypted, encrypting the
data packet to produce an encrypted data packet; and

generating a new address header and appending the new
address header to the encrypted data packet, theveby
generating a modified data packet;

wherein the new addrvess header includes a mechanism for
identifving an encryption method used to generate the
encrypted data packet.

27. The method of claim 26, further comprising transmit-
ting the modified data packet to the destination.

28. The method of claim 26, wherein the determining
whether the data packet should be encrypted comprises
accessing stored information that indicates by presence or
absence of the source identifier that data packets from the
source should be encrypted.

29. The method of claim 26, wherein the determining
whether the data packet should be encrypted comprises
accessing stored information that indicates by presence or
absence of a correlation between the source and destination

identifiers that data packets from the source for the desti-
nation should be encrypted.

30. The method of claim 26, wherein the encrypted data
packet includes an encrypted data packet header section and
an encrypted data packet data section, the encrypted data
packet header section including the header section of the
data packet after encryption and the encrypted data packet
data section including the data section of the data packet
after encryption, the modified data packet including a
header portion stoving the new address header and a data
portion storing the encrypted data packet.

31. The method of claim 30, wherein the encrypted data
packet header section stores the source and destination
identifiers.

32. The method of claim 26, wherein the source is a host
compuiter or a network.

33. The method of claim 26, wherein the destination is a
host computer or a network.

34. A computer program product adapted for encrypting
data packets, comprising:

comptiter code that when executed causes the reception of

a data packet from a source for a destination, the data
packet including a header section and a data section,
and the header section storing a source identifier and
a destination identifier,

compuiter code that when executed causes the determina-
tion of whether the data packet should be encrypted
upon reference to at least one of the source and
destination identifiers;

computer code that when executed, if the data packet
should be encrypted, causes the encryption of the data
packet to produce an encrypted data packet,

compuiter code that when executed causes the generation
of a new address header and appends the new address
header to the encrypted data packet, the new address
header including a mechanism for identifying an
encryption method used to generate the encrypted data
packet, thereby generating a modified data packet; and

a computer veadable medium that stoves the computer

codes.

35. The computer program product of claim 34, wherein
the computer rveadable medium is a memory, random-
access-memory, read-only-memory, disk dvive, or CD-ROM.

36. A computer system for encrypting data packets, com-
prising:

a processor,

a computer readable medium coupled to the processor

and storing a computer program COmMprising:

US RE39,360 E

25

comptuter code that when executed by the processor
causes the processor to rveceive a data packet from a
source for a destination, the data packet including a
header section and a data section, and the header
section storing a source identifier and a destination 5
identifier,

computer code that when executed by the processor
catises the processor to determine whether the data
packet should be encrypted upon reference to at least
one of the source and destination identifiers;

computer code that when executed by the processor
causes the processor to encrypt the data packet to
produce an encrypted data packet when it is deter-
mined that the data packet should be encrypted; and

comptuter code that when executed by the processor
causes the processor to generate a new address
header and append the new address header to the
encrypted data packet, theveby generating a modi-
fied data packet,

wherein the new address header includes a mechanism
for identifying an encryption method used to gener-
ate the encrypted data packet.

37. The computer program product of claim 36, wherein
the computer readable medium is a memory, random-
access-memory, read-only-memory, disk drive, or CD-ROM.

38. A system for automatically encrypting and decrypting
data packets transmitted from a first host computer on a first
computer network, the first host computer having a first
processor and a first memory, via an internetwork to a
second host computer on a second computer network, the
second host computer having a second processor and a
second memory, the system including:

security data stoved in said first and second memories
indicating that data packets meeting at least one pre-
determined criterion are to be encrypted,

10

15

20

25

30

. . . . L. 35
instructions stoved in said first memory for determining

whether to encrypt omne ov more data packets, by
determining whether said at least one predetermined
criterion is met by said one ov movre data packets;

instructions stored in said first memory for executing ,,
encryption of at least a first one of said one or more
data packets according to a predetermined encryption/
decryption mechanism, when said at least one prede-
termined criterion is met, for generating a new address
header for said first data packet and for appending an
encapsulation header to said first data packet and
transmitting said first data packet to said second host,
said encapsulation header including said new address
header and a mechanism for identifving said predeter-
mined encryption/decryption mechanism;, 50

instructions stored in said second memory for receiving
said first data packet, determining whether it has been
encrypted by veference to said security data in said
second memory, and if so then determining which
encryption/decryption mechanism was used for ss
encryption, and decrypting said first data packet by use
of said encryption/decryption mechanism.

39. The system as recited in claim 38, wherein said
predetermined encryption/decryption mechanism is pro-
vided in encrypted form within said encapsulation header.

40. The system of claim 15, wherein said correlation data
includes:

encryption rules identifving source and destination net-
works to and from which packets are to be encrypted;
and 65

host information indicating exceptions to the encryption
rules.

26

41. A system for automatically encrypting data packets for
transmission from a first host computer on a first computer
network to a second host computer on a second compiiter
network, said first host computer including a first processor
and a first memory including instructions for transmitting
said data packets from said first host to said second host, the
system including:

a bridge computer coupled to the first computer network
Jor intercepting at least a first data packet transmitted
from said first computer network, said bridge computer
including a second processov and a second memory
storing instructions for executing encryption of said
first data packet according to a predetermined
encryption/decryption mechanism;

information stoved in said second memory correlating at
least one of the first host computer and the first network
with one of the second host computer and the second
network, respectively; and

instructions stoved in said second memory for intercepting
said first data packet beforve departure from said first
network, determining whether said correlation is
present, and if so, then executing encryption of said first
data packet according to said predetermined
encryption/decryption mechanism, generating a new
address header including the internetwork broadcast
addrvesses of the first and second computer networks
and appending said new addvess header to said first
data packet, theveby generating a modified first data
packet on to the second host computer.

42. A computer program product adapted for encrypting

data packets, comprising:

computer code that when executed on a computer causes
the computer to veceive a data packet from a source for
a destination, the data packet including a header
section and a data section, and the header section
storing a source identifier and a destination identifier,

compuiter code that when executed on a computer causes
the computer to determine whether the data packet
should be encrypted upon reference to at least one of
the source and destination identifiers;

computer code that when executed on a computer causes
the computer to, if the data packet should be encrypted,
encrypt the data packet to produce an encrypted data
packet;

compuiter code that when executed on a computer causes
the computer to generate a new addrvess header storing
at least one of a broadcast address associated with the
source and a broadcast addvess associated with the
destination, and append the new address header to the
encrypted data packet, theveby generating a modified
data packet; and

a computer veadable medium that stoves the computer
codes.
43. A computer system for encrypting data packets, com-
prising:
a processor;
a computer readable medium coupled to the processor
storing a computer program COmprising.
computer code that when executed by the processor
causes the processor to receive a data packet from a
source for a destination, the data packet including a
header section and a data section, the header section
storing a source identifier and a destination identi-
fier;
computer code that when executed by the processor
causes the processor to determine whether the data

US RE39,360 E

27

packet should be encrypted upon reference to at least
one of the source and destination identifiers;

computer code that when executed by the processor
catises the processor to if the data packet should be
encrypted, encrypt the data packet to produce an
encrypted data packet; and

computer code that when executed by the processor
causes the processor to generate a new address
header storing at least one of a broadcast address
associated the source and a broadcast address asso-
ciated with the destination, and append the new
address header to the encrypted data packet, thereby
generating a modified data packet.

10

28

44. The system as recited in claim 16, wherein the
mechanism indirectly references said predetermined
encryption/decryption mechanism.

45. The system as rvecited in claim 20, wherein the
mechanism indivectly identifies the encryption method.

46. The method as recited in claim 26, wherein the
mechanism indirvectly identifies the encryption method.

47. The computer program product as recited in claim 34,
wherein the mechanism indivectly identifies the encryption

method.
48. The computer system as rvecited in claim 36, wherein

the mechanism indirvectly identifies the encryption method.

	Front Page
	Drawings
	Specification
	Claims

