(19) United States

12) Reissued Patent
Comer et al.

(10) Patent Number:
45) Date of Reissued Patent:

USOORE39326E

US RE39,326 K
Oct. 3, 2006

(54) METHOD AND APPARATUS FOR
SUGGESTING COMPLETIONS FOR A
PARTIALLY ENTERED DATA ITEM BASED
ON PREVIOUSLY-ENTERED, ASSOCIATED
DATA ITEMS

(75) Inventors: Ross Ward Comer, Bothell, WA (US);
Adam Brett Stein, Bellevue, WA (US);

David Russell Williams, Jr., Issaquah,
WA (US)

(73) Assignee: Microsoft Corporation, Redmond, WA
(US)

(21) Appl. No.: 09/728,000

(22) Filed: Dec. 1, 2000
Related U.S. Patent Documents

Reissue of:
(64) Patent No.: 5,845,300

Issued: Dec. 1, 1998

Appl. No.: 08/658.798

Filed: Jun. 5, 1996
(51) Int. CI.

GO6F 1727 (2006.01)
(52) US.CL .o, 707/508
(58) Field of Classification Search 715/503-508,

715/811; 707/100-101, 104.1
See application file for complete search history.

(56) References Cited

U.S. PATENT DOCUMENTS

5,495,565 A * 2/1996 Millard et al. 707/506
5,640,577 A * 6/1997 Scharmere 707/507
5,666,502 A * 9/1997 Capps .coceveveririnininnnnnn. 345/811
5,682,538 A * 10/1997 Lemire et al. 707/507
5,745,712 A * 4/1998 Turpin et al. 345/763

OTHER PUBLICATTIONS

Smith, Do It Yoursell Database, MacUser, v.9, n.11, p.
126(8), Nov. 1993 *

Sullivan, Intuit’s Upgrade Quickens Pace of Personal
Finance, MacWeek, v.7, n.29, p. 52(2), Jul. 19, 1993 *
EDGE, Personal Finance: Quicken Adds Over 100 Improve-
ments, EDGE, v.3, n.121, p. 7(1), Sep. 14, 1992.*

Novell, Quattro Pro User Guide. p. 4749, 1994 *
Quicken Version 5 for Windows, manufactured by Intuait,
Inc. It 1s Applicants understanding that this product provides
an automatic entry for data items in a fixed data structure
environment. Based on the Copyright notice of 1985-1995,
this reference may have been available for purchase more
than 1 year prior to the filing date of Jun. 35, 1996. (4 pages).*
Microsolt Access for Windows ’95, manufactured by
Microsolt Corporation. It 1s Applicants understanding that
this product provides automatic capability for selecting data
entries from a pre—defined or fixed list. Based on the
Copyright notice of 1989-1995 this reference may have

been available for purchase more than 1 year prior to the
filing date of Jun. 5, 1996. (4 pages).*

(Continued)

Primary Examiner—Sanjiv Shah
(74) Attorney, Agent, or Firm—Merchant & Gould P.C.

(57) ABSTRACT

A system for improving the efliciency and reliability of
entering data into a database or spreadsheet computer pro-
gram by providing suggested completions to the data entry
operator. The operator mvokes an edit mode (200) for a
particular data area and a dynamic list of possible comple-
tions 1s generated (210) based on other data 1tems associated
with the edited data area. The list of possible completions 1s
dynamic because 1t changes to reflect the status of the
current data within the database or spreadsheet. As the
operator enters characters of a data item (220), the list of
completed data 1tems 1s searched for an entry that matches
the entered data item (230). If a match 1s found then the
matching item 1s displayed to the data entry operator as a
suggested completion (240). The data entry operator can
then elect to accept the suggested completion (250) or to
continue entering the data item.

60 Claims, 17 Drawing Sheets

US RE39,326 E
Page 2

OTHER PUBLICATIONS available for purchase more than 1 year prior to the filing

Microsott Money Version 3.0. Manufactured by Microsoft date of Jun. 5, 1996. (no pages).”

Corporation. It 1s Applicant’s understanding that this prod-
uct contains an automatic data entry feature, and has been * cited by examiner

US RE39,326 E

Sheet 1 of 17

Oct. 3, 2006

U.S. Patent

¥y WvHO0Ud | € WrdO0ud
NOILYOIddV | NOILVOI 1ddV

-— .
“~ I-._.-I_-.I.I_.-i
I._-._I.‘..l__l.

_..hlm.

€ g
NILNAWOOI e >

JIOW3Y | MYOMIAN - -==-~~----~
_ V3HV 3AIM

cl

JOVHYALNI JOVHYIINI

>130VANTIN * ;

. 150d JARA MSIa ARG : _

POMLIRY | [ROMLaN AddO1d |] disia ouvH . "

-0 GZE NOILVOINddV]] :

r 4 i m 81 ;
— . SNA W3LSAS “

e emmm oo s — W3LSAS ||

pg L_HLNIO " 98 oNIIV¥AdO ||
B - S
ONILVEIdO _ .

e 29—Q| (Ndl) LINN o _
GIOVSSIN § | SNOULONNS |) o:zo_z_ | H3ldvav ONISSID0Nd 6L SOl]
NIV _ _ i L) |

e/t LA m..wm pl AHOWIN WALSAS|!
) _

e demmmvmcmcccmmmmmm—m e m - J

US RE39,326 E

Sheet 2 of 17

Oct. 3, 2006

U.S. Patent

llllﬁﬂ 90!

anbea] |euoneN 2J02G anBeo ueospawy Jeap .
S0 3 SAIY3S THOM IN303d

2] 3jal 5 — 18]
XIo—] dof mopu E1eG spool jeuuo] Masu] maiA wpI ond G

UL 7777 AR s s AU X,

e¢ Ol

ﬂ_ oI ssmsss— O (5725 S S e S R S S AL S AN n B B &

“- S|eulpien @ﬂ Slomely) ¢861 |6}
pEL “m- - osoliyd SOlONO €6} {8l
zer M seipeq siebl) ve6l | L1
s - sfeutpeq) spefoy 5861 |91
gzl _—- SI9 X0§ pay - 0861 |51
921 __—- sjeujpJen sum) | 1861 [¥1
. _—“ __ ~ ss9bpog sy | 886l [c1
zel _- syuelo SV 686l [zt
021 _4—- Spay sy 0661 |11
i _f-_- saAeig - suml 661
9 _ﬁ“ _ seneig - D ~sher enig Z661 m
Pl “_- selljiyd 2 W D sker onig | e66L |8
A L]

|

G

US RE39,326 E

Sheet 3 of 17

a_h.O_"_

—

S1amMa.g
S9lOO

s19b1 Ik

m_mmom_

X0g poy

e

SUIM{
S,V
SA

SV
SUIM]

sAep a2nig

ﬁ .
l- m._mc_u....m.w
ver M sellliud
Zel —“ salped
o5 _“- sjeuipjed
gzt Y- SET
o L sfeulpsen
) _—- slabpoq
221 “““ el
0z1 i} Spoy
811 _*—- SoARIg
oLl _—“ senelg
pii ““- mm__*_;n_

cli

sAep anig
suelpul

Oct. 3, 2006

U.S. Patent

%&\\\\

anBean |euolenN

OlL
anBbeo} uediouly

801 S31IH3S ATUHOM ._.Zm_Omm

—~3 [3f4a] 95

diod moputfA ejed sjoo] EEE tmmc_ MIIA %m_ m_m (X

T e sk R s s

= A —

JF i -aF i O Ay ol

—

001

\t._-

US RE39,326 E

~ speupJen
salliid
saiped
sjeuipJed

rEL

cél
OtL

b} [°]

- .. ——

siomalg 2o6l |61
e | es6L E
s1abi | 861 h

sefoy | seel |9

s1oN
s|euipien

8¢l
9ci

m._mm_uoo
sjueln)

yecl
col

X0S PoY 086l |SI
SUIML - | 186} E
SV 8861 m

Sy 686l |z}

Sheet 4 of 17

spay
saaelg
saAelg

wm____.._&

7%

0cl
8li
9l
vil
A

Er b SRl —EEm S v . st sl e —

j |

S,V 0661 |1
SUML E_
sker anig 2661 m
skep an|g £661

sueipu| mmm_. h

Oct. 3, 2006

Oil

“1_'“ oI . Wiy, Skl el ol el . ST i, gl

anbean jeuojjeN onBeoa ueolBswy

801 mw.mwm JTHOM LNIOI

| 3
“dipH mopuiil e1ed sjool yewuoJ yesuf meiA wp3 epd [

)
I

§N\\\k\\w\\\\\\\\\\\\\\\\\\\\\\\\\§\\\\\\\\\\§\

U.S. Patent
><

J

\ﬁ\hﬂs‘\\\ Qﬁ\h@\\\\\\\\ PIILLLIN LIS
7 -

US RE39,326 E

| i l-
- B

K

sjeuipied

salliud
saJiped

sjeuipJe)
S1en

Sheet 5 of 17

_— ——— — —,

el 7 wrmm— —w —Tww = T

P£ Old
SY198USY0189US Y GIoaUS y 108US Y £198US § CI88US ¥ LI9SUS\[[a0
SJoMalg 2061 E

S9|oUD

L

bl el

T ve6!

/

\

7\

sjeuipsen

6\ |81
2
sieAoy 5861 |91
st

sJabpoQ

e

Hvs

S{ueld)

Spoy
saAelg

- . - - —rr = - . - ———— s == —— J— -
- r o - - - - » 1 - Ty, 1w - + ‘m
3
9
- |
-
o
o
r
o

Oct. 3, 2006

e e w

_xl
ool {[xJOI=

"-‘W

U.S. Patent

salljild

pie

anbeo] jeuoneN

~ xospay | 986l

- suiml 1861 -
X, 8861
sy 6961

)
\/

VRV

EA

V&

soAelg

v

\/

S
/.

u
0

\

SUIML L66 |
sAep an|g 266l | 6

v

I N

24098

e
XIOIT) 777/ v v

A Mopulih ejed sjool jewsod uesul maA 1p3 m__m E_

) eeams s s i

sug|puj

i

0861 |11

n

sher onig n
_ N

9

S

14
-

d, d

)
\&
3 ..
X £ Ol
M "__nllla SY¥930S yo1eayS)/GleaUSy 1leeus) £19auUS)y 21e8US Y 1180US m_aﬂla
Z _m- _ sjeuipJen @I) SIaMa.g 2861, E
veL I Sall|Iud <> S9|0LO €861 |8l
Zel __—- salped I@ ~ siebl) vesl |11
7y __—- sjeupeg <) ~ sjehoy 82
. g2l _— - S1oN G) e ~ xospey 82
= 921 __—- sjeuipied | R e SUIM] E.
e bl _ﬁ“ s1e6pog | mi . 8g6l [c1
= zzl __— T sjuel o [(v) o 6961 |21
0zl “N“- ~ spay @HA 066} |11
Sl SoAR)
= a - .oéahM] M m“A | MMM” m
z., 1] <
» s Tz kKD sker an|g €661 n
m Zil _ﬁ-‘ soAelg (v ¢ sueIpu| S661 | 2
o’ |1 - 066l | 9
20l _- onBeoaT |[euopeN 400G onBeo uesowy JeoA H
SUUIS QTUOM INIOIY v
Eu_] B a 0 | 8 [
i died mopuifA e1ed siool jewso] Wesuj meiA p3 epd Gk

I.§§\\ \\ﬁ\ﬁ\%\\ﬁ\ﬁ\\\v PP <

U.S. Patent

US RE39,326 E

Sheet 7 of 17

Oct. 3, 2006

U.S. Patent

vEL
cEl
0&lL
acl
9cl
vl
cCl
A
8L
gl
Vil
cll
0Ll

801

T

RO

3£ Ol

—_

—_— - . -- - . e A —m i = = e e Eam
. . . - - - [- 4 0 = B =4 - =

'%""'

\\\\\\\3\

.__aIIIa SY199USYg183USY G180y 1eelS Y e1o0USY 2109US Y 1199US \fr < In_
sjeuipiey SJoMalg ¢861 E

solinyd - _ SO|0LID €861 |81

soiped T sseBly | veel |l

s|euipied sphoy G861 E

S1oN X0 Py | ogel st

m_m:__u._mo mc_zF) 1861 E

sjuelc) m..q 6861 (Z1

soAe.g SUM| 1661 (0L

soAeIg) sker on|g - 2661 {6

seAelq

IIIII‘II_ - — . a —-— - - -

anBean jeuoneN

e

- skeronlg | ge6L |8
L suelpu| 5661 | £
| 966t |9

anBea uedHdWY JeaA n

14

S b8]

diof mopuifA eed spo ewo] yssul mapA up3 o) (X

rll@ﬂ%\\\ PR TR PLN

US RE39,326 E

Sheet 8 of 17

Oct. 3, 2006

U.S. Patent

g

—_ - —_— e ———— _ - - - PN " T AN '
N s dswm 1 r "lm ™ -ir F - == - - — e e
-ﬁ-_-—-_ - . p— _ . — - . - _

vEL
ctl
1)
8¢l
gct
| A
cCl
0cl
8i1
9l
41
ctl
OLL

yOi
804

X

001

sjeulpien

sa||llud
salped
sjeuipsen
s1o |
s|eulpJen

| sjabpog

TAE

@

SjuelD)
Spoay

saAelg

saAelg

Id
soAelg

~ anbeaq] [euofeN

T~

<

-

B 1 __FISyZ395US)0iaslSy5Ieausyy1asuSy £190US) 2199uSy L1edUS \fe s T

slomalg
S2|0LO
s1abi|

sjeAoy

X0G PaYy

SUIM |

S,V

SV

SV

| 3 1. d |

SUIM|
sAepr anig

sAer anjg

sue|pu|

diofi MOPUIMA =1eq Siool jewo] Wesul maiA wp3 9l Lk
7

0

ad)

US RE39,326 E

Sheet 9 of 17

Oct. 3, 2006

U.S. Patent

vEL
c&l
0el
8¢l
9ci
vel
ccl
Ocl
8ll
oLl
47
clL
Ol

80L

Mt . SR S . ARG A S SR, W sl . bl iy SR, Saierhi—

1e " Old

I__ml]ln SY139US yOI98YS Y SI90YS Y 11BBUSf £189US f ©198USY 1H1BIUS EEP

SR G a0
sollliyd S8|0LO £861 .

| s19b}] 52
m_mc_Emo

S) siefoy EE

r 1
s1oW Cv ~ xogpey | ogel |st
sjeupsed * ~ sump 1861 [Pl
s1abpog - Sy 8861 E
sjueln S.V 6861 .

SPoY im__,..(_ 0661
SaAkSY £ SUIM] 152,

slomalg

A\ [

9

v

——————— ————— W W E— R

—_ —_ - - - = — — _— e om owmw
- _— _— - = - PR - - i - —_— B -u . e r—— Y r——L =

aa ym L e ge—
—_—

VRVES
NN NN

RN N N N A VO VR NS OO O O
MVEVRVREE
EEEE

_ seAelg oz (v sAef an|g 2661
-\\ saljiud @ sAep anig | se6L ‘
W-2777/77//5a D suejpu| G66L | £

| 9661 |9 | gy

anBean) jeuonjeN 01008 anBea] uespowy ITT-TY E
S3IN3S QTHOM 1IN30 3 14
=g 2 —4 310 0 - g

dipH mopuifd eleq sioo] lewod Wasu] MIIA Ip3 olld @

Ed (=

MERT

US RE39,326 E

Sheet 10 of 17

Oct. 3, 2006

U.S. Patent

|
|
|
|

sjeuipie)

solliud
salped

£ Ol

sjeuipied

o

sjeuipJe’)
s196p0oQ

sjuelS)

Spoy
soAelg

soAelg

~ salfiyd

anbBea" |euopeN

XIoY 777

3

SIS

TR L1 FISY}°3US)9I80US) S188US) ¥198USy E198US y 390U RECTHSm o 3

sJjemelg 7061 E
. m—E D
__steblL _ve6l |41
__siefoy 9861 [9b
Xo§ pey 986} |5t
SUML 1861 |Vl
sV ag6. |&t
S 6861 {2}
S,/ 0661 |11
sumy 1661 |01
shep an|g %ﬂ
sAer anjg | au
soepur | sesl |

anBes usouBWY

J

“die MOpUIf\ E1ed siool jewuo] uasul MoIA #p3 e Lk

\\aﬁﬁ%ﬁﬁ.ﬂ%ﬂﬁt&&ﬂ%ﬁ% ,wm

(L
¥,

US RE39,326 E

Sheet 11 of 17

Oct. 3, 2006

U.S. Patent

iI£°DO1d
T T T PY YeweysYzieeysYoleays YSieaySYriedlsy e1eaUSy 218UsSy Lisaus DE0
F v @ AlE
‘ 0z
ony JHH——sieupies <> ~__siamaig E W
pey _-“ mm_____:n_) vﬂv ~ S8lou0 €86 | E
ZEl _m- _Sedped 000000 (Y ~ siabll V6L | {71
0! _i- _ Sietipley <D, s|eoy s86L | {9t
g2l __- _ S®W <« X0S Pay 0861 | |Gl
o’ L <mupies < sumL | Z86] [b1
74 _,-“ siebpoqwe‘. SV 886t | [c1]
229 _“- SJUEID) <> S,V - ﬁ cl
0cl “- @1!- SV 0661 E
au - HAU —Sker onlg Z661| [
vIL “__- _ “ 3 SAEf en|y % E
2’ W D) suelpul o6t | 1L
ou __ I I I .12 I
onobeoT jeuciienN 8100Q onBea ueopawly j Jeap | | S|
- _ S31y3S a._zog 1IN353¥ , k2
af- o 1 8 lv]
801 ._ﬂmmH EEIEE_LIEE_EHE A ot fa] ewv
grlolT]| Pvlz] olad |21 D[R] ¥ [2TvlS] [Rle] O
X ~dipf mopuiA\ ered sjool tewod pesul maIA 1p3 m_..._. Gk

001

XIS 7777 07) s Bk S Uoecion

o,
=

U.S. Patent Oct. 3, 2006 Sheet 12 of 17 US RE39.,326 E

205

200

COMPLETION
LIST

220

EDIT MODE

DISPLAY
COMPLETION

STATIC
STATE

U.S. Patent Oct. 3, 2006 Sheet 13 of 17 US RE39.,326 E

(PROCESS EVENT)

STATIC '
STATE

-~ + OCCURSAS BACKGROUND PROCESS
———+ STATE TRANSITION FIG.Z

U.S. Patent Oct. 3, 2006 Sheet 14 of 17 US RE39.,326 E

205
EDIT MODE 200
410
USER
c:oEvMAND SNC THEN
SET
ACCEPTEDUNALTERED
ELSE FLAG TO FALSE
430
IF
SUCGESTED THEN
MEOND 440
‘ SET
ACCEPTEDUNALTERED
ELSE FLAG TO TRUE

480

CASE
CASE CONVERSION

FIG.6

U.S. Patent Oct. 3, 2006 Sheet 15 of 17 US RE39.,326 E

210
300 4

GENERATE
COMPLETION LIST
(TIER, RANGE)

302

CUR = CURRENT CELL LOCATION
ABOVE = NUMBER OF CELLS ABOVE CURRENT CELL

| BELOW = NUMBER OF CELLS BELOW CURRENT CELL
: STATUS = TIER NUMBER

| J=NUMBEROF CELLS INCLUDED IN TIER 1

| K =NUMBER OF CELLS INCLUDED IN OTHER TIER'S

304
ELSE THEN
306
START = 1 START = (TIER-2) *K + (J + 1)
END=START +J END =START + K

310

SET RANGE AND INDEX
TO EQUAL START

308

312

RETRIEVE TIER OF COMPLETED

DATA ITEMS gANGEINDW
BELOW,END,CUR,STATUS

374
316
318

RETURN (STATUS)

FIG.7a

U.S. Patent Oct. 3, 2006 Sheet 16 of 17 US RE39.,326 E

320 312

;==

RETRIEVE TIER OF COMPLETED

DATA ITEMS (RANGE,INDEX,ABOVE,
BELOW,END,CUR,STATUS)

322

F ((RANGE <= ABOVE THEN

OR GE <=BELC
D (INDEX < END

)

ELSE
326 |

DILISTTINDEX] = CELL{CUR-RANGE]
"NCREMENT INDEX BY 1

FIG.7b

U.S. Patent Oct. 3, 2006 Sheet 17 of 17 US RE39.,326 E

230
(fmadsatiin
500
AUTOCOMPLETE START
((PARTIALENTRY))
510
SEARCH LIST OF
COMPLETIONS FOR
MAICH OF PARTIAL ENTRY
530
ELSE AT LEAST_ THEN
ONEMAICH IS
FOUND
570 560
l
SSUE(NOCOMPLETION)] ~ ELSE -~y o~ THEN
EVENT MATCHES ARE
AND FOUND
TRANSITION TO DISABLE
AUTOCOMPLETE STATE
540 520
ISSUE ISSUE (NO

(SUGGESTED COMPLETION) SUGGESTION) EVENT
TRANSITION TgNgISPLAY TRANSI'I'I%NNDTO WATT
AUTOCOMPLETE STATE PARTIAL ENTRY STATE

560

AUTOCOMPLETE END

US RE39,326 E

1

METHOD AND APPARATUS FOR
SUGGESTING COMPLETIONS FOR A
PARTIALLY ENTERED DATA ITEM BASED
ON PREVIOUSLY-ENTERED, ASSOCIATED
DATA ITEMS

Matter enclosed in heavy brackets [] appears in the
original patent but forms no part of this reissue specifi-
cation; matter printed in italics indicates the additions
made by reissue.

TECHNICAL FIELD

The present mvention relates generally to the field of
computer-based applications requiring data entry and more
particularly to the field of improving the data entry process
by automatically completing a partially entered data item
with a matching data item from a list of previously entered
data items.

BACKGROUND OF THE INVENTION

In the field of data processing systems, data 1s entered nto
databases for the purposes of rapid searching, retrieving or
processing. Since its iception, the field of data processing
has been bottle-necked by the time consuming and human-
error prone process of data entry. Therefore, 1t 1s desirable to
improve the efliciency and reliability of entering data into a
database system. One method to achieve this objective 1s the
use ol automatic completion algorithms to assist in the data
entry process. Automatic completion algorithms generally
refer to the technique of comparing a partially-entered data
item to a list of possible completed data items to find a
suggestion for completing the partially-entered data item.
Automatic completion algorithms improve the data entry
process by increasing the speed and integrity of data entry.
For instance, a user i1s only required to enter enough char-
acters of a data item to uniquely i1dentity a suggested
completion. This results 1n increasing the speed of data entry
by reducing the number of required key strokes. For larger
data items, the savings i time can be quite noticeable.
Concerning the increase in data integrity, by providing
suggested completions, many of the human errors such as
spelling errors and data anomalies can be eliminated from
the process of data entry.

Data processing systems can take on many forms ranging
from highly-formatted, custom or specialized database pro-
grams to a more generic, user-definable database, such as a
spreadsheet application. Examples of the former include
products such as inventory control systems, manufacturing,
tracking systems and accounts receivable/payable systems.
An example of a more generic database 1s the

“MICROSOFT EXCEL” computer spreadsheet program
marketed by Microsoit Corporation.

Automatic data entry completion algorithms have
appeared 1n various types of applications. For example, the
help utility 1n “MICROSOFT WORD” for “WINDOWS
957, version 7.0, provides an automatic completion feature
for retrieving help information from a database. An alpha-
betically sorted list of predefined topics are available as an
index into the information database. When entering a word
or words describing the type of imnformation required (i.e.,
entering “acc” to obtain information concerning “accented
characters”) the automatic completion feature will search the
list for a matching entry. If a suggested completion 1is
identified, 1t will be displayed to the user.

Microsolt’s “ACCESS” database program, version 7.0, 1s
an example of a more generic, user definable database that

10

15

20

25

30

35

40

45

50

55

60

65

2

provides an automatic completion feature to aid in defining
database tables. The ““Table Definition” interface consists of
the predefined categories: Field Name, Data Type and
Description. When entering data items into the Data Type
category, a predefined list of suggested completions 1is
examined to determine 1 a match for the data item being
entered (partial data entry) exists. If a match 1s found, the
matching data item 1s displayed as a suggested completion.
Similar to Microsoit’s “WORD” program, “ACCESS” relies
on the characteristic of the data items conforming to a
pre-defined list of possibilities.

For the other categories in the “Table Definition™ interface
of “ACCESS”, the data entries are user-definable as opposed
to being selected from a pre-defined list. Here, no suggested
completions are provided when entering data into these
categories. Furthermore, once a database table has been
defined, the user can enter data into the user-defined data
categories ol the database table. In this interface,
“ACCESS” again does not provide an automatic completion
feature.

A characteristic of each of the above-described automatic
completion algorithm 1implementations 1s that they operate
within a rigidly defined database structure. These implemen-
tations take advantage of the fact that the format and
contents of the data being entered are known, and hence, a
pre-defined list of suggestions can be utilized. Both of these
implementations improve the efliciency and reliability of
data entry 1n a fixed or structured database by allowing the
use of an automatic completion algorithm. But, 1n more
generic databases, such as a spread sheet, the user 1s at
complete liberty to define the categories and types of data
that can be entered. There 1s a need for a system to provide
cllicient and reliable data entry for user-definable database
systems. Therefore, there 1s a need for a system for gener-
ating a list of completed data 1tems 1n a generic database that
allows the use of an automatic completion feature and hence,
that provides a more eflicient an reliable method for entering,
data mto a generic database.

Implementing an automatic completion feature for the
process of entering user-definable data posses several tech-
nically complicated issues. The implementation must be
able to: (1) modily the selection list as new data items are
entered and update the selection list when previously entered
items are modified; (2) minimize the impact of the selection
lists on system resources such as memory; and (3) minimize
any delays 1n processing user inputs. Because entering
user-definable data 1s a process requiring eflicient and reli-
able data entry, there 1s a need for an automatic completion
capability for generic, user-definable, data entry systems.

In view of the foregoing, there 1s a need for an automatic
completion method that can be used for generic, spreadsheet
type applications 1n which the structure of the database and
the types of data entered can take on a multiplicity of
formats. There 1s also a need for a method to dynamically
generate a list of suggested completions that would be based
on data 1tems having an association with the data item being
entered rather then utilizing a static list of predefined pos-
sible data items.

SUMMARY OF THE INVENTION

The present invention satisfies the above-described needs
by providing an automatic completion of a partial data entry
by examining a suggested completion list, which 1s gener-
ated upon the entry of the data item. The list of suggested
completions 1s based on the contents of other data entries
that are associated with the 1tem being entered. The present

US RE39,326 E

3

invention allows for eflicient and reliable data entry 1n a
generic, user-definable, database application.

Generally, the present invention enhances the user inter-
face of a data entry application for a database by providing
suggested completions of partially entered data 1tems from
a dynamically generated list of possible completions. The
operation of the present mvention includes generating the
completed data item list from data entries that are associated
with the partial data entry, comparing the completed data
item list to the partially entered data 1tem, and automatically
completing the entry of the data 1f a unique match 1s found.
From the user’s perspective, when an 1tem 1s being entered
into the database, associated entries within the database will
be examined to determine 1 a matching entry has been
previously entered. This examination will be performed by
utilizing a character mask. Thus, when a user enters the first
character of an item, it there 1s an item 1n the database that
uniquely matches the first character, then the partial entry
will be automatically completed and the user will have the
opportunity to accept the suggested completion.

The implementation of the present invention 1s uniquely
suitable for a generic database accepting user-definable data
items. Furthermore, the present invention 1s an automatic
completion system that 1s able to: (1) modify the completion
list as new data items are entered and update the selection
list when previously entered 1tems are modified; (2) mini-
mize the impact of the completion lists on system resources
such as memory; and (3) mimmize any delays in processing
user mputs.

First, the present mnvention modifies the completion list as
new data items are entered and updates the completion list
when previously entered 1tems are modified. This 1s accom-
plished by using a dynamic completion list that 1s defined by
the context of the data within the database as opposed to
pre-defined values. The completion list 1s generated from a
set of data within the database that 1s associated with the data
item being entered, and retlects the status of the database at
the time the data item 1s being entered. The benefits asso-
ciated with this aspect of the invention include: providing a
completed data item list that 1s automatically updated to
reflect the current contents of the database; providing a
completed data item list that 1s not encumbered by extrane-
ous data entries that have no relationship with the item being
entered; and providing an automatic completion feature that
1s not restricted to the use of a limited list of possible
completions (1.e., a predefined data set).

A unique aspect of the generation process includes defin-
ing which data items are associated with the data item being
entered. In the context of a generic database, the present
invention provides several methods to perform this process.
Generally, data 1tems that fall within the same category or a
similar category to the data item being entered are consid-
ered to be associated data 1tems. Therefore, an advantage of
the present invention 1s the ability to define which data
entries within a database are related to a data i1tem being
entered, to generate a list of suggested completions based on
these associated data entries, and to provide a dynamic
completion list which tracks the actual contents of the
database.

Another aspect of the present invention 1s that the com-
pleted data i1tem list can be filtered so that data 1items which
do not benefit the automatic completion feature are elimi-
nated from the list. This 1s especially beneficial in a generic
database where the nature of the database allows for a
mixture of data types within associated categories. For
instance, a generic database may allow for numeric entries

10

15

20

25

30

35

40

45

50

55

60

65

4

and text entries to be entered into the same database cat-
cgory. An example of such a category would be a library
database, which combines the category that lists the name of
the person a book 1s checked out to, and the category
indicating the number of days that the book has been on the
shelf without being checked out. The second category 1s
used to determine 1f the book should be removed from the
shelves and placed into the archives. In this scenario, the
numeric entries for the days on the shelf could be filtered
from the completed data 1tem list. The benefits derived from
this ability 1s that the list 1s not encumbered with extraneous
numeric entries which could result in slowing down the list
generation process, and the entry of numeric data will not
trigger any automatic completions which could easily result
in entering invalid data (1.e., having the entry “1” automati-
cally complete to “1007). Therefore, another advantage of
the present invention 1s the provision of a technique for
filtering out non-useful items from the list of suggested
completions 1 order to maximize the efliciency of an
automatic completion feature.

Second, the present invention minimizes the impact of the
completion lists on system resources such as memory by
storing the completed data item list 1n a dynamic data
structure. In contrast to a static data item list, a dynamic list
does not require permanent memory resources. Once a data
item has been entered into the database and accepted by the
user, the memory occupied by the data item list can be
released and reallocated to other resources. The eflicient use
of memory resources 1s necessary in a database system, and
thus, the mimmization of overhead memory 1s imperative.
This 1s increasingly important 1n a generic database that does
not have pre-defined data types, and therefore, can not
obtain the benefit of using eflicient memory storage schemes
which take advantage of pre-defined data types.
Advantageously, the present mmvention provides a list of
suggested completions which makes efficient use of memory
storage.

Third, the present invention minmimizes any delays in
processing user mputs by using a tiered technique to gen-
crate the completed data item list. This tiered technique
includes generating the completed data 1item list one section
at a time, allowing for input processing in between the
generation of each section. In addition, a suggested comple-
tion can be provided to the user based on a partially
generated list. This 1s beneficial because 1t provides virtually
immediate feedback to the user and expedites the data entry
process. Therelore, another benefit of the present invention
1s the generation of a list of suggested completions 1n a
manner that minimizes the impact to data mput processing
and provides instantaneous responses to the user.

More specifically described, the present imnvention 1s an
automatic completion feature that can be implemented 1n a
spreadsheet application. When a user begins to edit a cell
within a spreadsheet, a completed data 1tem list 1s generated
from the previously entered data items stored in cells
associated with the edited cell. As the user enters characters
into the cell, the completed data item list 1s searched for an
entry corresponding to the partial data entry in the edited
cell. If a qualifying match 1s found, then the data item 1s
displayed as a suggested completion within the cell being
edited. The user then has opportunmity to accept the suggested
completion and thereby accelerate the data entry process, to
enter additional characters to define a new data entry 1n the
spreadsheet, or to reject the suggested completion. By
accepting the suggested completion, the benelfit of increas-
ing the speed of data entry 1s realized and the integrity of the
entered data 1s assured (1.e., the data entry 1s 1n conformance

US RE39,326 E

S

with previously entered data). Therefore, 1t 1s a further
advantage of the present invention to improve the efliciency
and reliability of data entry 1n a spreadsheet by providing the
ability for an automatic completion feature utilizing a list of
completed data items stored in cells associated with a cell
being edited.

These and other aspects, features, and advantages of the
present invention will be more clearly understood and
appreciated from a review of the following detailed descrip-
tion of the present imvention and possible embodiments
thereol, and by reference to the appended drawings and
claims.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 1s a block diagram of a personal computer that
provides the operating environment for the preferred
embodiment of the present invention.

FIG. 2 1s a block diagram illustrating the interface
between a computer’s input/output devices, an operating
system, and an application program.

FIGS. 3a— are diagrams 1llustrating display screens from
the “MICROSOFT EXCEL” for “WINDOWS 95" spread-
sheet application and are illustrative of an embodiment of
the present mnvention.

FI1G. 4 1s a state flow diagram depicting the actions taken
by an embodiment of the present mmvention for entering a
partial data entry and accepting a suggested completion.

FIG. 5 1s a state diagram 1llustrating a state machine with
transitions between states being induced by user and process
events 1n accordance with the preferred embodiment of the

present mvention.

FIG. 6 1s a flow chart diagram of a case conversion
algorithm employed 1n an embodiment of the present inven-
tion.

FIGS. 7a—b contain a flow chart diagram of a Generate
Completion List algorithm employed by an embodiment of
the present invention to build a list of completed data 1tems
for performing an AutoComplete.

FIG. 8 15 a flow chart diagram of an Attempt AutoCom-
plete algorithm 1n accordance with an embodiment of the
present mvention.

DETAILED DESCRIPTION

The present invention provides an automatic completion
capability for generic databases containing user-defined data

entries. The preferred embodiment of the present invention
1s represented by the “WINDOWS 95” version of the

“MICROSOFT EXCEL” program, a spreadsheet program
published by Microsoit Corporation of Redmond, Wash.
Briefly described, the preferred program allows users to
enter user-defined data into a generic database in an efhicient
and reliable manner. This 1s accomplished by providing an
automatic completion feature which utilizes a dynamically
generated completion list based on data items within the
database that are associated with the data being entered.

Although the preferred embodiment will be generally
described 1n the context of a program and an operating
system running on a personal computer, those skilled 1n the
art will recognize that the present ivention also can be
implemented in conjunction with other program modules for
other types of computers. Furthermore, those skilled 1n the
art will recognize that the present invention may be imple-
mented mm a stand-alone or 1 a distributed computing,
environment. In a distributed computing environment, pro-
gram modules may be physically located 1n different local

5

10

15

20

25

30

35

40

45

50

55

60

65

6

and remote memory storage devices. Execution of the pro-
gram modules may occur locally 1n a stand-alone manner or
remotely 1n a client/server manner. Examples of such dis-
tributed computing environments include local area net-
works of an oflice, enterprise-wide computer networks, and
the global Internet.

The detailed description which follows 1s represented
largely 1n terms of processes and symbolic representations
of operations by conventional computer components,
including a processing unit (PU), memory storage devices
tor the PU, display devices, and input devices. Furthermore,
these processes and operations may utilize conventional
computer components in a heterogeneous distributed com-
puting environment, including remote file servers, remote
computer servers, and remote memory storage devices. Each
of these conventional distributed computing components 1s
accessible by the PU via a communications network.

-

T'he processes and operations performed by the computer
include the manipulation of signals by a PU or remote server
and the maintenance of these signals within data structures
resident 1n one or more of the local or remote memory
storage devices. Such data structures impose a physical
organization upon the collection of data stored within a
memory storage device and represent specific electrical or
magnetic elements. These symbolic representations are the
means used by those skilled 1n the art of computer program-
ming and computer construction to most effectively convey
teachings and discoveries to others skilled in the art.

For the purposes of this discussion, a process 1s generally
conceived to be a sequence of computer-executed steps
leading to a desired result. These steps generally require
physical manipulations of physical quantities. Usually,
though not necessarily, these quantities take the form of
clectrical, magnetic, or optical signals capable of being
stored, transferred, combined, compared, or otherwise
mampulated. It 1s conventional for those skilled 1n the art to
refer to these signals as bits, bytes, words, data, flags,
variables, parameters, objects, properties, tags, types,
identifiers, values, elements, symbols, characters, terms,
numbers, points, records, 1mages, files or the like. It should
be kept in mind, however, that these and similar terms
should be associated with appropriate physical quantities for
computer operations, and that these terms are merely con-
ventional labels applied to physical quantities that exist
within and during operation of the computer.

It should also be understood that manipulations within the
computer are oiten referred to i1n terms such as adding,
comparing, recerving, sending, transmitting, replying, etc.
which are often associated with manual operations per-
formed by a human operator. The operations described
herein are machine operations performed in conjunction
with various mput provided by a human operator or user that
interacts with the computer.

In addition, 1t should be understood that the programs,
processes, methods, etc. described herein are not related or
limited to any particular computer or apparatus, nor are they
related or limited to any particular communication network
architecture. Rather, various types of general purpose
machines may be used with program modules constructed in
accordance with the teachings described herein. Similarly, 1t
may prove advantageous to construct a specialized apparatus
to perform the method steps described herein by way of
dedicated computer systems 1n a specific network architec-
ture with hard-wired logic or programs stored in nonvolatile
memory, such as read only memory.

Referring now to the drawings, in which like numerals
represent like elements throughout the several figures,

US RE39,326 E

7

aspects of the present invention and the preferred operating
environment will be described.
The Operating Environment

FIG. 1 illustrates a conventional personal computer 10
suitable for supporting the operation of the preferred
embodiment of the present invention. As shown in FIG. 1,
the personal computer 10 may operate 1 a networked
environment with logical connections to a remote computer
11. The logical connections between the personal computer
10 and the remote computer 11 are represented by a local
area network 12 and a wide area network 13. Those of
ordinary skill in the art will recognize that in this client/
server configuration, the remote computer 11 may function
as a file server or computer server.

The personal computer 10 includes a processing unit (PU)
14, such as the 80486 or “Pentium’™ microprocessors manu-
factured by Intel Corporation of Santa Clara, Calif. The
personal computer also includes system memory 135
(including read only memory (ROM) 16 and random access
memory (RAM) 17), which 1s connected to the PU 14 by a
system bus 18. The preferred computer 10 utilizes a BIOS 19
(Basic Input/Output System), which 1s stored in ROM 16.
Those skilled 1n the art will recognize that the BIOS 19 1s a
set of basic routines that helps to transfer information
between elements within the personal computer 10. Those
skilled 1n the art will also appreciate that the present inven-
tion may be implemented on computers having other
architectures, such as computers that do not use a BIOS, and
those that utilize other microprocessors, such as the “MIPS™
or “POWER PC” families of microprocessors from Silicon
Graphics and Motorola, respectively. Additionally, the
present ivention 1s not limited to computers that utilize
ROM or RAM for system memory. Other technologies such
as electronically programmable ROM (EPROM), ultraviolet
light erasable and electronically programmable ROM
(UVEPROM), clectronically erasable and programmable
ROM (EEPROM), FLASH and bubble memory may also be
used.

Within the personal computer 10, various devices may be
connected to enhance the utility and performance of the
personal computer. A local hard disk drive 20 may be
connected to the system bus 18 via a hard disk drive
interface 21. A floppy disk drive 22, which 1s used to read or

write a floppy disk 23, may be connected to the system bus
18 via a floppy disk drive interface 24. A CD-ROM drive 25,

which 1s used to read a CD-ROM disk 26, may be connected
to the system bus 18 via a CD-ROM interface 27. A user
enters commands and information into the personal com-
puter 10 by using input devices such as a keyboard 28,
and/or pointing devices such as a mouse 29. Typically, these
input devices are connected to the system bus 18 via a serial
port interface 30 or a parallel port interface (not shown in
FIG. 1). Other types of pointing devices (not shown 1n FIG.
1) include track pads, track balls, pens, head trackers, data
gloves and other devices suitable for positioning a cursor on
a computer monitor 31. A monitor 31 or other kind of display
device may be connected to the system bus 18 via a video
adapter 32.

The personal computer may be connected to a network of
other computers or devices. A remote computer 11 1n a
networked environment 1s connected to a remote memory
storage device 33. This remote memory storage device 33 1s
typically a large capacity device such as a hard disk drive,
CD-ROM drive, magneto-optical drive or the like. The
personal computer 10 may be connected to the remote
computer 11 by a network interface 34, which 1s used to
communicate over the local area network 12.

10

15

20

25

30

35

40

45

50

55

60

65

8

The personal computer 10 may also be connected to the
remote computer 11 by a modem 35, which 1s used to
communicate over the wide area network 13, such as the
Internet. The modem 35 1s connected to the system bus 18
via the serial port interface 30. The modem 335 also can be
connected to the public switched telephone network (PSTN)
or community antenna television (CATV) network.
Although 1llustrated 1n FIG. 1 as external to the personal
computer 10, those of ordinary skill in the art will quickly
recognize that the modem 35 may also be internal to the
personal computer 11, thus communicating directly via the
system bus 18. It 1s important to note that connection to a
remote computer 11 via either the local area network 12 and
the wide area network 13 1s not required, but merely
illustrates methods of providing a communication path
between the personal computer 10 and the remote computer
11.

Although other internal components of the personal com-
puter 10 are not shown, those of ordinary skill in the art wall
appreciate that such components and the interconnection
between them are well known. Accordingly, additional
details concerning the internal construction of the personal
computer 10 need not be disclosed in connection with the
present invention.

Those skilled in the art will understand that program
modules such as an operating system 36, application pro-
grams 37a—N, and data are provided to the personal com-
puter 10 via computer-readable media. In the preferred
computer, the computer-readable media include the local or
remote memory storage devices, which may include the
local hard disk drive 20, floppy disk 23, CD-ROM 26, RAM
17, ROM 16, and the remote memory storage device 33. In
the preferred personal computer 10, the local hard disk drive
20 1s used to store data and programs, including the oper-
ating system and programs.

The Operating System

FIG. 2 1s a smmplified block diagram illustrating the
interaction between the computer hardware 30, the preferred
operating system 36, and an application program 37a. Refer-
ring now to both FIGS. 1 and 2, when the personal computer
10 1s turned on or reset, the PU 14 1s forced to begin program
execution at a specific memory location 1n the ROM 16. This
specific memory location corresponds to the beginning of
the bootstrap routine contained in the BIOS 19. The boot-
strap routine functions to load the operating system 36 from
the hard disk drive 20 into the RAM 17. Once the operating
system 36 1s loaded into RAM 17, the PU 14 executes the
operating system 36 and causes the visual elements associ-
ated with the user interface of the operating system 36 to be
displayed on the monitor 31.

The operating system 36, 1n conjunction with the BIOS 19
and associated device drivers, provides the basic interface
between the computer’s resources, the user, and the appli-
cation program 37a. The operating system 36 interprets and
carries out 1structions 1ssued by the user and/or application
program(s). For example, when the user wants to load an
application program 37a, the operating system 36 interprets
the 1instruction (e.g., double clicking on the application
program’s 1con) and causes the PU 14 to load the program
code into RAM 17 from either the local hard disk drive 20,
floppy disk 23, CD-ROM 26, or the remote memory storage
device 33. Once the application program 37a 1s loaded into
the RAM 17, it 1s executed by the PU 14. For larger
programs, the operating system 36 causes the PU 14 to load
various portions of program, or program modules, into RAM
17 as needed. In addition, several applications programs
(37a—N) can be loaded into RAM at the same time. In this

US RE39,326 E

9

scenario, the operating system 36 will switch the PU 14
execution time between applications based on user requests,
application program request, or by a time-sliced allotment of
the processing time of PU 14.

The operating system 36 provides a variety of functions or
services that allow an application program 37a to easily deal
with various types ol input/output (I/O). This allows the
application program 37a to issue relatively simple function
calls that cause the operating system 36 to perform the steps
required to accomplish various tasks, such as displaying text
on the monitor 31 (FIG. 1) or printing text on an attached
printer (not shown). Generally described (with reference to
FIG. 2), the application program 37a communicates with the
operating system 36 by calling predefined functions pro-
vided by the operating system 36. The operating system 36
responds by providing the requested information 1n a mes-
sage or by executing the requested task. In addition, the
operating system may interface to the hardware components
50 1n responding.

From this brief description, 1t should be appreciated that
operating systems, such as “WINDOWS 95 and “WIN-
DOWS NT”, are quite complex and provide a wide variety
of services that allow users and programs to utilize the
resources available 1n the personal computer. Those skilled
in the art will be familiar with operating systems and their
various features, which include, but are 1n no means limited
to, the specific messages and functions described above. For
more comprehensive information regarding the “WIN-
DOWS 95” and “WINDOWS NT” operating system and 1ts
interaction with programs, the reader may refer to any of a
variety of publications, including the “Win32 Programmer’s
Reference” and “Advanced Windows” published by
Microsoit Press.

The preferred embodiment of the present invention
(herein after referred to as “AutoComplete”) 1s implemented
in “MICROSOFT EXCEL” for “WINDOWS 95”, version
7.0. It should be understood that AutoComplete can readily
be implemented in other applications running under other
operating systems, such as Microsolt Corporation’s “Win-
dows 3.17, IBM Corporation’s “OS/2”, UNIX based oper-
ating systems and the operating system used i “MACIN-
TOSH” computers manufactured by Apple Computer, Inc.

FIGS. 3a—j illustrate typical display screens for a spread-
sheet program as would be observable on display 31 shown
in FIG. 1. The spreadsheet consists of a group of columns
labeled B—F and group of rows labeled 4-19. In a spread-
sheet application such as “MICROSOFT EXCEL”, a user
can define and enter various types or categories of data. In
the example shown in FIG. 3a, a list of the recent World
Series from 1982 to the present has been entered. Column B
contains the year that the World Series was played. Column
C and column F contain the name of the American League
and National League teams that opposed each other in the
corresponding World Series. Finally, columns D and E
illustrates the number of games that each team won during
the World Series with the game score of the victor being
circled.

Each entry 1n a spreadsheet 1s located 1n a cell. A cell 1s
defined as the region 1n a spreadsheet where a single column
and a single row intersect. For example, column F and row
9 intersect at cell 114 1n FIG. 3a and contains the data entry
“Braves”. The user can move a cursor within a spreadsheet
from one cell to another by entering cursor movement keys
on the keyboard, by using a mouse or by using some other
pointing device. The cell in which the cursor i1s present 1s
referred to as the “active cell” and may be shown on the
display 1n reverse video or as having a distinguishung border.

10

15

20

25

30

35

40

45

50

55

60

65

10

A briet description of AutoComplete as embodied within
“MICROSOFT EXCEL” or “WINDOWS 95” 1s provided 1n
conjunction with the display screens in FIGS. 3a—) and the
state flow diagram in FIG. 4. FIGS. 3a— will be used to
show the interaction between user iput, the operation of
AutoComplete, and the data that 1s displayed to the user in
various operating states. FI1G. 4 will be used to illustrate the
simple state tlow for the process of entering edit mode for an
active cell, entering a partial data item, receiving a suggested
completion, and accepting the suggested completion. FIG. 5,
which provides a full state diagram of the AutoComplete
process, will be used to describe the AutoComplete process
in detail as consisting of a state machine with user com-
mands and process events inducing transitions between
states. Finally FIGS. 69 will be used to describe additional
detail for several aspects of the AutoComplete process.
AutoComplete User Interface

The AutoComplete user interface in the preferred embodi-
ment comprises eight functional areas: (1) Entering edit
mode for an active cell; (2) Entering a partial data entry and
finding a umique match; (3) Accepting a suggested comple-
tion; (4) Entering a partial data item over a suggested
completion; (5) Entering a partial data entry and finding
multiple matches; (6) Entering a partial data entry that
disables further searches; (7) Obtaining a case conversion
for a partial data entry; and (8) Entering a partial data entry
where there are no associated cells. Each of these functional
arcas will be described with references being made to the
user screens 1n FIGS. 3a— and the state flow diagram in FIG.
4.

Entering edit mode for an active cell. Referring to FIGS.
3a and 4, the edit mode 200 for an active cell may be entered
at pomnt 205 by pressing a function key. The cursor 104,
located 1n the middle of cell 110, illustrates that cell 110 1s
currently active with the edit mode being enabled. Upon
entering edit mode, a list of completed data 1tems 1s gener-
ated 1n the BUILD Completion List state 210. The list of
completed data items 1s generated from completed data
items stored within cells associated with active cell 110
(cells 112-134 for the 1illustrated example). The completed
data 1items are previously entered data 1tems which contain
one or more characters or symbols. As will be described 1n
more detail herein below, the list of completed data items
will only contain one entry for each unique data item
retrieved from the associated cells. It should be noted that
the user may also enter the edit mode automatically by
initiating a data entry in the active cell. After generating the
completed data 1tem list, the screen of FIG. 3a 1s displayed
and the WAIT Partial Entry state 220 1s entered.

Entering a partial data entry and finding a unique match.
In the edit mode, entering a partial data entry will cause a
transition to the ATTEMPT AutoComplete state 230 and
invoke a search of the list of completed data items to find a
completed entry that uniquely matches the partial data entry.
FIG. 3b, illustrates the results of this process where partial
data entry “B” has been entered. Cells 114 and 116 both
contain the entry “Braves”, which uniquely matches the
partial data entry that has been entered in active cell 110. The
DISPLAY Completion state 240 1s then entered and the
suggested completion 1s displayed 1n active cell 110. As can
be seen 1in FI1G. 3b, a suggested completion can be presented
to the user by displaying the portion of the suggested
completion that contains the partial data entry 1in normal
video and the remainder of the suggested completion in
reverse video.

Accepting a suggested completion. At this point the user
can either accept the suggested completion, exit the edit

US RE39,326 E

11

mode, or enter an additional partial completion. The sce-
nario 1n which the user accepts the suggested completion 1s
illustrated 1n FIG. 4 by entering the STORE AutoComplete
state 250. If the user accepts the suggested completion by
pressing the enter key, the edit mode 200 1s exited at point
295 (shown 1n FIG. 4), and the suggested completion 1is
stored 1n cell 110 as illustrated in FIG. 31.

Entering a partial data 1item over a suggested completion.
Instead of accepting the suggested completion displayed 1n
FIG. 3b, the user may modily the partial data item by
entering an additional character (1.e., “r”) into the active cell
110. This action will result 1n another search of the list of
completed data items for a completed entry uniquely match-
ing the modified partial data entry “Br”. Again, the com-
pleted data item “Braves” will be displayed as a suggested
completion 1n cell 110 as shown 1 FIG. 3c. It the user elects
to again modily the partial data 1tem by entering the addi-
tional character “e”, then the list of completed data i1tems
will be searched to 1dent1fy a suggested completion for the
twice modified partial data entry “Bre”. Since there are no
completed data 1tems that match the partial data entry “Bre”,
only the partial data 1tem 1s displayed in the active cell 110
as shown i FIG. 3d.

Entering a partial data entry and finding multiple matches.
Referring to FIG. 3e, the results of entering a partial data
entry that has multiple matching items 1n the completed data
item list 1s 1llustrated. In this example, the partial data entry
“P”” has been entered 1nto active cell 112. Upon searching the
list of completed data 1tems, 1t can be seen that the com-
pleted data items “Padres” from cell 130 and “Phillies™ from
cell 132 both match the partial entry “P” 1n active cell 112.
In the preferred embodiment, a suggested completion will
not be displayed under these circumstances; however, in
alternate embodiments, a decision process could be 1mple-
mented to choose and display one of the possible comple-
tions. If the user subsequently enters the letter “h”, then the
modified partial data entry of “Ph” will uniquely match the
completed data 1item “Phillies™ and the suggested completion
will be displayed as shown in FIG. 31.

Entering a partial data entry that disables further searches.
Under the conditions illustrated 1in FI1G. 31, if the user enters
the letter “1”, the modified partial data entry of “P1” will not
have a matching completed data item in the completed data
item list. Stmilar to the example shown 1n FIG. 3d for the
partial data entry “Bre”, the partial data entry “P1” will be
displayed 1n the active cell 112 as shown in FIG. 3g. The
difference between the example i FIG. 3d and the example
in FIG. 3g 1s that 1n the former, a non-matching partial data
entry was entered over a suggested completion and in the
latter, a non-matchmg partial data entry was entered when
the previous partial data entry had multiple matches. Both of
these examples are provided to illustrate that in either case,
the result 1s the same. When a partial data 1item 1s entered and
{

C

here are no matching completed data items 1n the completed
lata item list, then the partial data entry 1s displayed 1n the
active cell. In addition, 1f the user enters additional charac-
ters 1n the active cell, the list of completed data items wall
not be searched. The reason for disabling further searches 1s
that 11 the completed data item list does not contain a match
for a partial data entry (1.e. “Pl”) then 1t will not contain a
match for any partial data entry beginning with the previous
partial data entry (1.e., “P1t”). This aspect of AutoComplete
will be described in more detail herein below with respect to
FIGS. 3h-1.

Obtaining a case conversion for a partial data entry. Now
turning to FIGS. 3h—1, the process of the case conversion in
the AutoComplete process 1s illustrated. In FIG. 3h, the

10

15

20

25

30

35

40

45

50

55

60

65

12

partial data entry “br” has been entered into active cell 110
and a suggested completion has been found and displayed.
The portion of the suggested completion that matches the
partial data entry 1s displayed 1n normal video 1n conform-
ance with the capitalization of the partial data entry “br”.
The remainder of the suggested completion “aves™ 1s dis-
played in reverse video. The actual completed data item
“Braves” matching the partial data entry “br’” begins with an
upper case “B”. If the user accepts the suggested completion
by pressing the enter key, the capitalization in the active cell
will be adjusted to correspond to the capitalization of the
completed data item and the display of FIG. 31 will result.
Alternatively, the user can disable the case conversion by
changing the msertion point in active cell 110 (1.e., moving
the cursor within the active cell by either the keypad or the
mouse). If the user disables the case conversion and then
accepts the suggested completion, the completed data 1tem
“braves” will be entered 1nto the spreadsheet and will also be

included 1n subsequent lists of completed data items 11 lett
unaltered.

Entering partial data entry where there are no associated
cells. FIG. 3 illustrates the definition of associated data
items. As mentioned previously, the list of completed data
items 1s formed from a set of cells associated with the active
cell. As will be described 1in more detail below, AutoCom-
plete as implemented in the preferred embodiment, defines
associated cells as including the set of cells that: share the
same column as the active cell; extend above and below the
active cell; and are bordered by ‘white space”. In FIG. 2j,
cell 138 1s shown as the active cell and the partial data entry
“P” has been entered. Active cell 138 does not have any
associated cells because cell 136, which 1s directly above
active cell 138, 1s empty (contains “white space™) and there
are no data entries below active cell 138. When the edit
mode 1s mvoked for active cell 138, the list of completed
data 1tems generated will be empty and thus, 1n response to
entering the partial data entry “P”, no suggestions will be
received. The suggested completions 1n cells 110-134 are
not considered to be associated with active cell 138 because
they are separated by from the active cell 138 by the white
space 1n cell 136. Therefore, the preferred embodiment
defines associated data items as those that are adjacent and
share a common column. Other mechanisms, algorithms or
decision rules can be used to define associated data items
and the embodiment illustrated by this example should not
limit the scope of AutoComplete. Those skilled 1n the art will
appreciate that definitions such as: adjacent elements 1n a
common row; c¢lements that are within a range of N cells
from the active cell; all data items 1n a column; all data items
in a row; all data 1tems 1n a spreadsheet; all data items
formatted 1n a particular manner (1.e., bolded, underlined,
italicized, etc.); and other similar methods can be used for
determining which data items are associated. Essentially,
any mechanism to differentiate between associated and
non-associated cells can be utilized in this mnvention. As an
example, 1n the preferred embodiment, the data 1n the cells
can include formatting information of various types and
combinations. The filtering algorithm can be designed to
detect the formatting information and only select completed
data 1tems that contain specific formatting information (i.e.,
only bolded and 1talicized data will be selected).
AutoComplete as a State Machine

The detailed operation of AutoComplete can be described
in the form of a state machine. In general, a state machine
1s a means to illustrate the operation of a process by
identifying the various unique states in which the process
can exist, and 1dentifying what events or circumstances will
cause the process to transition between those states.

US RE39,326 E

13

Referring to FIG. 5, a diagram of the AutoComplete state
machine 1s shown as consisting of two types of states: static,
depicted as a solid circle; and dynamic, depicted as a broken
circle. A static state 1s a steady state in which an external
event must occur 1n order to transition to a different state. In
the absence of an external event, a process can remain 1n a
static state indefinitely. A dynamic state 1s a momentary or

transitory state in which a process only exists while per-
forming a specific function or task. Upon completion of the
task, a transition to another state will occur. A dynamic state
generally comprises the execution of an algorithm and 1s
exited upon completion of that algorithm.

The AutoComplete process comprises 3 static states and
4 dynamic states.

These AutoComplete states include static states:

WAIT Partial Entry 220;

DISPLAY Completion 240;

DISABLE AutoComplete 270; and dynamic states:
BUILD Completion List 210;

ATTEMPT AutoComplete 230;

STORE 250; and

CLEAR 260.

Three types of transitions exist for the AutoComplete state
machine and include: User commands; Process events; and
Background events. The User commands, indicated by
| xxxxx |, occur in response to actions taken by the user. The
Process events, indicated by (xxxxx), occur automatically
upon the completion of processing 1n a dynamic state. The
Background events, indicated by (xxxxx) and drawn with
dashed lines, occur during the idle time between user
commands.

The AutoComplete user commands 1nclude:

Partial Entry] 600: Partial data item for a cell;
Accept] 610: Accepts a suggested completion;
Abort]| 620: Rejects the data in the active cell;
'Disable AutoComplete] 630;

'Enable AutoComplete] 640; and

'Edit] 650: Enables the edit mode for a cell.
The AutoComplete process events include:

(Suggested Completion) 730;
(No Completion) 740;
(No Suggestion) 750; and

(Exit Edit) 760.
The AutoComplete background process events include:

(Build Level 1) 700;
(Complete) 710; and

(Build Next Level) 720.

Upon entering the edit mode for an active cell, the
AutoComplete process will mitiate the performance of two
functions. The first function 1s the generation of the list of
completed data items associated with the active cell. In the
preferred embodiment, the completed data item list will be
generated 1n a tiered approach as a background process. The
tiered approach consists of building the list of completed
data items one level at a time where each level includes a
specific number of associated cells. The second function 1s
to 1dentily and provide a suggested completion for a partial
data entry.

Entering the [Edit] user command 650 causes the edit
mode 200 to be entered as shown at point 205. The (Build
Level 1) process command 700 1s 1ssued automatically upon
entering edit mode and the BUILD Completion List state

210 1s entered. In the BUILD Completion List state 210, the

10

15

20

25

30

35

40

45

50

55

60

65

14

first level of the completed data 1item list 1s generated. In the
preferred embodiment, the first level includes the 50 cells
that are most closely associated with the active cell. As will
be described later, this includes the associated cells that are
physically closest to the active cell. It there are a limited
number of data entries (1.¢., less than 50), the first level of
the completion list will include all of the associated entries.
After the first level of the completlon l1st has been generated,
a (Complete) process event 710 1s executed and a transition
to the WAIT Partial Entry state 220 occurs. In the WAIT
Partial Entry state 220, the application program waits for the
reception of a user command.

If there 1s 1dle time between entering user commands 1n
the WAIT Partial Entry state 220, and the completion list has
not been fully generated, a (Build Next Level) background
process event 720 will be 1ssued resulting 1n a transition to
the BUILD Completion List dynamic state 210. (Note, this
event may also be 1ssued 1n the DISPLAY Completion state
240.) When the next level of the completion list has been
generated, a (Complete) process event 710 will be 1ssued
and a transition to the WAIT Partial Entry state 220 will
occur (or a transition to the previous state). The (Build Next
Level) background process event 720 will continue to be
issued until the list of completed data 1tems has been fully
generated.

In the WAIT Partial Entry state 220, four user commands
are accepted: [Partial Entry], [Disable AutoComplete],
| Abort], and [Accept]. The cell 110 in FIG. 3a and the cell
112 1in FIG. 3e 1illustrate typical displays during the WAIT
Partial Entry state 220. If the user provides |[Partial Entry]
600, a transition to the ATTEMPT AutoComplete state 230
will occur. This transition will occur 1n response to entering
the first character in the active cell. This 1s an improvement
over similar implementations, which require the entry of
several characters prior to attempting to automatically com-
plete the entry.

In the ATTEMPT AutoComplete state 230, the partial data
entry will then be used as a character mask to search through
the list of completed data items for a unique match. A unique
match exists 1f there 1s only one 1tem 1n the completed data
item list that begins with the same character or characters
defining the partial data entry. A unique match 1s further
defined as, given that an N character partial entry has been
entered, if there 1s one and only one data item 1in the
completed data 1item list that begins with these N characters,
then that data 1tem 1s a unique match. If more than one entry
matches the first N characters, then a unique match does not
exist.

The ATTEMPT AutoComplete state 230 can be entered
prior to fully generating the list of completed data items. IT
this occurs, the search for a suggested completion will be
limited to the completed data item list in 1ts current state
(1.e., the levels that have been generated). But, 1f updating
the list of completed data items results 1n destroying the
unique status of the partial data entry, the current AutoCom-
plete suggestion remains intact until either the user accepts
the data item or enters a subsequent partial entry.

As a result of entering the ATTEMPT AutoComplete state
230, one of three possible outcomes will be realized: (1) a
unique match will be found; (2) no matches will be found;
or (3) multiple matches will be found.

I a unique match 1s found, then a (Suggested Completion)
process event 730 1s 1ssued, which results in a transition to
the DISPLAY Completion state 240. Referring to FIG. 3b, a
typical display for the DISPLAY Completion state 240 1s
illustrated. Here, [Partial Entry| 600 containing the partial

data entry “B” was entered in the WAI'T Partial Entry state

US RE39,326 E

15

220 and this resulted in a transition to the ATTEMPT
AutoComplete state 230. Upon finding the unique match
“Braves™, the (Suggested Completion) process event 730
1ssued, which resulted in a transition to the DISPLAY
Completion state 240 for displaying the suggested comple-
tion 1n cell 110.

If no matches are found, the (No Completion) process
event 740 1s 1ssued, which results 1n a transition to the
DISABLE AutoComplete state 270. Examples of the sce-
nario include FI1G. 3d, where the partial data entry “Bre” in
cell 110 has no matches, and FIG. 3g, where partial data
entry “P1” 1n cell 112 has no matches.

If multiple matches are found, the (No Suggestion) pro-
cess event 750 1s 1ssued, which results 1n a transition back
to the WAIT Partial Entry state 220. An example of this
transition and the resulting display can be seen by referring
to FIG. 3¢ where the partial data entry “P” in cell 104
matches both the completed data items “Padres™ of cell 130
and “Phillies” of cell 132.

The [Partial Entry| command 600, entered in the WAIT
Partial Entry state 220, can also consist of multiple charac-
ters. This occurs when entering additional characters to
distinguish a partial data entry from multiple matches. As an
example, the character “h” can be appended to partial data
entry “P” 1 FIG. 3¢ to form partial data entry “Ph”™ and a
resulting transition to the ATTEMPT AutoComplete state
230. The search of the completed data 1tem list will result 1n
finding the suggested completion “Phillies” and eliminating
“Padres”. A (Suggested Completion) process event 730 1s
then i1ssued and a transition to the DISPLAY Completion
state 240 occurs with the display of FIG. 31 being produced.

In contrast, 1f the character “1” 1s appended to the partial
data entry “P” 1 FIG. 3e, partial data entry “P1” will be
formed and a transition to the ATTEMPT AutoComplete
state 230 will occur. The search of the completed data item
list will result in finding no matches for partial data entry
“P1”. The (No Completion) process event 740 will be 1ssued
and a transition to the DISABLE AutoComplete state 270
will occur.

In the WAIT Partial Entry state 220, the [Disable
AutoComplete] command 630 can also be entered. In the
preferred embodiment, the [Disable AutoComplete| com-
mand 630 consists of moving the insertion point or cursor in
the edit window. Other methods could also be utilized such
as pressing a function key. Entering this command causes a
transition to the DISABLE AutoComplete state 270.

The final two commands that can be entered in the WAIT
Partial Entry state 220 are [Abort] 620 and [Accept] 610.
Entering the [Abort] 620 command results in a transition to
the CLEAR AutoComplete state 260, in which the pre-
edited contents of the active cell will be restored. The (Exit
Edit) process event 760 will then be 1ssued and the edit mode
200 will be exited at point 295. Any partial data entries
displayed prior to the [Abort] 620 command will be erased.
Entering the [Accept] command 610 causes a transition to
the STORE AutoComplete state 250 in which state the
contents displayed 1n the active cell are stored and the (Exat
Edit) process event 1s 1ssued to exit the edit mode 200 at
point 295. In the preferred embodiment, an [Accept] 610 can
be 1ssued by entering a carriage return or by using the key
pad or mouse to change active cells. An [Abort] 620 can be
issued by entering the [ESC] key. Other methods could also
be used to implement these commands and are contemplated
by the present invention.

The DISPLAY completion state 240, operates to display
a suggested completion 1n the active cell. If the completion
list 1s not fully generated, the (Build Next Level) back-

10

15

20

25

30

35

40

45

50

55

60

65

16

ground event 720 may be 1ssued as described above. While
in the DISPLAY completion state 240, the user can enter the
| Partial Entry] 600, [Accept] 610, [Abort] 620 or [Disable
AutoComplete] 630 commands.

Entering [Partial Entry] 600 in the DISPLAY Completion
state 240 causes a transition to the ATTEMPT AutoCom-
plete state 230. The completed data 1tem list will then be
examined for a unique match of the partial entry. As a result
of entering the AT TEMPT AutoComplete state 230 {rom the
DISPLAY Completion state 240, two possible outcomes can
be realized: (1) a unique match will be found or (2) no
matches will be found. Two examples 1llustrate these results.
First, appending an “r” to the partial data entry “B” 1n FIG.
3b causes a transition to ATTEMPT AutoComplete state 230
and 1ssuing of (Suggested Completion) 730 for the sug-
gested completion “Braves™ as shown in FIG. 3c¢. Second,
appending an “¢” to the partial data entry “Br” in FIG. 3¢
causes a transition to AT TEMPT AutoComplete state 230
and 1ssuing of (No Completion) process event 740. The
resulting state for this example 1s DISABLE AutoComplete
270 and 1s 1llustrated 1in FIG. 3d.

Entering [Accept] 610 in the DISPLAY Completion state
240 causes a transition to the STORE AutoComplete state
250. Entering this state from the DISPLAY Completion state
240 will mvoke a case conversion 1f one 1s required.
Entering [Abort] 610 in the DISPLAY Completion state 240
will have the same response as entering it in the WAIT
Partial Entry state 220 discussed above.

Entering the [Disable AutoComplete| command 630 in
the DISPLAY completion state 240 will cause a transition to
DISABLE AutoComplete state 270. The contents of the
active cell will be maintained; however, the portion of the
data entry that had been displayed 1n reverse video will be
changed to normal video to indicate that AutoComplete 1s
disabled.

The DISABLE AutoComplete state 270 operates to elimi-
nate the overhead of searching through the completed data
item list when 1t 1s known that a match will not be found. For
example, 1n FIG. 3e there are no matching entries in the
completed data i1tem list for partial data entry “P1”. Append-
ing additional characters to the partial data entry “P1” will
not change this situation. Thus, the DISABLE AutoCom-
plete state 270 will allow the user to continue entering partial
entries without burdening the PU 14 (shown 1n FIG. 1) with
truitless searches.

The DISABLE AutoComplete state 270 may also be
entered if the completed data item list 1s empty. This
situation will occur when the first data item 1in a new area 1s
being entered or all other data 1tems have been filtered out.
In an embodiment which filters out numeric data items,
editing a cell within a column of numbers will result 1n
issuance of a (No Completion) 740 process event 1n the
ATTEMPT AutoComplete state 230 and a subsequent tran-
sition to the DISABLE AutoComplete state 270.

In the DISABLE AutoComplete state 270, an | Abort] 620,
| Accept] 610, or [Enable AutoComplete | 640 commands can
be entered. The responses to the [Abort] 620 and | Accept]
610 commands are identical to the responses generated 1n
the DISPLAY Completion state 240. Entering an [Enable
AutoComplete] 640 command will cause a transition to the
WAIT Partial Entry state 220. In the preferred embodiment,
the [Enable AutoComplete] 640 command can take the form
of back-spacing over or deleting the last entered character(s)
that caused the (No Completion) 240 process event to be
issued, or returning the insertion point to the end of the
partial data entry. As an example, FIG. 3g shows the display
of partial entry “P1” when the DISABLE AutoComplete

US RE39,326 E

17

state 270 1s active. Backspacing over the letter “1” will cause
the issuance of the [Enable AutoComplete] 640 command
and a transition to the WAIT Partial Entry state 220;
however, the ATTEMPT AutoComplete state will not be
entered until a new partial data 1tem 1s entered.

The CLEAR AutoComplete state 260 can be entered from
the WAIT Partial Entry state, the DISPLAY Completion
state 240, or the DISABLE AutoComplete state 270 upon
the execution of the [Abort] 620 command. The | Abort] 620
command operates to erase the data that 1s currently being
displayed in the active cell and then exiting the edit mode
200. In addition, the contents of the active cell prior to
entering the edit mode 200 will be restored.

In the STORE AutoComplete state 250, the data being
displayed in the active cell 1s stored and the (Exit Edit)
process event 760 1s executed to exit the edit mode 200 at
point 295. This process occurs independent of the prior state;
however, when entering from the DISPLAY AutoComplete
state 240, a case conversion may be performed on the
suggested completion.

Case Conversion

The case conversion algorithm 1s a umique aspect of the
AutoComplete process and gives 1t the ability to handle data
items with mixed upper and lower case characters. In
general, the AutoComplete algorithm i1s case insensitive
during the data entry process. But, when a suggested
completion has been accepted, the AutoComplete process
will adjust the capitalization of the data 1tem to be consistent
with matching entries. The purpose behind the case conver-
sion 1s to provide consistency for the data items in the
spreadsheet. IT a data 1tem 1s being entered 1n lower case, and
a matching completed data i1tem 1s found that 1s 1n upper
case, then the matching item will be displayed as a suggested
completion. The portion of the suggested completion that
matches the partial data 1tem (1gnoring the capitalization)
will be shown 1n normal video and 1n the capitalization that
the partial data item was entered. The portion of the sug-
gested completion that does not include the partial data 1tem
will be displayed 1n reverse video and 1n the capitalization
that corresponds with the suggested completion. Accepting,
the suggested completion will result 1n adjusting the case of
the partial entry to be the same as that of the suggested
completion. But, 11 the user changes the insertion point or 1n
some other way executes a DISABLE AutoComplete com-
mand 630, then accepting the data 1in the active cell will
result 1n maintaining the case of the characters as displayed
in the active cell.

Turning to FIG. 6, edit mode entrance point 205 indicates
that the case conversion algorithm becomes active when the
edit mode 200 has been entered for an active cell. The
process blocks shown 1n FIG. 6 are executed during various
states of the AutoComplete process. Overall, the case con-
version algorithm maintains an “AcceptedUnaltered” tlag to
indicate whether or not a case conversion should be per-
formed upon exiting the edit mode 200. When the Accept-
edUnaltered flag 1s equated to FALSE, as 1n process block
420, then the case conversion will not be performed upon
exiting the edit mode 200. Conversely, a value of TRUE 1n
the AcceptedUnaltered flag will cause a case conversion to
be performed. Thus, the AcceptedUnaltered flag 1s examined
upon exiting the edit mode 200, to determine 1f a case

conversion should be performed.
Decision block 410 illustrates that tor each user command

received, other than an [Abort] 620 or [Accept]| 610, the

THEN branch 1s followed. For each user command invoking
the THEN branch of process block 410, the AcceptedUnal-

tered flag 1s set to FALSE as shown in process block 420. If

-2
1

10

15

20

25

30

35

40

45

50

55

60

65

18

the user command results 1n producing a suggested comple-
tion (i.e., for [Partial Entry] 600 commands with unique
matches), the THEN branch of decision block 430 will be
followed and process block 440 will set the AcceptedUnal-
tered flag to TRUE. If the user command does not result in
finding a suggested completion, then the ELSE branch of
decision block 430 1s followed. In either of these cases,
processing will return to decision block 410 and the next
user command will be processed.

Once the [Abort] 620 or [Accept] 610 commands are
received, the ELSE branch of decision block 410 will be
followed and decision block 450 will be entered prior to
exiting the edit mode. If the received user command was an
| Accept] 610 command, then the AcceptedUnaltered flag
will be examined 1n decision block 460 to determine 1 a case
conversion should be performed. If the AcceptedUnaltered
flag 1n equated to TRUE, process block 480 will be entered
to perform the case conversion; however, 11 the AcceptedU-
naltered flag 1s equated to FALSE, then the current case
displayed 1n the active cell will be maintained. In either case,
the edit mode for the active cell will be exited at point 295.
In summary, whenever a partial entry results 1n producing a
suggested completion, a case conversion will occur upon a
subsequent [Accept] 610 command. If the user enters any
command other than [Accept] 610, then the case conversion
will disabled until a subsequent suggested completion 1s
produced.

BUILD Completion List

Turning now to FIG. 7, the detailed operation of gener-
ating the completed data item list 1s shown. The completed
data 1tem list used 1n the AutoComplete process 1s a dynamic
list (1.e., 1s built on the fly for each data entry attempt). In
contrast to a static lists, a dynamic list does not require
permanent memory resources. Therefore, once a data item
has been entered into a cell and accepted by the user, the
memory occupied by the completed data item list can be
released and reallocated to other resources. The trade off n
using a dynamic list rather than a static list 1s the processing
overhead required to generate a unique list upon each
entrance of the edit mode. In the preferred embodiment, this
processing overhead 1s mimmized by utilizing a tiered
generation technique. This tiered technique includes build-
ing a first data item list of entries most closely associated
with the active cell and, during idle time between user
commands, augmenting the list with other associated data
items. This process will continue until the entire list has been
completed. Thus, 1n this tiered technique, priority 1s given to
user input, and data entry 1s not delayed or “stuttered” while
the data item list 1s being generated.

The first aspect 1n building the data item list 1s determin-
ing the particular data items that are associated with the
active cell. The preferred embodiment utilizes a table deter-
mination algorithm to define the borders of a spreadsheet
table. The algorithm defines a table as a set of data items
surrounded by “white space” or empty cells. Ignoring cer-
tain exceptions such as text boxes, table headings, picture
objects, and print area definitions, this algorithm defines a
rectangular border that encompasses adjacent data items in
the vertical horizontal and diagonal directions.

The process of determining the data items that are asso-
ciated with an active cell can be accomplished 1n several
ways. In the most liberal approach, all of the data i1tems
entered 1nto a spreadsheet and any associated sheets could
be considered to be associated with the active cell, and thus,
become imput into the data item list generation process.
Although for some applications this may be a wviable
approach, the typical spreadsheet designer arranges associ-

US RE39,326 E

19

ated data into columns. Hence, in the more restrictive
approach, only data items i1n the same column and same
table (using the term table as defined by the above
algorithm) would be considered to be associated with the
active cell. A turther limitation would be to only include the
block of data items that are 1n the same column as the active
cell, encompass the active cell, and are bordered by white
space. This 1s the approach that has been implemented 1n the
preferred embodiment.

The second aspect 1n building the data item list involves
applying filters to the list of associated data items. Several
filtering mechanisms can be employed. A first filtering
mechanism includes limiting the data items to alphabetical
or alpha-numeric entries, and hence, excluding numeric
entries. A second filtering mechanism 1s the elimination of
duplicate data items from the data item list. Thus, 11 a data
item has been entered 1n a column multiple times, sorting
through the data 1item list will not be burdened by examining,
redundant data items. Other filtering mechanisms can
include (a) limiting the data items to include only those
items that have been entered more than once; (b) limiting the
data items to only include data that conforms to certain
formatting restrictions; and (¢) limiting the data items to
entries that exceed a certain number of characters. In the
preferred embodiment, the filtering mechanism 1s limited to
the elimination of duplicate data items.

FIGS. 7a-b illustrate a possible implementation of the
algorithm to generate a completion list. This algorithm 1s
executed 1n the BUILD Completion List state 210 shown 1n
FIG. 5. Entry block 300 indicates that the generate comple-
tion list algorithm 1s mvoked with input parameters TIER
and RANGE. The TIER parameter 1s used to identify which
level of the completion list 1s to be generated. The purpose
of RANGE will be described later. In exit block 318, the
generate completion list algorithm returns the parameter
STATUS. STATUS indicates whether the completed data
item list has been fully generated (1.e., STATUS 1s equated
to DONE) or if subsequent levels need to be generated (1.e.,
STATUS 1s equated to TIER). This algorithm will be
invoked as many times as necessary until a completion list
1s generated that comprises all of the data items that are
associated with the active cell.

In process block 302, the algorithm varnables and param-
cters are initialized. The variable CUR 1s defined as the
location of the active cell. The variables ABOVE and
BELOW define the boundaries of the cells associated with
the active cell. These variables are equated to the number of
associated cells above and below the current cell respec-
tively. The varniable J identifies the number of cells that are
to be included 1n the first tier or level 1 generation of the
completion list. The variable K defines the number of cells
included in subsequent tiers of the completion list. In the
preferred embodiment the values of J and K are set to 50 and
20 respectively; however, other values for these varnables
can be selected and are contemplated by the present inven-
tion.

In decision block 304, the input parameter TIER 1s
examined to determine which level of the completion list 1s
being generated. If level 1 1s being generated (TTER=1) then
execution continues 1 process block 306. In this block two
additional parameters are mitialized. The START parameter
1s used to i1dentily the location of the next associated cell to
be 1included 1n the completion list. The parameter END 1s
used to define the location of the last associated cell to be
included 1n the completion list for the level being generated.
In process block 306, these parameter are mitialized for the
first level. Thus, 1n the preferred embodiment the first level

5

10

15

20

25

30

35

40

45

50

55

60

65

20

will 1nclude associated cells 1 to J, or the first 50 associated
cells. If the TIER parameter 1s greater than 1 1n decision
block 304, then processing continues 1 block 308. If level

2 1s being generated (TIER=2), process block 308 equates
START to J plus 1 (51 1n the preferred embodiment) and

END 1s equated to START plus K. Thus, for level 2, the
START and END variables are set up so as to examine the
next K cells associated with the active cell (cells 51-70 1n
the preferred embodiment). For TIER N, cell (IN-2)*20+51
and the following K-1 cells will be added to the completed
data item list. Upon completion of process block 306 or 308
process block 310 will be entered.

Process block 310 initializes the INDEX variable by
equating it to the value of START. INDEX 1s used as a
counter to indicate when all of the cells for the current level
have been read and i1s also used as a pointer in the list of
completed data 1items to 1dentity the location to store the next
data item. Input parameter RANGE 1s used as a pointer to
indicate the distance above and below the active cell where
the next data i1tem 1s to be retrieved. When entering edit
mode for the active cell, the RANGE variable 1s equated to
1. The cells immediately above and below the active cell are
at RANGE 1. The next two cells above and below the active
cell are at RANGE 2. Thus, as data items are retrieved from
associated cells, the RANGE variable 1s incremented. The
value of RANGE must be retained between subsequent calls
to the BUILD Completion List algorithm.

Process block 312 invokes the Retrieve Tier of Completed
Data Items routine shown in FIG. 7b. This routine utilizes
the variables RANGE, INDEX, ABOVE, BELOW, END,
CUR, and STATUS 1n retrieving and building the next level
of the completion list. Process block 314 applies the appro-
priate filters to the completed data item list. Process block
316 will sort the new filtered completed data item list 1n
alphabetical order. Finally, exit block 318 returns the STA-
TUS variable to the calling routine.

Turning to FIG. 7b, the details of process block 312 1n
FIG. 7a are provided. Entrance block 320 in FIG. 7b
indicates the starting point of the routine. In process block
322 a check 1s performed to determine 11 all of the data items
for the level being generated have been retrieved. This 1s
accomplished by veritying that RANGE 1s less than or equal
to ABOVE or BELOW and that INDEX 1s less than or equal
to END. To 1illustrate the operation of these vanables, FIG.
3¢ can be examined where active cell 112 1s being edited.
The associated data items 1n level 1 of the completed data
item list include cell 110 and cells 114-134. The program
variables for level 1 will be imitialized as follows:

START=1

END=50

ABOVE=1 (includes cell 110)

BELOW=11 (and comprises cells 114-134)
RANGE=1

INDEX=1

Continuing with the example shown in FIG. 3¢, decision
block 322 1n FIG. 7b determines that RANGE (equated to 1)
1s equal to ABOVE and less than BELOW, and that INDEX
1s less than END. Theretore, the THEN branch of decision
block 322 will be followed and decision block 324 will be
entered. In the THEN branch of decision block 322, RANGE
1s examined 1n comparison to ABOVE and BELOW fto
determine which associated cells should be selected. The
basic premises of the algorithm 1s to select the next closest
cell to the active cell, giving preference to cells above the
active cell. For mstance, when building a level of associated
data 1items, 1f there are cells above and below the active cell

US RE39,326 E

21

they are selected by alternating between the cell above and
the cell below the active cell. In some 1nstances, there will
be cells above the active cell but no cells below the active
cell or vice versa. In this case, only the cells above or below
the active cell are selected. Thus, if the bottom cell 1n a
column 1s being edited, then the J cells above the active cell
will be selected 1n the first level. Alternatively, 11 the top cell
in a column 1s being edited, then the J cells below the active
cell will be selected. For the example 1n FIG. 3e, the cells
will be selected 1n the following order: (110, 114, 116, 118,
120 . . . 134)

In process block 324, if RANGE 1s less than or equal to
ABOVE, then there are associated cells above the active
cell. Execution then continues 1n process block 326 where

the contents of the cell at the location of the active cell plus
RANGE 1s loaded into the completed data item list at the
location of INDEX. In addition, INDEX 1s incremented by
1. In decision block 324, if RANGE 1s greater than ABOVE,
then there are no assoc1ated cells above the active cell and
the ELSE branch will be followed. Whether or not process
block 326 1s executed, processing will continue at decision
block 328. In decision block 328, if RANGE 1s less than or
equal to BELOW, then there are associated cells below the
active cell. Execution then continues 1n process block 330
where the contents of the cell at the location of the active cell
minus RANGE 1s loaded 1n to the completed data item list
at the location of INDEX. In addition, INDEX 1s incre-
mented by 1. In decision block 328, 11 the value of RANGE
1s found to be greater than BELOW, then there are no
associated cells below the active cell and the ELSE branch
will be followed. Whether or not process block 330 1s
executed, processing will continue 1n process block 336. In
process block 336, RANGE is incremented by 1 and pro-
cessing returns to decision block 322.

Therefore, the overall affect of executing the THEN
branch of decision block 322 is to obtain the next two
completed data items associated with the active cell. In some
instances, only one data item will be retrieved. This will be
the case when the are no associated cells either above or
below the active cell.

For the example provided i FIG. 3e, after the first
execution of the THEN branch of decision block 322, the

variables will be set to the following values:
START=1

END=50
ABOVE=]
BELOW=11
RANGE=2

INDEX=3

In decision block 322 for the current example, RANGE 1s
no longer less than or equal to ABOVE. But, RANGE is less
than BELOW and INDEX 1i1s less than END. Therefore,
processing will continue to execute through the THEN

branch of decision block 322 and returming to process block
322 until erther (1) RANGE 1s greater than both ABOVE and

BELOW, or (2) INDEX 1s greater than END. In the first
case, the list of completed data items 1s fully generated.
Thus, 1n decision block 332, INDEX will be less than END
causing process block 334 to be executed, equating STATUS
to DONE. In the second case, additional levels must be
generated. Thus, 1 decision block 332, INDEX will be
greater than END resulting in returming STATUS equated to
the value of TIER or the level that was generated.

For the simplified example illustrated mn FIG. 3e, the
BUILD Completion List routine 1s only mnvoked once. Upon
exiting the retrieve Tier of Completed Data Items, the

10

15

20

25

30

35

40

45

50

55

60

65

22

completed data item list for cell 112 in FIG. 3e will contain
the following entries:

Braves
Braves

Braves
Reds

Giants
Dodgers
Cardinals
Mets
Cardinals

Padres
Phillies

Cardinals

The completed data item list will then be filtered 1n
process block 314 to eliminate any surplus duplicated 1tems.
For example, the entry Braves appears in the list three (3)
times. Two of these entries are considered surplus duplica-
tions and can be eliminated. After filtering, the filtered list of
completed data items will contain the following entries:

Braves
Reds
(1ants

Dodgers
Cardinals

Mets
Padres

Phillies

Finally, the filtered list of completed data items will be
sorted alphabetically 1n process block 316. The sorting
process can be accomplished using sorting techniques famail-
1ar to those skilled 1n the art such as quick sort. The resulting
completed data item list 1s shown below:

Braves
Cardinals
Dodgers
(G1ants
Mets
Padres

Phil

Reds
AutoComplete Operation

Referring now to FIG. 8, the AutoComplete algorithm
invoked in the ATTEMPT AutoComplete state 230 (shown
in FIG. §5) 1s illustrated as a tlow diagram. The ATTEMPT
AutoComplete state 230 1s entered from the WAI'T Partial
Entry state 220 or the DISPLAY Completion state 240 upon
providing a partial data entry.

Entrance block 500 in FIG. 8 illustrates that the Auto-
Complete algorithm uses input parameter |Partial Entry]
600. In process block 3510, the completed data item list 1s
searched for items that match [Partial Entry]. The searching
process can be accomplished using a binary search, sequen-
tial search, or various other searching techniques. If at least
one match 1s found, the THEN branch of decision block 530
will be followed and decision block 550 will be entered. At
decision block 550, if more than one match has been
identified 1n the completed data 1tem list, the THEN branch
of decision block 550 will be followed and process block
520 will be entered. In block 520 the (No Suggestion)
process event 750 will be 1ssued, and a transition to the
WAIT partial entry state 220 will occur. Returning to deci-

lies

US RE39,326 E

23

sion block 550, i only one match was identified i the
completed data item list, the ELSE branch of decision block
550 will be followed and process block 540 will be entered.
In process block 540, the (Suggested Completion) process
event 730 will be executed and a transition to the display
completion state 240 will occur.

Returming to decision block 330, 1f no matches are found
in the completed data 1tem list, the ELSE branch of decision

block 530 will be followed and process block 570 will be
entered. In process block 570, a (No Completion) process

[1

command 740 will be executed and a transition to DISABLE
AutoComplete state 270 will occur. Block 560 in FIG. 8 will
then be entered and the AutoComplete algorithm will be
exited.

From the foregoing description, 1t will be appreciated that
the present invention provides a method to improve the
elliciency and reliability of data entry in a generic database
by providing the ability for an automatic completion process
utilizing a list of completed data items comprised of data
associated with the 1tem being entered. Although the present
invention has been described as embodied 1n a spreadsheet
application, 1t can be appreciated that the present invention
can be utilized in any database storage or retrieval type
application. Indeed, the present invention 1s not limited to
any particular database or spreadsheet application.

The foregoing method of the present invention may be
conveniently implemented in one or more program modules.
No particular programming language has been indicated for
carrying out the various tasks described above because 1t 1s
considered that the operation, steps, and procedures
described 1n the specification and illustrated in the accom-
panying drawings are suiliciently disclosed to permit one of
ordinary skill in the art to practice the instant invention.
Moreover, in view of the many diflerent types of computers
and program modules that can be used to practice the mstant
invention, 1t 1s not practical to provide a representative
example of a computer program that would be applicable to
these many different systems. Each user of a particular
computer would be aware of the language and tools which
are more useful for that user’s needs and purposes to
implement the instant mvention.

The present invention has been described 1n relation to
particular embodiments which are imntended 1n all respects to
be 1llustrative rather than restrictive. Those skilled 1n the art
will understand that the principles of the present invention
may be apphed to, and embodied in, various program
modules for execution on differing types of computers
regardless of database application.

Alternative embodiments will become apparent to those
skilled 1n the art to which the present invention pertains
without departing from 1ts spirit and scope. Accordingly, the
scope ol the present mnvention 1s described by the appended
claims and supported by the foregoing description.

What 1s claimed 1s:

1. A method for completing a partial data entry for an
active cell of a spreadsheet having a plurality of cells
defining a grid of rows and columns, comprising the steps

of:

invoking an edit mode for said active cell;

identifying a list of completed data items from a search
region within said spreadsheet comprising a table of
contiguous data-containing cells encompassing said
active cell and bordered by empty cells;

defimng a partial data entry within said active cell;

identifying a matching completed data item from within
said list of completed data items that corresponds to
said partial data entry;

10

15

20

25

30

35

40

45

50

55

60

65

24

displaying said matching completed data item as a sug-
gested completion for said partial data entry;

recerving an acceptance command 1n association with said
suggested completion; and

in response to said acceptance command, storing said
partial data entry with said suggested completion
within the active cell.

2. The method of claim 1 further comprising the steps of:

recerving a command pertinent to said suggested comple-
tion; and operating on said suggested completion in
accordance with said command.

3. The method of claim 2, wherein said command 1s a user

response and said operating step further comprises the steps
of:

11 said response contains a modified partial data item,
verilying said suggested completion comprises said
modified partial data 1tem;

11 said response 1s a rejection ol said suggested
completion, displaying said partial data entry; and
11 said response 1s a command to exit said edit mode,
clearing said active cell.
4. The method of claim 1, wherein said identifying step
turther comprises the steps of:

retrieving a plurality of completed data items from said
search region within said spreadsheet to form an asso-
ciated list of completed data items;

filtering said associated list of completed data items to
generate a filtered list; and

sorting said filtered list to generate said list of completed

data items.

5. The method of claim 4, wherein said search region
within said spreadsheet 1s positionally based on said active
cell and said identifying step further comprises the step of
selecting a block of contiguous cells, said block being
coterminous with said active cell.

6. The method of claim 5, wherein said block 1s confined
to one of said columns of cells within said spreadsheet, said
column containing said active cell.

7. The method of claim 5, wherein said block 1s confined
to one of said rows of cells within said spreadsheet, said row
containing said active cell.

8. The method of claim 4, wherein said filtering step
further comprises the step of removing surplus duplicated
completed data items from said associated list of completed
data items.

9. The method of claim 4, wherein said filtering step
further comprises the steps of:

removing completed data 1tems that are not duplicated 1n
said associated list of completed data items; and

removing surplus duplicated completed data items from

said associated list of completed data items.

10. The method of claim 4, wherein each of said com-
pleted data items comprises at least one glyph, and said
filtering step further comprises the step of removing said
completed data items that contain less than N glyphs, where

N 1s an integer greater than one.

11. The method of claim 4, wherein each of said com-
pleted data items comprises formatting information, and said
filtering step further comprises the step of removing said
completed data items that do not comprise a specific for-

matting information.
12. The method of claim 1, wherein said 1dentifying step

further comprises the steps of:
defining a mask comprising said partial data entry;

searching said list of completed data items for at least one
matching data 1tem corresponding to said mask; and

US RE39,326 E

25

in response to finding at least one said matching data item,
equating said suggested completion to said matching
data item.

13. The method of claim 1, wherein said identifying step

turther comprises the steps of:
defining a mask comprising said partial data entry;

searching said list of completed data items for at least one
matching data item corresponding to said mask; and

in response to finding more than one or said matching data
items, defering 1dentification of said suggested comple-
tion.

14. The method of claim 1, wherein said identifying step

turther comprises the steps of:
defimng a mask comprising said partial data entry;

searching said list of completed data items for at least one
matching data item corresponding to said mask; and

in response to not finding said matching data i1tem, dis-
abling any further searches of said list of completed
data items for said active cell.

15. The method of claim 14 further comprising the step of

re-enabling searches of said list of completed data items for
said active cell.

16. The method of claim 1, wherein said displaying step
turther comprises the step of replacing said partial data entry
in said active cell with said suggested completion.

17. The method of claim 16, wherein said displaying step
turther comprises distinguishing a first portion of said sug-
gested completion that comprises said partial data item from
a second portion of said suggested completion that does not
comprise said partial data entry.

18. The method of claim 1, further comprising the step of
operating on said suggested completion 1 accordance with
said acceptance command to perform a case conversion, said
case conversion comprising an adjustment of the case of said
partial entry to correspond to the case of said suggested
completion.

19. In a program module responsive to mput commands
for manipulation of data items presented 1n a plurality of
cells, a method to generate a list of completed data 1tems
from a search region of cells that are positionally associated
with an active cell, comprising the steps of:

identifying a list of completed data 1tems from said search
region within a spreadsheet comprising a table of
contiguous data-containing cells encompassing said
active cell and bordered by empty cells;

generating a sub-list of completed data items from a
sub-range of cells that are within said search region
encompassing said active cell; and

when said program module 1s not processing said input
commands, expanding said sub-list of completed data
items to comprise all of said table of contiguous
data-containing cells within said search region.

20. The method of claim 19, wherein said identifying step

turther comprises the steps of:

selecting all cells that border said active cell and contain
completed data items to form a selected cell list; and

adding to said selected cell list all cells that border cells

in said selected cell list and contain completed data
items.

21. The method of claim 19, wherein said completed data

items comprise at least one character and said identifying

step further comprises the steps of:

selecting a set of I cells from said search region;

filtering surplus duplicated completed data items from
said set of I cells to generate a filtered sub-list; and

sorting said filtered sub-list alphabetically.

10

15

20

25

30

35

40

45

50

55

60

65

26

22. The method of claim 19, wherein said expanding step
further comprises the steps of:

(a) selecting a set of K cells from said search region, said
set excluding cells contained 1n said sub-list;

(b) filtering surplus duplicated completed data 1tems from
said set of K cells to generate a filtered set;

(¢) merging said filtered set into said sub-list;

(d) sorting said sub-list alphabetically; and
(¢) repeating steps (a)—(d) until said sub-list comprises all
of said table of contiguous data-containing cells within

said search region.
23. In a program module responsive to mput commands
for manipulation of data items presented 1n a plurality of

cells, a method to automatically complete a partial data entry
in said active cell comprising the steps of:

invoking an edit mode for said active cell, said edit mode
ecnabling said active cell to receive said partial data
entry and a suggested completion;

identitying a list of completed data items from a search
region within a spreadsheet comprising a table of
contiguous data-containing cells encompassing said
active cell and bordered by empty cells;

filtering surplus duplicated completed data items from
said list of completed data items to generate a filtered
l1st;

sorting said filtered list alphabetically to generate a sug-
gestion list of completed data items;

recerving said partial data entry and displaying said partial
data entry 1n said active cell;

searching said suggestion list to i1dentify at least one
suggested completion comprising said partial data
entry;

in response to identitying only one said suggested

completion, replacing said partial data entry in said
active cell with said suggested completion;

receiving a response concerning said suggested comple-
tion; and

operating on said suggested completion 1 accordance
with said response.

24. The method of claim 23, wherein said identifying step
turther comprises the steps of:

selecting all cells that border said active cell and contain
completed data items to form a selected cell list; and

adding to said selected cell list, all cells that border cells
in said selected cell list and contain completed data
items.

25. The method of claim 24, wherein said cells are
arranged 1 a grid of rows and columns on multiple work
pages and said search region comprises cells from at least
one of said work pages, and wherein cells sharing a common
row are aligned 1n the X direction, cells sharing a common
column are aligned in the Y direction, and cells sharing a
common (X, Y) coordinate but are located on separate work
pages are aligned 1n the Z direction, and any pair of cells
border each other 1f they are adjacent to each other 1n the X,
Y or Z directions.

26. A method for entering data items 1n a spreadsheet
program, comprising the steps of:

selecting an active cell within a search region comprising

a table of contiguous data-containing cells encompass-
ing said active cell and bordered by empty cells;

enabling said active cell to receive a partial data entry and
a suggested completion;

entering said partial data item 1n said active cell;

US RE39,326 E

27

receiving said suggested completion selected from said
search region; and

accepting said suggested completion.

27. A computer-readable medium on which is stored a
computer program for automatically providing a suggested
completion for a partial data entry, said computer program
comprising 1instructions which, when executed by said
computer, perform the steps of:

enabling an active cell to receive said partial data entry,
said active cell being selected from a plurality of cells
in response to placing a display item into a region
occupied by said active cell;

identifying a list of completed data items from a search
region within a spreadsheet comprising a table of
contiguous data-containing cells encompassing said
active cell and bordered by empty cells;

receiving said partial data entry and displaying said partial
data entry within said active cell;

searching said list of completed data 1tems to 1dentify said
suggested completion comprising said partial data
entry; and

in response to identifying said suggested completion,
displaying said suggested completion within said active
cell.

28. The computer-readable medium of claim 27 wherein

said computer program further performs the steps of:
receiving a response pertinent to said suggested comple-
tion;

i said response 1s an acceptance of said suggested
completion, storing said suggested completion as said
data entry;

if said response contains a modified partial data item,
searching said list to 1dentily a suggested completion
comprising said modified partial data item;

iI said response 1s a rejection of said suggested
completion, displaying said partial data item; and
if said response 1s a command to exit said edit mode,

clearing said active cell.
29. The computer-readable medium of claim 27, wherein

said search region 1s positionally based and said identiiying
step further comprises the steps of:

retrieving a plurality of completed data items from a block
of contiguous cells, said block being coterminous with
said active cell, and forming said list of completed data
1items;

removing surplus duplicated completed data items from
said list of completed data items; and

sorting said list of completed data items alphabetically,
said completed data items containing at least one glyph
from a set of glyphs having an alphabetical relation-
ship.
30. The computer-readable medium of claim 27, wherein
said searching step further comprises the steps of:

defimng a mask comprising said partial data entry;

searching said list of completed data items for at least one
matching data item corresponding to said mask;

equating said suggested completion to said matching data
item 11 only one said matching data item 1s found;

defer identitying said suggested completion 11 more than
one of said matching data items 1s found; and

disabling any further searches of said list of completed
data 1items for said active cell 11 a matching data item 1s
not found.

31. The computer-readable medium of claim 27, wherein
said displaying step further comprises the step of replacing
said partial data entry 1n said active cell with said suggested
completion.

10

15

20

25

30

35

40

45

50

55

60

65

28

32. The computer-readable medium of claim 27, turther
comprising the step of operating on said suggested comple-
tion 1n accordance with said acceptance command to per-
form a case conversion, said case conversion comprising an
adjustment of the case of said partial entry to correspond to
the case of said suggested completion.

33. A computer system for completing a data entry for an
active cell of a spreadsheet, comprising:

a processing unit;

a memory storage device;

an mput device coupled to said processing unit for rece1v-

ing data;

a pixel-based display device coupled to said processing

unit for displaying data;

a program module, stored in said memory storage device

for providing instructions to said processing unit;

said processing unit, responsive to said instructions of
said program module, operative to:
enable an active cell to accept a partial data entry, said

active cell being selected from a plurality of cells 1n
response to moving a display item into a region
occupied by said active cell;

identifying a list of completed data items from a search
region within a spreadsheet comprising a table of
contiguous data-containing cells encompassing said
active cell and bordered by empty cells;

receive a partial data entry from said input device;

display said partial entry within said active cell on said
pixel-based display device;

search said list of completed data items to identity a
suggested completion comprising said partial data
entry; and

in response to identifying said suggested completion,
display said suggested completion within said active
cell on said pixel-based display device.

34. The computer system of claim 33, wherein said
processing unit 1s further operative to:

receive a response pertinent to said suggested completion;

i said response 1s an acceptance of said suggested
completion, store said suggested completion i said
active cell as said data entry;

11 said response contains a modified partial data item,
search said list to identify a suggested completion
comprising said modified partial data item;

1f said response 1s a rejection of said suggested
completion, display said partial data 1tem; and

11 said response 1s a command to exit said edit mode, clear
said active cell.

35. The computer system of claim 33, wherein said search

region 1s positionally based and said processing unit 1s
operative to 1dentily a list of completed data items by:

retrieving a plurality of completed data 1tems from a block
of contiguous cells, said block being coterminous with
said active cell, and forming said list of completed data
items:

removing surplus duplicated completed data items from
said list of completed data 1tems; and

sorting said list of completed data 1tems alphabetically,

said completed data items containing at least one glyph

from a set of glyphs having an alphabetical relation-
ship.

36. The computer system of claim 33, wherein said

processing unit conducts a search of said list of completed

data items by:

defining a mask comprising said partial data entry;

searching said list of completed data items for at least one
matching data item corresponding to said mask;

US RE39,326 E

29

equating said suggested completion to said matching data
item 1f only one said matching data item 1s found;

deferring to identify said suggested completion 1if more
than one of said matching data items 1s found; and

disabling any further searches of said list of completed
data 1items for said active cell 11 a matching data item 1s
not found.

37. The computer system of claim 33, wherein said
processing unit displays said suggested completion by
replacing said partial data entry 1n said active cell with said
suggested completion.

38. The computer system of claim 33, wherein said
response 1s an acceptance of said suggested completion and
said processing unit operates on said suggested completion
in accordance with said response by performing a case
conversion, said case conversion comprising an adjustment
of the case of said partial 1tem to correspond to the case of
said suggested completion.

39. A method for completing a partial data entry for an
active cell of a spreadsheet having a plurality of cells
defining a grid of rows and columns, the method comprising:

invoking an edit mode for the active cell;

identifving a list of completed data items from a search
region within the spreadsheet, said search rvegion
including one (1) cells sharing the same column as the
active cell, (2) cells sharing the same vow as the active
cell, (3) cells within the same column as the active cell
and within a range of N cells from the active cell,
wherein N is an integer greater than zevo, and (4) cells
within the same rvow as the active cell and within a
range of N cells from the active cell, wherein N is an
integer greater than zero;

defining a partial data entry within the active cell;

identifving a matching completed data item from within
said list of completed data items that corresponds to
said partial data entry;

displaving said matching completed data item as a sug-
gested completion command for said partial data

entry;

receiving an acceptance command in association with
said suggested completion; and

in rvesponse to said acceptance command, storing said
partial data entry with said suggested completion
within the active cell.

40. The method of claim 39, further comprising:

receiving a command pertinent to said suggested comple-
tion; and

operating on said suggested completion in accovdance
with said command.
41. The method of claim 40, wherein said command is a
usev rvesponse and said operating operation further com-
prises.

if said rvesponse contains a modified partial data item,
verifving said suggested completion comprises said
modified partial data item;

il said respomse is a rvejection of said suggested
completion, displayving said partial entry; and

if said respomnse is a command to exit said edit mode,
clearing the active cell.

42. The method of claim 39, wherein said identifying a list
of completed data items operation further comprises:

retrieving a plurality of completed data items from said
search rvegion within the spreadsheet to form an asso-
ciated list of completed data items;

30

[terine said associated list of completed data items to
g p
generate a filtered list; and

sorting said filteved list to generate said list of completed
data items.

5 43. The method of claim 42, wherein said search region
within the spreadsheet is positionally based on the active
cell and said identifyving a list of completed data items
operation further comprises selecting a block of contiguous
cells, said block being coterminous with the active cell.

44. The method of claim 43, wherein said block is
confined to omne of the columns of cells within the
spreadsheet, said column containing the active cell.

45. The method of claim 43, wherein said block is
confined to one of the vows of cells within the spreadsheet,
said row containing the active cell.

46. The method of claim 42, wherein said filtering opera-
tion further comprises removing surplus duplicated com-
pleted data items from said associated list of completed data
items.

47. The method of claim 42, wherein said filtering opera-
tion further comprises:

10

15

20

removing completed data items that are not duplicated in
said associated list of completed data items; and

removing surplus duplicated completed data items from

said associated list of completed data items.

48. The method of claim 42, whervein each of said com-
pleted data items comprises at least one glvph, and said
filtering operation further comprises removing completed
data items that contain less than N glyphs, wherve is an
integer greater than one.

49. The method of claim 42, wherein said completed data
items comprises formatting information, and said filtering
operation further comprises removing completed data items
that do not comprise a specific formatting information.

50. The method of claim 42, wherein said displaving
operation further comprises distinguishing a first portion of
said suggested completion that comprises said partial data
item from a second portion of said suggested completion that
does not comprise said partial data entry.

51. The method of claim 39, wherein said identifving a list
of completed data items operation further comprises:

25

30

35

40

defining a mask comprising said partial data entry;

searching said list of completed data items for at least one

matching data item corvesponding to said mask; and

P in response to finding at least one said matching data

item, equating said suggested completion to said
matching data item.

52. The method of claim 39, wherein said identifving a list

of completed data items operation further comprises:

50 : . : :
defining a mask comprising said partial data entry;

searching said list of completed data items for at least one
matching data item corresponding to said mask; and

in vesponse to finding move than one of said matching
data items, deferring identification of said suggested
completion.
53. The method of claim 39, wherein said identifving a list
of completed data items operation further comprises:

55

defining a mask comprising said partial data entry;

60 searching said list of completed data items for at least one

matching data item corvesponding to said mask; and

in rvesponse to not finding said matching data item,
disabling any further searches of said list of completed
data items for the active cell.
54. The method of claim 53, further comprising
re-enabling searvches of said list of completed data items for
the active cell.

65

US RE39,326 E
31 32

55. The method of claim 39, wherein said displaving 58. The method of claim 57, wherein said search region is
operation further comprises replacing said partial data further limited to a range of N cells from the active cell,
entry in the active cell with said suggested completion. wherein N is an integer greater than zero.

56. The method of claim 39, further comprising operating
on said suggested completion in accorvdance with said 5
acceptance command to perform a case conversion, said
case conversion comprising an adjustment of the case of

59. A method for completing a partial data entry for an
active cell of a spreadsheet having a plurality of cells
defining a grid of rows and columns, the method comprising:

said partial entry to correspond to the case of said suggested invoking an edit mode for the active cell;
completion. identifyving a list of completed data items from a search
57. A method for completing a partial data entry for an 10 region within the spreadsheet, said search region

active cell of a spreadsheet having a plurality of cells

_ _ o including cells within the same row as the active cell;
defining a grid of rows and columns, the method comprising:

defining a partial data entry within the active cell:;
invoking an edit mode for the active cell; fining a p E

. o : . identifving a matching completed data item from within
identifving a list of completed data items from a search fving 8 P J

region within the spreadsheet, said search rvegion
including cells within the same column as the active

15 said list of completed data items that corresponds to
said partial data entry;

cell; displaving said matching completed data item as a sug-
defining a partial data entry within the active cell; gested completion command for said partial data
identifying a matching completed data item from within » entry;
said list of completed data items that corresponds to receiving an acceptance command in association with
said partial data entry;, said suggested completion; and
displaying said matching completed data item as a sug- in response to said acceptance command, storing said
gested completion command for said partial data partial data entry with said suggested completion
entry; 23 within the active cell.
receiving an acceptance command in association with 60. The method of claim 59, wherein said search vegion is
said suggested completion; and further limited to a rvange of N cells from the active cell,
in response to said acceptance command, storing said wherein N is an integer greater than zevo.

partial data entry with said suggested completion
within the active cell. £ % % k%

UNITED STATES PATENT AND TRADEMARK OFFICE
CERTIFICATE OF CORRECTION

PATENT NO. : RE39,326 E Page 1 of 1
APPLICATION NO. : 09/728000

DATED : October 3, 2006

INVENTOR(S) : Ross Ward Comer et al.

It is certified that error appears in the above-identified patent and that said Letters Patent is hereby corrected as shown below:

In column 29, line 26, 1n Claim 39, after “one” insert -- of --.

Signed and Sealed this
Twenty-sixth Day of July, 2011

David J. Kappos
Director of the United States Patent and Trademark Office

	Front Page
	Drawings
	Specification
	Claims
	Corrections/Annotated Pages

