(19) United States

12) Reissued Patent
Lanier et al.

(10) Patent Number:
45) Date of Reissued Patent:

USOORE39302E

US RE39,302 E
Sep. 19, 20006

(54) INTELLIGENT HELP SYSTEM
(75) Inventors: Charles D. Lanier, Southlake, TX
(US); Richard J. Wolf, Leander, TX
(US); Leticia Villegas Butner, Phoenix,
AZ (US)
(73) Assignee: Samsung Electronics Co., Ltd., Suwon
(KR)
(21) Appl. No.: 09/375,867
(22) Filed: Aug. 17, 1999
Related U.S. Patent Documents
Reissue of:
(64) Patent No.: 5,103,498
Issued: Apr. 7, 1992
Appl. No.: 07/562,046
Filed: Aug. 2, 1990
(51) Int. CL
GO6F 15/00 (2006.01)
(52) US.Cl .o 706/58
(58) Field of Classification Search 706/58
See application file for complete search history.
(56) References Cited
U.S. PATENT DOCUMENTS
4,156,284 A * 5/1979 Engelerc....c..... 364/862
4,648,044 A 3/1987 Hardy et al.
4,658,370 A 4/1987 Erman et al.
4,860,214 A 8/1989 Matsuda et al.
4,873,661 A * 10/1989 Tsividiscocevvnininenenn. 364/807
4,885,757 A * 12/1989 Provence 375/96
4,903,226 A * 2/1990 Tsividis .cocevvviiinnninnnn. 364/807
4,931,926 A * 6/1990 Tanaka et al. 364/419
4,942,367 A * 7/1990 Milkovic ...l 330/9
4,962,342 A * 10/1990 Mead et al. 307/201
4,964,077 A 10/1990 Eisen et al.
4,988,891 A * 1/1991 Mashikoc.ooeeee. 307/201
5,008,810 A * 4/1991 Kessel et al. 364/200
5,021,988 A * 6/1991 Mashikoco.ceee. 364/807
5,023,833 A * 6/1991 Baumetal. 365/49
5,039,870 A * 8§/1991 Engelercc.coeeenenin.n. 307/201
5,167,010 A 11/1992 Elm et al.
5,239,617 A 8/1993 Gardner et al.
5,485,544 A 1/1996 Nonaka et al.
FOREIGN PATENT DOCUMENTS
JP 6398741 4/1988
JP 63-98741 ¥ 4/1988
JP 63124148 5/1988
JP 63-124148 * 5/1988
OTHER PUBLICATIONS
Erlandsen et al., “Intelligent Help Systems”, Information

and Software Technology, vol. 29, No. 3, Apr. 1987, pp.

115-121.*
Frakes et al.,

“Using Expert System Components to Add
Intelligent Help and Guidance to Software Tools”

, Informa-

tion and Software Technology, vol. 31, No. 7, Sep. 1989, pp.

366-370.%

Prager, et al., “Reason: An Intelligent User Assistant For

Interactive Environments,” IBM Systems Journal, vol. 29
No. 1, pp. 141-164, Jan. 1990.%*

Imamivya et al., “Embedding Explanation Mechanism with
User Interface”, SPIE vol. 635 Applications of Artificial
Intelligence III (1986), pp. 650-657, Apple Maclntosh

Screen Prints.*

Parsayae et al.,
254-271, 1988.%

Covington et al., Prolog Programming in Depth, pp. 50-35,
1988.*

Graf, et al., “A Reconfigurable CMOS Neural Network,”
from 1990 IEEE Intl. Solid—State Circuits Cont., Feb. 13,
1990, 144-145.*

Kub, et al., “Programmable Analog Vector—Matrix Multi-
pliers,” IEEE Jour. Solid—State Circuits, vol. 25(1), Feb.
1990, pp. 207-214.%

Rossetto, et al., “Analog VLSI Synaptic Matrices as Build-
ing Blocks for Neural Networks,” IEEE Micro, Dec. 1989,
pp. 5663 .*

Schwartz, et al., “A Programmable Analog Neural Network
Chip,” IEEE Jour Solid State Circuits, vol. 24(3), Apr. 1989,
pp. 688—697.%

Alspector, et al., “Performance ol a Stochastic Learming
Microchip,” from Advances 1n Neural Information Process-
ing Systems I, Morgan—Kauimann, 1989, pp. 748-760.%

Faggin, et al., “VLSI Implementation of Neural Networks,”
from an Intro. to Neural and Electronic networks, Academic

Press, Inc., 1990, pp. 275-292.*

DeGloria, A., “The VLSI Technology and the Design of
Neural Networks,” First Italian Workshop Parallel Architec-
tures and Neural Networks, Apr. 1988, pp. 119-127.%

Mead, et al., “Analog VLSI Implementation of Neural
Systems,” Kluaer Academic Publishers, 1989, pp. 57-83.*

Salem, et al., “A Feed Forward Network for CMOS VLSI

Implementatlon, Midwest Symposium Circuits & Systems
1990, 489-491.%

Walker et al., “A CMOS Neural Network for Pattern Asso-
ciation,” Ij,_,E Micro, Oct. 1989, pp. 68—74.%

Siyilotti, et al., “A Novel Associative Memory Implemented
Using Collective Computation Cont. on Very Large Scale
Integration, 1983, pp. 11-21.%*

Graf, et al., IEEE International Solid-State Circuits Cont.,
1990, “A Reconﬁgurable CMOS Neural Network”, pp.
144—-145.*

Expert Systems for Experts, pp. 66-67,

(Continued)

Primary Examiner—Todd Ingberg
(74) Attorney, Agent, or Firm—Knobbe, Martens, Olson &

Bear LLLLP

(37) ABSTRACT

An 1ntelligent help system which processes information
specific to a user and a system state 1s described. The system
incorporates a monitoring device to determine which events
to store as data in an historical queue. These data, as well as
non-historical data (e.g., system state), are stored 1mn a
knowledge base. An inference engine tests rules against the
knowledge base data, thereby providing a help tag. A display
engine links the help tag with an appropriate solution tag to

provide help text for display.

23 Claims, 14 Drawing Sheets

US RE39,302 E
Page 2

OTHER PUBLICATIONS Helm, “Tandy Deskmate Intelligent Help Expert System,”

“Visual Programming Environments Paradigms and Sys-

1989.
tems”, by Ephraim P. Glinert, IEEE Computer Society Press M- Stehouwer and J. Bruggen, *Performing Interpretation in

Aug. 31, 1990.* an Intelligent Help System,” Proc. 6” Annual ESPRIT Conf.

“Extending State Transition Diagrams for the Specification (Nov. 27-Dec. 1, 1989), pp. 248-257.
of Human-Computer Interaction”, by Anthony I Wasser- J. Silber, “Pal: An Intelligent Help System,” Proc. 3™ Int’l
man, pp. 100-114, Aug. 1985.%* Cont. on Indus. & Engin. Appli. of Artificial Intelligence &

“Visual Programming Languages A Perspective And A Expert Systems (Jul. 1990), pp. 882-889.

Dimeensional Analysis”, by Nan C. Shu, pp. 41-358, Aug. John M. Carroll and Jean McKendree, Interface Design

19885.* Issues for Advice-Giving Expert Systems, 30 Comm. of the
“Applications and Extensions of SADT”, by Douglass T ACM 14-32. Jan. 1987.

Ross, pp. 147156, from IEEE publication Computer Apr.
1985.% * cited by examiner

L1

U.S. Patent Sep. 19, 2006 Sheet 1 of 14 US RE39.302 E

101 102 103
CENTRAL SYSTEM
CONTROLLER PROCESSOR MEMORY
AL |
* c DISK
105 106 107 108

FIG. |

U.S. Patent Sep. 19, 2006 Sheet 2 of 14 US RE39.302 E

200
201 r
-

OPERATING e
SYSTEM (—_2!03 -
_ —~
LL]
®
DESKMATE % USER
=
202 o
(_J HELP SYSTEM >
APPUCATION

PROGRAMS

g,._S

FIG. 2

U.S. Patent Sep. 19, 2006 Sheet 3 of 14 US RE39.302 E

310
—

USER-DIRECTED
EVENIS AND
SYSTEM STATES

MONITORING
DEVICE
|
‘ KNOWLEDGE
BASE
DATA

331 HIST. || STATE
QUEUE || DATA
340

|
|
|
|
|
|
I
|
|
|
|
|
|
!
|
|
INFERENCE |
ENGINE |
|
I
I
|
I
i
I
|
|
|
|
|

334
HELP
INFORMATION

DATABASE

U.S. Patent Sep. 19, 2006 Sheet 4 of 14 US RE39.302 E

l

MONITOR USElk-
DIRECTED EVENITS

351

AND SYSTEM
STATES

UPDATE
KNOWLEDGz BASE

I3
USER

REQUESTS
HELP

3582

ASSERT

CONCLUSION
AND DISPLAY
HELP

FIG. 3B

U.S. Patent Sep. 19, 2006 Sheet 5 of 14 US RE39.302 E

MAKE ENTRY CALL

LOOK UP
COMPONENT TYPE

401

403

FALSE

TRUE
COPY APP’S
PARAMETERS
UPDATE HISTORICAL
INFORMATION

U.S. Patent Sep. 19, 2006 Sheet 6 of 14 US RE39.302 E

1 o0 |

APP REGISTERS
THE MENUBAR

502

FALSE

IF
F1 (HELP)
REQUESTED

TRUE (_j o03

UPDATE
STATE INFORMATION

UPDATE
MENUBAR

CHECK EVENT
TYP

E

FIG. SA

U.S. Patent Sep. 19, 2006 Sheet 7 of 14 US RE39.302 E

507
@ s
TRUE (.J A8
DO HISTORY
UPDATE
LOOP FOR
NEXT Fi

FIG. OB

U.S. Patent Sep. 19, 2006 Sheet 8 of 14 US RE39.302 E

BEGIN

EXAMINE MOUSE
COORD’S., EVENT
TYPE AND VALUE

601

U.S. Patent Sep. 19, 2006 Sheet 9 of 14 US RE39.302 E

BEGIN

1 701

EXAMINE KEY
OR MQUSE EVENT

l

704
-
DISCARD THIS
| KEY/MOUSE EVENTl

TRUE

PLACE ALL RULES
THAT FAIRE ON
‘AGENDAS

705

APPROVE OR
DISPROVE RULES

BASED ON NEXT
EVENT

CLEAR *AGENDA'
AND EXAMINE
NEXT EVENT

LOOP FOR
NEXT EVENT

FIG. 7/

U.S. Patent Sep. 19, 2006 Sheet 10 of 14 US RE39.302 E
f‘ 8‘03

RULE CLASSES

RULE GROUPS

UNKED RULES

SINGLE RULE

FIG. 8

U.S. Patent Sep. 19, 2006 Sheet 11 of 14 US RE39,302 E

OBJECTS TEXT ACTIVITIES
TEXT

DRAW

FILER

WORKSHEET | \)

901 P02

FIG. ¢

U.S. Patent Sep. 19, 2006 Sheet 12 of 14 US RE39,302 E

| @

ACCESS
RELEVANT
KNOWLEDGe BASE

|
SELECT GROUP
OF RULES FROM

KNOWLEDGE BASE

| =

TRY TO PROVE
EACH RULE’S
CONCLUSION

]

1002

1003

PUSH ONTO
STACK. PROVE
OTHER'S PREMISE

FIG. 10A

U.S. Patent Sep. 19, 2006 Sheet 13 of 14 US RE39.302 E

1008 - 1008
IF '
< PREMISE FALSE SEARCH FOR RULE
PROVED WITH SAME
CONCLUSION
ANDRSQJE TO
P
TRUE — 1007
ASSERT ONTO
WORKING FACT
LIST

WHEN
< ALL PREMISES
PROVED

TRUE 1010

HRE RULE:

ASSERT
CONCLUSION

1011

REPEAT ROUTINE
FOR ALL GOALS

OR UNTIL NO
SOLUTION FOUND

FIG. 10B

U.S. Patent Sep. 19, 2006 Sheet 14 of 14 US RE39.302 E

FROM:
INFERENCE
ENGINE

330
-
| DISPLAY
ENGINE
(999 1101
HELP D!NFORME?T]ON 134 TAG
RULES - TAG

RN

AN

3356

1102

TO:

FIG. 1]

US RE39,302 E

1
INTELLIGENT HELP SYSTEM

Matter enclosed in heavy brackets [] appears in the
original patent but forms no part of this reissue specifi-
cation; matter printed in italics indicates the additions

made by reissue.

COPYRIGHT NOTICE

A portion of the disclosure of this patent document
contains material which 1s subject to copyright protection.
The copyright owner has no objection to the facsimile
reproduction by anyone of the patent document or the patent
disclosure as 1t appears 1n the Patent and Trademark Oflice
patent file or records, but otherwise reserves all copyright
rights whatsoever.

FIELD OF THE INVENTION

This mvention relates to help systems for computers;
more specifically, 1t relates to help systems that aid a user of
a computer by providing context sensitive help.

BACKGROUND OF THE INVENTION

In order to operate a computer eflectively, a user must
master a number of commands and data formats. One
usually accomplishes this by spending hours reading printed
user documentation and/or by using trial and error tech-
niques.

Computer-aided help system have been developed to
provide on-line assistance to computer users. In response to
a request by a user, those systems display help information
on the display screen of the computer. Simple help systems
always start with the same display, regardless of the
circumstances, and the user must enter specific information
to find help for his or her particular situation. More advanced
help systems display context-sensitive help. Context-
sensitive help systems determine what particular part of an
application program the user 1s in. Then help information 1s
displayed that 1s relevant to this user location.

While such context-sensitive help systems represent an
advancement over simple help systems, they have numerous
limitations. Such systems are usually tightly coupled to an
application program; they must rely on the application
program to keep track of and store the context. Further, since
these systems are limited to displaying help information
based upon program location, they will always return the
same help information for a given location regardless of how
the user got there. While such systems provide the conve-
nience of on-line help, the help information they provide 1s
nothing more than a user’s manual correlated with a given
program screen or function. As a result, these help systems
tend to be of limited utility to the user who cannot specifi-
cally identity the problem or who has “lost his way.”

SUMMARY OF THE INVENTION

The 1nvention recognizes a need for an intelligent help
system which processes mnformation specific to the user’s
history, such as tasks he or she has successtully executed
(and how many times) or has had previous help with, and
information which defines a state of a machine and a state of
a programmed application.

According to the invention, an intelligent help system for
aiding the user of a computer program 1s provided by
maintaining an historic queue and using artificial intelli-
gence techniques to select help iformation based on user-
directed events and the current state of the system. In

10

15

20

25

30

35

40

45

50

55

60

65

2

particular, user-directed activities are monitored and stored
in the historical queue mside a knowledge base. System
states are also monitored and stored. The knowledge base 1s
then used by an inference engine to 1solate the specific kind
of help that a user needs. Thus, the user 1s given assistance
upon request which 1s appropriate to that user’s level of
understanding or experience and the current activities that he

or she has executed.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 1s a block diagram of a computer system in which
the invention may be embodied.

FIG. 2 1s a block diagram of a computer software system
used 1n the preferred embodiment.

FIG. 3A illustrates the processing of user-directed events
and system states 1nto help information.

FIG. 3B is a flow chart of the general methods of the help
system.

FIG. 4 1s a flow chart of a query by the monitoring device.

FIGS. SA-B are a flow chart of the methods of the event
interpreters.

FIG. 6 1s a flow chart of the methods for processing
events.

FIG. 7 1s a flow chart of the methods for identifying a task.
FIG. 8 illustrates the rule taxonomy of the invention.

FIG. 9 illustrates frames and slots for the storage of
knowledge.

FIGS. 10A-B are a flow chart of the methods for proving
rules.

FIG. 1llustrates the operation of the display engine.

DETAILED DESCRIPTION OF TH.
PREFERRED EMBODIMENT

Retferring to FIG. 1, the preferred embodiment of the
invention 1s implemented on a computer system 100 having
a central processor 102, a system memory 103, a display
device 1035, a keyboard 106, a mouse 107, a disk memory
108, an 1/O controller 101, and interconnecting means 110,
such as a system bus. In the preferred embodiment, a Tandy
1000 series computer (Tandy Corporation of Ft. Worth, Tex.)
1s used as the system 100.

L1

Referring to FIG. 2, a computer software system 200 1s
shown for programming the computer system of FIG. 1.
Software system 200 1s stored 1n system memory 103 and on
disk memory 108. System 200 programs the central proces-
sor 102 to display a graphic user interface (GUI) on display
monitor 105. In the preferred embodiment, help system 204
1s 1implemented 1n the Tandy DeskMate environment 203
which provides a soitware interface 205 between a user 206,
a computer application 202, and an operating system 201. It
will be apparent, however, that one of ordinary skill 1in the
art, informed by this specification, could implement the
invention in other operating environments.

In the preferred embodiment, an artificial intelligence
(Al) paradigm 1s used to deal with knowledge which may be
vast and uncertain, leading to multiple solutions for a given
situation. An Al model has the ability to learn or infer more
knowledge from what 1t already knows. Thus, 1 a user
requests help and the help system cannot reach a solution,
the system can get further mmformation from the user and
then remember the situation; the next time that that situation
occurs a solution can be given without querying the user
again.

Referring to FIG. 3A, help system 300 of the preferred
embodiment comprises a monitoring device 320 for collect-

US RE39,302 E

3

ing data generated 1n response to user-directed events and
system states 310, a knowledge base 330 for storing data 331
along with a help information database 335 used to deter-
mine the best help to give, an inference engine 340 for
interpreting data 331 and help information database 3335 1n
knowledge base 330, and a display engine 350 for presenting
appropriate help information 360 on display device 105.
Data 331 comprises an historical queue 332 and a state data
333, while help information database 335 comprises a

plurality of rules 334 and text 336.

FI1G. 3B 1s a tlow chart illustrating the general methods of
help system 300. In step 351, user-directed events and
system states are monitored. User-directed events are the
activities that a user performs 1n an application program, for
example, saving a file 1n a paint application or copying a
block of text 1n a word-processing application. The system
state comprises a machine state and an application-specific
state. In step 352, the mformation collected 1n step 351 1s
stored as facts or data 331 of knowledge base 350.
Specifically, sequential user-directed events are stored in
historical queue 332 and knowledge about the system 1s
stored as state data 333. In step 353 if a user requests help
(e.g., pressing F1 key), then 1n step 355 inference engine 340
tests known data 331 against help system rules 334.
However, 1f no help 1s requested in step 353, the routine
loops back to the monitoring step 351.

Knowledge base 330 stores heuristics 1n the form of rules.
Rules 334, such as those used in step 355, are premise-
conclusion statements predefined by an application devel-
oper which guide inference engine 340 in selecting an
output. For example, suppose a user 1s 1 a Text (word
processing) listbox and no files are selected. A rule that
would check this 1s:

if
no files
running.listbox TEXT
then

help running text

This rule attempts to “fire” by proving 1ts premise, “no files.”
First, 1t checks the known data 331 1n knowledge base 330.
I1 this 1s not 1n data 331, 1t checks for other rules with this
premise as their conclusion. Next, 1f in step 356 a match 1s
found, the corresponding rule fires 1n step 357. In step 358,
in response to the particular rule that fired, a conclusion 1s
asserted and appropriate help information 360 1s displayed.
The format of rules 1n this embodiment 1s described here-
inafter with reference to FIG. 8.

Monitoring device 320 and its functions will now be
described in detail. While momtoring device 320 tracks or
monitors user input, it has processing capabilities. It may
assert data in knowledge base 330 after identifying a
sequence ol one or more events or states. It may remove or
retract data concerning states which are no longer true, or
reasserts a new value for old data. It keeps track of the
number of times an activity has successiully been completed
by a user.

Monitoring device 320 monitors different types of
information, mcluding machine states, application specific
states, and historical information. The machine state
includes current system level, such as within an application
Or accessory, running a component, or at the desktop inter-
face. An accessory 1s an application that may “pop up” over
another application. Examples of accessories include a pop-
up calculator, calendar, or alarm. A component 1s a graphic

5

10

15

20

25

30

35

40

45

50

55

60

65

4

clement that a user interacts with to display and accept
information from a user. For example, the components 1n a
dialogue box include radio buttons, push buttons, and edit
fields. The menubar 1s also a component.

Monitoring device 320 also monitors application-specific
states (application specifics), including information unique
to an application, and component states, including informa-
tion within the current machine state which is either appli-
cation specific or general; since components such as radio
buttons are generated 1n the same way, regardless of whether
the component 1s used at the application level or general
level, information about component states 1s also generated
in a uniform manner. For example in all applications which
have a menubar, choices are obtained by selecting an 1tem
ofl the menu.

Monitoring device 320 also tracks historical information
which indicates the completion of a task for which help has
been defined. This data 1s stored 1n historical queue 332. A
successiul completion indicates that the user no longer needs
help 1n performing that task. More specific help information,
rather than general immformation, can be given as the user
gains more experience with a program.

The structure of historical queue 332 will now be
described 1n detail. For each entry, an entry type 1s stored.
For example, when a user runs a dialogue box, monitoring
device 320 adds a dialogue box entry (CMP__ DLG__ BOX)
into historical queue 332 and then stores corresponding
editfield, listbox, radiobutton, iconbutton and checkbox
information. Each entry into historical queue 332 can be of
variable length, depending on the type of entry made. A
unique “return code” 1s assigned to each component, thus
facilitating the distinction between components. A {far
pointer to an entry’s structure (e.g., dialogue box,
component, and/or menubar structures) 1s stored to allow
direct access to that structure. Following this, dialogue and
component mnformation i1s copied. The format used can be of
variable length. A subentry flag 1s defined to indicate when
there 1s a subentry. For example, a component may still be
running while the menubar 1s processed, therefore, the
menubar 1s part of a single entry. If the flag 1s set to a value
of true, then any subentry data 1s stored. Another flag is
defined to indicate the user keystrokes that occurred during
the entry. This enables the system to determine, for example,
whether the user has begun entering data into a dialogue
box, or if he chose help immediately. The name of the box

and menu entries, such as DLGBOX, MSGBOX,

LISTBOX, or MENU, 1s stored to distinguish one box from

another. A third flag 1s defined to indicate the user keystrokes

that occurred before invoking help. This enables the system

to determine what the user was doing in the application.
Variables which manipulate historical queue 332 are

defined as follows:

thm_ HelpQ: the 500 byte queue, there 1s one 1n each task
data area of the Core Service Routine (CSR).

ithm__ TOP: the physical start of the HelpQ buliler.

thm_ ENDQ): the physical end of the HelpQ builer.

thm__start_ ptr: pointer to the first entry 1n the queue, (which

1s last historically).
thm__cur_ ptr: pointer to the first byte of the last entry 1n the

HelpQ.
ithm__end ptr: pointer to the last byte of data entered 1nto the

HelpQ.
thm_ save_ ptr: the ptr value of the last entry made, saved

because an invalid ptr 1s entered into the HelpQ as a
NULL.

ithm__menu_ ptrl: double word pointer to the current
menubar. Updated each time mb draw 1s called.

US RE39,302 E

S

The data structure of the queue may be summarized as

follows:
w— oflset of previous entry
w— type
w— return code
'w— struct ptr— oilset
'w— struct ptr— segment
b— # subentries
b— length of name
b(? }>— name of dlg box, msg box, menu, listbox
b— keyilag— any mouse or key events before entry?
b(? }— subentry data
b— keytlag— any mouse or key events during entry?
w— length of information copied or O

In the preferred embodiment, the monitoring of informa-
tion occurs at different places 1n soiftware system 200. All
state changes that result 1n the execution of dialogue and
message boxes are monitored. In DeskMate environment
203, commands are entered by the user through a menubar
and are processed by event interpreters, which check for
menubar changes. In addition, the application programs
themselves may indicate state changes in their respective
working areas.

DeskMate environment 203 1s divided into the following
hierarchy of level changes, thus simplifying the monitor’s
task of updating information:

1. Top Level to application/accessory or menubar/
component;

2. Application to accessory or menubar/component or
return to top level;

3. Accessory to menubar/component or return to applica-
tion or top level.

Specific information 1s required as to the following states:
application 1s runmng or has quit; which application 1is
running; accessory 1s running or has quit; which accessory
1s running; dialogue box 1s running or has quit; message box
1s running or has quit; component 1s running or has quit;
menubar menu has been pulled down or has returned; user
at desk top; 11 user not at top level, the level attained prior
to the current one. The variable “level” takes the value of
DeskTop, Menubar, Dlg box, Message box, Info_ box, or
Component. The monitoring can obtain the state changes by
getting the address calls from DeskMate environment 203
which indicate a function call to an application program or
resource.

FI1G. 4 illustrates how monitoring device 320 queries for
the address of calls 1t 1s interested 1n. In DeskMate envi-
ronment 203, applications call core service routines (CSR)
to run components and dialogue, information, and message
boxes. A menubar interpreter handles the processing of the
menubar. Therefore, independently of an application, the
calls which change the structures that the application 1is
using can be monitored to keep track of information
changes.

Thus, the steps are as follows. In step 401, an entry call
1s made to a core service routine. In step 402, the component
type 1s 1dentified and then compared with a list of compo-
nents that monitoring device 320 1s interested 1n. In step 403,
if the component 1s listed in the table, then 1n step 404,
monitoring device 320 takes the application’s parameters
and 1ts structure pointer to copy data from within the
application’s structures. The structures are not modified.
Upon exit of the service and before control 1s returned to the
application, at step 405 monitoring device 320 again
accesses data in the structures, this time for the purpose of
historical information updates.

Since a distinction may be made between applications and
accessories, a variable “program™ 1s defined to indicate

C
C
C
C
C
C
C
C
C
C
C
C

10

15

20

25

30

35

40

45

50

55

60

65

6

which particular program 1s running. Program takes the
value of the program name, which 1s the same 1dentifier for
help mformation database 335 associated with the applica-
tion or accessory.

Two event interpreters pick up menubar changes. The
menu selected 1s 1mportant for the state, while the item
returned 1s 1mportant for the history. A high-priority event
interpreter picks up the menubar changes when help 1s
requested, and a low priority event interpreter will make all
changes from the menubar’s return code. The high-priority
interpreter examines events first before any further process-
ing by the DeskMate system. On the other hand, the low-
priority interpreter examines events after they are processed
by the DeskMate system.

FIGS. 5A-B illustrate the method of the events interpret-
ers. In step 501, the application registers the menubar with
monitoring device 320. At step 502, i1 the user has selected
the F1 (help) key, then at step 503 the state mnformation 1s
updated according to what level the system 1s operating at
(indicated by the vanable “level”). If level equals zero 1n
step 504, then the menubar 1s the last thing changed,
therefore a menubar update 1s needed. At step 3505, the
menubar mterpreter makes an update. But it “level” 1s not
zero, then step 5035 1s skipped. At step 506, the low priority
interpreter checks the event type. If, at step 307, 1t 1s
menubar (level=menubar), then 1n step 508 the low priority
interpreter does a history update, performed by taking the
return code and comparing 1ts value with the menubar
menus. The string corresponding to the return code 1s the
item of interest. At step 509, the routine loops back to step
501 to await another F1 keystroke.

The rules associated with the functions of the above
components are written such that 1f a component has a title
string, this string 1s used to i1dentily its help source. If a
component does not have a title string, then the name of the
component will be used as 1ts 1dentifier.

Since all applications use the features of DeskMate envi-
ronment 203, standard representation of data 331 and rules
334 1s possible. For example, the following variables can be
used to indicate events and states:

menu.selected
menu.item.selected
dlg.box.running,
dlg.box.focus

msg.box.running,

cmp.running

listbox.item.selected

checkbox.item.selected

Application-specific information 1s obtained by having
the application assert data into the current state data 333 in
knowledge base 330. The application accomplishes this by
making a call to an “Assert” function with the parameters
“variable” and “‘value,” which are pointers to strings. The
variable should match a variable 1n the rule premise, 1.e., the
rule must be defined beforechand. An application should
assert any historical information related to 1ts unique state
configuration. Application data are removed from the cur-
rent state data 333 by the application once those data are no
longer true by calling a “Retract” function. Although the
applications may directly assert data imto knowledge base
330, they do not determine what help to give. Instead, they
supply the inputs for this determination.

Historical information 1s obtained by using a user’s 1.D. to
index the user’s unique historical information. This histori-
cal information 1s updated at the end of a task completion.
For example, when the user has successtully executed a

US RE39,302 E

7

copying function, monitoring device 320 recognizes this by
checking that the user has selected “text” and then selected
“copy” from the file menu. Having determined that the user
has mastered this task, monitoring device 320 updates the
user’s historical information. For historical information
associated with the application’s specific data, the applica-
tion updates the information itself by calling the function
UpdateHistory with a parameter pointing to a string repre-
senting the activity just completed.

FIG. 6 summarizes the method for processing the events
from the event interpreters. At step 601, events are processed
by examining the mouse coordinates and event type and
value. In step 602, events are 1dentified by trying to “fire” or
trigger a rule that would make a data assertion or retraction
into knowledge base 330. These rules represent all condi-
tions that must be true for data to be asserted or retracted. It
a rule fires 1n step 603, then the event 1s 1dentified, step 604.
I1 the rule does not fire, then the event 1s not 1dentified, step
605.

FIG. 7 illustrates the approach used 1n step 602 (FIG. 6)
to 1dentily a task (sequence of events). In step 701, a key or
mouse event 1s examined. In step 702, if the event does not
match the first premise line 1 any rule associated with the
system level, then the event 1s discarded in step 704.
Otherwise, 1n step 703, all rules that fire are placed on an
Agenda, which represents the most likely task(s). At step
705, the rules are approved or disproved by examining the
next key or mouse events that come 1n. If all the rules 1n the
Agenda fail at step 706, then the first key analyzed 1s
discarded and the next key 1s used to search for new rules,
step 708; otherwise 1n step 707, the Agenda 1s cleared and
the procedure loops to step 701 to examine the next key/
mouse event.

Since the information monitored 1s dependent upon the
machine state level, the data generated are divided according,
those levels. Monitoring device 320 attempts to assert data
which apply to a given level. Each application or accessory
can be considered as a distinct object (as a level) which
performs certain activities, some of which are common to
other objects. Therefore, 1t 1s convenient to divide the
monitor’s data structure 1nto “frames.” A frame contains the
activities that each application 1s capable of, with current
values and historical information. The frames have slots for
storing the data used by the rules or a pointer to another
frame.

In the preferred embodiment, user input and system state
are analyzed by monitoring device 320 for passage as data
to knowledge base 330 for storage. Commands are defined
tor controlling this flow of data to and from knowledge base
330. Data are stored in frames through the Assert command.
Old miformation i1s deleted with the Retract command. A
query 1s made to knowledge base 330 to attain information
through a Query command. Previous data are asserted by a
Reassert command.

Knowledge base 330 comprises formal (traditional data
base information) and informal (heuristic) knowledge which
1s rule based. FIG. 8 demonstrates the rule taxonomy. At the
lower level of the rule hierarchy 800 i1s a single rule 804
defining a pattern-to-action goal. The pattern 1s known as the
left-hand side of a rule, while the action 1s the right-hand

side. The rules use the common logical operators AND, OR,

and NOT, as well as Boolean operators such as IF, THEN,
and ELSE. In addition, the key word TEST indicates that a
comparison needs to be made. The right-hand side of a rule

10

15

20

25

30

35

40

45

50

55

60

65

8

can have an FLLSE clause, an assertion, a retraction, another
rule, or a procedure call. For example, 1n the rule:

IF a THEN b, ELSE ¢

b could be an assertion which would add data b into data

331; multiple data assertions are possible. A retraction
would delete data b from data 331:

I[F a THEN (RETRACT b).

“Another rule” may be imbedded as follows:

IF a then b, IF (TEST (=bc)) THEN d.

An example of a procedure call would be:

IF a THEN (CALL Help Tutorial(a)).

Linked Rules 803 are a linking between rules which share
the same conclusion. This 1s a design implementation
intended to make the inference process easier by knowing
alternative solution paths. Rule Groups 802 group rules with
a common purpose. For example, rules with a conclusion
indicating what specific help to give are all rules determin-
ing the goal state. A group can have an (optional) priority
identifier so the most important or most specific rules can be
tried out first when searching. This does not imply that a rule
group will be left out of a search. Rules Classes 801 are a
turther conceptualization of rules. They separate individual
knowledge bases, each having a unique 1dentifier by which
it 1s distinguished. This identifier can be used by a set of
control rules which use the machine state information to
indicate knowledge base access.

The premise of each rule also contains formal or informal
knowledge. The mformal knowledge becomes formal when
a rule fires successtully. The formal knowledge 1s stored 1n
and accessed from knowledge base 330 in frame structures.
Frames can be made up of other frames, which can also be
shared. With this data structure, it 1s possible to access only
the frame associated with the current state information when
monitoring device 320 i1s updating the user’s historical
information. The frame’s slots are like any linked list, except
they represent actions and attributes of an object or concepts
that the frames represent. Since frames 1ndicate the relation-
ship between a user’s activity and the associated heuristics
used to interpret that activity, it 1s easy to access only

relevant information. FIG. 9 illustrates a frame 901 with its
related slots 902.

Rule Classes 801 are made up of pointers to the variables
and values 1n the frames. The slots which contain another
frame are really another group within a rule class. In a
frame-based reasoming system, one selects the frame to
prove by filling 1n slot values. The slots contain the rules.
The successiul completion of a frame yields a solution.

BEGIN.RULECLASS

<1d>

BEGIN.RULEGROUP

<1d>

IF

(<variable> IS <value>)

(<Value>)

(NOT(<variable> IS <value>))
(TEST (<variable> EQ <#>))
THEN

(<value>)
END.RULEGROUP
END.RULECLASS

9

By way of illustration and not limitation, the rules may be
coded as data structures (illustrated 1n the C language):

I

/* Premise 1s a structure containing a single premise
/* of a rule. It 1s made up of the string itself, the type
/* of data it 1s, and the possible values i1t can hold.

8 e
struct Premise
{
char *pVar;
char *pValueSet;
char *pValue;
3
8 e

/* Premuises 1s a structure for maintaining a linked
/* list of all the premises (strings) in a single rule

o e e
struct Premises
struct Premise *pPremuise;
int Size;
struct Premises *pNext;
/*-----------i ___

/* RuleClass 1s a structure of all RuleGroups that can
/* assoclated with one another 1n searching

e
struct RuleClass
{
struct RuleGroup *pRuleGroup;
int NumberO1Groups;
int ID;
struct RuleClass *pNext;
1
2 e e e e e

/* RuleGroup 1s a structure containing all rules that
/* are considered to be associated i1n searching

8 e
struct RuleGroup
{
struct Rules *pRules;
int NumSubGroups;
int Priority;
struct RuleGroup *pNext;
3
8 e

/* Rules 1s a structure containing all the rules within
/* a Rule Group. They can be singular or associated
/* with one another.

8 e
struct Rules
{
struct LinkedRules *pLinkedRules;
char *pConclusion;
struct Rules *pNext;
3
8 e

/* LinkedRules 1s a structure for maintaining a linked
/* list of rules which all have the same conclusion. A
/* rule 1s made up of premises (structure) a conclusion
/* (string) and a why statement (string) explaining

/* why a rule succeeded.

8 e
struct LinkedRules
{
struct Premises *pAllPremises;
struct LinkedRules *pNext;
3
K e e e e e e m e

/* Query 1s a structure for maintaining a linked list
/* of all the queries for information (strings) in the

/* knowledge base.

struct Query

{

char *pFact;
char *pAsk;

US RE39,302 E

o %

*
*
¥

B ¥

I

*
*

I Y

I

*
*

o %

I

*
*

o %

o %

*/
¥
*/

I

I Y

*
*
*
*
*

I

I

¥
*/
¥/

I

10

15

20

25

30

35

40

45

50

55

60

65

10

-continued

char *pSet;
struct Query *pNext;

1

The 1nputs to knowledge base 330 are the data collected

b monitoring device 320. The outputs of knowledge base
330 are data 331 and rules 334 which inference engine 340
selects for examination and help information text 336 which

display engine 350 processes. Rules 334 are predefined by
application developer. The frames indicate the relationship
between the user’s activity and the associated heuristics used
to interpret that activity, thus making 1t easier to access only
the information needed. The knowledge-based rules are
structured so that obvious associations between rules can be
incorporated within knowledge base 330 simplifying the
design and the inferences from those rules.

Inference engine 340 interprets data 331 and rules 334 1n
knowledge base 330 to give a help solution to the user, or 1t
intelligently asks for more information in order to obtain a
solution. In the preferred embodiment, inference engine 340
operates using a backward-chaining method. This method
starts with a goal state (a particular kind of help) and tries to
prove it by reaching nitial known data.

As FIGS. 10A-B 1llustrate, the steps used by inference
engine 340 are as follows. In step 1001, knowledge base 330
1s accessed according to the system state’s level. In step
1002, depending on the system state, a group of rules (goal)
1s selected from knowledge base 330 and used as an hypoth-
es1s. Next 1 step 1003 an attempt 1s made to prove each
rule’s conclusion by proving 1ts premise. 11, 1n step 1004, the
premise examined 1s the conclusion of another rule, it 1s
pushed onto a stack (last-in first-out structure in system
memory 103) and an attempt 1s made to prove the other
rule’s premise in step 1005. In step 1006, if a premise 1s
proved, it 1s asserted into a working fact or data list at step
1007. Otherwise 11 the premise fails, a search 1s made 1n step
1008 for a rule with the same conclusion, which inference
engine 340 will then try to prove. In step 1009, when all the
premises 1n the rule have been proved, the rule has fired and
the conclusion can be asserted at step 1010. In step 1011, this
process 1s repeated until there are no more goal states to
analyze or until no solution 1s found. In the latter case,
knowledge base 330 i1s incomplete, therefore, inference
engine 340 queries the user for more information or else
explains to the user that no help 1s defined for the particular
scenario.

The 1mputs to inference engine 340 are data 331 and rules
334 contained 1n knowledge base 330. Some of rules 334
control other knowledge bases which can be selected. Infer-
ence engine 340 first examines rules 334 to select the proper
rule class 801. Since the groups 802 under the class 801
indicate 11 they are goal states, engine 340 can also indicate
which rules will be used as hypotheses. Final output from
inference engine 340 1s a help “tag” that indicates a par-
ticular help solution. In addition, the engine creates a
temporary output of data asserted while proving the rules.

Display engine 350 1s an interface between the output of
inference engine 340 and help text 336 giving the user easy
access to the most useful help topics. Display engine 350
provides general to in-depth help to a user. It processes the
inference engine’s help tag to provide context-sensitive
help. In addition, the help mnformation 1itself has tags which
are used by display engine 350 to locate further help
information. This allows a user to select specific help from
a subset of help information.

US RE39,302 E

11

The help information data structure used by display
engine 350 1s defined for each application/accessory and
system resource interfaces. Help that 1s repeated across
multiple applications 1s divided into groups. The help infor-
mation which 1s given 1s individualized for novice,
intermediate, and advanced users. A display format 1s used
which allows a user to select a single item of help from a
suggested list, allow the user to continue selecting help until
he wants to quit, and allow the user to search through the
Help Topics for a particular topic.

The structure by which the help information 1s accessed
and stored 1s classified according to application/accessory or
system component (requires specific name identification, not
type), experience level of user, kind (autodetect or user-
invoked), and topic 1dentifier. For example, a help structure
(in C language) can be:

struct Help Source {
int Subject;
int Kind;
int HelpLevel;
char *pTopicString };

which can be filled by:

Subject equal to TEXT__SUBSTITUTION

Kind equal to AUTO

and plopicString pointing to ““Text Substitution.”

Referring to FIG. 11, the processing of help information
in display engine 350 will now be described 1n detail. Help
information database 335 1s a database containing text 336
and rules 334 fields, 1.e., help information text 336 1s linked
to help information rules 334. In addition, a tag 1102 1s
provided for representing the solution that a rule produces.
Display engine 350 matches tag 1102 with a solution tag
1101 from inference engine 340. The corresponding text
(from text 336) 1s the actual text sent as help information 360
to display device 105.

The organization of rules 334 is as follows. It contains the
tollowing fields: Grp, Rule#, PorC#, Var#, Var, Val, Bind,
KeyW, and Q#. Grp 1s a rule group. Group 0 1s always the
group 1n which rules are placed that will give a solution. If
these rules cause any other rules to fire, these rules are in
another group. Rule# 1s the number of the rule. The rules are
sorted by rule number, because one may want to try to fire
one rule before another. PorC# 1s a premise or conclusion
number. The records in the table are also sorted by PorC#.
The conclusion 1s number 0 because 1t 1s the first thing
pulled out of the table when inference engine 340 starts to
fire a rule. (This 1s because 1t 1s doing backward chaining—
start with the conclusion, and then prove the premises). Var#
1s an 1dentifier for the engine to do faster searching. Each
new variable added to the table has a unique identifier. The
variables are DeskMate components, like a dialog box. Var,
the variable field, 1s a string representing a variable for
which a value 1s expected such as “running.cmp”
(DISABLED FIELD). Value 1s the string field which con-
tains a value. If the value 1s the current one for the variable,
then the premise line succeeds. Bind 1s a binding variable. IT
a rule has a binding, the variable will bind to the currently
known value of the variable. This eliminates repetition of
rules that do the same exact thing. Only premises can bind.
KeyW 1s a number indicating the negation (NOT) of a

10

15

20

25

30

35

40

45

50

55

60

65

12

premise, or a TEST or CALL. TEST will do number
comparisons, and assumes the value string field 1s a numeri-
cal value. CALL 1s used to execute a pre-defined function.
The parameters of the function are placed 1n the value field.
Q# 1s the number 1n queue 332 for which a premise line test
applies. If the queue number equals 0, 1t 1s assumed the
premise does not use predefined data.

While the invention 1s described in some detail with
specific reference to a single preferred embodiment and
certain alternatives, there 1s no intent to limit the invention
to that particular embodiment or those specific alternatives.
For example, one skilled in the art could implement such a
help system 1n another interface environment or without any
interface environment. Backward-chaining 1s but one of
many possible Al techniques used to process data and rules,
other possible techniques include forward-chaining and
rule-value methods. Input device 1s not limited to a keyboard
and a pointing device but contemplates any means by which
data enters a computer, such as by voice recognition. Help
information 1s not limited to a specific medium but instead
includes any conveyance ol help information, such as
graphical representations. The true scope of the invention 1s
defined not by the foregoing description but by the following
claims.

What 1s claimed 1s:

[1. In a computer system, a method for aiding a user of a
computer program, said method operating independent of
said computer program, comprising the steps of:

storing a held information database;

monitoring a series of user-directed events from an 1mnput
device;

generating data indicating said series of user-directed
cvents;

storing said generated data 1in a knowledge base;

storing a plurality of rules for analyzing said generated
data to determine appropriate help information;

detecting a request for help mformation from the user;

testing said rules against said generated data using an
inference engine, whereby rules which are satisfied by
said data are proved rules;

selecting 1n response to the proved rules appropriate help
information from said help information database; and

displaying said selected help information to the user.]

[2. The method of claim 1, wherein said monitoring step
further comprises monitoring a system state. }

[3. The method of claim 2, wherein said monitoring a
system state step further comprises monitoring a machine
state, an application state, an accessory state, and a compo-
nent state.]

[4. The method of claim 1, wherein said monitoring step
further comprises the steps of:

registering an application’s menubar;
checking 11 the user has requested help;

updating a state information; and

updating a menubar.}
[5. The method of claim 1, wherein said testing step

comprises the step of:

(a) selecting from said plurality of rules a first group of
rules corresponding to a first plurality of user-directed

events;

(b) attempting to prove each rule in said first group of
rules;

(¢) 1f a rule 1s proved, storing said rule as a proved rule in
a plurality of proved rules; and

US RE39,302 E

13

(d) repeating steps (a)—(c) for a subsequent group of rules

until a rule is proved.}

[6. The method of claim 5, wherein step (b) comprises
attempting to match a premise with each of said first group
of rules with said generated data.}

[7. The method of claim 5, wherein step (¢) comprises:

if a rule 1s proved, storing said rule as a proved rule 1n a
plurality of linked proved rules.]

[8. The method of claim 1, wherein said generating data
step comprises generating an historical queue of said user-

directed events.}

[9. The method of claim 1, wherein said rule storing step
comprises storing premise-conclusion statements from said
help information database.]

[10. The method of claim 1, wherein said displaying step
comprises displaying textural help information to the user.}

[11. The method of claim 1, wherein said displaying step
comprises displaying graphical help information to the user.}

[12. The method of claim 1, wherein said testing step
comprises testing said rules against said generated data
using a backward-chaining inference engine.]

[13. The method of claim 1, wherein said testing step
comprises testing rules against said generated data using a
forward-chaining inference engine.}

[14. In a computer system, a method for aiding a user of
a computer program, said method operating independent of
said computer program, comprising the steps of:

storing a help imnformation database;
storing a knowledge base for maintaining data;
identifying a series of user-directed events;

comparing said identified series with data stored in the
knowledge base;

if said 1dentified series 1s unknown to said knowledge
base, asserting 1n said knowledge base data for indi-
cating said unknown i1dentified series;

if’ said 1dentified series contradicts said knowledge base,
retracting 1n said knowledge base data which contra-
dicts said identified series;

if said 1dentified series 1s already known to said knowl-
edge base, reasserting in said knowledge base data for
indicating said already known 1dentified series;

storing a plurality of rules for analyzing said knowledge
base to determine appropriate help information;

detecting a request for help information from the user;
testing said rules against said knowledge from the user;

testing said rules against said knowledge base using an
inference engine, whereby rules which are satisfied by

data stored 1n the knowledge base are proved rules;

selecting 1n response to said testing step appropriate help
information from said help information database; and

displaying said selected help information to the user.]
[15. A help information system for aiding a user com-

prising:
a computer having a processor and a memory;
a display device coupled to said computer;
an 1mmput device coupled to said computer;

monitoring means coupled to the mput device for moni-
toring a sequence of user-directed events and for gen-
crating data indicating said events;

a knowledge base coupled to said monitoring means and
stored 1n said memory, said knowledge base compris-
ing said generated data, a plurality of rules for analyz-
ing said generated data to determine appropriate help
information, and a help mnformation database for stor-

ing said appropriate help information;

10

15

20

25

30

35

40

45

50

55

60

65

14

inference engine means, coupled to said knowledge base,
for applying said rules to said data to generate an
inference engine outputs and

display engine means, coupled to said inference engine
and coupled to said help information database, for
interpreting said inference engine output to select
appropriate help information for display by said display
device to the user.]

[16. The system of claim 15, wherein said monitoring
means further comprises means for monitoring a system
state.]

[17. The system of claim 16, wherein said means for
monitoring a system state comprises means for monitoring
a machine state, an application state, an accessory state, and
a component state.]

[18. The system of claim 15, wherein said monitoring
means comprises means, stored i memory and operably
coupled to the mput device, for interpreting a series of
user-directed events and performing a history update based
on the series.]

[19. The system of claim 15, wherein said knowledge base
turther comprises an historical queue stored 1n memory and
operably coupled to said generated data.]

[20. The system of claim 15, wherein said inference
engine means comprises backward-chaining inference
engine means.]

[21. The system of claim 15, wherein said inference
engine means comprises forward-chaining inference engine
means. |

[22. The system of claim 15, wherein said help informa-
tion comprises textural help information.]

[23. The system of claim 15, wherein said help informa-
tion comprises graphical help information.]

[24. A help information system for aiding a user com-
prising:

a computer having a processor and a memory;

an input device coupled to said computer;

a knowledge base, coupled to said memory, for maintain-
ing data;

a plurality of rules, coupled to said memory, for analyzing
said knowledge base;

means, coupled to said memory, for identifying a series of
user-directed events from said input device;

means, coupled to said memory, for updating said knowl-
edge base with said 1dentified series;

means, coupled to said memory, for detecting a request for
help mmformation from the user;

a help mmformation database, coupled to said memory, for
selecting appropriate help information;

an 1nference engine, coupled to said memory, for testing
said rules against said knowledge base to generate a
help solution tag;

a display engine, coupled to said memory, for selecting
help information from said help information database
using said help solution tag; and

a display for displaying said selected help information to
the user.]

[25. The system of claim 24, wherein said means for

updating said knowledge base comprises programming

means for instructing said processor to perform the steps of:

comparing said identified series with data stored in the
knowledge base;

i1 said identified series 1s unknown to said knowledge
base, asserting data 1n said knowledge base data for

indicating said unknown 1dentified series;

US RE39,302 E

15

i said 1dentified series contradicts said knowledge base,
retracting 1n said knowledge base data which contra-
dicts said identified series; and

if said 1dentified series 1s already known to said knowl-
edge base, reasserting 1n said knowledge base data for
indicating said already known identified series.}

26. In a computer system, a method for selecting help
messages for aiding a user of a computer program cCom-
prising the steps of:

storing a help information database;

monitoring a sevies of user-divected events from an input

device;

generating data indicating said servies of use-divected

events;

storing said generated data in a knowledge base;

testing said generated data against stored data, said

storved data stored for the purpose of analvzing said
generated data to determine appropriate help informa-
tion;

stoving a plurality of rules for analyvzing said generated

data to determine appropriate help information; and

using the data indicating said series of user-dirvected
events stored in the knowledge base to select help
information from said help information database;

wherein said using step further comprises using an infer-
ence engine to test said rules against the data stored in
the knowledge base to select appropriate help infor-
mation.

27. The method of claim 26, wherein said monitoring step
Jurther comprises monitoring a system state.

28. The method of claim 27, wherein said monitoring a
system state step further comprises monitoring a machine
state, an application state, an accessory state, and a com-
ponent state.

29. The method of claim 26, wherein said monitoring step
further comprises the steps of:

registering an application’s menubar;
updating state information; and

updating a menubar.

30. The method of claim 26, wherein said generating data
step comprises genervating an historical queue of said user-
directed events.

31. The method of claim 26, wherein said using step uses
data indicating a series of user-directed events comprising
at least two user-directed events.

32. The method of claim 26 or 31, wherein said servies of

user-directed events arve events that ave not necessarily
related as being part of a particular command hievarchy.

33. A help information system for aiding a user of a
computer program COmprising.

a computer having a processor and a memory;

an output device coupled to said computer,

an input device coupled to said computer,

monitoring means coupled to the input device for moni-
toring a sequence of user-divected events and for
generating data indicating said events;

a knowledge base coupled to said monitoring means and
stored in said memory, said knowledge base comprising
said genervated data, a plurality of rules for analyzing
said genervated data to determine appropriate help
information, and a help information database for stor-
ing said appropriate help information; and

inference engine means, coupled to said knowledge base,
for applying said rules to said data to select appropri-
ate help information for output by said output device to
the user.

10

15

20

25

30

35

40

45

50

55

60

65

16

34. In a computer system, a method for aiding a user of
a computer program comprising the steps of:

storing a help information database;

monitoring a series of user-divected events from an input
device;

generating data indicating said sevies of user-dirvected
evenlts,

storing said generated data in a knowledge base;

storing a plurality of rules for analyvzing said generated
data to determine appropriate help information;

testing said rules against said generated data using an
inference engine, wheveby rules which arve satisfied by
said data arve proved rules;

selecting in vesponse to the proved rules appropriate help
information from said help information database; and

displaving said selected help information to the user.

35. The method of claim 34 ov 47, wherein said monitor-
ing step further comprises monitoring a system state.

36. The method of claim 35, wherein said monitoring a
system state step further comprises monitoring a machine
state, an application state, an accessory state, and a com-

ponent state.

37. The method of claim 34 or 47, wherein said monitor-
ing step further comprises the steps of:

registering an application’s menubar;
updating a state information; and

updating a menubar.
38. The method of claim 34 ov 47, wherein said testing
step comprises the steps of:

(a) selecting from said plurality of rules a first group of
rules corresponding to a first plurality of user-divected
events;

(b) attempting to prove each rule in said first group of
riles;

(c) if a rule is proved, storing said rule as a proved rule
in a plurality of proved rules; and

(d) repeating steps (a)—c) for a subsegquent group of rules

until a rule is proved.

39. The method of claim 38, wherein step (b) comprises
attempting to match a premise with each of said first group
of rules with said generated data.

40. The method of claim 38, wherein step (c) comprises:

il a rule is proved, storing said rule as a proved rule in a

plurality of linked proved rules.

41. The method of claim 34 or 47, wherein said gener-
ating data step comprises generating an historical queue of
said user-divected events.

42. The method of claim 34 or 47, wherein said rule
stoving step comprises stoving premise-conclusion state-
ments from said help information database.

43. The method of claim 34 or 47, wherein said displaying
step comprises displaying textural help information to the
user.

44. The method of claim 34 or 47, wherein said displaving
step comprises displaying graphical help information to the
user.

45. The method of claim 34 ov 47, wherein said testing
step comprises testing said rules against said genervated data
using a backward-chaining inference engine.

46. The method of claim 34 ov 47, wherein said testing
step comprises testing rules against said generated data
using a forward-chaining inference engine.

US RE39,302 E

17

47. In a computer system, a method for aiding a user of

a computer program comprising the steps of.
storing a help information database;

monitoring a sevies of user-divected events from an input
device;

generating data indicating said series of user-directed
evenlts;

stoving said generated data in a knowledge base;

storing a plurality of rules for analyzing said genervated
data to determine appropriate help information;

detecting a rvequest for help information from the user,;

testing said rules against said generated data using an

inference engine, whereby rules which are satisfied by
said data arve proved rules;

selecting in rvesponse to the proved rules appropriate help
information from said help information database; and

displaving said selected help information to the user.

10

15

48. In a computer system, a method for aiding a user of -

a computer program comprising the steps of.

storing a help information database;
storing a knowledge base for maintaining data;

identifving a series of user-dirvected events;

18

comparing said identified sevies with data stored in the
knowledge base;

il said identified servies is unknown to said knowledge
base, asserting in said knowledge base data for indi-
cating said unknown identified series;

if said identified sevies contradicts said knowledge base,
retracting in said knowledge base data which contra-
dicts said identified series;

if said identified sevies is alveady known to said knowl-

edge base, reasserting in said knowledge base data for
indicating said already known identified series;

storing a plurality of rules for analyzing said knowledge
base to determine appropriate help information;

testing said rules against said knowledge from the user;

testing said rules against said knowledge base using an

inference engine, wheveby rules which arve satisfied by
data storved in the knowledge base are proved rules;

selecting in vresponse to said testing step appropriate help
information from said help information database;

and displaving said selected help information to the user.

UNITED STATES PATENT AND TRADEMARK OFFICE
CERTIFICATE OF CORRECTION

PATENT NO. : RE 39,302 E Page 1 of 1
APPLICATION NO. : 09/375867

DATED . September 19, 2006

INVENTOR(S) . Charles D. Lanier, Richard J. Wolf and Leticia Vill Butner

It is certified that error appears in the above-identified patent and that said Letters Patent Is
hereby corrected as shown below:

Title Page, Item (73) please delete “Suwon™ and 1nsert -- Suwon City, Kyungki-Do --,
theretor.

Title Page, Item (56) OTHER PUB., Page 2, Reference, Visual Prog. please delete

“Dimeensional” and 1nsert -- Dimensional --; and please delete “ 19885. ” and insert
-- 1985 .--, therefor.

Col. 16, Ln 57, 1n Claim 43, please delete “textural” and insert -- textual --, therefor.

Signed and Sealed this

Twelfth Day of June, 2007

JON W. DUDAS
Director of the United States Patent and Trademark Office

	Front Page
	Drawings
	Specification
	Claims
	Corrections/Annotated Pages

