USOORE39285E

(19) United States
12y Reissued Patent (10) Patent Number: US RE39.285 E

Stutz et al. 45) Date of Reissued Patent: Sep. 12, 2006
(54) METHOD AND SYSTEM FOR OTHER PUBLICATIONS
DYNAMICALLY GENERATING OBJECT
CONNECTIONS “Ole 2.0 Part II: Implementing a Stmple Windows Object
Using Either C or C ++7, by Brockschmidt, Kraig, Microsoft
(75) Inventors: David S. Stutz, Redmond, WA (US); Systems Journal, p. 49, Sep. 1993 .*
Christopher A. Zimmerman, Bellevue, Vinoski S., “Distributed Object Computing with CORBA.”
WA (US) C++ Report. vol. 5, No. 6, ISSN 1040-6042, pp. 3238,
1993,
(73) Assignee: Microsoft Corporation, Redmond, WA
(US) (Continued)
(21) Appl. No.: 09/008,241 Primary Examiner—St. John Courtenay, 111
(74) Attorney, Agent, or Firm—Klarquist Sparkman, LLP

(22) Filed: Jan. 16, 1998
(57) ABSTRACT

Reissue of Related L.5. Patent Documents A method and system for dynamically generating object

(64) Patent No.: 5 485 617 connections 1s provided. In a preferred embodiment, a
Tssued: ) J;m i6 1996 connection can be generated between a source object and a
| PP sink object using a connection point object. A source object

Appl. No.: 08/166,976 . . . . .
Filod: Dec. 13. 1993 hag connection point objects‘ Where: cach connection point
’ object corresponds to a particular interface. A sink object
(51) Imt. CI. implements one or more notification interfaces tfor connect-
GO6F 9/44 (2006.01) ing to a source object. A connection point object of a source
object can connect to multiple notification interfaces, which
(52) US.Cl e, 719/315 belong to one or more sink objects. A connection point
(58) Field of Classification Search ......... 709/310-332: object keeps track of pointers to the notification interfaces to

719/310-320. 328330 which 1t has been connected. In order to generate a
j connection, a sink object requests from a sauce object a
connection point object corresponding to a particular inter-
tace. The source object determines whether 1t supports such

See application file for complete search history.

(56) References Cited a connection point object, and if so returns a pointer to the
U.S PATENT DOCUMENTS connection point interface of the determined connection
point object. The sink object then requests to be connected
4,800,488 A 11989 Agrawal et al. ............ 709/225 to the connection point object using the returned connection
5,303,379 A : 41994 Khoyi etal. .....cooeenee 717/10 point interface pointer and passes a reference to a notifica-
2,305,401 A 41994 Feigenbaum et al. ....... 7121225 tion interface of the sink object corresponding to the par-
(Continued) ticular interface. The .conn.ecticijn point object thel} stores the
reference to the notification interface of the sink object,
FOREIGN PATENT DOCUMENTS creating a connection between the sink object and the source
object. At some later time, the source object can utilize the
EP A-0 369961 5/1990 connection to notify the sink object through the connected
EP A-O 474 339 3/1992 . ..
Ep A0 495 279 /1999 notification interfaces.
EP A-O 546 682 6/1993
JP 5-324339 7/1993 33 Claims, 10 Drawing Sheets

) 1ConmectionPointContatner



US RE39,285 E
Page 2

U.S. PATENT DOCUMENTS

5,307,490 A 4/1994 Davidson et al. ........... 709/328
5,315,703 A * 5/1994 Matheny et al. ............ 345/326
5,327,562 A * 7/1994 Adcock .....ccoeviininninininl, 717/8
5,367,633 A * 11/1994 Matheny et al. ............ 345/339
5,371,891 A * 12/1994 Gray et al. .................... 717/5
5,410,705 A * 4/1995 Jones et al. .................... 717/5
5,485,617 A 1/1996 Stutz et al. ................. 395/700
5,517,645 A 5/1996 Stutz et al. ................. 395/700
5,539,909 A 7/1996 Tanaka et al.

5,574918 A 11/1996 Hurley et al. ............... 712/220
5,794,038 A 8/1998 Stutz et al. ................. 395/683

OTHER PUBLICATIONS

Arnold 1., et al., “Control Integration and its Role in Soft-
ware Integration.” Genie Logiciel & Systemes Experts. No.
30, pp. 14-24, Mar. 1993. France.

Lau C., “Using SOM for Tool Integration,” Proceedings of
Cascon ’93, Toronto, Ont., Canada, Oct. 24-28, 1993, Nat.
Res. Council of Canada, Canada, pp. 570-580, vol. 1.
Aschmann H.—R et al., “Alphorn: a Remote Procedure Call
Environment for Fault-Tolerant, Heterogeneous, Distrib-
uted Systems,” IEEE Micro, Oct. 1991, USA, vol. 11, No.
5, ISSN 0272-1732, pp. 16-19, 60-67.

Lea R., et al., “COOL: System Support for Distributed
Programming,” Commumnications of the ACM, Sep. 1993,
USA, vol. 36, No. 9, ISSN 0001-0782, pp. 37-46.

Kiriha, et al., “Integrated Network Management System 1n
Distributed Environment,” Technical Report of the Institute
of Electronics, Information and Communication Engineers.
vol. 92, No. 317(IN92-87), pp. 25-30, Nov. 1992.

Kanai and Sirakihara, “Highly Reliable Distributed Process-
ing Environment on Workstations Through Hierarchical
Transaction Scheme,” Transactions of Information Process-
ing Society of Japan. vol. 33, No. 11(Nov. 1992), pp.
1384-1393.

Kimura and Ueno, “The Advent of Distributed Processing
Environment for Open Era, Jump to Object Oniented for the
Starting of Cooperation Through the Progressively Devel-
oped RPC Base,” Nikke1 Computer Dec. 16, 1991, No. 270,
pp. 31-93.

Wong, W., “Object—Orniented Program Construction,” Dr.
Dobb’s Journal, Oct. 1992, pp. 36, 38, 40,42, 116, and 118.
“Object Oriented Technology mnovating line OpS: Pass the

system development to the hands of users”, NIT Technical
Journal., vol. 5, No. 7, pp. 25-28, Jul. 1, 1993.

* cited by examiner



US RE39,285 E

Sheet 1 of 10

Sep. 12, 2006

U.S. Patent

2

- | | |

3
£
=

0 POYPRIA

9IqEL
uoppuny [eRiA

oL

101

(1Y J0Ld)

SI9QUIBIA]
eje(]

aInpnng vied]
oueisu]



U.S. Patent Sep. 12, 2006 Sheet 2 of 10 US RE39,285 E

IDatabase (_

IBasic ( |




US RE39,285 E

Sheet 3 of 10

Sep. 12, 2006

U.S. Patent

t0t

IEYINU

wopeIgou
[ og

- BJIIUL
=cwﬂ—u_~e=

|
|

L

S0t

£ O

Rupesjuo)juioguondduuo)y

yulod ¢
uopj2auu0))

jutod
uoLIIUN0)):

JAUIv)uo))

juioq
uopIINUO)

JUI0 JUOHIIULO)]

— S —— — R . . S — A ————
——— abbiilel— Pree e W— ———

e



US RE39,285 E

Sheet 4 of 10

Sep. 12, 2006

U.S. Patent

toy

v "Old

2381I2)ul uolLIGIIOU

JuroJ uoyIUNc))




US RE39,285 E

Sheet 5 of 10

Sep. 12, 2006

U.S. Patent

oS

10S

LOS

[2duB)

LOHC40 3d0D

133(qaedr)H)

£0S

SIS



US RE39,285 E

Sheet 6 of 10

Sep. 12, 2006

U.S. Patent

9 "Oid

supeuojjuoguopsunody

uopagi( |

2[qo yuis
+09

rpedpInig ()

JuyoJ UoyuTo)]

1>3[qo Huls

IMOENT{

£0¢

4

O

909 “| "pH .
Osypeidpimpll aID

ﬂﬂﬂ_.n—ﬁxnmﬁ DAENEN]

209

Sopmrax
srpadpmpng O

iiiliii



U.S. Patent

Sep. 12, 2006 Sheet 7 of 10

Call pSrc—
Querylnterface

(ID _IConnection
PointContainer,

pCPO)

701

Call pCPC —FKind-
ConnectionPoint (lid,
ppPoint)

Save ppPoint for 703
disconnection

704

702

Call ppPoint —
Advise (punk,
pdwToken)

705

706

Connection
successful

Save dwTokento |~ 707
identify connection

Return error

US RE39,285 E

SetUpConnection (pSre,pSink,iid)



U.S. Patent Sep. 12, 2006 Sheet 8 of 10 US RE39,285 E

IConnectionPointContainer::FindConnectionPoint

(iid,ppPoint)

pCurrentCP=headof 801
CPlist.pConnectPt

pCurrentCP—>Get-
Connectionlnterface
(piid)

802

80S

Instantiate s mew 808
IConnectionPoint

object

Set ppPoint = 809




U.S. Patent

Sep. 12, 2006 Sheet 9 of 10

this 2QueryInterface
(D _IConnectionIoint-

Container, pCtr) -

pCtr—FindConnection-
Point(IID_IButton,
ppPoint)

ppPoint — Enum-
Connections (ppEnum)

oo 0|

ppEnum -)Next
(..., pconnectdata, ...)

IDialogBox::OK_ButtonDown
(Using the connection)

901

902

I 903

I 905

Call pConnectdata —
punk -5Querylnterface

(IID IButton, PButton)
via RPC

Call pButton —>
MouseLeftButtonDown
via RPC

| 908

FIG. 9

US RE39,285 E



U.S. Patent Sep. 12, 2006 Sheet 10 of 10 US RE39,285 E

Retrieve ppPoint and 1001
dwToken

Disconnect (iid)

Call *ppPoint —
Unadyvise (dwtoken)




US RE39,285 E

1

METHOD AND SYSTEM FOR
DYNAMICALLY GENERATING OBJECT
CONNECTIONS

Matter enclosed in heavy brackets [ ] appears in the 3
original patent but forms no part of this reissue specifi-
cation; matter printed in italics indicates the additions
made by reissue.

TECHNICAL FIELD 10

The present invention relates generally to a computer
system for connecting objects and, more specifically, to a
method and system for generating object connections for

notification purposes. Ny

BACKGROUND OF THE INVENTION

Often times software 1s created that needs to communicate
with other software when certain events occur. For example,
in a computer windowing system, when a user selects a .,
window on the display, the window system needs to notify
the software that 1s drawing information 1n the window that
the window bas been selected. In prior systems, the software
needing notification of certain events registers the events for
which 1t wants to be notified with the sottware that raises the 4
events. In come prior systems, as part ol the registration
mechanism, the software needing notification registers a
notification function by which it can be notified. Then, when
the solftware raises an event that was previously registered,
the registered notification function 1s called. This 1s known
in the prior art as a callback mechanism.

An overview of well-known object-oriented program-
ming techniques 1s provided, since the present mvention 1s
described below using object-oriented concepts. Two com-
mon characteristics of object-oriented programming lan- 3s
guages are support for data encapsulation and data type
inheritance. Data encapsulation refers to the binding of
tfunctions and data. Inheritance refers to the ability to declare
a data type 1n terms of other data types.

In the C++ language, object-oriented techniques are sup- 40
ported through the use of classes. A class 1s a user-defined
type. A class declaration describes the data members and
function members of the class. For example, the following

declaration defines data members and a function member of
a class named CIRCLE. 45

class CIRCLE

{public;
int X, v; 50
int radius;

void draw( );
3

Variables x and y specily the center location of a circle and 55
variable radius specifies the radius of the circle. These
variables are referred to as data members of the class
CIRCLE. The function draw 1s a user-defined function that
draws the circle of the specified radius at the specified
location. The function draw 1s referred to as a function 60
member of class CIRCLE. A function member 1s also
referred to as a method of a class. The data members and
function members of a class are bound together 1n that the
function operates on an mstance of the class. An instance of
a class 1s also called an object of the class. 65
In the syntax of C++, the following statement declares the
objects a and b to be of type class CIRCLE.

2

CIRCLE a, b;

This declaration causes the allocation of memory for the
objects a and b. The following statements snip data to the
data members of objects a and b.

a.x=2;

a.y=2;

a.radius=1:

b.x=4;

b.y=5;

b.radius=2;

The following statements are used to draw the circles
defined by objects a and b.

a.draw( );

b.draw( );

A derived class 1s a class that inherits the characteristics—
data members and function members—of 1its base classes.
For example, the following derived class CIRCLE__FILL
inherits the characteristics of the base class CIRCLE.

class CIRCLE_FILL: CIRCLE
{public;

int pattern;

voud fill{ );
3

This declaration specifies that class CIRCLE__FILL
includes all the data and function members that are 1n class
CIRCLE 1n addition to those data and function members
introduced 1n the declaration of class CIRCLE__FILL that 1s,
data member pattern and function member fill. In this
example, class CIRCLE_ FILL has data members x, v,
radius, and pattern and function members draw and fill.

Class CIRCLE__FILL 1s said to “inherit” the characteristics
of class CIRCLE. A class that inherits the characteristics of
another class 1s a dertved class (e.g., CIRCLE_FILL). A
class that does not imnherit the characteristics of another class
1s a primary (root) class (e.g., CIRCLE). A class whose
characteristics are inherited by another class 1s a base class
(e.g., CIRCLE 1s a base class of CIRCLE__FILL). A derived
class may inherit the characteristics of seventh classes, that
1s, a derived class may have several base classes. This 1s
referred to as multiple inheritance.

A denived class may specily that a base class 1s to be
inherited virtually. Virtual inheritance of a base class means
that only one 1nstance of the virtual base class exists in the
derived class. For example, the following 1s an example of

a derived class with two nonvirtual base classes.
class CIRCLE_1: CIRCLE { . .. }.

class CIRCLE 2: CIRCLE { oL };
class PATTERN: CIRCLE 1, CIRCLE_Z{ o };
In this declaration class PATTERN inherits class CIRCLE

1

twice nonvirtually through classes CIRCLE_1 and
CIRCLE_ 2. There are two instances of class CIRCLE 1n

class PATTERN.

The following 1s as example of a derived class with two
virtual base classes.

class CIRCLE__1: virtual CIRCLE { . . . };

class CIRCLE_ 2: virtual CIRCLE { . . . };

class PATTERN: CIRCLE_1, CIRCLE_2{ ... };
The dertved class PATTERN i1nherits class CIRCLE twice
virtually through classes CIRCLE_1 and CIRCLE_ 2.
Since the class CIRCLE 1s virtually inherited twice, there 1s
only one object of class CIRCLE 1s the dernived class
PATTERN. One skilled in the art would appreciate virtual
inheritance can be very useful when the class derivation 1s
more complex.




US RE39,285 E

3

A class may also specily whether its function members
are virtual. Declaring that a function member 1s virtual
means that the function can be overridden by a function of
the same name and type 1n a derived class. In the following
example, the function draw i1s declared to be virtual 1n

classes CIRCLE and CIRCLE FILI..

class CIRCLE
{public;

int X, y;

int radius;

virtual void draw( );

3
class CIRCLE_ FILL: CIRCLE
{public;

int pattern;

virtual void draw( );

1

If a virtual function 1s declared without providing 1n
implementation, then 1t 1s referred to as a pure virtual
function. A pure virtual function to a virtual function
declared with the pure specifier, “=(3". I1 a class specifies a
pure virtual function, then any desired class needs to specily
an i1mplementation for that function member before that
function member may be mvoiced.

In order to access objects, the C++ language provides a
pointer data type. A pointer holds values that are addresses
ol objects in memory. Through a pointer, 1n object can be
referenced. The following statement declares variable c_ ptr
to be a pointer on an object of type class CIRCLE and sets
variable c_ ptr to hold the address of object c.

CIRCLE *c_ ptr,

C_ ptr=&c;

Continuing with the example, the following statement
declares object a to be of type class CIRCLE and object b to
be of type class CIRCLE_ FILL.

CIRCLE a:

CIRCLE_ FILL b;

The following statement refers to the function draw as
defined 1n class CIRCLE

a. draw( );

Whereas, the following statement refers to the function draw
defined 1n class CIRCLE__FILL.

b.draw( );

Moreover, the following statements type cast object b to an
object of type class CIRCLE and invoke the function draw
that 1s defined m class CIRCLE__FILL.

CIRCLE *c_ ptr;

C_ ptr=&b;

c_ ptr->draw( ); // CIRCLE_ FILL::draw( )

Thus, the wvirtual function that 1s called 1s function
CIRCLE_ FILL::draw.

FIG. 1 1s a block diagram illustrating typical data struc-
tures used to represent an object. An object 1s composed of
instance data (data member) and member functions, which
implement the behavior of the object. The data structures
used to represent an object comprise stance data structure
101, virtual function table 102, and the function members
103, 104, 105. The instance data structure 101 contains a
pointer to the virtual function table 102 and contains data
members. The virtual function table 102 contains 1n entry for
cach virtual function member defined for the object. Each
entry contains a reference to the code that implements the
corresponding function member. The layout of this sample
object confirms to the model defined 1 U.S. patent appli-

cation Ser. No. 07/682,537, entitled “A Method for Imple-

(Ll

L] [ 1]

L1

1

5

10

15

20

25

30

35

40

45

50

55

60

65

4

menting Virtual Functions and Virtual Bases 1n a Compiler
for an Object Oriented Programming Language,” which 1s
hereby incorporated by reference. In the following, an object
will be described as an instance of a class as defined by the
C++ programming language. One skilled in the art would
appreciate that objects can be defined using other program-
ming languages.

An advantage of using object-oriented techniques 1s that
these technmiques an be used to facilitate the sharing of
objects. In particular, object-oriented techniques facilitate
the creation of compound documents. A compound docu-
ment 1s a document that contains objects generated by
various computer programs. ( I'ypically, only the data mem-
bers of the object and the class type are stored 1n a compound
document.) For example, a word processing document that
contains a spreadsheet object generated by a spreadsheet
program 1s a compound document. A word processing
program allows a user to embed a spreadsheet object (e.g.,
a cell) within a word processing document. To allow this
embedding, the word processing program 1s compiled using
the class definition of the object to be embedded to access
function members of the embedded object. Thus, the word
processing program would need to be compiled using the
class definition of each class of objects that can be embedded
in a word processing document. To embed as object of a new
class mto a word processing document, the word processing
program would need to be recompiled with the new class
definition. Thus, only objects of classes selected by the
developer of the word processing program can be embed-
ded. Furthermore, new classes can only be supported with a
now release of the word processing program.

To allow objects of an arbitrary class to be embedded 1nto
compound documents, interfaces are defined through which
an object can be accessed without the need for the word
processing program to have access to the class definitions at
compile time. An abstract class 1s a class 1n which there 1s
at least one virtual function member with no implementation
(a pure virtual function member). An interface 1s an abstract
class with no data members and whose virtual functions are
all pure. Thus, an interface provides a protocol for two
programs to communicate. Interfaces are typically used for
derivation: a program implements classes that provide
implementations for the interfaces the classes are derived
from. Thereaiter, objects are created as instances of these
derived classes.

The following class definition 1s 1n example definition of
in 1terface. In this example, for simplicity of explanation,
rather than allowing any class of object to be embedded n
its documents, a word processing program allows spread-
sheet objects to be embedded. Any spreadsheet object that
provides this interface can be embedded, regardless of how
the object 1s 1mplemented. Moreover, any spreadsheet
object, whether implemented before or after the word pro-
cessing program 1s compiled, can be embedded.

class [SpreadSheet
{ virtual void File( ) = 0;
virtual void Edit( ) = 0;
virtual void Formula( ) = 0;
virutal void Format( ) = O;
virtual void GetCell (string RC, cell *pCell) = 0;
virtual void Data( ) = 0;
h

The developer of a spreadsheet program would need to
provide an implementation of the interface to allow the
spreadsheet objects to be embedded to a word processing
document.




US RE39,285 E

S

When the word processing program embeds a spreadsheet
object, the program needs access to the code that implements
the interface for the spreadsheet object. To access the class
code, each implementation i1s given a unique class identifier.
For example, code implementing a spreadsheet object devel-

oped by Microsolt Corporation may have a class identifier of

“MSSpreadsheet,” while code implementing a spreadsheet
object developed by another corporation may have a class
identifier of “LTSSpreadsheet.” A persistent registry 1n each
computer system 1s maintained that maps each class 1den-
tifier to the code that implements the class. Typically, when
a spreadsheet program 1s mnstalled on a computer system, the
persistent registry 1s updated to reflect the availability of that
class of spreadsheet objects. So long as a spreadsheet
developer implements each function member defined by the
interface and the persistent registry 1s maintained, the word
processing program can embed instances of the developer’s
spreadsheet objects mto a wood processing document. The
word processing program accesses the functional members
ol the embedded spreadsheet objects without regard to who
has implemented them or how they have been implemented.

Various spreadsheet developers may wish, however, to
implement only certain function members. For example, a
spreadsheet developer may not want to implement database
support, but may want to support all other function mem-
bers. To allow a spreadsheet developer to support only some
of the function members, while still allowing the objects to
be embedded, multiple interfaces for spreadsheet objects are
defined. For example, the, mterfaces IDatabase and IBasic
may be defined for a spreadsheet object as follows.

class [Basic
{ virtual void File( ) = 0;
virtual void Edit( ) = 0;
virtual void Formula( ) = 0;
virtual void Format( ) = 0O;
virtual void GetCell (string RC, cell *pCell) = 0;
h
class [Database
{ virtual void Data( ) = 0;
h

Each spreadsheet developer would implement the IBasic
interface and, optionally, the IDatabase intertace.

At run time, the word processing program would need to
determine whether a spreadsheet object to be embedded
supports the IDatabase interface. To make this
determination, another interface 1s defined (that every
spreadsheet object implements) with a function member that
indicates which interfaces are implemented for the object.
This interface 1s named IUnknown (and referred to as the
unknown interface or the object management interface) and
1s defined as follows.

class IUnknown
{ virtual HRESULT QueryInterface (REFIID iid, void

*Fppv) = 0;
virtual ULONG AddRef( ) = 0;
virtual ULONG Release ( ) = 0;

h

The IUnknown interface defines the function member
(method) QueryInterface. The method Querylnterface 1s
passed 1n interface identifier (e.g., “IDatabase™) 1n parameter
11d (of type REFIID) and returns a pointer to the implemen-
tation of the i1dentified interface for the object for which the

5

10

15

20

25

30

35

40

45

50

55

60

65

6

method 1s invoked 1s parameter ppv. I the object does not
support the interface, then the method returns a false. The
type HRESULT indicates a predefined status, and the type
ULONG indicates an unsigned long integer.

Code TABLE 1

HRESULT XX::QueryInterface(REFIID 11d, void **ppv)
{ ret = TRUE;
switch (iid) {
case IID_ IBasic;
*ppv = *plBasic;
break;
case [ID_IDatabase;
*ppv = FplDatabase;
break;
case IID IUnknown;
*ppv = this;
break:
default;
ret = FALSE;

h
if (ret == TRUE) {AddRef( ););

return ret;

h

Code Table 1 contains pseudocode for C++ source code

for a typical implementation of the method Querylnterface
for class XX, which inherits the class IUnknown. If the

spreadsheet object supports the IDatabase interface, then the
method Querylnterface includes the appropriate case label
within the twitch statement The variables plBasic and
plDmabase point to a points to the virtual function tables of
the IBasic end IDatabase interfaces, respectively. The
method QuerylInterface invokes to method AddRef
(described below) to increment a reference count for the
object of class XX when a pointer to an interface 1s returned.

Code Table 2

void XX::AddRef( ) {refcount++};
void XX::Release( ) {if (—refcount=0) delete this;}

The mterface IUnknown also defines the methods AddRet
and Release, which are used to implement reference count-
ing. Whenever a new reference to an interface 1s created, the
method AddRet 1s invoked to increment a reference count of
the object. Whenever a reference 1s no longer needed, the
method Release 1s invoked to decrement the reference count
of the object and, when the reference count goes to zero, to
deallocate the object. Code Table 2 contains pseudocode for

C++ source code for a typical implementation of the meth-
ods AddRet and Release for class XX, which inherits the

class IUnknown.

The IDatabase interface and IBasic interface inherit the
[Unknown interface. The following definitions 1llustrate the
use of the IUnknown interface.

class IDatabase: public IUnknown
{ public;

virtual void Data( ) = 0;
h

class IBasic: public IUnknown
{ public;
virtual
virtual
virtual
virtual
virtual

void File( ) = 0;
void Edit( ) = 0;
voild Formula( ) = 0;

void Format( ) = 0;
void GetCell (string RC, cell *pCell) = 0;

The following pseudocode illustrates how a word pro-
cessing program uses an IUnknown interface to determine



US RE39,285 E

7

whether a spreadsheet object supports the IDatabase inter-
face.

1t (pSpreadsheet->Querylnterface(“IDatabase”, &
plDatabase))

// IDatabase supported
else

//IDatabase not supported
The pointer pSpreadsheet 1s a pointer to an instance of a
spreadsheet class. As discussed above, the spreadsheet
object may include some interfaces and not others. If the
object supports the IDatabase interface, the method Query-
Interface sets the pointer plDatabase to point to a IDatabase
data structure and returns true as 1ts value.

FIG. 2 1s a symbolic representation of a spreadsheet
object. In the following, an object data structure 1s repre-
sented by the shape 201 labeled with the interfaces through
which the object may be accessed.

SUMMARY OF THE INVENTION

It 1s an object of the present invention to provide a method
and system for dynamically generating object connections.

It 1s another object of the present invention to provide a
method and system for connecting an arbitrary interface for
subsequent notification purposes.

It 1s another object of the present invention to provide
multiple points of connection connecting with multiple
notification routines.

It 1s another object of the present mnvention to provide a
mechanism for determining whether an object has a particu-
lar interface for connecting.

Is another object of the present mmvention to provide a
method and system for invoking previously connected noti-
fication routines without any knowledge of what tasks they
perform.

It 1s another object of the present invention to provide a
method and system for event handling using application
independent object 1nterfaces.

These and other objects, which will become apparent as
the invention 1s more fully described below, are obtained by
an improved method and system for dynamically generating
object connections. In a preferred embodiment, the present
invention comprises a source object and a sink object. The
source object contains one or more connection point objects,
cach of which contains a connection point interface for
connecting to sink objects. Each sink object bas a notifica-
tion interface for communicating to the sink object. To
establish a connection, the source object determines which
connection point object to use for a particular connection
request. Using this determined connection point object, the
sink object requests to be connected to the source object
passing an indication of a notification interface to be used for
further communication. The source object then stores the
indicated notification interface 1n a data structure managed
by the, connection point object. Later, the source object
determines what notification interfaces have been stored 1n
a particular connection point object and invokes a particular
method of each stored notification interface to notify each
sink object that has connected a notification interface. Such
notification typically occurs in response to an event, for
example, movement from a user input device.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 1s a block diagram illustrating typical data struc-
tures used to represent an object

10

15

20

25

30

35

40

45

50

55

60

65

8

FIG. 2 1s a symbolic representation of a spreadsheet
object.

FIG. 3 1s a block diagram of a preferred connection
mechanism architecture.

FIG. 4 1s a block diagram of a connection between a
source object, a delegate object and a sink object.

FIG. 5 1s a block diagram of a wvisual programming
environment display used to create an open file dialog box
for an application program.

FIG. 6 1s a block diagram of object connections and data
structures after connecting the objects shown in FIG. 5 using
the present ivention.

FIG. 7 1s a flow diagram of a function SetUpConnection
for connecting a specified sink object to a specified source
object for a specified notification interface.

FIG. 8 1s a flow diagram of the method FindConnection-
Point of the IConnectionPointContainer interface.

FIG. 9 15 a flow diagram of a method that uses an
established connection between a source object and a sink
object.

FIG. 10 1s a flow diagram of a function defined by a sink
object to disconnect a specified notification interface.

DETAILED DESCRIPTION OF TH.
INVENTION

L1

The preheat invention provides a method and system for
generating object connections between source objects and
sink objects. These connections can be used to support
multiple types of event handling mechanisms for objects; the
invention provides an underlying connection mechanism
architecture for object communication. A source object
refers to an object that raises or recognizes an event, and a
sink object refers to an object that handles the event. A
connection between a source and sink object may be directly
initiated by either object or by a third object, referred to as
an 1nitiator object. In a typical event handling environment,
the source object raises or recognizes an event and notifies
the sink object or mitiator object by ivoking a notification
method. If the notification method belongs to the mitiator
object, then the 1nitiator object 1s responsible for invoking an
appropriate method of the sink object to handle the event.

In a preferred embodiment, the methods and systems of
the present invention are implemented on a computer system
comprising a central processing unit, memory, and mput/
output devices. In a preferred embodiment of the present
invention, a source object comprises connection point
objects end a connection point container object for manag-
ing the connection point objects. Preferably, the connection
point container object 1s implemented as part of the route
object and the connection point objects are implemented as
subobjects of the source object. The subobjects 1solate the
application independent behavior of the present invention.
The connection point container object provides an interface
comprising a method that an enumerate the contained con-
nection point objects and a method that can find a connection
point object corresponding to a particular interface 1dentifier
(“ID”). A connection point object 1s associated with a certain
type of iterface (identified by an interface ID) through
which 1t notifies sink objects to which 1t 1s connected. A
connection point object preferably provides an interface that
comprises methods for connecting a notification interface,
for disconnecting a previously connected notification
interface, and for enumerating the connected notification
interfaces. A connection point object preferably can option-
ally store references to multiple notification interfaces




US RE39,285 E

9

(belonging to one or more sink objects). A connected noti-
fication interface acts as an event set. That 1s, by virtue of the
definition of as interface, each object supporting a docu-
mented interface must provide 1s certain set ol methods.
Thus, when a sink object connects a notification interface,
the source object automatically knows what methods are
supported by the notification interface. From this
perspective, the methods supported loosely correspond to
events, and the entire noftification interface loosely corre-
sponds to a set of events.

Once connected, the source object an use the connection
point objects 1n a variety of manners. In typical operation,
the source object, upon receiving an event notification,
consults the connection point object(s) that 1s (are) associ-

ated with the interface ED corresponding to the received
event to obtain the connected notification interfaces. The

source object then forwards the event notification to each
connected noftification interface by invoking a predeter-
mined method of the notification interface. In this manner,
several sink objects can be notified upon the occurrence of
a single event.

FIG. 3 1s a block diagram of a preferred connection
mechanism architecture This figure shows a source object
301 connected to two sink objects 302 and 303 through two
connection point objects 305 and 306. The source object 301
implements a connection point container object 304 for
managing the connection point objects 305 and 306. The
connection point container object 304 implements an ICon-
nectionPomtContainer interface 307 for enumerating and
finding connection point objects. The connection point
objects 305 and 306 are accessed by the connection point

container object 304 through their respective IConnection-
Point interfaces, 308 and 309. The connection point objects
305 and 306 art connected to the sink objects 302 and 303
through their respective notification interfaces 310 and 311.
The source object 301 notifies the sink objects 302 and 303
of the occurrence of an event by locating the IConnection-
Point interface corresponding to the event and mvoking a
method of the notification interface of the sink object.

As mentioned above, a connection between a source and
sink object can be imitiated by an initiator object. The
initiator object can either connect a notification interface of
the sink object to the source object or can connect a
notification interface of 1ts own “delegate” object A delegate
object 1s simply 1n object that resides between the sink object
and the source object. The delegate object 1s transparent to
both the source and sink object because it provides an
implementation for the interface corresponding to the con-
nection point object, just as the sink object provides. The
delegate object 1s responsible for forwarding any event
notifications to the sink object In this manner, the delegate
object can be used as a security mechanism, deciding
whether or not to forward an event notification based upon
the comparative authorization privileges of the source and
sink objects.

FIG. 4 1s a block diagram of a connection between a
source object, a delegate object, and a sink object. The
connection illustrated 1n FIG. 4 comprises three objects: a
connection point object 401, a delegate object 402, and a
emit object 403. The delegate object 402 1s connected to the
connection point object 401 through a particular notification
interface 404. This same notification interface 1s used to
connect the sink object 403 to the delegate object 402. Thus,
the two noftification interfaces 404 and 405 are different
implementations of the, same interface defimtion and thus
have the same interface ID.

A typical application of the present mmvention involves
connecting objects 1 a visual programming environment.

10

15

20

25

30

35

40

45

50

55

60

65

10

Visual programming 1s a computer programming technique
that allows for rapid development of visually oriented pro-
grams (visual programs). A visual programming environ-
ment typically includes a list of predefined components
(objects) that can be interconnected to sink a visual program.
Each component may include input and output ports and a
visual interface. When creating a visual program, a visual
programmer specifies the visual components and their loca-
tion on the display. The visual programmer also specifies the
interconnection between various ports. The visual compo-
nents then use these connections to communicate with each
other

For example, a dialog box for an application program can
be stated using a visual programming environment. FIG. 3
1s a block diagram of a visual programming environment
display used to create an open file dialog box for an
application program. An open file dialog box 1s used for
scrolling through a list of file names to select files to open.
The wvisual programming environment display comprises
two parts: a workspace display area 501 and a command area
502. The workspace display area 501 shows multiple objects
being created and connected to program a dialog box
visually. The objects currently shown in the workspace
display area 501 include an open file dialog box object 503
and four code objects 504-507. Each object in turn com-
prises several subobjects. For sample, the open file dialog
box object 503 comprises a title bar object 508, a multiple
selection list box object 509, and a button object 510. In the
state shown, the multiple selection list box object 509 1s
currently selected by the user for creating connections with
other objects. An mput port 511 and an output port 512
corresponding to the selected object 509 are shown as
highlighted objects. Using the various commands provided
by the buttons in the command area 502, a visual program-
mer has connected the output port 516 of the open file dialog
box object 503, the mnput and output ports 511 and 512 of the
multiple selection list box object 509, and the input and
output ports 313 and 514 of the button object 510 to code
objects 504-506. Specifically, the output port 516 of the
open file dialog box object 503 has been connected to the
input port 517 of the code object 504, which contains cod
for updating the list of files shown 1n the multiple selection
list box object 509. Also, the mput port 511 of the multiple
selection list box object 509 bas been connected to the
output port 518 of the code object 504. Therefore, when a
user selects the open file dialog box object 503, the list of
files shown 1n multiple selection list box object 509 is
updated to reflect additions a deletions of files since the
dialog box was last selected. The output port 512 of the
multiple selection list box object 509 has been connected to
the 1nput port 519 of the code object 505 which contains
code for tracking the files selected 1n the multiple selection
list box object 509. This output port has also been connected
to the input port 517 of the code object 504 so that the file
list displayed 1s the multiple selection list box 1s updated
cach time the user selects a file. The mput port 513 of the
button object 510 has been connected to the output port 520
of the code object 505 so that the list of selected files 1s
passed to the button object 510 each time a file 1s selected.
The output port 514 of the button object 510 has been
connected to the input port 521 of the code object 505, which
contains code that opens each file 1n the list of selected files
once the user has pressed the OK button implemented by
button object 510.

Once seated using this visual programming environment,
the open file dialog box operates by responding to particular
system events, for example, events raised from user input




US RE39,285 E

11

devices. For example, when the user selects the open file
dialog box 500, a MouseLeltButtonDown selection event 1s
sent to the open file dialog box object 503. Upon receiving
this selection event, the open file dialog box object 503
torwards the notification to the code object 504, because the
input port 511 of the code object 504 has been previously
connected to the output port 516 of the open file dialog box
object 503. The code object 504, which implements code for
updating the list of displayed files, then sends an updated file
l1st to the multiple selection list box object 509, because the
output port 518 of the code object 504 has been previously
connected to the mput port 511 of the multiple selection list
box object 509. Also, when a user selects a {ile 1n the list box
implemented by the multiple selection list box object 509
using a mouse mput device, a MouseLetftButtonDown selec-
tion event 1s sent to the multiple selection list box object 509.
This event 1s then forwarded to the code object 505 to keep
track of the user selection because the mnput port 319 of the
code object 503 has been previously connected to the output
port 512 of the multiple selection list box object 509. The
code object 505 then sends a list of selected files to the
button object 510, because the output port 520 of the code
object 505 has been previously connected to the mput port
513 of the button object 510. In addition, when a user selects
the OK button implemented by the button object 510, a
system selection event (for example, a MouseLeftButton-
Down selection event 1s sent to the button object 510. The
button object 510 then forwards 1ts output (which 1n this case
1s the list of selected files) to the code object 506, because
the output port 514 of the button object 510 has been
previously connected to the input port 521 of the code object
506. Upon receiving the button selection event, the code
object 506 opens the files selected by the user.

In one example application, the present invention can be
used to dynamically generate the object connections needed
by the visual programming example Illustrated 1in FIG. S.
FIG. 6 1s a block diagram of object connections and data
structures aiter connecting the objects shown 1s FIG. 5 using
the present invention. FIG. 6 shows four objects: a source
object 601, which corresponds to the open file dialog box
object 503 1 FIG. 5 and three sink objects 602—-601, which
correspond to the code objects 504-506 1n FIG. 5. The
source object 601, corresponding to the open file dialog box
object 503, contains subobjects corresponding to the title bar
object 508, the multiple selection list box object 509, and the
button object 510. (None of the subobjects are shown.)
Alternatively, using the present invention, one could create
a source object for each of the subobjects contained in the
open file dialog box object 503 and then connect each of the
source objects with the appropriate code object (sink object).

Because the open file dialog box object 503 deals with
system events corresponding to the selection of the open file
dialog box object 503, the selection of files within the
multiple selection list box object 509, and user selection of
the OK button implemented by the button object 510, the
source object 601 supports connection point objects associ-
ated with different event sets. Specifically, the source object
601 contains a connection point container object 605 and
three connection point objects 608, 612, and 615. Connec-
tion point object 608 1s associated with the IMultipleList
interface used to support the multiple selection list box
object 509. Connection point object 612 1s associated with
the IButton interface used to support the button object 510.
Connection point object 613 1s associated with the IDialog
interface used to support the open file dialog box object 503.
The connection point container object 605 provides the
IConnectionPointContainer interface and maintains a list of

10

15

20

25

30

35

40

45

50

55

60

65

12

pointers to connection point objects. In FIG. 6, the list of
pointers to connection point objects currently has three
elements 606, 607, and 618. Each element contains an
indicator of the interface ID associated with the connection
point object, a pointer to the IConnectionPoint interface of
the connection point object, and a pointer to the next element
of the list. One skilled 1n the art would realize that other data

structures could be used to manage the set of created
connection point objects. Also, more or less information
could be associated with each list element for efliciency
reasons. For example, each element need not store the
interface 1D, as the intertace ID 1s readily accessible from
the connection point object.

Each connection point object provides the IConnection-
Point interface and maintains a list of references to notifi-
cation interfaces belonging to sink objects. A reference to a
notification iterface of a sink object 1s added to this list
whenever the sink object requests a connection from a
connection point object using the IConnectionPoint inter-
face. The connection point object 608, which 1s referenced
by the list element 606 in the connection point container
object 605, currently shows a list of references to notifica-
tion interfaces containing two elements 610 and 611. A
header for the list of references to notification intertace 609
1s provided for quick access to the associated interface
identifier and to the first list element. Each list element
contains a token umiquely identifying the connection, a
pointer to the IUnknown interface of the connected sink
object, and a pointer to the next element 1n the list. For
example, list element 610 contains a token uniquely 1den-
tifying the connection with sink object 602, which corre-
sponds to the code object 504 for updating the list of files
displayed by the multiple selection list box object 509. List
clement 610 also contains a pointer to the IUnknown inter-
face of sink object 602 1s order to access the IMultipleList
interface (the notification interface) of sink object 602. List
clement 610 also provides a pointer to list element 611. List
clement 611 analogously connects to sink object 603, which
corresponds to code object 505 for keeping track of the
selected files.

Connection point object 612 implements the connection
between the button object 510 and the sink object 604,
which corresponds to the code object 506 for opening files
selected by the user. In an analogous manner to connection
point object 608, connection point object 612 contains a list
with one element 614. Element 614 contains a pointer to the
IUnknown intertace of sink object 604, which corresponds
to code object 506. In addition, connection point object 615
1s analogously connected to a notification interface of sink
object 601 Note that the notification interface of sink object
602 that 1s connected to the connection point object 615
(ID1alog) 1s different from the notification interface of the
same sink object (MultipleList) that 1s connected to connec-
tion point object 609. However, in this embodiment, both
connection point objects 608 and 615 contain a pointer to the
IUnknown interface of sink object 602. As shown in FIG. 6,
a connection point object can be connected to more than one
notification interface (of one or more sink objects) and a sink
object can be connected to out or more connection point
objects.

Referring to FIG. 6, when the source object 601 receives
the event associated with selecting the open file dialog box
503, the source object 601 will find the connection point
object corresponding to the IDialog interface (615). The
source object 601 will then notily the sink object 602, which
updates the list of files using the Dialog interface of sink
object 601 When the source object 601 receives a selection




US RE39,285 E

13

event associated with selecting the multiple selection list
box object 509, the source object 601 will find the connec-
tion point object corresponding to the IMultipleList interface
(608), and then will notify sink objects 602 and 603 using
their connected notification interfaces (IMultipleList).
Likewise, when the source object 601 receives a selection
event associated with the user pressing the button object
510, the source object 601 will find the connection point
object corresponding to the IButton interface (612), and then
will notity sink object 604, using the connected notification
interface (IButton). An example of the event notification

corresponding to selecting the button object 5310 1s discussed
with reference to FIG. 9.

Code TABLE 3

interface IConnection Point: public IUnknown {
virtual HRESULT GetConnectionInterface (REFIID pud) = 0;
virtual HRESULT GetConnectionPomntContainer
(IConnectionPointContainer **ppCPC) = 0;
virtual HRESULT Advise (IUnknown *punk, DWORD *pdwToken) =
0;
virtual HRESULT Unadvise (DWORD dwToken) = O;
virtual HRESULT EnumConnection(IEnumConnections **ppEnum) =
0;

h

interface IEnumConnections: publicIlUnknown {
virtual HRESULT Next (ULONG eConnections, CONNECTDATA
*rgpunk, ULONG *1peFetched) = 0;
virtual HRESULT Skip (ULONG eConnections) = 0;
virtual HRESULT Reset ( ) = 0;
virtual HRESULT Clone (IEnumConnection **ppEnum) = 0;
h
struct tagCONNECTDATA {
[Unknown *punk;
DWORD dwToken;
} CONNECTDATA:

Code Table 2 contains C++ pseudocode for a preferred
definition of the interfaces IConnectionPoint and IEnum-
Connections and the data structure returned by the enumera-
tor interface IEnumConnections The IConnectionPoint
interface contains methods for connecting and disconnecting
to the connection point object and for enumerating the
notification interfaces connected to the connection point
object The method GetConnectionlnteface returns a pointer
to the interface ID associated with the connection point
object. The method GetConnectionPalmContainer returns a
pointer to the IConnectionPointContainer interface of the
connection point container object containing the connection
point object (its parent container object). When the connec-
tion point object 1s 1nstantiated, the, creation method of the
connection point object 1s passed a pointer to the connection
point container object for future use. The method Advise
connects the notification interface specified by the parameter
punk to the connection point object and, 1f successiul,
returns a unique token identifying the connection 1n param-
cter pdwToken. The unique token may be stored persistently.
The method Unadvise disconnects the notification interface
specified by the mput parameter dw/Token. The method
EnumConnections returns an enumerator interface, an
imnstance of the interface IEnumConnections, for iteration
through the connected notification interfaces.

The Interface IEnumConnections implements the enu-
merator used by the IConnectionPoint interface. This enu-
merator contains a set of methods for enumerating the
notification interface connections for a particular connection
point object. The two methods of interest include the method
Reset, which remnitializes the enumerator to point to the first
connected notification interface, and the method Next,
which returns a pointer to the next connected notification

10

15

20

25

30

35

40

45

50

55

60

65

14

interlace. Code Table 3 shows a typical structure definition
for the connection information returned by the enumerator

method Next retorted to as CONNECTDATA.

Code TABLE 4

interface IConnection PointContainer: public IlUnkown {
virtual HRESULT EnumConnection Points (IEnumConnectionPoints
**ppEnum) = 0;
virtual HRESULT FindConnection Pomt (REFIID 11d, 1ConnectionPoint
*EppPoint) = 0;

h

interface IEnumConnectionPoints: public IUnknown {
virtual HRESULT Next (ULONG eConnections, IConnection Point
*rgpen,
ULONG *1peFetched) = 0;
virtual HRESULT Skip (ULONG eConnections) = 0;
virtual HRESULT Close (IEnumEmbeddedConnection **ppcen) = 0;

)

Code Table 4 contains C++ pseudocode for preferred
definitions of the intertaces IConnectionPoimntContainer and
IEnumConnectionPoints. The IConnectionPointContainer
interface implements methods for finding a particular con-
nection point object and for enumerating the set of contained
connection point objects. The IEnumConnectionPoints
interface implements the enumerator method used by the
IConnectionPointContainer 1interface. The IConnection-
PointContainer interface contains a method FindConnec-
tionPoint which returns a pointer to an IConnectionPoint
interface given a specified intertace ID. The method Enum-
ConnectionPoints returns a pointer to the mterface IEnum-
ConnectionPoints for iteration through the combined set of
connection point objects. The interface IEnumConnection-
Points contains a method Reset for imitializing the enumera-
tor to point to the list connection object and a method Next
for retrieving a pointer to the IConnectionPoint interface
associated with the next connection point object stored in the
connection point container object.

Corresponding to the example discussed with reference to
FIGS. 5 and 6, as object comprising the visual programming
environment depicted i FIG. 5 acts as an initiator object to
set up connection between the open file dialog box object
503 (the source object) and the code objects (sink objects)
504, 505, and 506. FIG. 7 1s a tlow diagram of a function
SetUpConnection for connecting a specified sink object to a
speciflied source object for a specified notification interface.
The 1nmitiator object (the code implementing the visual pro-
gramming environment) could use this function to set up all
of the connections shown 1n FIGS. 5 and 6. The function
SetUpConnection provides one example of using the inter-
faces shown i1n Code Tables 3 and 4 to set up an event
handling scheme. One skilled in the art would recognize the
many uses of these interfaces and different functions than
SetUpConnection are possible.

The function SetUpConnection determines the connection
point object on the source object for connecting and con-
nects the appropriate notification interface of the sink object
to the connection point object. The function takes three input
parameters: pSrc, which 1s a pointer to some interface of the
source object to connect; pSink, which 1s a pointer to some
interface of the sink object to connect; and 11d, which 1s the
interface 1dentifier associated with the connection point
object to which the sink object desires to connect. In step
701, the function calls the method Querylnterface of the
specified source object to locate the IConnectionPointCon-
tainer interface of the specified source object. In step 702,
the function uses the retuned IConnectionPointContainer
interface pointer to mnvoke the method FindConnectionPoint




US RE39,285 E

15

to retrieve a pointer to the connection point object for the
specified 11d. (This function 1s discussed further with refer-
ence to FIG. 8.) In step 703, the function saves the returned
pointer to the connection point object for use at some future
time, for example, for disconnecting the sink object. In step
704, the function calls the method Querylnterface of the
specified sink object to obtain a pointer to the IUnknown
interface of the sink object. In step 705, the function calls the
method Advise of the connection point object (returned in
step 702) to connect the IUnknown interface of the sink
object to the connection point object. The function passes
the pointer to the IlUnknow interface of the sink object in the
call to Advise, and 1f successtul, the method Advise returns
the token uniquely identifying the connected notification
interface. In step 706, 11 the connection was successiully
performed by the method Advise, the function continues in
step 707, else returns an error: In step 707, the function saves
the token returned by the method Advise for later use in
disconnecting the notification interface of the sink object,
and then returns.

The function SetUpConnection mcorporates one way of
setting up connections between connection point objects and
sink objects. One skilled in the art would realize that there
are many alternatives. For example, an alternative to step
702 uses the enumerator method EnumConnectionPoints of
the ConnectionPointContainer interface to determine the
connection point object. Also, 1I a sink or 1nitiator object
already has a pointer to any connection point object 1 the
source object, then the sink or inmitiator object can use the
method GetConnectionPointContainer of the IConnection-
Point interface to retrieve a pointer to the connection point
container object to search for a different connection point
object. Also, 1f a sink or initiator object already has obtained
the desired connection point object, then the sink or mitiator
object can call the method Advise directly, circumventing
the preliminary steps. In addition, a preferred embodiment
assumes that a pointer to the IUnknown interface of the
specified sink object 1s tie interface pointer stored in the
specified connection point object The IUnknown interface 1s
used to support the persistent storage of connection point
objects and enable delayed binding to a connected sink or
delegate object. Alternatively, one could store a pointer to
the notification Interface itself, without concern for delayed
binding. Also, note that, 1n this function and those discussed
below, reference counting has been omitted to simplify
explanation. One skilled 1n the art would recognize that as
object connections are created and destroyed, reference
counts are preferably updated and that cyclical references
are preferably avoided

FIG. 8 1s a flow diagram for the method FindConnection-
Point of the IConnectionPointContainer interface. This
method returns a pointer to an IConnectionPoint interface of
a connection point object corresponding to a specified
interface 1identifier. The specified interface identifier 1s
passed as an mput parameter to the method, and the method
returns a pointer to the interface pointer in an output
parameter. In steps 801-806, the method loops through the
list of stantiated connection point objects looking for the
connection point object corresponding to the specified inter-
tace 1identifier. In steps 807810, 11 a corresponding connec-
tion point object has not been found, then the method
instantiates a new connection point object if the requested
interface 1dentifier 1s supported by the source object;
otherwise, the method returns an error. In step 801, a
temporary variable 1s set to point to the IConnectionPoint
interface pointer contained 1n the first list element. In step
802, the method GetConnectionInterface of the interface

10

15

20

25

30

35

40

45

50

55

60

65

16

pointed to by the temporary variable 1s invoked to determine
whether the interface ID associated with the connection
point object referenced by the temporary variable (the
current connection point object) matches the specified inter-
tace ID. In step 803, 11 the returned interface ID matches the
specified interface ID, then the method continues at step
804, clse continues at step 805. In step 804, the method sets
the output parameter to point to the address of the ICon-
nectionPoint interface pointer referenced by the temporary
variable, and returns. In step 805, the temporary variable
(which points to the current connection point object) 1s set
to point to the IConnectionPoint interface of the IConnection
clement 1n the list of instantiated connection point objects.
In step 806, 11 the method has reached the end of the list, then
the method continues at step 807, else the method returns to
the beginning of the loop 1n step 801. In step 807, the method
determines whether the specified interface ID corresponds to
a connection interface that the source object supports, and 1f
s0, the method continues at step 808, else returns 1n error. In
step 808, the method instantiates a new connection point
object. In step 809, the method inserts the newly instantiated
connection point object into the connection point container
object’s list of connection point objects. In step 810, the
method sets the output parameter to point to the address of
the newly instantiated connection point object, and returns.

The steps comprising the method FindConnectionPoint 1n
FIG. 8 assume that connection point objects are instantiated
dynamically as needed. One skilled in the art would recog-
nize that connection point objects can be established
dynamically or statically at the discretion of the source
object implementation. For example, upon instantiation of
the source object, a connection point object corresponding a
cach connection interface identifier supported by the source
object could be instantiated with empty lists of references to
notification interfaces. Also, certain steps could be elimi-
nated for efliciency reasons from the method FindConnec-
tionPoint 11 the connection point container object 1s 1mple-
mented with knowledge of the connection point object
implementation structure. Such knowledge might typically
occur 1f the source object implementation provides 1ts own
implementations for the connection point container object
and the connection point objects. In addition, the method
FindConnectionPoint assumes that the data structure used to
store references to the connection point objects 1s a list
structure as shown In FIG. 6. This method could be alter-
natively written to handle various storage data structures.

FIG. 9 1s a flow diagram of a method that uses an
established connection between a source object and a sink
object. Specifically, FIG. 9 illustrates a set of mops that
could be performed by the source object corresponding to
the open file dialog box object 503 in FIG. 5 when the source
object receives a system selection event indicating that a
user has depressed the OK button object 510. This example
assumes the connections have been appropriately estab-
lished as discussed with reference to FIG. 6. One skilled 1n
the art would recognize that many other uses of and seman-
tics for the object connection mechanism are possible.

When a user depresses the OK button object 510 1n FIG.
5, the system sends a selection event to the source object.
The source object then invokes some internal routine to
respond to the externally raised event. FIG. 5 depicts an

example of such a routine, which 1s he method
OK_ ButtonDown for the IDialogBox interface. The
OK_ ButtonDown method determines which connection
point object corresponds to the interface identifier associated
with the raised event and invokes a predetermined method of
the notification interfaces connected to the determined con-




US RE39,285 E

17

nection point object. As described earlier, because the set of
events that includes the raised event 1s represented by an
interface, the source object has knowledge of what methods
are supported by a connected sink object. Furthermore, 1n
the source object routine handling the raised event (in this
case, the OK-ButtonDown method), the source object can
determine which particular method of the sink it prefers to
invoke to handle the raised event. In this particular example,
the method determines that the method MouselLeftButton-
Down of the notification interface corresponding to the
interface i1dentifier IID_ IButton i1s preferably mmvoked to
respond to the raised selection event.

In step 901, the method obtains 1ts own IConnectionPoint-
Container interface using the method QueryInterface. In step
902, the method uses the IConnectionPointContainer inter-
face pointer to mvoke the method FindConnectionPoint
requesting the connection point object that corresponds to
the interface identifier IID__IButton. In step 903, the method
invokes the method EnumConnections of the connection
point object returned in the previous step to obtain an
enumerator for enumerating the contents of the connection
point object. In step 904, the method resets the enumerator
to start at the beginning of the list of references to notifi-
cation interfaces. In step 905, the method invokes the
method Next of the enumerator to obtain the connection data
for the next referenced notification Interface. In step 906, if
the enumerator indicates no more references to notification
interfaces are present, then the method returns, else the
method continues 1 step 907. In step 907, the method calls
the method Querylnteface of the IUnknown interface indi-
cated in the connection point data structure requesting the
notification intertface corresponding to the mterface Identi-
fier IID__IButton, using a remote procedure call 1if necessary.
A remote procedure call 1s necessary 1f the connected
notification interface belongs to an object contained within
another process address space. In step 908, the method
invokes the method MouselLetftButtonDown of the retrieved
IButton interface (wing a remote procedure call it
necessary), and continues back to the beginning of the loop
in step 905. One skilled m the art would recognize that

multiple steps of this method could be eliminated for efli-
ciency reasons 1i the implementations of the connection
point container object and the connection point objects are
known by the source object implementation.

FI1G. 10 1s a flow diagram of a function defined by a sink
object to disconnect a specified notification interface. The
function has one mput parameter, which 1s the interface 1D
of the notification interface the sink object desires to dis-
connect. In step 1001, the function retrieves the pointer to
the IConnectionPoint interface of the connection point
object for the specified interface 1D, which was previously
stored during the fraction SetUpConnection (see step 703 of
FIG. 7). The function also retrieves the token uniquely
identifyving the connection previously established for the
specified interface ID (see step 707 of FIG. 7). In step 1002,
the function calls the method Unadvise of the retrieved
IConnectionPoint Interface, passing 1t the retrieved token,
and returns. The method Unadvise of the IConnectionPoint
Interface uses the specified token to search through 1ts list of
references to notification interfaces to find the corresponding,
notification interface reference. The method Unadvise then
removes the references to the corresponding notification
interface from the list of connected notification interfaces,
thus disconnecting the corresponding notification interface.

5

10

15

20

25

30

35

40

45

50

55

60

65

18

Code TABLE 5

Interface IProvideClass Info: public IUnknown {
virtual HRESULT GetClassInfo (TT)pelnfo **ppcl, CLID Icid) = 0;

h

Code Table 5 Contains C++ pseudocode for a preferred
definition of the intertace IProvideClassInfo, which can used
by a sink object to obtain information about an unknown
source object. The Method GetClassInfo of the IProvide-
ClassInfo interface can be used by a sink or mitiator object
to obtain class and type information from as unknown
source object 1 order to connect to i1t. The ITypelnio
interface describes the interface implemented by the source
object, what events 1ts raises, and what properties 1t sup-
ports. A sink or initiator object can then use this information
to set up compatible connections. The I'Typelnto interface 1s
described 1s detaill In U.S. patent application Ser. No.
07/959,056, entitled “Method tad System for Interfacing to

a Type Library,” which 1s hereby incorporated by reference.

Although the present imvention has been described 1n
terms of a preferred embodiment, 1t 1s not intended that the
invention be limited to this embodiment modifications
within the spirit of the invention will be apparent to those
skilled in the art. The scope of the present invention 1s
defined by the claims which follow.

We claim:

1. A method 1n a computer system for generating an object
connection between a source object and a sink object, the
sink object having an instance of an interface that serves as
a notification interface for receiving communications from
the source object, the notification interface having an asso-
ciated interface 1dentifier, the source object having instances
of a connection point interface, the method comprising the
steps of:

receiving a request having an indication of the interface
identifier associated with the notification interface of
the sink object;

selecting an instance of the connection point interface
from among the instances of the connection point
interface of the source object, wherein the selection of
the instance 1s based upon the mterface 1dentifier indi-
cated 1n the receive request;

sending a reference to the selected connection point
interface instance;

recerving, through the selected connection point interface
instance, a request to connect the source

object and the sink object, the request having a reference
to the notification interface mstance of the sink object;
and

storing the reference to the notification interface 1nstance,
wherein the source object communicates with the sink
object using the stored reference to the notification
interface 1nstance.

2. A method 1n a computer system for notifying a sink
object from a source object, the sink object connected to the
source object 1n accordance with the method of claim 1,
including the step of, under control of the source object,
invoking a member function of the notification interface
instance referred to by the stored reference.

3. The method of claim 1, the selected connection point
interface 1nstance for connecting to a plurality of sink
objects, wherein the steps of recerving the request to connect
and storing the reference to the notification interface
instance are performed for each sink object, and further
including the step of:




US RE39,285 E

19

for each sink object, invoking a member function of the
notification 1nterface instance referred to by the stored
reference.

4. The method of claim 1, the source object having a
connection point container object for managing interaction
with the instances of the connection point interface and
wherein the step of selecting the instance of the connection
point interface includes the substep of requesting the
instance of the connection point interface from the connec-
tion point container object.

5. The method of claim 1, the connection point interface
having an advise member function for requesting a connec-
tion to the source object, wherein the step of receiving the
request to connect 1s performed by mnvoking the advise
member function of the selected connection point interface
instance.

6. The method of claim 1 wherein the step of selecting the
instance of the connection point interface 1s performed under
the control of code of the source object.

7. The method of claim 6 wherein the step of recerving the
request to connect 1s performed under the control of code of
the source object.

8. The method of claim 6, further comprising the step of,
under the control of code of the sink object, requesting a
connection.

9. The method of claim 1 wherein the step of storing the
reference to the notification interface instance 1s performed
under the control of code of the source object.

10. The method of claim 9, further comprising the step of,
under the control of code of the sink object, requesting a
connection.

11. The method of claim 1, further comprising the step of,
under control of code of the sink object, requesting a
connection.

12. The method of claim 1, the computer system having
an 1nitiator object for setting up connections between the
source object and the sink object, further comprising the step
of, under control of the initiator object, requesting a con-
nection.

13. A method 1n a computer system for registering with a
source object an instance of an interface that serves as a
notification interface of a sink object, the source object
having a registration function member for registering the
notification interface of the sink object, the notification
interface instance for communicating with the sink object
from the source object, the sink object having a plurality of
notification intertaces, each notification interface having at
least one instance, the method including the steps of:

receiving a reference to the registration function member
of the source object;

selecting the instance of the notification iterface to be
registered from the plurality of instances of

notification interfaces; and

requesting registration of the selected notification inter-
face instance using the received reference to the reg-
istration function member of the source object, wherein
the source object registers the selected notification
interface instance and communicate with the sink
object using the registered interface instance.

14. The method of claim 13, the source object having an
advise member function for requesting registration of a
notification interface, and wherein the step of requesting
registration invokes the advise member function of the
source object to make the request.

15. The method of claim 13, the sink object having an
instance of an IUnknown interface for accessing other
interfaces of the sink object, and wherein the step of

10

15

20

25

30

35

40

45

50

55

60

65

20

selecting the instance of the notification interface selects the
instance of the IUnknown interface of the sink object.

16. The method of claim 13 wherein the step of requesting
registration 1s performed under the control of the sink object.

17. The method of claim 16 wherein the step of selecting
the 1nstance of the notification interface 1s performed under
the control of the sink object.

18. The method of claim 13, the computer system having
an 1nitiator object for registering a notification interface of a
sink object, wherein all steps are performed by the mnitiator
object.

19. A method 1 a computer system for notifying a sink
object from a source object using a delegate object, the sink
object having a sink notification interface for notifying the
sink object, the delegate object having a delegate notifica-
tion interface for notifying the delegate object, the delegate
notification interface having an associated interface
identifier, the source object having instances of a connection
point 1nterface for connecting the delegate object, the
method comprising the steps of:

storing, 1n the delegate object, a reference to an instance
of the sink notification interface;

selecting an instance of the connection point interface
from among the instances of the connection point
intertace of the source object, wherein the selection of
the mstance 1s based upon the interface 1dentifier asso-
ciated with the delegate notification interface;

sending, to the delegate object, a reference to the selected
connection point interface instance;

receiving, through the selected connection point interface
instance, a request to connect the source object and the
delegate object, the request having a reference to an
istance of the delegate notification interface;

storing the reference to the delegate notification interface
instance;

invoking a method of the delegate notification interface
instance that 1s referred to by the stored reference; and

invoking a method of the sink notification interface

instance referred to by the stored reference in the

delegate object to eflect the notification of the sink
object.

20. The method of claim 19, the computer system having,
an 1nitiator object for setting up connections between the
source object and the delegate object, and further comprising
the step of, under control of the initiator object, requesting
a connection.

21. A method 1n a computer system for generating an
object connection between a source object and a sink object,
the sink object having a notification 1nterface for commu-
nicating with the sink object, the notification interface
having an associated interface i1dentifier, the source object
having a plurality of connection point objects for connecting
the sink object, each connection point object having an
instance of the same connection point interface, the method
comprising the steps of:

sending, to the source object, an indication of the interface
identifier associated with the notification interface of

the sink object;

selecting a connection point object from among the plu-
rality of connection point objects based upon the indi-
cation of the interface identifier:

requesting a connection, irom the nstance of the connec-
tion point interface of the selected connection point
object, to connect the source object and the sink object;

indicating an instance of the notification interface of the
sink object in the connection request;




US RE39,285 E

21

receiving the connection request; and

storing a reference to the indicated instance of the noti-

fication interface of the sink object.

22. The method of claim 21, further including the step of,
under control of code of the source object, mmvoking a
method of the indicated notification interface instance
referred to by the stored reference.

23. The method of claim 21, the source object having
connection point container object for managing interaction
with the plurality of connection point objects and wherein
the step of selecting the connection point object includes the
substep of requesting the connection point object from the
connection point container object.

24. The method of claim 21, the connection point inter-
face having an advise member function, wherein the step of
requesting the connection from the instance of the connec-
tion point interface of the selected connection point object
invokes the advise member function of the instance of the
connection point 1mterface to make the request.

25. The method of claim 21, the selected connection point
object for connecting to a plurality of sink objects, wherein
the steps of requesting the connection, indicating the noti-
fication interface instance of the sink object, receiving the
connection request, and storing the reference to the indicated
notification interface instance are performed for each sink
object, and further including the step of:

invoking a method of the indicated notification intertace
instance referred to by the stored reference for each
sink object.

26. A method 1 a computer system for generating an
object connection between a source object and a sink object,
the sink object having an instance of a notification interface
for recerving communications from the source object, the
notification interface having an associated interface
identifier, the source object having instances of a connection
point interface, the method comprising the steps of:

under control of the sink object, sending to the source
object a request having an indication of the interface
identifier associated with the notification interface of
the sink object;

under control of the source object,

selecting an instance of the connection point interface
from among the instances of the connection point
interface of the source object, wherein the selection of
the mstance 1s based upon the interface i1dentifier asso-
ciated with notification interface of the sink object; and

sending, to the sink object, a reference to the selected
connection point interface instance;

under control of the sink object, requesting a connection
from the selected connection point instance to connect
the source object and the sink object, the request having
a reference to the notification interface instance of the
sink object; and

under control of the source object, storing the reference to

the notification interface instance.

27. A method 1 a computer system for generating an
object connection between a source object and a sink object,
the sink object implementing a plurality of notification
interfaces for communicating with the sink object, each
notification interface having an associated interface
identifier, the source object having instances of a connection
point 1nterface, each instance of the connection point inter-
face having an associated interface identifier, the method
comprising the steps of:

selecting a notification interface [form] from among the
plurality of notification interfaces of the sink object;

10

15

20

25

30

35

40

45

50

55

60

65

22

selecting an 1nstance of the connection point interface of
the source object, the selected 1nstance

having an associated interface identifier that corresponds
to the interface i1dentifier associated with the selected
notification interface of the sink object;

using the selected connection point interface instance to
request that the source object and the sink object be
connected, wherein, the request has a reference to an
instance of the selected notification interface of the sink
object; and

storing the reference to the instance of the selected

notification interface, so that the sink object can be
notified by the source object.

28. The method of claim 27, further including the step of
invoking a method of the selected notification interface
instance referred to by the stored reference.

29. The method of claim 27, the selected connection point
interface instance for connecting to a plurality of sink
objects, wherein the steps of using the selected connection
point interface instance to request that the source object and
the sink object be connected and storing the reference to the
selected noftification interface instance are performed for
cach sink object, and further including the step of:

invoking a method of the selected notification interface
instance referred to by the stored reference for each
sink object.

30. The method of claim 27, the source object having a
connection point container object for managing interaction
with the instances of the connection point interface and
wherein the step of selecting the instance of the connection
point interface includes the substep of requesting the
instance of the connection point interface from the connec-
tion point container object.

31. The method of claim 27, the connection point inter-
face having an advise member function for requesting a
connection to the source object, wherein the step of using the
selected connection point interface instance invokes the
advise member function of the selected connection point
interface instance.

32. The method of claim 27 wherein the step of selecting
the 1nstance of the connection point interface 1s performed
under the control of code of the source object.

33. The method of claim 32, further comprising the step
of, under the control of code of the sink object, requesting
a connection from the selected connection point interface
instance.

34. The method of claim 33 wherein the step of selecting
the notification interface 1s performed under the control of
the sink object.

35. The method of claim 27 wherein the step of storing the
reference to the notification interface instance 1s performed
under the control of the source object.

36. The method of claim 35, further comprising the step
of, under the control of the sink object, requesting a con-
nection from the selected connection point interface
instance.

37. The method of claim 27, further comprising the step
of, under the control of the sink object, requesting a con-
nection from the selected connection point interface
instance.

38. The method of claim 27, the computer system having
an 1nitiator object for setting up connections between the
source object and the sink object, further comprising the step
of, under control of the initiator object, requesting a con-
nection; and indicating an instance of the notification inter-
face of the sink object 1n the connection request.




US RE39,285 E

23

39. A computer system for dynamically connecting
objects, the system comprising:
a plurality of sink objects, each sink object having a

notification function member for communicating with
the sink object from the source object; and

a plurality of source objects, each source object having a
plurality of connection point objects, each connection
point object storing a plurality of notification function
members and returning an identification of one of the
notification function members from the stored plurality
of nofification function members upon request.

40. The system of claim 39, further comprising a con-
nection point container for storing the plurality of connec-
tion point objects within each source object, the connection
point container determining which connection point object
to use when an object connection 1s requested.

41. The system of claim 39, further comprising an invo-
cation mechanism used by each of the connection point
objects to 1nvoke one of the stored noftification function
members.

42. A method 1 a computer system for generating an
object connection between a source object and a sink object,
the sink object having an instance of a notification interface
for recerving communications from the source object, the
notification interface having an associated interface
identifier, the source object having 1nstances of a connection
point 1nterface, each instance of the connection point inter-
face having an associated interface identifier, the method
comprising the steps of:

receiving a request to enumerate the instances of the
connection point interface;

sending a reference to each instance of the connection
point interface, wherein from each reference the sink
object obtains an indication of the interface identifier
associated with the instance;

receiving, through one of the instances of the connection
point interface, a request to connect the source object
and the sink object, the request having a reference to
the notification interface instance of the sink object,
wherein the mterface identifier associated with the
recelving connection point interface corresponds to the
interface 1identifier associated with the notification
interface of the sink object; and

storing the reference to the notification interface instance,
wherein the source object communicates with the sink
object using the stored reference to the notification
interface instance.

43. A method 1 a computer system for generating an
object connection between a source object and a sink object,
the sink object implementing a plurality of notification
interfaces for receiving communications from the source
object, each notification interface having an associated inter-
face identifier, the source object having instances of a
connection point interface, each instance of the connection
point 1interface having an associated interface identifier, the
method comprising the steps of:

receiving a request to enumerate the instances of the
connection point nterface;

sending to the sink object a reference to each instance of
the connection point interface;

obtaining, from each referenced instance of the connec-
tion point interface, an indication of the interface
identifier associated with each 1nstance of the connec-
tion point interface;

selecting an instance of the connection point interface of
the source object, the selected instance having an

10

15

20

25

30

35

40

45

50

55

60

65

24

associated interface identifier that corresponds to a
selected one of the obtained indications of interface
identifiers;
selecting, from among the plurality of notification
interfaces, a notification interface, the interface i1denti-
fier associated with the selected notification interface
corresponding to the interface 1dentifier associated with
the selected connection point interface instance;

using the selected connection point interface instance to
request that the source object and the sink object be
connected, wherein the request has a reference to an
instance of the selected notification interface of the sink
object; and

storing the reference to the instance of the selected

notification interface, so that the sink object can be
notified by the source object.

44. A computer system for notifying a sink object from a
source object, the computer system having a plurality of sink
objects and source objects, each sink object having a plu-
rality of notification function members, each source object
having a plurality of connection points for storing one or

more notification function members, the system comprising;:

means for selecting a notification function member from
among the plurality of function members of the sink
object;

means for selecting a corresponding connection point
from among the plurality of connection points of the
source object, the selection based upon the notification
function member that 1s selected by the notification
function member selection means;

means for connecting the connection point selected by the
connection point selection means and the notification
function member selected by the notification member
selection means, wherein a reference to the selected
notification function member 1s stored within the
selected connection point; and

means for invoking the selected notification function
member referred to by the stored reference to eflect
notification of the sink object.

45. The system of claim 44 wherein the plurality of
connection points of each source object 1s stored within a
connection point container, and wherein the means for
selecting a [connecting] connrection point uses the connec-
tion point container to determine which connection point to
select.

46. A computer-readable medium having computer-
executable instructions for performing steps to generate an
object connection between a source object and a sink object,
the sink object implementing a plurality of notification
interfaces for communicating with the source object, each
notification interface having an associated interface
identifier, and the source object having instances of a
connection point interface identifier, each instance of the
connection point interface having an associated interface

identifier, the steps comprising;

selecting a notification interface from among the plurality
of notification interfaces of the sink object;

selecting an instance of the connection point interface of
the source object, the selected instance having an
associated interface identifier that corresponds to the
interface identifier associated with the selected notifi-
cation interface of the sink object;

using the selected connection point interface instance to
request that the source object and the sink object be
connected, wherein the vequest has a rveference to an
instance of the selected notification interface of the sink
object; and



US RE39,285 E

25

stoving the reference to the instance of the selected
notification interface, so that the sink object can be
notified by the source object.
47. A computer-readable medium having stoved thereon
an object connection architecture comprising:

a plurality of sink objects, each sink object having a
notification function member for communicating with
the sink object from a source object; and

a plurality of source objects, each source object having a
connection point object, each connection point object
storing a notification function member and returning
an identification of the notification function member
upon request.

48. A computer-readable medium having computer-
executable instructions for causing a computer system com-
prising a plurality of sink objects and a plurality of source
objects to dynamically connect source and sink objects by:

communicating with a sink object from a source object via
a notification interface,

storing a plurality of notification interfaces referenced by
a plurality of comnnection point objects wherein each
source object is coupled to a connection point object;
and

returning an identification of one of the notification inter-
Jaces from the stoved plurality of notification interfaces
upon requesi.

49. A computer-readable medium having computer-
executable instructions stoved thereon for causing a com-
puter system to generate a connection between a source
object and a sink object, the object having an instance of a
notification interface for receiving communications from the
source object, the notification interface having an associated
interface identifier, the source object having instances of a
connection point interface, each instance of the connection
point interface having an associated interface identifier, the
computer system divected by said instructions to perform the
steps comprising:

receiving a request to identify instances of the connection

point interface;

sending a reference to each instance of the connection
point interface, wherein from each rvefervence the sink
object obtains an indication of the interface identifier
associated with the instance;

receiving, through one of the instances of the connection
point interface, a rvequest to connect the source object
and the sink object, the vequest having a reference to
the notification interface instance of the sink object,
wherein the interface identifier associated with the
receiving connection point interface corresponds to the
interface identifier associated with the notification
interface of the sink object; and

storing the reference to the notification interface instance,

wherein the source object communicates with the sink

object using the stoved veference to the notification
interface instance.

50. A computer-readable medium having computer-

executable instructions for causing a computer system to

dyvnamically notify a sink object from a source object, the

5

10

15

20

25

30

35

40

45

50

55

26

computer system having a plurality of sink objects and
source objects, each sink object having a notification

interface, each source object having a connection point for
referencing one ov more notification interfaces, the com-
puter system performing a method comprising:

selecting a notification interface of the sink object;

selecting a corresponding connection point of the source
object, the selection based upon the notification inter-
Jace that is selected;

connecting the connection point selected and the notifi-
cation interface selected, wherein a reference to the
selected notification interface is storved by the selected
connection point; and

invoking the selected notification interface rveferved to by
the stored rveference to effect notification of the sink
object.
51. A computer system for dynamically connecting
objects, the system comprising:

a plurality of sink objects, each sink object having a
notification interface for communicating with the sink
object from the source object; and

a plurality of source objects, each source object having a
connection point object, each connection point object
storing a notification interface and rveturning an iden-
tification of the notification interface upon request.

52. A computer system for notifying a sink object from a

source object, the computer system having a plurality of sink
objects and source objects, each sink object having a noti-

fication interface, each source object having a connection

point for storing one ov more notification interfaces, the
system comprising:
means for selecting a notification interface;

means for selecting a corvrvesponding connection point, the
selection based upon the notification interface that is
selected by the notification interface selection means,

means for connecting the connection point selected by the
connection point selection means and the notification
interface selected by the notification interface selection
means, wherein a reference to the selected notification
interface is stoved within the selected connection point;
and

means for invoking the selected notification interface
referved to by the stored reference to effect notification
of the sink object.

53. A computer readable medium having objects stored
thereon for causing a computer system to dynamically
connect objects, the objects stoved on the medium compris-
Ing:

a plurality of sink objects, each sink object having a

notification interface for communicating with the sink
object from the source object; and

a plurality of source objects, each source object having a
connection point object, each connection point object
storing a notification interface and veturning an iden-
tification of the notification interface upon request.



	Front Page
	Drawings
	Specification
	Claims

