(19) United States

12) Reissued Patent
Schloss et al.

(10) Patent Number:
45) Date of Reissued Patent:

USOORE39184E

US RE39,184 E
Jul. 11, 2006

(54) IDENTIFYING, PROCESSING AND
CACHING OBJECT FRAGMENTS IN A WEB
ENVIRONMENT

(75) Inventors: Robert Schloss, Briarcliff, NY (US);
Philip Shi-Lung Yu, Chappaqua, NY
(US)

(73) Assignee: International Busniess Machines
Corporation, Armonk, NY (US)

(21) Appl. No.: 10/601,267

(22) Filed: Jun. 19, 2003
Related U.S. Patent Documents

Reissue of:
(64) Patent No.: 6,249,844

Issued: Jun. 19, 2001

Appl. No.: 09/192,010

Filed: Nov. 13, 1998
(51) Int. CL.

GO6F 12/00 (2006.01)

GO6F 15/16 (2006.01)
(52) US.CL ...l 711/122: 711/118; 707/513;

709/203

(58) Field of Classification Search 711/122,

711/118; °709/203; 707/513
See application file for complete search history.

(56) References Cited
U.S. PATENT DOCUMENTS
5,924,116 A * 7/1999 Aggarwal et al. 711/122
5,946,697 A * 8/1999 Shencocovvviviiiinni. 715/513
6,012,126 A * 1/2000 Aggarwal et al. 711/133
6,026,413 A * 2/2000 Challenger et al. 707/202
6,065,058 A * 5/2000 Hailpern et al. 709/231
6,122,666 A * 9/2000 Beurket et al. 709/226
6,128,627 A * 10/2000 Mattis et al. 707/202
6,138,141 A * 10/2000 DeSimone et al. 709/203
6,178,461 B1 * 1/2001 Chanetal. 709/247
245
205
:
i | Object Request
240~~1~ | Handler
i‘
210~
i
i | Handler
250 e

OTHER PUBLICATTIONS

Jadau et al. “Caching of Large Database Objects in Web
Server”, IEEE Jun. 1007, pp 10-19.%

L1

(Continued)

Primary Examiner—Krisna Lim
(74) Attorney, Agent, or Firm—F. Chau & Associates, LLC

(57) ABSTRACT

A method, apparatus and computer program product for
identifying and creating persistent object fragments from a
named object. For example, a digital content description of
a named digital object can be dynamically parsed, and
persistent fragment identities created and maintained to
facilitate caching. Named digital objects include but are not
limited to: Web pages described in XML, SGML, and
HTML. The object description 1s revised by replacing each
object fragment with 1ts newly created persistent identity.
The revised object description 1s then sent to the requesting
node. Depending upon the properties of a fragment, this can
cither enable the fragment or the revised object description
to be cacheable at the server and/or client device. For
example, the object description can include a dynamic part
which would otherwise prevent the object from being
cached. The dynamic part can be recognized and treated as
a separate fragment from the object description. Thus the
revised document becomes static mad therefore cacheable.
Furthermore, fragments can be nested. Other features deter-
mine which part/segment of a named object to recognize as
a fragment 1dentity, based on its properties including: size;
processing cost; and static vs. dynamic. Yet other features
can determine which fragments to cache and replace, for
example based on the fragment size and processing cost.
Still other features allow different versions to be generated
for a fragment upon request. The version created can be
determined by the property of the requesting devices (e.g.,
handheld device or Internet appliance) and the fragment
description.

66 Claims, 13 Drawing Sheets

b ~280

{

i
Fragment Cache| : 210
Object Cache | 7¥ efs

US RE39,184 E
Page 2

OTHER PUBLICATIONS

“Spyglass: Making Devices Work With The Web”, Products
and Services, http://www.spyglass.com/product/wp, 7
pages, printed Sep. 19, 1997.%

“Spyglass Prism Allow Non—PC Devices to Display Content
Up to Four Times faster”, http://www.spyglass.com/news-
flash/releases/091697 prismpert.html, 3 pages, printed Sep.
19, 1997 %

Spyglass Ships Spyglass Prism 1.0 Dynamic Content Con-
version Solution; Revolutionary Product Delives Existing
Web Content to Non—PC Devices, http://www.spyglass-
com/newstlash/releases/091697 prismships.html, 3 pages,
printed Sep. 19, 1997.%

Armando Fox et al., “Adapting to Network and Client
Variability via On—Demand Dynamic Distillation™, Univer-
sity of Califormia at Berkeley, 11 pages, published 1n Proc.

77 Intl. conference on Architectural Support for Program-
ming Language and Operating System, (Oct. 1996).%

Benoit Marchal from Pineapplesoit sprl, “An Introduction to
SGML”, http:// www.pineapplesolit.com/reports/sgml/predi-
ace.html, 4 pages, (last modified Sep. 25, 1997).*

ISO 8879:1986, http://www.1so.ch/cate/d16387.html, Table
of Contents, 1 page, (Last updated on May 8, 1999).*

Michael Leventhal et al., “Designing XML Internet Appli-

cations”, Prentice Hall PTR, Table of Contents, 18 pages,
(1998).*

Charu Aggarwal et al., “Caching on the World Wide Web”,

IEEE Transactions on Knowledge and Data Engineering,
vol. 11, No. 1, pp. 94-107, Jan./Feb. 1999 *

* cited by examiner

U.S. Patent Jul. 11, 2006 Sheet 1 of 13 US RE39,184 E

Content
Content Sewer M/ 43

Server |}

63
Client
. \DeviceN
Proxy \ .. . Client
Server | Proxy Device |
30 Serverl) 680
33

Fig. 1

U.S. Patent Jul. 11, 2006 Sheet 2 of 13 US RE39,184 E

Fragment 280
Description
Table

210 .
: | Fragment Fragment Cache|
E RequeSt : 1 275
{ | Handler Object Cache |~

270

250

U.S. Patent Jul. 11, 2006 Sheet 3 of 13 US RE39,184 E

310
5

< cml : molecule >

32% .

<[cml : molecule >

/(310

<m:orger>

310\ o

< db : price >
3303{3203\ . 330,

<[db : price >

320? ¢

< |m: order>

Fig. 3

U.S. Patent Jul. 11, 2006 Sheet 4 of 13 US RE39,184 E

< include HREF = “125.1" > ,
. 3304
<\include >

< m: Order >

<include HREF ="28.3" > |
330, <\include > ' 3

< Im: Order >

Fig. 4

505
Fragment

| Description
_Table

510\<

| 520—> Fragment Description List

-
-
-
>

oo~ Nink }

o 525 |

535]

640 | |Fdescription _ i

i i

| !

{ |

l |

= |

| l

_______________________ |
.
-

U.S. Patent Jul. 11, 2006 Sheet 6 of 13 US RE39,184 E

605

Wait for input

610
.. Object No
815 Request?
620

Object
Request
Handler

625

Fragment
Request

Hanaler 630

Miscellaneous

U.S. Patent Jul. 11, 2006 Sheet 7 of 13 US RE39,184 E

705

No Yes
710
Request Object Return Cached
From Content | Obiect
Server j

715

720
Wait For
Requested Object
725
Object Parser
730
Send The
Modified Object
To Requester
735

Object Cache
Manager

Fig. 7

U.S. Patent Jul. 11, 2006 Sheet 8 of 13 US RE39,184 E

805

Tag_Stack<-- null
Segment_Stacke—- null

810~
txt«- - Object Description
820
Next Segment locator
83(

2
Yese No Delete Segments
contained in Nsegment
From Segment_Stack

8> a3

Combine With Adjacent
Peer Segments On

Segment_Stack, If Any

Creation Eligibility
Criterion?

860
Remove Peer
SatiSfy Segmenls From F'ersiétem Name
Creation Eligibility Segment_Stack reator
Criterion? 845
Modify txt To Replace

The Fragment Description

870 0
Add Nsegment By Reference To Its Name
To Segment_Stack

U.S. Patent Jul. 11, 2006 Sheet 9 of 13 US RE39,184 E

91C 015
ext Token ~_Yes m
null 7
No
920~
Yes Next Token ~_ NoO
No Next Token

Insert The Token Into The
Tag_Stack With Associated
Position Value Set To lts
Starting Position In txt

End_tag
5

Yes
940

Nsegment« - Substring Of TxT
Starting From Position Value
Indicated By The Top
Element In The Tag_Stack
To The Said End_Tag

945

Remove The Top Element
From Tag_Stack

Fig. 9

U.S. Patent Jul. 11, 2006 Sheet 10 of 13 US RE39,184 E

1005
Obtain Fragment
Description From txt

Map Fragment Description

1010

Into An Index To The
Fragment Description Table
102C
Description
Yes Already Appeared No
In The Fragment List?
Create A 1025
Retum The Name
Of The Matching Add Tts Name And |5 10
Description Description To

The Fragment List
1035

Return The Name

Just Created

U.S. Patent Jul. 11, 2006 Sheet 11 of 13 US RE39,184 E

1105

Determine Which Fragment
Version Required

1110~
NO Yes
1120 1130
Obtain Fragment Returned
Description Cache Copy
1125~ 1160

Generate Required Update Statistics
Fragment Version On Fragment

Reference

1135

Return Fragment
To Requester
Fragment Cache

- Manager

1140

Fig. 11

U.S. Patent Jul. 11, 2006 Sheet 12 of 13 US RE39,184 E

120

Enough

Free Space 1o

Cache Fragment
?

No Yes

121(

Find The Minimum k, Such‘
That The Bottom k Fragments

In The Fragment Cache
LRU Stack Satistics

> s(0,) >S(Q)

1<i<k

230

Delete Obi' 1<i<k
| AndCacheQ, ‘
- Update Statistics On
Fragment Reference |

Fig. 12

U.S. Patent Jul. 11, 2006 Sheet 13 of 13 US RE39,184 E

1305

Wait For Input

1310
No

Yes

1320 1315

Send Request
To Server

Object
?

1325 133(
Miscellaneous Display Object
| Routine

1335
- Cacheable
?

Yes
Cache Object
in Client Cache

Fig. 13

US RE39,184 E

1

IDENTIFYING, PROCESSING AND
CACHING OBJECT FRAGMENTS IN A WEB
ENVIRONMENT

Matter enclosed in heavy brackets [] appears in the
original patent but forms no part of this reissue specifi-
cation; matter printed in italics indicates the additions
made by reissue.

FIELD OF THE INVENTION

The present invention relates generally to the analysis of
the content of a digital document and 1n particular to the
creation and maintenance of persistent fragment 1dentities to

tacilitate caching.

BACKGROUND

With the rapid growth of the Internet, the need for eflicient
document exchange becomes increasingly important. In
additional to the hypertext markup language (HTML),
Extensible Markup Languages (XML) are becoming avail-
able that provide a meta-language for authors to design their
own markup language.

On the other hand, the proliferation of various non-PC
computing devices, including: handheld devices; palmtop
devices; and various other Microsoft WINDOWS CET™.
based devices; set-top boxes; WEB TV; smart phones; and
so-called Internet appliances, (heremafter all referred to as
Internet appliances) further complicates the presentation of
a Web document to a client device. In a Web document based
on HTML, images are treated as separate objects pointed to
by the Web document. A proxy/Web server may generate a
lower resolution version or a black and white version of a
color 1mage to accommodate the limited capability of the
Internet appliance. Nonetheless, these 1images are named
persistent objects (1.e., they have separate identities which
are theirr URLs). The proxy or Web server 1s merely trying
to provide different versions of a named entity based on the
capability of a receiving device. This 1s independent of any
caching 1ssues at the proxy or Web server to improve object
access time.

Various work exists to provide different versions of a
named object in the Web environment to support Internet
appliances access to the Web. For example, PRISM from
Spyglass (see e.g., http://www.spyglass.com) provides dii-
ferent versions ol images to the Internet appliance. It can
also dynamically translate richly formatted Web documents
into simplified Web pages to accommodate the requirements
of the recerving devices. A means for performing on-demand
data type-specific lossy compression on semantically typed
data and tailoring content to the specific constraints of the
clients 1s described i “Adapting to Newark and Client
Vanability via On-Demand Dynamic Distiflation,” by A.
Fox, et al., Proc. 7th Intl. Conference on Architectural

Support for Programming Languages and Operating
Systems, Oct. 1996.

Using formal descriptors, such as a markup language, to
describe a digital document provides tremendous tlexibility.
In the Internet environment, more powerful markup lan-
guages such as XML, or a subset of the Standard General-
1zed Markup Language (SGML) (see e.g., ISO 8879/1986;
and Designing XML Internet Applications, by M. Laventhal,
et al., Prentice Hall, 1998), arc being defined to augment
HTML. The markup language description can provide rich
information on the document structure and the final docu-
ment to be generated. In fact, XML 1s a language that allows
users to define their own language. For example, chemists

5

10

15

20

25

30

35

40

45

50

55

60

65

2

can define a chemical markup language to describe a
molecular structure. Mathematicians or scientists can define
a math markup language to describe complex mathematical
formulas. The interpretation of the markup language
description and generation of the object can thus be com-
plex. It 1s desirable to avoid regeneration of the same
description repeatedly. Since Web pages, objects or docu-
ments on a common subject, or from the same company/
division/department or authors often have parts in common,
there 1s a need to go beyond recognizing just the repeated
references to named enfities (i.e., subject already has a
name, ¢.g., URL) to subparts of named entities.

However, proxy or Web servers and client browsers today
do not interpret the markup language to decompose a
document or object mto components, provide persistent
identities and tracking mechanisms to facilitate caching and
recognition ol repeated occurrences ol components of a
named object. They mainly provide caching or processing
service for named objects as a whole. For example, as
mentioned previously, in HI'ML the text documents and
images (which are separated out from the text documents by
the authors) are all named objects and hence cacheable
entities. Another problem 1s that 1f a document includes
dynamic content caching 1s not meaningiul as the next
reference to the same document URL can result in a different
version ol the document. Thus a document 1s not cached
even 11 only a small fraction of 1ts content 1s dynamic. This
1s an 1ssue¢ for HTML documents today and 1s expected to

become more severe for XML documents, which are more
flexible and make 1t easier to incorporate various types of
dynamic information, such as data from a database.

Thus, the need remains for a system and method for
identifying and creating one or more persistent object frag-
ments from named object, for example to facilitate caching.
The present mvention addresses this need.

SUMMARY

In accordance with the atorementioned needs, the present
invention 1s directed to a method and apparatus for identi-
tying and creating persistent object fragments from a named
object. In one example, the present mnvention 1s directed to
a method and apparatus for dynamically parsing a digital
content description of a named digital object, creating and
maintaining fragment identities to facilitate caching.

Examples of named digital objects include but are not
limited to: Web pages described in XML, SGML, and

HIML.

The present invention has features which can parse/
analyze the object description, 1dentify object fragments and
create persistent object fragment i1dentities, and revise the
object description by replacing each object fragment with 1ts
newly created persistent 1dentity and send the revised object
description to the requesting node. Depending upon the
properties of a fragment, this can either enable the fragment
to be cacheable (which can be at the content/proxy server
and the client device 1n the Web environment), or make the
revised object description cacheable at the server and client
device. For example, consider the object description of a
purchase order which contains a dynamic part to retrieve the
current price of a product from the database. This dynamic
part may be a small portion of the purchase order, but would
prevent the object from being cached. According to one
teature of the present invention for recognizing and treating

US RE39,184 E

3

the dynamic part as a separate fragment from the object
description, the revised document becomes static and there-
fore cacheable. Furthermore, fragments can be nested.

A method 1s also provided to determine which part/
segment of a named object to recognize as a fragment
identity, based on 1ts properties, which can include its size,
processing cost to generate that segment of the object from
its description, and other properties such as static vs.
dynamic.

The present mnvention has yet other features to determine
which fragments to cache and replace. The cache manager
takes into account the fragment size and processing cost to
generate the fragment.

The present imnvention has still other features which allow
different versions to be generated for a fragment upon
request. The version created can be determined by the
property of the requesting devices and the fragment descrip-
tion. Different generators can be maintained for each type of
descriptors or markup tags to generate diflerent versions for
different types of devices.

An example of a method for 1identitying object fragments
in an object having features of the present imnvention com-
prises the steps of: analyzing an object description to 1den-
tify one or more persistent object fragments associated with
the object; creating the one or more persistent object
fragments, in response to mid analyzing; and creating a
persistent object fragment i1dentity for a persistent object
fragment, based on one or more of formal descriptors or an
object fragment property. In one embodiment the object
description 1s revised by replacing at least one object frag-
ment with an associated persistent object fragment 1dentity
to enable the fragment to be cacheable at one or more of a
server and a client; and the revised object description 1s sent
to the client. The client receives the revised object descrip-
tion; and processes and/or caches the revised object descrip-
tion. The client can also receive a version of the one a more
object fragments associated with the fragment identity,
wherein the version 1s generated at the server and 1s based
on the capability of the client (e.g., whether 1t 1s a handheld
device, a set top box, or an Internet appliance.

BRIEF DESCRIPTION OF THE DRAWINGS

These, and further, objects, advantages, and features of
the mvention will be mere apparent ifrom the following
detailed description of a preferred embodiment and the
appended drawings wherein:

FIG. 1 1s a diagram of an Internet environment having
features of the present invention;

FIG. 2 1s a more detailed example of a network environ-
ment having features of the present mnvention;

FIG. 3 depicts an example of a digital document using a
markup language;

FIG. 4 depicts an example of a modified document;

FIG. 5 depicts the data structure of the fragment descrip-
tion table;

FIG. 6 1s an example of the server logic of FIG. 2;

FIG. 7 1s an example of the object request handler;

FIG. 8 1s an example of the object parser;

FIG. 9 1s an example of the next segment locator;

FIG. 10 1s as example of the persistent name creator;
FIG. 11 1s an example of the fragment request handler;
FI1G. 12 1s an example of the fragment cache manager; and

FIG. 13 depicts an example of the client logic

10

15

20

25

30

35

40

45

50

55

60

65

4
DETAILED DESCRIPTION

FIG. 1 depicts an example of an Internet environment
adaptable to the present invention. As depicted, a client
(60 . . . 63) may be connected through a network (25) to
access proxy servers (30 . . . 33) or Web content servers
(40 . . . 43). The proxy servers and Web servers can provide
caching of frequently access Web objects to improve client
access time. The client may also have its own cache. Those
skilled 1in the art will realize that a proxy server can be
replaced by a hierarchy of proxy servers. A client node (60)
can also run a proxy server.

FIG. 2 depicts an example of an overall architecture of a
computing node having features of the present invention. In
the example of an Internet or intranet environment, the node
can be a Web server, a proxy server. As depicted, the
computing node can include: a CPU (250); a scratch pad or
main memory (2435) such as RAM; and persistent storage
devices (260) such as direct access storage devices (DASD).
The memory (245) stores the server logic 240 (with details
depicted 1n FIG. 6) preferably embodied as computer
executable code which may be loaded from DASD (260)
into memory (245) for execution by CPU (250). The server
logic (240) includes an object request handler (205) (with
details depicted 1n FIG. 7), and a fragment request handler
(210) (with details depicted 1n FIG. 11). It also maintains a
fragment cache (270), an object cache (275) and a fragment
description table (280) (with detailed depicted in FIG. 5).
This information can either reside 1n persistent storage (260)
or 1n main memory (245).

In a preferred embodiment, an XML-like document waill
be used as an example of a document described using some
formal language, such as a markup language. FIG. 3 shows
an example of an XML-like document. The key point here
1s that the document includes multiple segments (330),
where each segment (330) 1s enclosed between a *“start-tag”™
(310) and an “end-tag” (320). For example, “<cml:
molecule>""(similarly, “<m: order>"" and “<db: price>") 1s a
start-tag (310) and its corresponding “end-tag” (320) 1s
“</cml: molecule>” (“</m: order>" and “<db: price>",
respectively). As depicted, the segments may be nested. For
example, the segment with the <price> start-tag 1s included
within the segment with the <m: order> start-tag. Thus
parsing the document to recognize the segments can be done
by matching each “end-tag” with the corresponding “start-
tag”’, which 1s the first preceding “start-tag” of the same type
at the same nested level. In markup languages such a XML,
cach segment can have a D'TD (document type definition) to
describe the semantics of the markup. It 1s an object of the
present mnvention to select a subset of the segments con-
tained 1n a document and recognize them as persistent object
fragments. Fragment creation eligibility criterion will be
introduced next to determine when an object fragment
should be created. In the preferred embodiment, two sets of
creation eligibility criterion are considered. For each persis-
tent object fragment, a persistent identity or name 1s
assigned and tracked so that i the object fragment appears
in multiple objects or multiple times 1n the same object, 1t
will be recognized as the same fragment.

The first fragment creation eligibility criterion 1s to rec-
ognize and separate out a segment as an object fragment so
as to make the remaiming document cacheable at the server
or client device and/or processable/interpretable at the client
device. An example 1s to recognize a dynamic segment as an
object fragment. Consider another example where a segment
can not be rendered from the markup language description

by a simple client device such as WINDOWS CET™-based

US RE39,184 E

S

Internet appliances. By recognizing the segment as a sepa-
rate object fragment, the client can process and/or cache the
remaining document and let the proxy server interpret the
markup language describing the fragment and generate an
appropriate version for the client. This limitation on the
client devices can be either due to limitation on the process-
ing power or storage capacity of the client device to interpret
the markup language and generate the object fragment, the
limitation on the bandwidth available to the client device to

retrieve the DTD of the fragment or other limitations.

The second criterion 1s based on the tradeoils of process-
ing and storage or bandwidth requirements to recognize and
separate out a segment as an object fragment so it can be
cached separately and reused to avoid going through inter-
preting the markup language description of the object to
generate 1t again. This will improve response time and
reduce server load on fragment re-references. Each
fragment—once separated out—may need to be requested
separately with additional requests from the client. Thus,
preferably, only a segment or group of segments that meet
a certain threshold on the processing requirements of inter-
preting the markup language description to generate the
object segment 1s recognized as a fragment. Another con-
sideration 1s the additional storage requirement to store the
rendered segment. For example, consider two cases. In a first
case, the processing time 1s 100 second of CPU time to
generate the segment from the description, and the size of
the rendered segment 1s 10K bytes. In a second case, the
processing time 1s 1 second of CPU time to generate the
segment from the description, and the size of the rendered
segment 1s 1000 K bytes. In case 1, the savings on CPU time
1s substantial while the additional storage cost 1s minimal.
The opposite 1s true for the second case. In other words, only
in the first case 1s 1t worthwhile to recognize the segment as
a separate fragment for caching. In the preferred
embodiment, for an object O, let P(O) be 1ts processing cost
to generate a segment from 1ts description and S(O) be the
additional storage requirement to store the segment. A value
tunction, F(P(O), S(0O)), based on processing costs and
storage requirements 1s used to determine the value of
recognizing a fragment. An example of a value function (F)
will be processing cost (1in seconds) divided by the square
root ol the additional storage requirement (in 100 Kbytes
increments). When the value function exceeds a given
threshold (say 5), the segment will be recognized as a
fragment.

FIG. 3 depicts an example of a document with 3 segments.
As discussed, the first segment (330,) begins with a start-
tag, <cml: molecule>, and ends with an end-tag, </cml:
molecule> and the second segment begins with a start-tag,
<m: order>, and ends with an end-tag, </m: order>. The
second segment (330,) includes a third segment (330,)
nested within 1t. The third segment begins with a start-tag,
<db: price>, and finishes with an end-tag, <db: price>.
Assume the semantics of the three segments as follows.
Assume the first segment provides an 1image of a molecule
structure of a chemical compound. Assume also the second
segment contains a formula to generate an order table
showing the price at different quantities. Assume further, the
third segment retrieves the price information from the prod-
uct database. Hence it 1s a segment with dynamic informa-
tion.

FIG. 4 depicts an example of a modified Web document
alter the persistent fragments have been recognized and
extracted. Here it 1s assumed that generating the molecular
structure of the chemical compound 1n the first segment
(330,) 1s quite complex, whereas the computation of the

10

15

20

25

30

35

40

45

50

55

60

65

6

order table 1s straightforward. Hence, only the first (330,')
and the third segments (330,") as recognized as persistent
fragments with the identities, “125.1” and *“28.3”, respec-
tively. In the preferred embodiment, each of the persistent
fragments 1s replaced with an “include” statement referring
to the name of the fragment, e.g. <include HREF="125.1">,
indicating the reference to the fragment “125.1” and fol-
lowed by a <include> statement.

FIG. 5 depicts an example of a fragment description table
for tracking the object fragment identity and its description.
As depicted the table (505) includes a plurality of entries
(507), where each table entry (507) points to a fragment
description list (510) (only one shown for ease of
description). The list (510) includes one or more description
clements (520 and 525). Each fragment that maps to a given
entry in the fragment description table (510) has a unique
description element (520) on the fragment description list
(510) of the entry. The description element includes several
fields: Nlink (530); Fname (535); and Fdescription (540).
The Fname (3535) 1s the persistent name of the fragment. This

name 1s given by the persistent name creator routine (with
details depicted 1n FIG. 10). The Fdescription (540) 1s the

fragment description. The Nlink (330) points to the next
description element (5235) which maps to the same fragment
description table entry (507).

FIG. 6 depicts an example of the server logic (240). In
step 603, the server waits for input. Depending upon the type
of 1nput, the appropriate routine will be invoked. IT at step
610, the mnput 1s an object request, the object request handler

1s invoked, 1n step 615 (with details described with reference
to FIG. 7). Otherwise, 1n step 620 it 1s checked 11 the input
1s a fragment request. For example, in a Web environment,
an object request can be 1dentified on the basis that an object
name will have as the server part of 1ts URL, the name of a
proxy server. If yes, 1n step 625 the fragment request handler
(with details described with reference to FIG. 11) 1s invoked.
Otherwise, 1n step 630 a miscellaneous routing 1s mnvoked to
handle other types of input such as FTP requests which are
orthogonal to the current invention and thus will not be

described further.

FIG. 7 depicts an example of the object request handler.
In step 705, 1t 1s first checked whether the requested object
1s cached 1n the object cache maintained by this computing
node. If the object 1s cached, 1n step 710, the cached object
1s returned to the requesting node. Otherwise, 1n step 715,
the request 1s forwarded to the control server (or another
proxy server). In step 720, the computing node waits for the
object requested. In step 725, after recerving the object, the
object parser (with details described with reference to FIG.
8) 1s 1nvoked to analyze the object description and create
fragments. In step 730, the object description, which may
have been modified by the object parser, 1s sent back to the
requestor. In step 735, the object cache manager 1s invoked
to determine whether the object description (which may
have been modified by the object parser) should be cached
in the object cache. The object cache manager i1s similar to
a conventional Web cache manager that caches the Web
objects. Any standard cache management policy, such as
LRU (least recently used), or its variants can take into
consideration on tradeoils between object size, update
frequency, and time since last reference (1.e., the reference
frequency) can be used. See for example, C. Aggarwal, et al.,

“On Caching Policies for Web Objects”, IBM Research
Report, RC 20619, Mar. 5, 1997, which i1s hereby incorpo-

rated by reference in its entirety, wherein variants of LRU
caching algorithms on Web objects are described.

FIG. 8 depicts an example of the object parser depicted 1n
FIG. 7. By way of overview, the object parser maintains two

US RE39,184 E

7

stacks—a ““tag_ stack™ and a “segment__stack”—during its
processing to i1dentily persistent fragments. The tag stack
includes the *“‘start-tag”s scanned, but whose matching “end-
tag”’s have not yet been encountered during scanning of the
object description. The segment_stack includes segments
recognized that are not qualified as fragments, but have the
potential to be combined with segments recognized subse-
quently to form a fragment. As depicted, in step 805, the two
stacks are 1mitialized to null. In step 810, a variable, txt, 1s set
equal to the object description. In step 820, a next segment
locator 1s invoked (with details described with reference to
FIG. 9) to identify the next segment, Nsegment, in txt. In
step 825, 1t 1s checked 1t Nsegment 1s null. If so, the
processing of txt 1s completed. Otherwise, in step 830, 1t will
delete segments 1n the segment_stack that are included 1n
Nsegment, if any. In step 835, it 1s checked whether Nseg-
ment satisiies the fragment creation eligibility criterion. IT
s0, 1n step 840 a persistent name creator routine (with details
depicted in FIG. 10) 1s invoked to create a persistent
fragment 1dentity for the segment. In step 845, the txt i1s
modified to replace the fragment description with an
<include> statement to reference the persistent fragment
name followed by an <include> as described i FIG. 4. In
step 855, the Nsegment 1s combined with 1ts adjacent peer
segments on the segment_ stack, 1f any, where a peer seg-
ment 1s a segment at the same level (i1.e., with the same
parent) of the Nsegment i a nested markup language
description. In step 860, 1t 1s checked if the combined
segment satisfies the fragment creation eligibility criterion.
IT so, 11 step 865, these adjacent peer segments are removed
from the segment_stack. Otherwise, 1 step 870, the N
segment 1s added to segment__stack.

FIG. 9 depicts a more detailed example of the next
segment locator (FI1G. 8, step 820). As depicted, in step 910,
it 1s checked 1f the next token 1s null, where a token 1s a
consecutive string ol characters delimited between blanks
(or some other delimiters defined by the markup language).
If so, 1t step 915, the Nsegment 1s set to null. Otherwise, 1n
step 920, 1t 1s checked 11 the next token 1s a “start-tag” type
token. IT so, the token 1s 1nserted into the tag_ stack with an
associated “token position value” set to 1ts starting position
in the txt variable. In step 930, it 1s checked 1f the next token
1s an “end-tag” type token. If so, in step 940, the Nsegment
1s set to the substring 1n txt starting from the token position
value indicated by the top element of the tag stack to the
“end-tag” token. In step 945, the top element 1n the tag, ;
stack 1s removed.

FIG. 10 depicts a more detailed example of the persistent
name creator (FIG. 8, step 840). As depicted, 1n step 1005,
the fragment description 1s obtained from txt. In step 1010,
the fragment description 1s mapped mto a number which
corresponds to an entry of the fragment description table.
Those skilled in the art will appreciate that there are many
alternative mapping functions. For example, this can be
done by performing an exclustve—or of all the characters 1n
the fragment description and then treating the result as an
integer to divide 1t by the number of entries i the fragment
description table. The remainder will serve as the index to
the fragment description table. In step 1020, 1t 1s checked it
the segment description already appeared in the fragment
description list of the said entry 1n the fragment description
table. I so, 1n step 1040, the fragment name of the matching,
fragment description will be returned. Otherwise, in step
1025, a new persistent name 1s created for the fragment.
There are many ways to create a unique name for the
fragment. One way 1s to maintain a counter for each entry of
the fragment description table to track the number of distinct

b

10

15

20

25

30

35

40

45

50

55

60

65

8

fragment descriptions that have been mapped to this entry.
The name given to the new fragment will be the value of 1ts
entry to the fragment description table augmented with the
current value of the counter associated with the said entry.
For example, 1f a fragment description 1s mapped to the 26th
entry of the fragment description table and there already
have 5 distinct fragments previously mapped to this entry,
the persistent name for the new fragment will be *26.6. In
step 1030, the fragment name and 1ts description 1s added to
the fragment description list of the corresponding entry in
the fragment description table. In step 1035, the persistent

name created 1s returned.

FIG. 11 depicts an example of the fragment request
handler (FIG. 6, step 625). As depicted, 1n step 11035, 1t 1s
determined which versions of the fragment needs to be
generated and returned to the requesting client, if multiple
versions are available. A degenerate case 1s that only one
version 1s available e.g., a proxy server only has code to
generate one version of a fragment. In step 1110, 1t 1s
checked whether the requested version 1s cached in the
fragment cache. If so, 1n step 1150, the requested version 1s
returned to the requesting node. In step 1160, the fragment
cache manager updates the reference statistics. In the pre-
ferred embodiment, an LRU cache management policy 1s
used where the requested fragment will be moved to the top
of the LRU chain. In step 1120, for the case where the
fragment 1s not in the fragment cache, 1t obtains the fragment
description from the fragment description table. In step
1125, the fragment 1s generated based on the fragment
description and the client requirement. In the preferred
embodiment, each type of markup language describing the
fragment can have its own D'TD to provide 1ts semantic. For
cach type of DTD, there can be different ways of generating/
rendering the fragment based on the characteristics of the
requesting devices, such as processing power, storage
capacity, and communication bandwidth. This can be
described 1n a GTD (Generator Table Definition) on how to
generate a different version for a given DTD to satisiy the
requirement of a specific recerving device. The GTD 1s
separate from the D'TD. It can be provided by a third party
such as the Internet appliance manufacturer or other soft-
ware manufacturer. In step 1135, the request fragment
version 1s returned to the requester. In step 1140, the
fragment cache manager (with details described with refer-

ence to FIG. 12) 1s invoked.

FIG. 12 depicts an example of the fragment cache man-
ager. In the preferred embodiment, the fragment cache
manager uses an LRU type replacement policy. As depicted,
in step 1205, 1t 1s checked whether there 1s enough free space
in the fragment cache to cache the requested fragment (O).
If so, fragment O 1s cached in the fragment cache. Other-
wise 1n step 1215, it determines the minimum k value such
that the bottom k fragments, O,, in the LRU stack of the
fragment cache will have a total size larger than that of
fragment O_, Ind step 1220, 1t 1s checked based on the value
tunction (f) whether 1t 1s more desirable to cache O_ or
{0,,, . . ., O,.}. The total processing cost to generate
{10,,,...,0,.} is the sum of the processing cost of each
O, ,, 1<i<k, and the additional storage requirement to store
{10,,,...,0,.} is the sum of the size of each O, , 1<i<k.
If O_ 1s more valuable with a large F tunction value, n step
1225, {0,,, ..., 0, } is deleted to make room to cache O..
In step 1230, the reference statistics for the fragment version

1s updated for the fragment cache manager to manage 1ts
LLRU cache.

To facilitate garbage collection of fragment descriptions
that are no longer 1n use, an object-fragment table can be

US RE39,184 E

9

maintained which tracks the fragment created for each
object and an fragment-object table to track all objects
containing a common fragment. After an object 1s updated,
on 1ts next reference, the object parser may detect that the
object now contains some new fragments and some frag-
ments previously contained in the object are no longer 1n 1t.
It will then check for each fragment no longer in use by the
object whether there 1s any other object contaiming 1t based
on the fragment-object table. If so, the fragment description
clement 1n FIG. 5 will be deleted from the fragment descrip-
tion table. Finally, the object parser will update the object-
fragment table and fragment-object table accordingly. For
cach fragment deleted from the fragment description table,
the fragment cache manager will be invoked to check if any
of 1ts fragment version 1s 1n the fragment cache and delete
it.

FIG. 13 depicts an example of the client logic. In step
1305, the client waits for mput (request from a user or a
response from the server). Depending upon the type of input,
the approprate routine will be mvoked. If 1n step 1310, the
input 1s an object request from the user, the request 1s sent
to the server i step 1315 (see FIG. 6) where persistent
object fragments 1n the object are identified and the object
revised as necessary.

In step 1320, if the input 1s an object (e.g., a server
response irom a previous object request), the object 1s
rendered and displayed to the user in step 1330. Recall that
since persistent, object fragments have been recognized to
make the revised object document cacheable at the server or
client device and/or processable/interpretable at the client
device. Consider the example where a segment can not be
rendered from the markup language description by a simple
client device such as WINDOWS CE™-based Internet
appliances. According to the present invention, by recog-
nizing the segment as a separate object fragment, the client
can process and/or cache the revised document and allow the
server to interpret the markup language describing the
fragment and generate an appropriate version for the client.
Examples of the limitations on the client device include but
are not limited to the processing power or storage capacity
of the client device to interpret the markup language and
generate the object fragment; and/or the bandwidth available
to the client device to retrieve the description of the frag-
ment. Recall also that the recognition and revision of an
object to remove segments qualifying as object fragments
enable the object fragment to be cached separately and
reused to avoid going through interpreting the markup
language description of the object to generate i1t again. This
will 1mprove response time and reduce server load on
fragment re-references. Each fragment—once removed—
may need to be requested separately with additional requests
from the client. Thus, preferably, only a segment or group of
segments that meet a certain threshold on the processing
requirements of interpreting the markup language descrip-
tion to generate the object segment were recognized as a
fragment by the server.

In step 13335, the client determines whether the object 1s
cacheable. Recall that any dynamic object or object exceed-
ing a certain size will be deemed not cacheable at the client
device, which often has limited caching capacity. According
to the present mvention, the server uses persistent object
fragment identifiers to replace persistent object fragments
(such as dynamic objects or large segments) in a Web object.
The revised object 1s thus more cacheable at the client
device, since the server has removed the dynamic or large
objects from the object and reduced the size of the object.

10

15

20

25

30

35

40

45

50

55

60

65

10

For example, recall the example of an object description for
a purchase order that includes a dynamic part for retrieving
the current price of a product from the database. This
dynamic part may be a small portion of the purchase order,
but would prevent the object from being cached. According
to one feature of the present invention for recognizing and
treating the dynamic part as a separate fragment from the
object description, the revised document becomes static and
therefore cacheable. In step 1340, 1f the object 1s cacheable,
the object 1s cached at the local client cache. In step 1325,
a miscellaneous routine 1s invoked to handle other types of
input, such as a pager message.

A preferred embodiment of the present invention includes
features 1implemented as software tangibly embodied on a
computer program product or program storage device for
execution on a processor (not shown) provided with the
client (60 . . . 63) and/or server (30 . . . 33). For example,
soltware implemented 1n a popular object-oriented computer
executable code such as JAVA provides portability across
different platforms. Those skilled 1n the art will appreciate
that other procedure-oriented and object-oriented (OO) pro-
gramming environments, including but not limited to C*
and Smalltalk can also be employed.

-

Those skilled 1n the art will also appreciate that methods
of the present invention may be implemented as software for
execution on a computer or other processor-based device.
The software may be embodied on a magnetic, electrical,
optical, or other persistent program and/or data storage
device, including but not limited to: magnetic disks, DASD,
bubble memory; tape; optical disks such as CD-ROMs; and
other persistent (also called nonvolatile) storage devices
such as core, ROM, PROM, flash memory, or battery backed
RAM. Those skilled in the art will appreciate that within the
spirit and scope of the present invention, one or more of the
components instantiated 1n the memory of the clients (60 . . .
63) or server (30 . .. 33) could be accessed and maintained
directly via disk (260), the network 25, another server, or
could be distributed across a plurality of servers.

Now that a preferred embodiment of the present invention
has been described, with alternatives, various modifications
and improvements will occur to those skill 1n the art. Thus,
the detailed description should be understood as an example
and not as a limitation. The proper scope of the mnvention 1s
defined by the appended claims.

What 1s claimed 1s:

1. A method for identifying object fragments 1n an object,
said method comprising the steps of:

analyzing an object description to identily one or more
persistent object fragments associated with the object;

creating the one or more persistent object fragments, 1n
response to said analyzing; and

creating a persistent object fragment identity for a per-
sistent object fragment, based on one or more of:
formal descriptors; and an object fragment properly.
2. The method of claim 1, wherein the object description
1s based on the formal descriptors, said method comprising
the further steps of:

maintaining and tracking the persistent object fragment
identity and associated formal descriptors; and gener-
ating a cacheable object fragment.

3. The method of claim 1, comprising the further steps of
revising the object description by replacing at least one
object fragment with an associated persistent object frag-
ment 1dentity to enable one or more of: the object fragment;
and a revised object description to be cacheable at one a
more of: a server; and a client; and

US RE39,184 E

11

sending a revised object description to the client.
4. The method of claim 3, wherein comprising the further
steps of:

the client receiving and caching the revised object
description; and

the client receiving a version of the one or more object
fragments associated with the fragment identity,
wherein the version 1s generated at the server and 1s
based on the capability of the client.

5. The method of claim 1, further comprising the steps of:
receiving a request for an object fragment;

determining whether the fragment 1s cached, based on the
object fragment 1dentity; and

if the fragment 1s not cached, dynamically generating the

fragment.

6. The method of claim 1, further comprising the step of
caching the object fragment based on one or more of: a
reference frequency; a cache size; and a processing cost.

7. The method of claim 1, further comprising the step of:

generating one or more diflerent versions of the fragment;
wherein a version can be determined by one or more of:
a requesting device property and the fragment descrip-
tion.

8. The method of claim 7, further comprising the step of:
determining the version of the persistent fragment based on
the requesting device property and the fragment property.

9. The method of claim 1, wherein the fragment property
includes a processing requirement.

10. The method of claim 1, wherein the fragment property
includes one or more of a storage requirement and a band-
width requirement.

11. The method of claim 1, further comprising the steps

of:

identifying an object fragment as a dynamic object frag-
ment; and

transforming the dynamic object to a static object by
revising the object description and replacing one or
more dynamic object fragments with 1ts object identity.

12. The method of claim 1, wherein the fragment property
includes whether the fragment can be generated efliciently
by various client devices.

13. The method of claim 1, wherein the formal descriptors
are markup tags in the object description and wherein the
object 1s described using a markup language.

14. The method of claim 1, wherein the object 1s a Web
page described using a markup language selected from the
group consisting of XML, SGML, or HTML

15. The method of claim 1, wherein the object fragment
can be nested or hierarchical.

16. The method of claim 15, further comprising the steps
of:

recognizing a nested object fragment as including a
dynamic fragment or a frequently changed fragment;
and

making an outer fragment cacheable at one or more of a
server and a client.
17. The method of claim 1, further comprising the steps

of:

identifying one or more of the object fragments requiring,

invalidation; and

garbage collecting invalid object fragments.

18. The method of claim 1, wherein the object fragment
property comprises the property selected from the group
consisting of: a dynamic property; a static property; how
frequently the object 1s going to change; size; or processing
cost to generate that fragment from its description.

10

15

20

25

30

35

40

45

50

55

60

65

12

19. The method of claim 1, further comprising the step of
caching the object based on one or more object fragment
properties.

20. The method of claim 1, further comprising the steps
of:

selecting a subset of the segments contained in the object;
and

recognizing the subset as persistent object fragments.
21. The method of claim 1, wherein said step of creating
a persistent object fragment further comprises the steps of:

recognizing and separating a segment as an object frag-
ment so 1t can be cached separately and reused to avoid
going through interpreting a markup language descrip-
tion of the object to generate 1t again; wherein the
segment will only be recognized as the object fragment
only 1f the segment or group of segments satisfies a
threshold for interpreting the markup language descrip-
tion based on one or more of: a processing requirement;
and a storage requirement.

22. The method of claim 1, wherein the persistent object
fragment will have a consistent identity regardless of
whether 1t appears in one or more of: multiple objects; and
multiple times 1n the same object.

23. A method for caching objects including object
fragments, said method comprising the steps of:

a client receiving from a server an object including a
revised object description wherein at least one object
fragment has been replaced with an associated persis-
tent object fragment 1dentity based on one or more of:
formal descriptors; and an object fragment property, 1n
response to a request for the object; and

the client processing the revised object description.

24. The method of claim 23, further comprising the step
of:

the client recerving a version of the one or more object
fragments associated with the fragment identity,
wherein the version 1s generated at the server and 1s
based on the capability of the client.

25. The method of claim 24, wherein the version i1s
generated at the server and 1s based on the capability of the
client.

26. The method of claim 23, wherein the persistent object
fragment will have a consistent i1dentity regardless of
whether 1t appears 1s one or more of: multiple objects; and
multiple times 1n the same object.

277. The method of claim 23, wherein the formal descrip-
tors are markup tags in the object description and wherein
the object 1s described using a markup language.

28. The method of claim 23, wherein the object 1s a Web
page described using a markup language selected from the
group consisting of XML, SGML, or HITML.

29. The method of claim 23, wherein said processing step
includes one or more of caching a revised object and
rendering the object.

30. The method of claim 23, further comprising the step
of: the client receiving from the server a version of the object
fragment 1nterpret and generated at the server, wherein the
version generated 1s based on one or more of: the processing
power of the client; the storage capacity of the client; and the
bandwidth available to the client to retrieve a description of
the fragment.

31. The method of claim 23, wherein the persistent object
fragment 1dentifier represents a dynamic object.

32. The method of claim 23, wherein the client 1s selected
from a group consisting of; a handheld device; a palmtop
device; a set-top box; a smart phone; or an Internet appli-
ance.

US RE39,184 E

13

33. A program storage device readable by a machine,
tangibly embodying a program of instructions executable by
the machine to perform method steps for 1dentifying object
fragments 1n an object, said method steps comprising:

analyzing an object description to identify one or more
persistent object fragments associated with the object;

creating the one or more persistent object fragments, 1n
response to said analyzing; and

creating a persistent object fragment 1dentity for a per-
sistent object fragment, based on one or more of:
formal descriptors; and an object fragment property.
34. The program storage device of claim 33, wherein the
object description 1s based on the formal descriptors, said
method comprising the further steps of maintaining and
tracking the persistent object fragment identity and associ-
ated formal descriptors; and generating a cacheable object
fragment.
35. The program storage device of claim 33, comprising
the further steps of:

revising the object description by replacing at least one
object fragment with an associated persistent object
fragment 1dentity to enable one or more of: the object
fragment; and a revised object description to be cache-
able at one or more of: a server; and a client; and

sending a revised object description to the client.
36. The program storage device of claim 33, wherein
comprising the further steps of:

the client receiving and caching the revised object
description; and

the client receiving a version ol the one or more object
fragments associated with the Ifragment identity,
wherein the version 1s generated at the server and 1s
based on the capability of the client.
37. The program storage device of claim 33, further
comprising the steps of:

receiving a request for an object fragment;

determining whether the fragment 1s cached, based on the
object fragment 1dentity; and

i the fragment 1s not cached, dynamically generating the

fragment.

38. The program storage device of claim 33, further
comprising the step of caching the object fragment based on
one or more of: a reference frequency; a cache size; and a
processing cost.

39. The program storage device of claim 33, further
comprising the step of:

generating one or more different versions of the fragment;

wherein a version can be determined by one or more of:
a requesting device property and the fragment descrip-
tion.

40. The program storage device of claim 39, further
comprising the step of: determiming the version of the
persistent fragment based on the requesting device property
and the fragment property.

41. The program storage device of claim 33, wherein the
fragment property includes a processing requirement.

42. The program storage device of claim 33, wherein the
fragment property includes one or more of a storage require-
ment and a bandwidth requirement.

43. The program storage device of claim 33, further
comprising the steps of:

identifying an object fragment in a dynamic object frag-
ment; and

transforming the dynamic object to a static object by
revising the object description and replacing one or
more dynamic object fragments with 1s object 1dentity.

10

15

20

25

30

35

40

45

50

55

60

65

14

44. The program storage device of claim 33, wherein the
fragment property includes whether the fragment can be
generated efliciently by various client devices.

45. The program storage device of claim 33, wherein the
formal descriptors are markup tags in the object description
and wherein the object 1s described using a markup lan-

guage.

46. The program storage device of claim 33, wherein the
object 1s a Web page described using a markup language
selected from the group consisting of XML, SGML, or
HTML.

4'7. The program storage device of claim 33, wherein the
object fragment can be nested or hierarchical.

48. The program storage device of claim 15, further
comprising the steps of:

recognizing a nested object fragment as including a
dynamic fragment or a frequently changed fragment;
and

making an outer fragment cacheable at one or more of a
server and a client.

49. The program storage device of claim 33, further
comprising the steps of:

identifying one or more of the object fragments requiring,
invalidation; and

garbage collecting invalid object fragments.

50. The program storage device of claim 33, wherein the
object fragment property comprises the property selected
from the group consisting of: a dynamic property; a static
property; how frequently the object 1s going to change; size;
or processing cost to generate that fragment from 1ts descrip-
tion.

51. The program storage device of claim 33, further
comprising the step of caching the object based on one or
more object fragment properties.

52. The program storage device of claim 33, further
comprising the steps of:

selecting a subset of the segments contained 1n the object;
and

recognizing the subset as persistent object fragments.

53. The program storage device of claim 33, wherein said
step ol creating a persistent object fragment turther com-
prises the steps of:

recognizing and separating a segment as an object frag-
ment so 1t can be cached separately and reused to avoid
going through interpreting a markup language descrip-
tion of the object to generate 1t again, wherein the
segment will only be recognized as the object fragment
only 1f the segment or group of segments satisfies a
threshold for interpreting the markup language descrip-
tion based on one or more of: a processing requirement;
and a storage requirement.

54. The program storage device of claim 33, wherein the
persistent object fragment will have a consistent i1dentity
regardless of whether 1t appears 1n one or more of: multiple
objects; and multiple times in the same object.

55. A program storage device readable by a machine,
tangibly embodying a program of instructions executable by
the machine to perform method steps for processing objects
including object fragments, said method steps comprising:

a client receiving from a server an object including a
revised object description wherein at least one object
fragment has been replaced with an associated persis-
tent object fragment identity based on one or one of:
formal descriptors; and an object fragment property, 1n
response to a request from the object; and

US RE39,184 E

15

the client processing the revised object description.
56. The program storage device of claim 335, further
comprising the step of:

the client receiving a version of the one or more object
fragments associated with the fragment identity,
wherein the version i1s generated at the server and 1is
based on the capability of the client.

57. The program storage device of claim 56, wherein the
version 1s generated at the server and 1s based on the
capability of the client.

58. The program storage device of claim 55, wherein the
persistent object fragment will have a consistent i1dentity
regardless of whether 1t appears 1n one or more of: multiple
objects; and multiple times in the same object.

59. The program storage device of claim 55, wherein the
tormal descriptors are markup tags 1n the object description
and wherein the object 1s described using a markup lan-
guage.

60. The program storage device of claim 55, wherein the
object 1s a Web page described using a markup language
selected from the group consisting of XML, SGML, or
HTML.

61. The program storage device of claim 55, wherein said
processing step includes one or more of caching a revised
object and rendering the object.

62. The program storage device of claim 335, further
comprising the step of: the client recerving from the server
a version of the object fragment interpret and generated at
the server, wherein the version generated 1s based on one or
more of: the processing power of the client; the storage
capacity of the client; and the bandwidth available to the
client to retrieve a description of the fragment.

10

15

20

25

30

16

63. The program storage device of claim 55, wherein the

persistent object fragment i1dentifier represents a dynamic
object.

64. The program storage device of claim 55, wherein the
client 1s selected from a group consisting of: a handheld
device; a palmtop device; a set-top box; a smart phone; or an
Internet appliance.

65. A method for caching objects including object
fragments, and method comprising the steps of.

a client rveceiving from a server an object including an
object description wherein at least one object fragment
is referenced by an associated persistent object frag-
ment identity based on one or more of: formal descrip-
tors; and an object fragment property, in vesponse to a
request for the object; and

the client processing the object description including the

associated persistent object fragment identity.

66. A program storage device readable by a machine,
tangibly embodying a program of instructions executable by
the machine to perform method steps for processing objects
including object fragments, said method steps comprising:

a client rveceiving from a server an object including an
object description wherein at least one object fragment
is referenced by an associated persistent object frag-
ment identity based on one or more of: formal descrip-
tors; and the client processing the object description
including the associated persistent object fragment

identity.

	Front Page
	Drawings
	Specification
	Claims

