(19) United States

12) Reissued Patent
Riddle

(10) Patent Number:
45) Date of Reissued Patent:

USOORE39135E

US RE39,135 E
Jun. 13, 2006

(54) METHOD AND APPARATUS FOR
ALLOCATING BANDWIDTH IN
TELECONFERENCING APPLICATIONS
USING BANDWIDTH CONTROL

(75) Inventor: Guy G. Riddle, Los Gatos, CA (US)

(73) Assignee: Apple Computer, Inc., Cupertino, CA
(US)

(21) Appl. No.: 10/014,249

(22) Filed: Nov. 9, 2001
Related U.S. Patent Documents

Reissue of:
(64) Patent No.: 5,983,261

Issued: Nov. 9, 1999

Appl. No.: 08/674,137

Filed: Jul. 1, 1996
(51) Int. CI.

GO6F 13/00 (2006.01)
(52) US.CL ..o, 709/204; 709/226
(58) Field of Classification Search 709/200,

709/201, 203, 217, 218, 219, 220, 221, 222,
709/223, 224, 227, 228, 226, 204
See application file for complete search history.

(56) References Cited
U.S. PATENT DOCUMENTS
5,600,797 A 2/1997 Marshall 395/200.11

BEGIN UPDATEVALUES

U

2/1997 Colmant et al. 370/396
9/1997 Marshall et al. 395/200.04

5,604,742 A
5,673,393 A

Primary Examiner—Moustata M. Meky
(74) Attorney, Agent, or Firm—Fenwick & West LLP

(57) ABSTRACT

In the present invention, in some embodiments, an admin-
istrator assigns a total bandwidth allocation to at least one
other computer system, and the computer system parcels the
bandwidth among the applications running on the computer
system. In the operation of one embodiment of the present
invention, an administrator sends a bandwidth maximum
allocation to each node on the system. Each node determines
a current bandwidth being used, and limits the current
bandwidth to this allocation. Thereafter, each node then

reallocates 1ts usable bandwidth among applications runming

on the nodes that are attempting to send messages over the
network. For each application, a current bandwidth use 1s
determined, as well as a current bandwidth demand. The
current bandwidth demand 1s the amount of bandwidth that
the application would be using 11 no other applications were
running on the node and 11 there were no limitations on the
amount of data the application could send to the network. A
ratio 1s calculated to determine the amount of the bandwidth

demand currently being satisfied for each application, thus
calculating the happiness factor for the application.

33 Claims, 13 Drawing Sheets

SET THE TOTAL NUMBER OF 604

CONNECTIONS, BANDWIDTH, AND |7
APFPLICATIONS TO ZERO

¥

BEGIN AT FHRST PROCESS

v

| INCREMENT COUNT OF APPLICATIONS |

Y

606

BEGIN AT FIRST
CONNECTION

610
-/

¥

ADD THE FANQUT OF THE PROCESS TO CONNECTIONS
ADD THE BANDWIDTH OF THE PROCESS TO BANDWIDTH

6512 —
IS THIS THE LAST NO 608
CONNECTION?
YES
1S THIS THE LAST NO 502 :
PROCESS? SUM CONNECTIONS, BANDWIDTH,
AND APPLICATIONS OVERALL
.. eveersenerenene ERQCESSES:
YES
1S TAMPERING

616

t’izﬂmﬁ

DETECTED?

SET ALLOGATED 7O A
SMALL VALUE

STORE CONMECTIONS, BANDWIDTH, AND
APPLICATIONS WHERE APPLICATIONS CAN FIND
THE VALLUES

—

END UFDATEVALUES

US RE39,135 E

Sheet 1 of 13

Jun. 13, 2006

U.S. Patent

PSSl

GGl

L Ol

j L | e | e————— s | & f s
OO QAaAoonoOooc?

LN ooDoooooo

LQULUULALDOOD000
QU onoooooo

Ynongoaooooco o

8051

U.S. Patent Jun. 13, 2006 Sheet 2 of 13 US RE39,135 E

DISPLAY

MASS

STORAGE
DEVICE

307

READ ONLY

KEYBOARD
MEMORY

322

CURSOR
CONTROL

NETWORK OR PROCESSOR

COMMUNICATION
MEDIUM
CONNECTOR

302

342 |

SOUND

DEVICE
321

VIDEQ

INPUT ~ F—N
DEVICE
325 \ 150

NETWORK OR
COMMUNICATION

MEDIUM
CONNECTOR
DEVICE 327

170
160
i NETWORKING MEDIUM

FIG. 2

U.S. Patent Jun. 13, 2006 Sheet 3 of 13 US RE39,135 E

401
APPLICATION PROGRAM
AP} CALLS
400
CONFERENCE LAYER
MESSAGES
- 402
TRANSPORT LAYER
403

NETWORK LAYER

160

170

U.S. Patent Jun. 13, 2006 Sheet 4 of 13 US RE39,135 E

534 530

U.S. Patent Jun. 13, 2006 Sheet 5 of 13 US RE39,135 E

601

Begin
BlueDotUsingBandwiath

603

Running total of Bandwiath

605

Call UpdateValues

FIG. 5

U.S. Patent Jun. 13, 2006 Sheet 6 of 13 US RE39,135 E

BEGIN UPDATEVALUES

SET THE TOTAL NUMBER OF 604

CONNECTIONS, BANDWIDTH, AND
APPLICATIONS TO ZERO

BEGIN AT FIRST PROCESS
INCREMENT COUNT OF APPLICATIONS

506
§ BEGIN AT FIRST 610
CONNECTION

IS THIS THE LAST
CONNECTION?

YES

NO 602

SUM CONNECTIONS, BANDWIDTH,
AND APPLICATIONS OVERALL |
PROCESSES:

--

IS THIS THE LAST
PROCESS?

YES

IS TAMPERING

DETECTED? 618

616
SET ALLOCATED TO A
SMALL VALUE
620

STORE CONNECTIONS, BANDWIDTH, AND
APPLICATIONS WHERE APPLICATIONS CAN FIND
THE VALUES

FIG. 6

END UPDATEVALUES

U.S. Patent Jun. 13, 2006 Sheet 7 of 13 US RE39,135 E

BEGIN BlueDotGimmeBandwidth

702

MAKE CERTAIN THAT MINBW IS AT LEAST ONE

704

MAKE CERTAIN THAT MAXBW IS AT LEAST MINBW

PLUS ONE

706

BANDWIDTH REQUESTS EQUAL THE MINIMUM AND
MAXIMUM BANDWIDTH, MULTIPLIED BY THE FANOUT
708

CALL UPDATEALLOCATIONS

710

CALCULATE THE ALLOCATED BANDWIDTH PER
APPLICATION PER UNIT OF FANOUT

FIG. 7

US RE39,135 E

Sheet 8 of 13

Jun. 13, 2006

U.S. Patent

V8 Ol

028 (3SN IHL ONILOVHLENS

ANV G31vOOTIV JHL
Ol Q3IMOTIY 3HL ONIAAV Ad
F1gVIVAY HLQIMANYE ONIS

HOLVHLSININGY

MHOMLIN 3HL A8 300N 3HL
01 O3MOTIV HLIGIMONVYE (Ni-

II

(@3i4i1N3Ql
S| ALIHOIHd LSTHDIH) :

J3sSN ONIZE ALLNIHUNO

HL1QIMANVE dHL ONI4

¢ig S3A 0I8
J31vO0T1V

; OH3Z 0L 0L SS3AD0Hd
$S3004Hd d JH1
mmmwo%zn_p SIHL Ol m%_wmo% 30 ALIHOIHd mmhﬁw%wm_w%%
J3LvOOTK G3aLYDOTIY JHL JHL 40 ALIHOIHd S
SIHL SI HIOMONYE| | iamanval | OL OlHdXvi
JHL 13S3H JHL qav

v08

S$S300Hd LSHid
1V 14ViS

ON

043Z Ol OddXVA

SNOLLYOOTIVALVAdf)
ANY Q31v00TIY 135

 ALIMOIHA 1SFHOIH 3HL ONIAVH Z
:$355300Hd 40 L3S FHL AJLLNI NIV ”

LA LR B B R N EEENENENILNE NN NN

US RE39,135 E

S3A
(0 =

JIEVHVAY,” ON
B . .
- SHIWNSNOD INIWIHONI
= ANV J18VTIVAY
b NOYd HLOIMANY
7 a3LYO0TIV 1ona3a
=
m., (0ldd ALIHOIHd
e ONIAVH SSID0Hd
p 1SY1 3HL SIHL S
—
p—

(03153N034 HLAIMANYE
WANININ G31v00T1Y

SVH Oidd ALIHOIHd
JHL 1V $S300Hd
HOV3 JHNS IAVI

9¢8

U.S. Patent

0t8

Olidd
g3x | LNINIHOI(

Oldd ALlHOIHd

ONIAVH SS300Hd
1SHI3 LV 1HVIS

d8 Ol

(0H3Z

OlHd Sl

SJA

éey

OlddXvW
Ol Oldd 13S ‘AlHOIHd

1SdHIIH LV 1HVIS

US RE39,135 E

Sheet 10 of 13

Jun. 13, 2006

U.S. Patent

|]
N BN

SNOLLYOOTTV3LYAdN 40 N3

d31S3nN03H H1AIMANYS
WNNIXYIN 3HL
Q3ivO0T1v NVHL SS31Q3AI393H
§554004d SYH 1VHL $S320Hd

9dA Ol v10N0O aav 1SHI4 LV {HYILS

SHINNSNOD

IFNHVIIVAY
=y10MN0 3NI430

g3LVO0TIV

AAEIRENE]S

0L Q31NGIHLINOD

g d < GRLVOOTIY * VIOI I
0 =Y10ND
0v8 S3A
SHIWNSNQD Jd31S3N03H NNWIXYN
INIJW3IHO3A Ol d31lYOo0TIV 143S (0 <SHIWNSNOD

ON
Az

U.S. Patent Jun. 13, 2006 Sheet 11 of 13 US RE39,135 E

BLUE DOT QUERY HAPPINESS

COUNT =
FIND THE NUMBER OF

FIND THE BANDWIDTH
ALLOCATED TO EACH

PROCESSES/APPLICATIONS
CONNECTION

SENDING TO THE NETWORK

FIND MINIMUM SCORE =
REQUESTED ((ALLOCATED BANDWIDTH - MINIMUM

BANDWIDTH FOR REQUESTED BANDWIDTH) X 50/ COUNT) + 50

EACH CONNECTION |

DOES PROCESS
HAVE AT LEAST

ONE CONNECTION?

RETURN SCORE/ACCUNT YES NO RETURN 100

US RE39,135 E

Sheet 12 of 13

Jun. 13, 2006

U.S. Patent

1L 9141
U
T T T
_ L u . U | .
SRR I A R B I
U

u L u U
L= | e
usdoroganig ipimpuegswunglogen)g
u 1 u 1
| feeoeome | ||

US RE39,135 E

Sheet 13 of 13

Jun. 13, 2006

U.S. Patent

LL "S99I

u 1 u |

u ! u L |
II! ~ IE![
u LU L U L
u }

US RE39,135 E

1

METHOD AND APPARATUS FOR
ALLOCATING BANDWIDTH IN
TELECONFERENCING APPLICATIONS
USING BANDWIDTH CONTROL

Matter enclosed in heavy brackets [] appears in the
original patent but forms no part of this reissue specifi-
cation; matter printed in italics indicates the additions
made by reissue.

BACKGROUND OF THE INVENTION

Teleconferencing systems among computer systems or
work stations have become a common means for exchanging,
ideas among work groups of people located i1n different
locations. Teleconferencing systems mimic actual meetings,
in that the human users can see one another and talk to one
another in real-time, without having to type in their mes-
sages mto a keyboard or display responses as text on a
monitor or a printer. Teleconferencing also allows multi-
party communication, both in multi-directional conversa-
tions and 1n broadcast from one location to many locations.

A network may be a local network connecting a few
machines to one another, or a much wider network connect-
ing large numbers of different types of machines. Many
networks, especially wide area networks, connect machines
operating on different platforms, but provide consistent
protocols to allow the machines to communicate. Various
approaches to networking are known 1n the art, including
distributed networks and centrally administrative networks.

FIG. 1 shows one example of a network. Processors 150C
and 155C are each connected via a network adapter 160 and
165, respectively, to a network medium 170. The network
medium 170 may be a digital bus, a video coaxial cable, a
telephone line, a fiber optic cable, or any other medium
through which information may be transferred from one
location to another. It will be understood upon reference to
FIG. 1 that other arrangements are possible, that the network
may include more than two computer systems, and that each
of the processors 150C and 155C may be connected via
other network adapters to other network media.

Each of the processors in the computer systems shown in
FIG. 1 has a video monitor at 150D and 135D, a video 1nput
150A and 155A, an audio mput 1508 and 155B, a keyboard
iput 150¢ and 155¢ having a mouse, and possibly other
peripheral mput output devices connected thereto. It will be
understood that each computer system may also comprise
multiple processors sharing a network adapter, forming a
local network within the larger network shown in FIG. 1.
Computer systems such as 150 and 155 may connect to a
number of network media having differing types of media
substrates, and further having different network protocols.
Processor 150C and 155C each display images on the video
monitor 150D and 153D, respectively, and receive mputs
from other peripherals. Processors may also be running
computer programs, including application programs and
transport layer programs, that may call one another and
serve one another, exchanging data, addresses, and control
signals.

One embodiment of a possible computer system operating
according to one embodiment of the present invention, 1s
shown 1n FIG. 2. A processor 302 1s connected via a system
bus 301 to a main memory 304, a read only memory 306,
and a mass storage device 307. The main memory may be a
volatile memory array composed of dynamic random access
memory. The read only memory 306 may be composed of a
CD ROM, an mitialization cache, erasable programmable

10

15

20

25

30

35

40

45

50

55

60

65

2

read only memory, EEPROM, flash memory, or other read
only memories. The mass storage device 307 may be con-
figured as a disk drive writing to, and reading from, hard
disks, floppy disks, or other storage devices. Processor 302
may also have a cache, either a write back or read through
configuration, storing frequently used values in a static
random access memory or other memory array, the cache in
some configurations being coupled directly to main memory
304. Various other intelligent cards may be connected to the

bus 301, including direct memory access devices.

Also shown 1n FIG. 2, various peripherals exchange
information via bus 301 with the processor 302, main
memory 304, read only memory 306, and mass storage
device 307. These peripherals include a display 321, and
frame buller 341, generally a video monitor or printer 329.
A keyboard 322 1s also coupled to the bus 301, permitting
alphanumeric entry. A cursor control 323 coupled to the bus
301 may be configured as a mouse or track ball. A sound
output device 321, also coupled to the bus 301, may be
configured as a loud speaker or a number of loud speakers.
A video mput device 325 may be configured as a video
camera, a scanner, a fax iput, or similar device, and 1s
coupled to the processor 302 via bus 301. A sound mnput
device 326, also coupled to the bus, may be configured as a
microphone or a sound synthesizer, or may be a telephone
connector. A network or communication medium connector
342 allows communication between any of the above
devices and a network or communication medium. Finally,
a communication device 327, also coupled to the bus 301,
allows communication between any of the above devices
and the network (or other commumnication) medium 170 via
the network/communication adapter 160. In some
embodiments, the networking medium 1s a digital commu-
nication medium, allowing high speed digital communica-
tion between computer systems over the network.

Various network configurations are known 1n the art: star
configurations, daisy-chained networks, etc. The computer
system, 1n some embodiments, 1s connected via a network
adapter to a network medium that allows the computer
system to communicate with other computer systems at
other locations. The other systems may be coupled to the
same medium substrate, or may be connected to other

processors or intelligent devices that are 1n turn connected to
the substrate.

A processor or processors of the computer system as used
in one embodiment of the present imnvention generally has
software operating thereon, including teleconferencing
applications. Data 1s transierred over the network by the
teleconferencing applications, including but not limited to,
voice, video, and other data. The data may have been created
by the same application that created it, or may have been
created by another application. Other applications may also
be operating on the computer system, sending or receiving
documents, for example. Also, other teleconierences may be
ongoing at the same time, each supported on the same
network. When several teleconierences are ongoing at any
given time over the same network, 1t may be that each
includes a different subset of the sets of computer systems
connected to the network. Teleconferencing applications
often also allow other computer systems to join ongoing
teleconferences by selecting which telecontference a user at
the other computer systems wants to call, or drop out of
teleconferences by terminating connections.

FIG. 3 illustrates a hierarchy of programs or of levels of
abstraction in a single program, allowing an application to
communicate over a network. The application program 401
includes a presentation layer and a human user interface for

US RE39,135 E

3

exchanging information with a human user. Various appli-
cations programs may call software at conferencing layer
400 that has i1ts own protocols for exchanging information
with the application and with the lower layers of the com-
munication system. The conferencing layer software used by
a particular application program parses the information
exchanged with the human user into messages provided to
one or more transport components 402. Each transport layer
exchanges mformation with the conference layer, and pro-
vides packets of information suitable for a particular net-
work component 403. The network layer exchanges infor-
mation with the transport layer, and provides data 1n a form
appropriate through a system network component to the

network adapter 160.

Among the applications that may be run on a processor
are teleconferencing applications. Teleconferencing applica-
tions generally allow a user to view video images, send
video 1mages, and/or send and receive audio over a network,
generally 1 real time. Real-time requires not only data
transmission of a fairly large amount of data, but also
requires a high degree of synchronization among the data
when packets are reconstructed by a receiver system; 1f a
voice, for example, arrives before a video 1image of a person
speaking, the sound and video must be synchronized when
presented by the application running on the receiver system.
Voice (or other sound), video, and other signals, including
control signals, must be presented to the higher-layer at a
proper timing to have the proper meaning.

Problems arise, however, when a large number of appli-
cations on a given network node generate signals for trans-
mission across a network or other communication medium.
For example, when a particular computer or workstation 1s
running several teleconferencing applications
simultaneously, or running several other applications that
similarly require network bandwidth, the applications vie for
access to the network against one another. It will be under-
stood that “network™ refers generally to any shared com-
munication pathway from one system to another, and spe-
cifically to a shared communication pathway of limited data
capacity in terms of bandwidth or data rate. Generally, each
layer of software, including the transport layer and other
lower level communication layers, like the hardware, have
bandwidth restrictions limiting the amount of information
that may be provided from any given system to the network
in a given period of time. Therefore, applications compete
for output bandwidth against one another, and 1n many
systems the first to claim a bandwidth can use that band-
width to the exclusion of other applications.

The problem 1s especially acute when a teleconferencing
application 1s used, 1n that teleconferencing applications
require such a large bandwidth commitment, and generally
lack tlow control that would limit the flow of data from the
application to the network when the network 1s heavily used.

Sharing bandwidth fairly 1s a practical concern. A network
may 1nclude any number of systems. A network may also
include multiple simultaneous telecontferences. A particular
system on the network may be involved in more than one
simultaneous teleconference; the teleconferences may be
running under different applications, or under different cop-
ies ol the same teleconference. Multiple applications or
other processes on a computer system may have access to a
network or other commumnications medium. Any given tele-
conference may require a system to provide teleconferenc-
ing messages to any number of the other systems on the
network. The simultaneous teleconferences at a given sys-
tem may run under different teleconferencing applications,
compression schemes, and update rates, and the different

10

15

20

25

30

35

40

45

50

55

60

65

4

messages may be addressed to different nodes on the
network, and to any number of nodes. All of these increase
the use of bandwidth by a system.

The number of recipients of a particular message, sent
over the network from a particular system, 1n the context of
a particular teleconference, running in a particular applica-
tion or copy thereof, 1s the “fan out” of the telecontference
message. When the number of parties to a teleconference
becomes very large, the fan out becomes very large as well.

This can burden the network, since each teleconference
within each application may require a separate message to
be sent to each other system participating in the teleconter-
ence. Some teleconferencing applications do not have
“multi-cast”, which 1s a feature that allows a single message
to be received by multiple nodes on a network, but some
teleconferences must send a separate message to each other
participant 1n a teleconference, imposing an enormous bur-
den on the network transport layer programs when the
number of nodes participating 1n the teleconference 1s high,
and when several teleconferences or other network-using
applications are ongoing simultaneously.

Excessive bandwidth use by any given connection pre-
sents another problem. Teleconferencing system and other
network bandwidth users exist that expand to fill all avail-
able bandwidth. For example, teleconierencing systems may
send video updates as frequently as 1s possible given a
particular bandwidth availability. Some flow control
schemes assign bandwidth on a first-come, first-served
approach among the applications, and later-imtiated network
applications must wait 1n a “queue” until earlier applications
have completed transmission or receipt of the network
message. Because teleconferencing applications generally
do not have tlow control while other network applications
frequently do, the non-teleconierencing applications can be
slowed down tremendously when teleconferencing is 1n use.
Other network transmission applications, for example, fax-
ing of documents, can compete with the video or audio
teleconferencing systems for bandwidth, and together with
such systems can occupy all available bandwidth. Most
non-teleconferencing applications have an internal flow con-
trol that identifies bandwidth limits and reduces data rate
accordingly; however, the methods used are not appropriate
for real time teleconferencing applications. Such other file
transiers occupy bandwidth as well. When an aggressive
application sends excessive numbers of video update frames
or otherwise occupies bandwidth that can better be allocated
to other applications, the other applications (such as file
transfer, faxing, etc.) slow the rate at which the non-
teleconferencing applications send data. Teleconferencing
applications generally do not have flow control features, and
so provide data to a network or communication/transmission
medium at an rate that 1s less predictable. Teleconferencing
applications can easily slow down other applications to an
almost stand-still rate.

Application-specific solutions are not enough to solve the
problem. Even node-specific solutions cannot eliminate the
problem. Such application-specific flow control processes
switch to better compression algorithms, transmit fewer
updates, transmit sound in mono instead of stereo, require a
smaller video window, or otherwise reduce bandwidth con-
sumption when bandwidth 1s at a premium. However, these
systems only aflect bandwidth use by the application 1tself,
and do not accommodate other applications.

Error-correcting protocols are not appropriate for real-
time applications. These protocols are useful 1 correctly
transmitting files having exact information, such as a spread-
sheets or other documents, in which small errors must be

"y

US RE39,135 E

S

corrected and re-transmissions do not create problems, and
so are commonly available among transport layer programs.
Error-correcting protocols, such as most transport-layer
protocols, are mappropnate for conferencing or other real-
time applications. Error correcting protocols require
re-transmission ol erroneous packets of data

Therefore, 1t 1s desirable for a system to be found that can
allocate bandwidth among applications to prevent one appli-
cation from excluding other applications from the network.
Also, because an application running on one workstation or
computer can reduce bandwidth available to other computer
systems and to other users when systems share access to a
common network or other communication medium, it 1s
desirable to have a central control for administration of the
bandwidth allocation to prevent an application from inter-
tering with other applications. It 1s also desirable to protect
the bandwidth allocation from manipulation at the worksta-
tion 1tself, to prevent users from changing the allocation
once 1t 1s established. It 1s also desirable to allow network
management process to manipulate or alter the variables as
needed.

SUMMARY

In the present invention, 1n some embodiments, an admin-
istrator assigns a total bandwidth allocation to at least one
other computer system, and the computer system parcels the
bandwidth among the applications running on the computer
system. In the operation of one embodiment of the present
invention, an administrator sends a bandwidth maximum
allocation to each node on the system. Each node determines
a current bandwidth being used, and limits the current
bandwidth to this allocation. Thereafter, each node then
reallocates 1ts usable bandwidth among applications running,
on the nodes that are attempting to send messages over the
network. For each application, a current bandwidth use 1s
determined, as well as a current bandwidth demand. The
current bandwidth demand 1s the amount of bandwidth that
the application would be using if no other applications were
running on the node and 11 there were no limitations on the
amount of data the application could send to the network. A
rat1o 1s calculated to determine the amount of the bandwidth
demand currently being satisfied for each application, thus
calculating the happiness factor for the application.

FIELD OF THE INVENTION

The present invention relates to computer networks, and
more specifically to network administration.

BRIEF DESCRIPTION

FIG. 1 shows one example of a network.

FIG. 2 shows one embodiment of a possible computer
system operating according to one embodiment of the
present mvention.

FIG. 3 illustrates a hierarchy of programs or of levels of

abstraction in a single program, allowing an application to
communicate over a network.

FIG. 4 shows a managed network of nodes comprising
work stations or other computer systems and permitting a
number of teleconferences to operate over the network
among the nodes.

FIG. 5 shows BlueDotUsingBandwidth as implemented
according to one embodiment of the present invention.

FIG. 6 shows UpdateValues as implemented according to
one embodiment of the present invention.

FI1G. 7 shows BlueDotGimmeBandwidth as implemented
according to one embodiment of the present invention.

10

15

20

25

30

35

40

45

50

55

60

65

6

FIGS. 8A, 8B, and 8C show Update allocations as imple-
mented according to one embodiment of the present inven-
tion.

FIG. 9 shows BlueDotQueryHappiness as implemented
according to one embodiment of the present invention.

FIG. 10 shows a memory array storing steps to be
performed at the client (non-administrator) node.

FIG. 11 shows a memory array storing steps to be
performed at the administrator node.

DETAILED DESCRIPTION

In the present description, the terms “computer system”,
“work station”, “machine”, and “node” will be used inter-
changeably so as not to obscure the present invention
needlessly. It will be understood that any of these may be
replaced with a plurality thereof, or may be replaced with
other ntelligent systems such as servers, remote dedicated
machines. Computer systems, dedicated servers, work
stations, and other machines may be connected to one
another across networks. For simplicity of explanation, the
terms “machine”, “computer system”, “work station™, and
“node”, will be used interchangeably, although i1t will be
understood that each may refer to a single intelligent system
or to a distributed sub-network sharing a network adapter to
the network administrated by the described network admin-

1strator.

A portion of the disclosure of this patent document
contains material which 1s subject to copyright protection.
The copyright owner has no objection to the facsimile
reproduction by anyone of the patent disclosure, as 1t
appears 1n the Patent and Trademark Oflice patent files or
records, but otherwise reserves all copyright rights whatso-
ever. Copyright Apple Computer, Inc.

In a network-level aspect of the present invention, a client
system receives a value from an administrator node and
determines the bandwidth allocation.

A network administrator node 1s a computer system on a
network that controls network access of other nodes on the
same network. A network administrator node must exchange
information with the other nodes on the network, however,
to ensure that higher priority uses of the network bandwidth
receive a greater access than those with lower priority uses.
However, the network administrator must also be able to
limit network access by aggressive though low priority
applications, or a low priority application use might capture
the network, preventing higher priority users from gaining
access. Also, within each computer system, various intelli-
gent components must share access to the network adapter,
often requiring local arbitration of network demands.

Although local arbitration may be performed by the
computer system itself, a central network administrator 1n a
centrally administered network prevents usurpation of the
network bandwidth by limiting network access of each
computer system on the network. The administration of the
network 1s flexible, however, 1n that a read only variable
provided to the network by the computer system informs the
administrator of the bandwidth of the messages the various
programs and processors are trying to put on to the network.

The applications transier data by calling other lower-level
programs on the computer system that convert the data into
a more easily transferred form. Standard forms are packets
of data, that may be of any size. Packets of data are
transierred to the network from the computer system via a
transport layer protocol specific to the network medium and
to the computer system.

US RE39,135 E

7

FIG. 4 shows a managed network of nodes comprising
work stations or other computer systems and permitting a
number of teleconferences to operate over the network
among the nodes. Systems 501-517 are individually coupled
to one or more network media, allowing communication
over the network. Some systems 503, 505 appear on more
than one network, and may allow communications between
one network and another. For example, system 503 can
provide data to, and receive data from, network or commu-
nications media 530 and 532, or can facilitate exchange of
data between the network or communications media 530 and
532, Other systems 501, 507-517 appear on only one
network.

On any given network or communications medium, one
or more administrators may be present, assigning allocations
of bandwidth to each of the nodes (computer systems) on the
network or communications medium. For example, system
501 can be assigned a maximum bandwidth allocation by a
network administrator. In some embodiments, a network
administrator allocates bandwidth immediately; in other
embodiments, the administrator waits until bandwidth use of
the network or communications medium reaches a prede-
termined value before allocating maximum bandwidth allo-
cations. In some embodiments, only some of the systems are
assigned a maximum bandwidth allocation, while others are
not; in other embodiments, each system 1s assigned a maxi-
mum bandwidth allocation, though the allocations are not
uniform throughout the cluster of computer systems coupled
to the network or communications medium. As will be
explained below, the administrator receives certain values
from the other systems coupled to the same network or
communications medium, and these values can change over
time, so that the allocations can also change. For example,
a system may discontinue transmission of data, or higher-
priority users may begin. As will also be explained below,
processes running on the client (that 1s, non-administrator)
nodes also receive values from the network or communica-
tions medium, the values including the maximum bandwidth
allocation. At each client node that receives such an alloca-
tion value, either all applications or a group of applications
in a selected class are limited in their ability to send data to
the network or communications medium, the limit imposed

by various embodiments of the present invention.

The present invention includes in one embodiment a
means for a network administrator to control the bandwidth
used by each system node in a distributed network, and
turther allows each node to allocate among the applications
running thereon the bandwidth 1n a fair manner. The network
administrator can alter the bandwidth allocation among the
various workstations, servers, or other processing nodes in
the network, thus reallocating bandwidth among the nodes.

The network includes an administrator node, operated by
a network administrator. The network administrator may be
controlled by a person, or by a computer program. Other
embodiments allow some management functions to be
shared by two or more processes on the manager node.
Although the functions of the administrator may 1n some
embodiments be performed by two or more manager nodes,
in general the described embodiment includes only one
administrator performing all network administration func-
tions. Various signals are communicated from each non-
administrator system over the network to the administrator,
and signals are received from the administrator. According
to these signals, the described embodiment of the present
invention locally manages network bandwidth used by
applications operating thereon.

A network administrator detects the additional network
bandwidth demand, and, according to one embodiment of

10

15

20

25

30

35

40

45

50

55

60

65

8

the present invention, sets a bandwidth maximum allocation
for each node. If one teleconference requires greater band-
width than another, the network administrator can set the
bandwidth allocations differently for the nodes participating
in the different teleconterences. At the nodes that participate
in more than one teleconterence (or other application requir-
ing sending messages to the network), the allocated band-
width 1s further allocated among the various teleconterenc-
ing and other applications attempting to send messages to
the network. In one embodiment of the present invention,
the network administrator monitors the nodal happiness
factors set as a read only variable by each node, and can
adjust the maximum bandwidth allocation per node accord-
ingly. Although users at each node might change the tele-
conferencing application or otherwise demand additional
bandwidth, for example, by turning ofl data compressors or
by transmitting in stereo, the node cannot reset or alter the
maximum bandwidth allocation determined by the network
administrator.

In one embodiment, a network administrator publishes
one variable over the network for each of the nodes on the
network, and the client nodes publish three other variables.
The network receives the variables determined at each node,
and each system receives the value determined for the
variable by the admimstrator. The four variables are:

the current total bandwidth being used for all conferenc-
ing functions on each particular machine, measured 1n
one embodiment 1n bytes per second;

the number of active applications that are capable of
sending messages over the network in the immediate
future, a value that may be zero 1f the particular
machine 1s merely recerving (and not sending) mes-
sages;

a maximum allowed bandwidth per node, assigned by the
administrator;

and the number of active connections on the node.

The variables can contain values pertaining to any group
of bandwidth users, although 1n the preferred embodiment,
the group of bandwidth users consists of the group of
teleconferencing applications. It will be apparent, however,
that the group of all applications, any group of processes
operating below (or above) the level of applications, or even
hardware could have been selected.

With the exception of the allowed bandwidth per node, the
values are determined by each non-admimstrator node and
provided to the admimstrator via the network. The admin-
istrator node thus monitors: total bandwidth use by each
node, the number of active applications currently transmit-
ting (that 1s, sending) data over the network from each node,
and the number of connections at each node.

The number of connections at any given node may be
considered a total of the fan out values taken over all active
applications. As stated above, the fan out 1s the number of
separate copies of teleconterencing data that must be sent to
the network or communications medium due to the number
of receirvers participating in the teleconference. If a feature
called “multi-cast” 1s available, then all addresses can
receive the same copy, and only one need be sent, and the fan
out 1s one. If multi-cast 1s not available, then a separate copy
1s sent to each recipient, and the fan out 1s the number of
recipients. If several applications are running on a computer
system or if the computer system i1s engaged in several
teleconterences, the fan out of each i1s totaled to derive the
number of connections at the node. This total number of
connections 1s provided to the network.

In response to these values from the various non-
administrator nodes, the administrator assigns a maximum

US RE39,135 E

9

bandwidth to each node. The network administrator can also
determine a priority for bandwidth use among applications,
or can allow system processes on each node to determine
priority. The maximum bandwidth 1s provided over the
network to each of the non-administrator nodes. The admin-
istrator 1s not limited 1n bandwidth allocation; for example,
maximum bandwidths need not be uniform across a net-
work. Different nodes have different bandwidth needs and
different priorities. Some nodes, for example ATM switches,
have very large bandwidth availability; other nodes may be
daisy chained via an ethernet connection to a large network
ol nodes, each of whom i1s contending for bandwidth. Also,
if a network 1s distributed into segments 1nterconnected via
routes, local boxes, or ethernet boxes, each node may be
given a larger bandwidth allocation, since nodes in each
segment may be sending simultaneously. Because of these
and other non-uniform requirements, different nodes can be
allocated difl

erent bandwidth allocations.

Because only the administrator has access to the maxi-
mum bandwidth, only the admimstrator can change the
maximum allowed bandwidth of any machine on the net-
work. Without this access, no machine can change even its
own maximum allowed bandwidth.

Occasionally, a machine runs several conferencing appli-
cations having different fan outs and may also be sending
files or faxing documents over the network, sometimes to
other nodes involved 1n a particular conference, and some-
times to other nodes. As indicated above, however, the
maximum bandwidth allocated by the administrator applies
only to the selected group of applications, e.g. in the
described embodiment, only to teleconierencing applica-
tions. Thus, only teleconferencing applications are
bandwidth-limited by this embodiment of the present inven-
tion; other applications can use bandwidth unrestrictedly.

Computer systems on a network may use less than all the
bandwidth assigned to them. Although an assignment of
bandwidth from the administrator serves as a maximum, the
current bandwidth being used may be far less than the
assigned maximum; in fact, the current bandwidth being
used may be zero, for machines that are receiving data
without sending data over the network.

In a system-level aspect of the present invention, the
client processor reacts to the maximum bandwidth allocation
sent to the system by the administrator. In one embodiment,
the Blue Dot process includes the following “external”
routines, which exchange data with the various applications
that call the Blue Dot process: BlueDotUsingBandwidth,
BlueDotGimmeBandwidth, and BlueDotQueryHappiness.
Each of these will be discussed in detail, and one embodi-
ment of each presented.

BlueDotUsingBandwidth monitors bandwidth use, deter-
mined by accumulation. In one embodiment, monitoring of
bandwidth 1s performed by a data splitter that periodically
calls BlueDotUsingBandwidth. The process BlueDotUsing-
Bandwidth exchanges information with the lower-level sofit-
ware serving each application, calculates the bandwidth
used, calculates the fan out (i.e., the number of copies of
cach packet that must be provided to the network or com-
munication medium) by each application, and calculates the
total number of conferencing applications participating with
Blue Dot. Thus, BlueDotUsingBandwidth derives the three
values corresponding to the three variables produced by the
node. Each of these values 1s stored in a location where all
other applications on the system can find the values (and
thereby update the values further). A data-splitter monitors
bandwidth use, and calls BlueDotUsingBandwidth periodi-
cally.

10

15

20

25

30

35

40

45

50

55

60

65

10

In one embodiment of the present immvention, shown 1n
FIG. 5 BlueDotUsingBandwidth records 601 the bandwidth
used, 1 bytes per second, for each application on the node
attempting to send data over the network. The BlueDotUs-
ingBandwidth maintains 603 a running average of band-
width demand. The running average maintained by Blue-
DotUsingBandwidth eliminates transient bandwidth spikes,
by producing an average of bandwidth demand for each
application currently demanding access to the network, and
constantly or periodically determines the average number of
bytes per second each application has attempted to send to
the network for the past predetermined number of seconds.

BlueDotUsingBandwidth may be implemented using the

following code:

_ BlueDotUsingBandwidth(

GlobalsHandle gh,
long fanout,
long bw
1
GlobalsPtr gp = *gh
op—>customer = TcConnection;
gp—>bandwidth = (bw + gp=lastBandwidth) / 2;

gp—>lastBandwidth + bw,
gp—>fanout = fanout;

UpdateValues(gp—>process—>universal);
return(noLrr);

h

BlueDotUsingBandwidth calls UpdateValues 605, which
actually performs the steps of determiming the values of the
variables mentioned above (fan out/number of connections,
number of applications, and total bandwidth being used). As
implemented according to one embodiment of the present
invention, UpdateValues 1s shown in FIG. 6.

UpdateValues determines the number of conferencing
applications that are running on the system. This 1s deter-
mined by maintaimng a table 1 which all conferencing
applications provide data when the applications run the
embodiment of the present invention. For each application,
the number of connections (1.e., the fan out associated with
the application) 1s inserted 111t0 the table, along with the
bandwidth being used by each application (i.e., the data
transmission rate multiplied by the fan out). All of these
values are stored 1n the table each time any of the Blue Dot
processes are called, and the values are provided to Updat-
c¢Values. The system-level total of these values taken over all
applications are also provided to the network.

UpdateValues operates across applications. UpdateValues
includes a first 602 loop that counts the number of confer-
encing applications. The number of applications 1s mnitially
set at zero 604. Each process 1s counted 606, until the final
application has been counted. Nested within loop 602,
UpdateValues proceeds to second loop 608 that totals the
number ol conferencing connections and also totals the
current bandwidths bemng used by all of the individual
applications. The second loop begins at the first process 610,
and then proceeding through the processes that are engaged
in a teleconference, adding the fanout and the bandwidth to
cach value 612. The total number of connections 1s also kept.

Once the last process has been tallied, UpdateValues
proceeds to a subprocess that detects whether someone at a
client (non-administrator) node has attempted to alter the
bandwidth allocation. This 1s accomplished by detecting
whether certain function sets have been manipulated such
that the function sets cannot be used by UpdateValues.
UpdateValues also 1ncludes a variable “hacker” that 1s used
to determine whether a user of a system who does not have

US RE39,135 E

11

access to the permissions associated with network adminis-
tration 1s nevertheless attempting to turn the BlueDot pro-
cess off. In other words, Hacker becomes non-zero when
tampering by someone other than the administrator i1s
detected. When hacker 1s set, the system assigns a small
allowed bandwidth. Hacker determines whether a user at a
particular node has attempted to override the bandwidth
allocation set by the network administrator, and, if unautho-
rized tampering with the value set by the network adminis-
trator 1s detected 616, hacker sets a standard bandwidth
allocation 618. Hacker allows the network administrator to
control the bandwidth used by a particular application.
Hacker determines whether a user at a particular node has
attempted to override the bandwidth allocation set by the
network administrator, and, if unauthorized tampering with
the value set by the network administrator i1s detected,
hacker sets a standard bandwidth allocation. The standard
allocation, 1n one embodiment, 1s much smaller than might
otherwise be allocated.

UpdateValues then stores the four variables where other
applications can find them, using the ChokerSet processes
620. The table also includes a predictive value of the number
of bytes per second the application may be expected to
attempt to send over the network over the next brief period
ol time, taking fan out into account. Thus, 1 an application
1s expected to send a 10,000 byte per second communication
over the network with a fan out of two without multi-casting,
the table would contain a value of 20,000. For example,
update values might accumulate the total number of bytes
cach application has attempted to send over the network for
the past five seconds, and, by dividing the total by five
seconds, determines the average bandwidth use.

One embodiment of UpdateVariables may be imple-

mented as the following code:

UpdateValues(
UniversalBitsPtr
N
GlobalsPtr
ProcessStuftPtr
Ps;
long connections, bandwidth, apps;
connections = 0O;
bandwidth = O;
apps = 0;
for(ps = (ProcessStuflPtr) ub—>process.qHead; ps; ps =
(ProcessStuffPtr) ps—>qLink) {
apps++;
for(gp = (GlobalsPtr) ps—>instance.qHead; gp; gp =
(GlobalsPtr) gp—>qLink)
1f{gp—>customer == TcConnection)
t .
connections +=

gp—>fanout
bandwidth +=

gp—>bandwidth * gh->fanout;
h
1
if(ub—>hacker)
ub->allowed = kTeenyBit;
else{
EnterCodeResource();
ChokerSetActiveApplications(apps);
ChokerSetActiveConnections(connections);

ChokerSetCurrentBandwidth(bandwidth);
ChokerGetAllowed Bandwidth(&ub.—>allowed);

LeaveCodeResource();

h
ub->used = bandwidth;

h

ub

2P

In addition to BlueDotUsingBandwidth, the embodiment
of the present invention described above also includes a

10

15

20

25

30

35

40

45

50

55

60

65

12

routine BlueDotGimmeBandwidth, which 1s also called
periodically. As implemented according to one embodiment
of the present invention, BlueDotGimmeBandwidth 1s
shown i FIG. 7. According to one embodiment of the
present invention, each application not only stores the three
variable described above (1.e., the current total bandwidth
being used for all conferencing functions on each particular
machine, the number of active applications that are capable
of sending messages over the network in the immediate
future, and the number of active connections), but also stores
a minimum and maximum bandwidth that are desired by the
application. Although these values are determined by the
application, not by the embodiment of the present invention,
their values are read by BluedotGimmeBandwidth. Blue-
DotGimmeBandwidth examines the bandwidth demands of
the applications running on the node, and the minimums and
maximums bandwidth requests mentioned above with
respect to the table maintained by UpdateValues. The mini-
mum and maximum bandwidth requests are limited to
predetermined values; 11 the minimum requested 1s negative
or zero, then the minimum requested 1s reset to one 702. If
the maximum requested 1s for some reason less than the
minimum, then the Maximum 1s set to at least one greater
than the minimum 704. These limits prevent certain types of
mathematical errors from occurring at the node. Then, a total
minimum bandwidth request for an application 1s
determined, by multiplying the bandwidth requested mini-
mum by the fanout 710. This calculates the bandwidth
requirements of the application to communicate with each
recipient of the teleconferencing messages. Once the mini-
mum and maximum bandwidth requested by each applica-
tion 1s determined, BlueDotGimmeBandwidth calls
UpdateAllocations 708. As explained below, Update Alloca-
tions tries to allocate to each application an amount of
bandwidth between the minimum and the maximum. If less
than the mimmimum demanded by a program 1s available,
however, then zero 1s assigned. Also, no applications gets
more than its requested maximum. Finally, each application
receives an allocation described 1n a bandwidth per connec-
tion 710.

Software associated with an application (generally, a
low-level program called by a conferencing application as
part of the I/O routines of the application) can thus request
an additional share of the bandwidth allocated by the admin-
istrator. For example, a user changes operating parameters of
a teleconierencing application by enlarging a window on a
screen (thus increasing the number of pixels per video
frame), or switching to a less effective codec, or transmitting
sound 1n stereo instead of mono, then at a lower level
soltware associated with the application requests additional
bandwidth from a process running according to one embodi-
ment of the present mvention. The lower level software
associated with the application provides the request by
providing a minimum and a maximum bandwidth, and also
by providing a fan out and a priority. The software associ-
ated with the teleconferencing application provides a request
to one embodiment of the present invention, upon determin-
ing that the application will run more efhciently with addi-
tional bandwidth.

BlueDotGimmeBandwidth may be implemented accord-
ing to the following code:

_ BlueDotGimmeBandwidth(
GlobalsHandle

US RE39,135 E

13

-continued

gh,

long minBW,

long maxBW,

sbort priority,

short fan out
)

GlobalsPtr op = *gh;

gp—>customer = TcFlower
1H{mmBW <= 0)

minBW — 1;
1I{maxBW <= minBW)

maxBW — mmmBW + 1;
gp—>minRequested = minBW * fan out;
op—>maxRequested = maxBW * fan out;

gp—>priorit = priority;
UpdateAllocations(gp—>process—>universals);
return(gp—>allocated / fan out);

After calling UpdateAllocations, BlueDotGimmeBand-
width provides the maximum allocation of bandwidth per
copy (taking fan out into consideration), for each process
seeking transmission access to the network.

UpdateAllocations resets the allocation of bandwidth of
cach process that sends data to the network or communica-
tion medium. As implemented according to one embodiment
of the present mnvention, UpdateAllocations 1s shown 1n
FIGS. 8A, 8B, and 8C. UpdateAllocations includes a first
loop, that iterates through the processes seeking network
transmission access and determines (1) the priority of each
process, and (2) the total of all the allocations assigned by

UpdateAllocations the last time UpdateAllocations was
called. To determine the priority for each process and the
total allocation, variables ALLOCATED and MAXPRIO are
mitially set to zero 802. Starting at the first process 804,
UpdateAllocations 1terates through each process, determin-
ing whether the priority of the particular process 1s greater
than MAXPRIO 806; 1t so, the value of MAXPRIO 1s
changed to priority of the process 808. Whether or not the
particular process 1s of the highest priority, the bandwidth of
the process 1s added to ALLOCATED 810. The iteration
continues until the last process has been counted 812.

The variables ALLOWED and USED are determined, and
ALLOCATED and AVAILABLE are calculated 820. When
unauthorized bandwidth users at the node are using
bandwidth, the AVAILABLE bandwidth 1s reduced.

If AVAILABLE 1s less than or equal to zero, then no
bandwidth remains to allocate, and UpdateAllocations ends

861. If bandwidth remains, however, then AVAILABLE 1s
set to the maximum of AVAILABLE and ALLOWED 862.

UpdateAllocations then assigns minimum bandwidth to
the processes having the highest prionity. Starting at the
highest priority 822, UpdateAllocations identifies all the
processes (starting with the first 824) having the highest
priority and allocates to each the minimum bandwidth
requested by the process 826. A running total AVAILABLE
1s reduced 828 by the bandwidth so allocated, the variable
storing the total amount of bandwidth that can be assigned
within the limat imposed by the administrator. Each process
at the given prlorlty 1s assigned bandwidth so long as
AVAILABLE is not zero 830, and then UpdateAllocations
turns to the next-highest priority, etc. until each process has
at least the minimum requested by the process. If possible,
UpdateAllocations give at least the mimimum bandwidth to
cach process.

The number of applications that have received their
minimum, 1s labeled the CONSUMERS. If there are con-

sumers (1.e., applications that could receive an additional

10

15

20

25

30

35

40

45

50

55

60

65

14

bandwidth allocation without exceeding their maximum)
and bandwidth 1s available 832, then a quota 1s defined 834.
The quota represents a small portion of bandwidth than can
be reassigned. Starting at the first process that has received
less than the maximum bandwidth requested (i.e., the first
consumer) 836, UpdateAllocations proceeds through each
process giving the process more bandwidth. Repeatedly, so
long as there are any processes that have received less then
the stated maximum thereof and so long as there 1s unallo-
cated bandwidth remaining, UpdateAllocations divides the
total remaining bandwidth by the number of processes have
received less then their maximum, and attempts to allocate
to each process the pro-rate share of the remaining band-
width up to the maximum for the process, until either all
processes have received their maximum or all bandwidth 1s
exhausted, ALLOCATED 840, CONSUMERS 842, AVAIL-
ABLE 844, and the QUOTA 846 vary, but provide allocation
of the bandwidth among the other applications. The appli-
cation 1s then informed of 1ts new allocation. Although 1n
this embodiment of the present invention, the class of
applications selected for allocation by the admimstrator 1s
the class called “conferencing applications,” 1t will be appar-
ent that other applications could have been selected. It will
be apparent that the group of applications, or even other
types ol processes, could have been selected. All of these
values are all stored in the table, and are all provided to
UpdateValues as well as the network.

UpdateApplicationsa may be implemented by the following code:

UpdateApplications(
UniversalBitsPtr ub
"
BlobalsPtr op;
ProcessStufiPtr
ps;
long allocated, available, quota;

short
allocated = 0;
maxprio = 0;
for(ps = (ProcessStufiPtr) ub->processes.qHead; ps; ps =
(ProcessStuflPtr) ps—>qLink)
for(gp = (GlobalsPtr ps—>instances.qHead; gp; gp =
(GlobalsPtr) gp—>qLink) {
if(gp—>customer 1 = TcFlower)
continue;
1f(gp—>priority > maxprio)
maxprio = gp-

prio, Maxprio, CONsSuMmers;

>Priority;
allocated +-gp —>allocated;
gp—>allocated = 0;
h
consumers = 0;
available = ub->allowed + (allocated — ub->used);
if(available <= 0)
return;
if(available > ub->allowed)
available = ub->allowed;
for(prio = maxprio; maxprio = 0, prio; prio = maxprio)
for(ps = (ProcessStuiiPtr) ub—> process.qHead; ps;
ps = (ProcessStufiPtr) sp—>qlLink)
for(gp = (GlobalsPtr) ps-
>instances.qHead; gp; gp = (GlobalsPtr) gp—>qLink)

{

if(gp—>priority == prio){

if(available >= gp-
>minRequested) {
gp—

>allocated = gp—>minRequested;
avallable —= gp—>minRequested;
COnSumers++;
if(available ==
return;

0)

US RE39,135 E

15

-continued

UpdateApplicationsa may be implemented by the following code:

h
telse if(gp—>priority » maxprio)
maxprio = gp—
SPrIoTity;
h
while(consumers > 0) {
quota = available / consumers;
if{quota == 0)
return;
for(ps = (ProcessStufiPtr) ub—>processes.qHead; ps;
ps = (ProcessStuffPtr) up->qLink)
for(gp = (GlobalsPtr) ps—
>instances.qHead; gp; gp = (GlobalsPtr) gp—>Link) {
if (!gp->allocated)
continue;
if((gp—>allocated + quota)
>=gp—>maxRequested) {

CONSUIMers--:
available —=
(gp—>maxRequested — gp->allocated);
gp—
>allocated = gp—>maxRequested;
telsed
avallable —=
quota;
gp-
>allocated += quota;
h
if(available == 0)
refurn,
h
h
h

Although not absolutely necessary for operation, several
embodiments of the present invention also includes a routine
BlueDotQueryHappiness. As implemented according to one
embodiment of the present invention, BlueDotQueryHappi-

nessis shown in FIG. 9. The routine BlueDotQueryHappi-
ness monitors how the bandwidth allocated to any given
node 1s being parceled out among the coniferencing appli-
cations and can also provide a visual indicator of how the
available bandwidth 1s being parceled out. This 1s accom-
plished by calculating, 1n some embodiments, a “happiness”™
tactor for each application, and 1n some embodiments also
calculating a global happiness factor for each machine. The
happiness factor can be visually presented to a user so the
user can see the amount of bandwidth assigned within the
machine to each application.

To calculate the happiness factor, the process compares
the current bandwidth being allocated to the process for
conferencing functions with the maximum bandwidth
requested, and determines a first ratio. Thus, at each work-
station or node, an “‘application happiness” factor corre-
sponding to each application may be calculated, indicating
how much of the bandwidth desired by the application 1s
available to the application. As stated above, although 1n this
embodiment of the present invention the administrator
assigns a maximum bandwidth for conferencing
applications, 1t will be apparent that any group of
applications, or even a group ol other types of processes,
could have been selected.

In one embodiment, a visual embodiment of the happiness
indicator 1s presented as a red dot when the corresponding
happiness factor 1s O percent, a purple dot when the corre-
sponding happiness factor 1s between 0 and 100 percent, and
a blue dot when the corresponding happiness factor 1s 100
percent. The happiness factors may be displayed as colored
dots on the screen of a monitor or connected to the machine.

10

15

20

25

30

35

40

45

50

55

60

65

16

If the maximum bandwidth allocated to the machine by the
administrator 1s greater than the total of all the maximums
over all the processes trying to send data to the network, then
all the processes are able to send data at their full data rate
(bandwidth) and the “happiness™ 1s 100%.
BlueDotQueryHappiness otherwise iterates through all
the connections used by the application and assigns a score
to each, the score being 50 pomts plus half the percentage of
the difference between maximum and minimum that the
process can use. If the amount allocated 1s less than the
minimum, then the score 1s set to zero. The amount that the
process can use 1s determined in UpdateAllocations,
described below. If the amount allocated 1s equal to the
minimum, then the happiness score 1s 50%, 11 the amount
allocated 1s less than the minimum, then the happiness score
1s 0%, and 11 the amount allocated 1s equal to the maximum
(or greater), then the allocation 1s set to the maximum
requested and the happiness score 1s 100%.
BlueDotQueryHappiness provides information to the
applications. As illustrated with respect to update Values,
Blue Dot includes subroutines that operate across
applications, and each application provides information to
Blue Dot; as 1llustrated with respect to
BlueDotGimmeBandwidth, this information includes a
maximum bandwidth request for each network process

serving a conferencing application.
The average of all the scores 1s the happiness factor, as

illustrated 1n one implementation by the following code:

__BlueDotQuervHappiness(

GlobalsHandle gh

M
GlobalsPtr ox = “gh;
GlobalsPtr op;
UniversalBitsPtr ub:;
ProcessStuilPtr PS;

int count, score;
gx—>customer = TcApplication;
ub = gx—>process—>universals;
count = 0;
score = 0U;
for(gp = (GlobalsPtr) ps—>processes—>instances.qHead; gp; gp =
(GlobalsPtr) gp—>qLink)
if(gp—>customer == TcFlower){
count++;
if{gp-=allocated >= gp—>minRequested)
score += 50 + (50 * (gp->allocated -
op—>minRequested)) / (gp—>maxRequested — gp —> minRequested);

)

return{count 7 score / count :

h

100);

A happiness color may be assigned, such that the color 1s
red when the happiness factor 1s less than 0%, blue when the
happiness factor 1s 100%, and purple when the happiness
factor 1s between 0% and 100%.

The described embodiment of the present mnvention can-
not force other applications to use less bandwidth, but can
provide feedback to the other applications by informing
them that there 1s some interference among applications at
the network interface. Thus, other applications may consult
BlueDotQueryHappiness to determine whether data gener-
ated by a particular application 1s reaching the network, and,
if not, whether the reason 1s because higher priority or other
applications are usurping bandwidth allocation. In such an
embodiment, the application can switch to a lower band-
width use, turn on additional data compression, send fewer
frames, or otherwise reduce bandwidth use to allow other
applications to proceed more efliciently, or 1n the alternative
may increase bandwidth demand to gain greater access to

US RE39,135 E

17

the network. Depending on the particular application, win-
dow size might be reduced, sound may be less complex, or
additional users seeking access to the teleconference may be
rejected.

During a teleconierence, additional users may enter the
teleconference and thereby increase the fan out. The low
level flow control process detects the additional fan out, and
provides the fan out update to BlueDotQueryHappiness.

BlueDotQueryHappiness then updates the table maintained
by the blue dot process. Because multi-cast may not be
available or may not be supported by currently installed
protocols or by rather hardware, additional users can change
the bandwidth demand of a process.

Other house-keeping matters may be accounted for by the
following code:

_ BlueDotOpen(
Handle gb,
ComponentInstance

M
GlobalsPtr
Universal BitsPtr
ProcessStuflPtr
Boolean same;
ProcessSerialNumber
GlobalWorld saved;

OSErr elIT,
ub = (UniwversalBitsPtr) GetComponentRefcon({Component) self)
if(fub){
1f(!1(ub = (Universal BitsPtr)
NewPtrSysClear(sizeof(Universal Bits))))
return(MemkError();
saved = GetCurrentGlobalWorld();
err = InitCodeResource();
if(1err)
err = [nitLibraryManager(O, kSystemZone,
kNormalMemory);
if(terr)
if(!IsFunctionSetLoaded({ TFunctionSetID)
kBlueDotFunctions)){
err = KASLMCodeNotLoadedErr;
CleanupLibraryManager();

self

ub;
ps;

PSn;

;

SetCurrentGlobalWorld(saved);
if(err)

ub—>hacker = true;
SetComponentRefcon((Component) self, (long) ub);

;

GetCurrentProcess(&psn);

for(ps — (ProcessStuflPtr) ub—>processes.qHead; ps; ps =
(ProcessStufiPtr)
ps—>qLink)
if(SameProcess(&psn, &ps—>psn, &same) == noLbrr && same)
break;

1f(1ps)(
(! (ps = (ProcessStuilPtr)
NewPtrSysClear(sizeof(ProcessStufl))))
return(MemError());
pPS—>PSN = Psh;
ps—>universals = ub;
Enqueue((QElemPtr) ps, &ub->processes;
h
1f(!(gh = NewHandleClear(sizeof(Globals))))
return(MemError());
HI.ockHi (gh);
gp = "(GlobalsHandle) gh;
SetComponentInstanceStorage(self, gh);
gp—>sell = self;
gpP—>Process = pPs;
Enqueue({QElemPtr) gh, &ps—>instances);
UpdateValues(ub);
return{noErr)

h

pascal ComponentResult
_ BlueDotClose(
GlobalsHandle

10

15

20

25

30

35

40

45

50

55

60

65

18

-continued

selt

Componentlnstance
A
GlobalsPtr op;
UniversalBitsPtr
ProcessStufiPtr
1f(1gh)
return(noErr);
gp = *gh
pPS = gpP—>Process;
Dequeue((QElemPtr) gp, &ps—>1nstances);
DisposeHandle(Handle) gh);
ub = ps—>universals;
UpdateValues(ub);
1f(ps—>1nstances.qHead)
return{noErr);
Dequeue(QElemptr) sp, &ub->processes);
DisposePtr({(ptr) ps);
UpdateValues(ub);
if(ub->processes.qHead)
return(noErr);
if(ub—>hacker) {
EnterCodeResource();
CleanupLibrary Manager();
LeaveCodeResource();

ub;
ps;

SetComposeRefcon((Component) self, 0);
DisposePtr({Ptr) ub);
return{nokErr);

h

The code set forth above 1n the description of one embodi-
ment of the present invention can be stored in a main
memory, a read only memory, or a mass storage device, or
in other external storage devices such as magnetic discs or

other magnetic media. FIGS. 10 shows such an embodiment
of a maimn memory array containing a set of program
instruction that, when executed by a processor of a computer
system, performs steps according to one embodiment of the
present invention. The steps stored in the memory array
corresponding to FIG. 10 include steps to be performed at
the client (non-administrator) node. The steps stored 1n the
memory array corresponding to FIG. 11, however, include
steps to be performed at the administrator node. It will be
apparent that other means for storing programs are available,
and that some systems provide several different sources of
stored programs to the same processor. For example,
application-level programs may be stored in main-memory
or on a magnetic disc, while lower layer programs may be
stored 1n a special cache or in ROM.

We claim:

1. In a computer network comprising nodes, a method of
administering sending of teleconference data over the net-
work comprising;:

determining an allocated bandwidth corresponding to the

sending;

communicating the allocated bandwidth to the nodes;

inhibiting use of bandwidth by any of the nodes 1n excess

of the allocated bandwidth;

monitoring at least one nodal happiness factor;

adjusting the allocated bandwidth in response to the at
least one nodal happiness factor;

dynamically measuring bandwidth use of program ele-
ments at a node; and

assigning bandwidth among program elements, such that
the total of assigned bandwidth 1s not greater than said

allocated bandwidth.
2. The method of claim 1, further comprising:

determining for each program element at each node a
desired bandwidth, the desired bandwidth being a total

US RE39,135 E

19

minimum bandwidth at which all program elements
have suflicient bandwidth to operate at maximum
speed; and
determining for each program element a happiness factor,
the happiness factor being proportional to the assigned
bandwidth and inversely proportional to the desired
bandwidth.
3. In a computer network comprising nodes, a system
configured to administer at least one teleconference over the
computer network, the system comprising;

a means for determining an allocated bandwidth corre-
sponding to the at least one telecontference;

a means for communicating the allocated bandwidth to
the nodes; and

a means for inhibiting use of bandwidth by any of the
nodes 1n excess of the allocated bandwidth;

a means for momitoring at least one nodal happiness
factor;

a means for adjusting the allocated bandwidth 1n response
to the at least one nodal happiness factor;

a means for dynamically measuring bandwidth use of
program e¢lements at a node; and

a means for assigning bandwidth among program
clements, such that the total of assigned bandwidth 1s
not greater than the allocated bandwidth.

4. The system of claim 3, further comprising:

a means for determining a desired bandwidth for each
program ¢lement at each node, the desired bandwidth
being a total minimum bandwidth at which all program
clements have suflicient bandwidth to operate at maxi-
mum speed; and

a means for determining a happiness factor for each
program element, the happiness factor being propor-
tional to the assigned bandwidth and inversely propor-
tional to the desired bandwidth.

5. A computer network supporting one or more processes

involving transmission of large amounts of data, the com-
puter network comprising:

an administrator node, adapted to allocate nodal maxi-
mum bandwidths for one or more nodes of the network
and to communicate to the one or more nodes the
respective allocated nodal maximum bandwidths; and

client node, adapted to receive an allocated nodal
maximum bandwidth from the administrator node, and
further adapted to determine current values of a set of
variables related to bandwidth usage by the one or
movre processes at the client node and to communicate
the current values to the administrator node, wherein
the administrator node utilizes the current values to
adjust the allocated nodal maximum bandwidths for the
one or more nodes.

6. The computer network of claim 35, wherein the one or
movre processes include a teleconference.

7. The computer network of claim 5, wherein the one or
movre processes include a broadcasting process.

8. The computer network of claim 5, wherein the one or
movre processes include a video serving process.

9. The computer network of claim 5, wherein the allocated
nodal maximum bandwidth for each node is shared by all
program elements at the node.

10. The computer network of claim 5, wherein the allo-
cated nodal maximum bandwidth for each node is shared by
program elements at the node associated with a predeter-
mined class of processes.

11. The computer network of claim 10, wherein the
predetermined class of processes comprises the one or more
processes involving transmission of large amounts of data.

20

12. The computer network of claim 5, wherein the admin-
istrator node is adapted to allocate nodal maximum band-
widths for all nodes of the network.

13. The computer network of claim 5, wherein the nodal

5 maximum bandwidths ave determined based on participa-
tion of the respective nodes in the one or more processes
involving transmission of larvge amounts of data.

14. The computer network of claim 5, wherein the set of
variables related to bandwidth usage by the one or more

10 processes involving transmission of large amounts of data
comprises.

at least one variable indicating an actual usage of band-
width at a node by the one or more processes; and

one or more variables related to a predicted usage of
bandwidth at a node by the one or more processes in
the immediate future.
15. The computer network of claim 14, wherein the one or
movre variables velated to the predicted usage of bandwidth
comprises.

15

20 a number of active processes at the node that are capable

of transmitting data; and

a number of active connections on the node, wherein each
connection requires a separate copy of data being
transmitted.

16. The computer network of claim 5, wherein the client
node is further adapted to calculate a nodal happiness
factor based on the set of variables rvelated to bandwidth
usage by the one or more processes and on the allocated
nodal maximum bandwidth.

17. The computer network of claim 5, wherein the client
node publishes the current values of the set of variables
related to bandwidth usage at the client node to be accessed
by all nodes of the network.

18. The computer network of claim 3, wherein.

25

30

> the client node is further adapted to assign portions of the

allocated nodal maximum bandwidth among program
elements at the client node, such that the total of the
assigned portions is not greater than the allocated
maximum bandwidth.
19. The computer network of claim 18, wherein the client
node periodically calls a monitoring program for:

40

exchanging information with each program element; and

updating variables indicating an actual usage and a
predicted usage of bandwidth by each program ele-
ment.

20. The computer network of claim 19, wherein the

monitoring program comprises.

45

one or move function sets which, if manipulated by a node
other than the administrator node, render the monitor-
ing program unusable.
21. The computer network of claim 19, wherein the
monitoring program comprises.

50

a hacker variable which indicates whether or not any
node other than the administrator node has attempted
to turn off the monitoring program.

22. The computer network of claim 18, wherein the client
node periodically calls a bandwidth allocation program for
assigning portions of the allocated nodal maximum band-
width among program elements.

23. The computer network of claim 22, wherein the
bandwidth allocation program is for:

55

60

determining a priority and a maximum and minimum
requested bandwidth for each program element; and

65 in ovder of priority, assigning to each program element
the minimum requested bandwidth, until the allocated

nodal maximum bandwidth is used up; and

US RE39,135 E

21

if the allocated nodal maximum bandwidth is not used up
by the assigning of minimum requested bandwidths,
assigning additional bandwidth to each program ele-
ment in ovder of priority.

24. The computer network of claim 18, wherein the client
node periodically calls a happiness query program that
determines a happiness factor of each program element.

25. The computer network of claim 24, wherein the
happiness factor of a program element is an average score
of happiness over all comnnections to which the program
element is transmitting data.

26. The computer network of claim 24, wherein the
happiness factor of each program element can be visually
displayved using color coding.

27. The computer network of claim 24, wherein the
happiness factor of each program element is published to be
accessed by all nodes of the networtk.

28. A computer readable medium for administering one or

movre processes involving transmission of large amounts of

data in a computer network, the computer readable medium
COMpPrising:

an administrator program, executable on the computer

network for allocating nodal maximum bandwidths for

one or movre nodes of the network and communicating

to the one or more nodes the vespective allocated nodal
maximum bandwidths; and

a client program, executable on the computer network for
receiving an allocated nodal maximum bandwidth from
the administrator program, and further for determining
current values of a set of variables rvelated to bandwidth
usage by the one or move processes at the client node
and communicating the curvent values to the adminis-
trator program, wherein the administrator program
utilizes the currvent values to adjust the allocated nodal
maximum bandwidths for the one or more nodes.

29. The computer veadable medium of claim 28, wherein:

the client program is further for assigning portions of the
allocated nodal maximum bandwidth among program

5

15

20

25

30

35

22

elements at a client node, such that the total of the
assigned portions is not greater than the allocated
maximum bandwidth.
30. The computer readable medium of claim 28, wherein
the client program further comprises.

a monitoring program for exchanging information with
each program element and updating variables indicat-
ing an actual usage and a predicted usage of bandwidth
by each program element.

31. The computer readable medium of claim 28, wherein

the client program further comprises a bandwidth allocation

program for:

determining a priorvity and a maximum and minimum
requested bandwidth for each program element;

in order of priority, assigning to each program element
the minimum rvequested bandwidth until the allocated
nodal maximum bandwidth is used up; and

if the allocated nodal maximum bandwidth is not used up
by the assigning of minimum rvequested bandwidths,
assigning additional bandwidth to each program ele-
ment in ovder of priority.
32. The computer veadable medium of claim 28, wherein
the client program further comprises:

a happiness query program for determining a happiness

Jactor of each program element, wherein the happiness
Jactor of a program element is an average scorve of
happiness over all connections through which the pro-
gram element is transmitting data.
33. The computer readable medium of claim 32, wherein
the happiness query program is further for:

visually displaying the happiness factor of each program
element using colov coding; and

publishing the happiness factor of each program element
at a node to be accessed by all nodes of the network

	Front Page
	Drawings
	Specification
	Claims

