(19) United States

12) Reissued Patent
Morikawa et al.

(10) Patent Number:
45) Date of Reissued Patent:

USOORE39121E

US RE39,121 E
*Jun. 6, 2006

(54) PROCESSOR WHICH CAN FAVORABLY
EXECUTE A ROUNDING PROCESS
COMPOSED OF POSITIVE CONVERSION
AND SATURATED CALCULATION
PROCESSING

(75) Inventors: Toru Morikawa, Mino (JP); Nobuo
Higaki, Kobe (JP); Akira Miyoshi,
Hirakata (JP); Keizo Sumida, Hirakata
(JP)

(73) Assignee: Matsushita Electric Industrial Co.,
Ltd., Osaka (IP)

(*) Notice: This patent 1s subject to a terminal dis-

claimer.

(21) Appl. No.: 10/366,502

(22) Filed: Feb. 13, 2003
Related U.S. Patent Documents
Reissue of:
(64) Patent No.: 6,237,084
Issued: May 22, 2001
Appl. No.: 09/399,577
Filed: Sep. 20, 1999

U.S. Applications:

(62) Division of application No. 08/980,676, filed on Dec. I,
1997, now Pat. No. 5,974,540.

(30) Foreign Application Priority Data
Nov. 29, 1996 (JP) i, 8-320423
(51) Int. CIL
GO6Il’ 9/302 (2006.01)
GO6l’ 7/38 (2006.01)
(52) US.CL ...l 712/221; 708/551; 708/552
(58) Field of Classification Search 708/530,

708/551, 552;712/221
See application file for complete search history.

(56) References Cited

U.S. PATENT DOCUMENTS

4,935,890 A * 6/1990 Funyu
4,945,507 A * 7/1990 Ishida et al.

(Continued)

FOREIGN PATENT DOCUMENTS

EP 0 657 804 Al 6/1995
EP 657804 ¥ 6/1995
(Continued)

OTHER PUBLICATTIONS

“Low—Power Multimedia RISC,” by K. Nadehara, 8207
IEEE Micro 15 (1995) Dec., No. 6.%

(Continued)

Primary Examiner—Richard L. Ellis
(74) Attorney, Agent, or Firm—McDermott Will & Emery
LLP

(57) ABSTRACT

A processor which executes positive conversion processing,
which converts coded data into uncoded data, and saturation
calculation processing, which rounds a value to an appro-
priate number of bits, at high speed. When a positive
conversion saturation calculation instruction “MCSST D1~
1s decoded, the sum-product result register 6 outputs its held
value to the path P1. The comparator 22 compares the
magnitude of the held value of the sum-product result
register 6 with the coded 32-bit mteger “0x0000__00FF”.
The polarity judging unit 23 judges whether the eighth bit of
the value held by the sum-product result register 6 1s “ON”’.
The multiplexer 24 outputs one of the maximum value
“Ox0000__00FF” generated by the constant generator 21, the
zero value “0x0000__0000” generated by the zero generator
235, and the held value of the sum-product result register 6 to

the data bus 18.

28 Claims, 17 Drawing Sheets

POLARTIY
JUDGING UNIT

..-._ _C) 15 * ! 1 4
- <5 A—-j Vel
" FOSITIVE CONVERSION SATURATION ~ & ¥8
CALCULATION CIRCUIT /
2] y e

| |COMPARATOR! i

-2 |
(P2 8 | [CORSTR CENERATER} ||
S —
L~
Y 18

US RE39,121 E

Page 2
U.S. PATENT DOCUMENTS GB 2300054 A 10/1996
JP 58-56032 ® 4/1983
5,235,533 A * §/1993 Sweedler TP 07-182141 7/1995
5,251,166 A * 10/1993 Ishida P 1710368 * 8/1004
5,402,368 A * 3/1995 Yamada et al. TP 08-272591 10/1996
5,448,509 A * 9/1995 Lee et al. WO 0617292 * 6/1996
5,504,697 A * 4/1996 Ishida WO WO 96/17292 8/1996
5,508,951 A * 4/1996 Ishikawa
5,696,709 A * 12/1997 Smith, Sr. OTHER PUBLICATTIONS
5,801,977 A * 9/1998 Karpetal 708/552 _ _ _
5812439 A * 9/1998 Hansen “Subword Parallelism with MAX-2,” by R. Lee, IEEE
5880980 A * 3/1999 Smith, Jr. Micro Aug. 1, 1996, vol. 16, No. 4.*
5,917,740 A * 6/1999 Volkonskycec...... 708/552 Lee, Ruby B., “Subword Parallelism with Max—2”, IEEE
5,974,540 A * 10/1999 Morikawa et al. 712/221 Micro, US, IEij Inc., New York, vol. 16, No. , (Aug. 1,
6,029,184 A * 2/2000 He ..cooverirviiiiinininnnnnns 702/490 1996), pp. 51-59, XP000596513
6,058,410 A * 5/2000 Sharangpani 708/551 Nadehara, Kouhei, et al., “I.ow—Power Multimedia RISC”,
FORFEIGN PATENT DOCUMENTS IEEE Micro, US, IEEE Inc , New York, vol. 13, No. 6, (Dec.
1, 1995), pp. 2029, XP)))538227 ISSN: 0272-1732.
EP 0 768 169 Al 4/1997
GB 2300054 * 10/1996 * cited by examiner

U.S. Patent Jun. 6, 2006 Sheet 1 of 17 US RE39,121 E

FIG. 1 PRIOR ART

61

ARITHMETIC
LOGIC UNIT

SUM-PRODUCT
RESULT REGISTER

US RE39,121 E

Sheet 2 of 17

Jun. 6, 2006

U.S. Patent

C8AXBIOH2Id*xLT1D+29d% 91O+ 265 % G1D
L.NE*EUZE* A E AL EFAREXACE RN NE

[8d % 8TO+TLd % LID+ 19 % SIO+ 154 GID
+IPdk PIO+Tedx 10+ 124 % 1O+ TTd % [TO=11H

\

86 264 96 GG ¥S €64 261164 |

mwm”hmmumwm.mﬁ_gm”mmmwﬁ.ﬁmb
8/'L13'9Ld'GLI'FLd'SLA'ZLA 1.
891'£94'994'594'¥94'€94'294' 193

BYd 2y d'9vd SvA VA Evd oA 174 |
8Ed LEA'9E'SEL PEI €€ 2€d 1€
824°124'923'623'pgd'€ed'224'12

Bl LT 9T STdFTIAETA 2T T
/

/

889'289'989'689'789'£89'289' 189
819'715'0/9'6/9'7LD'ELD'ZLD LD
899'299'999'599'799'€99'299' 199
859'£69'969'559'759'€6D'269 ' 159
8V9'LyD'9rD 'SP THD D 2P ThD
869'L£D'96D'GED'PED'EED'ZED'TED
879'129'929'629'%29'€29'229'129
BID LI SIDSIDFIDEIDTID T

I

LIV d0Idd ¢ Old

88H L8H wwm G8H ¥8H €8H Z28H [8H
8LH LLHQIHSIHY.HELHZLH'TLH
89H LSH 99H SSH ¥9H €9H 29H'19H
8GH LSH 96H SSH'¥SH €SH'ZSH 1SH
8YH LVH 9¥H SYH FvH €vH 2VH TvH
8EH LEH 9CH SEH FEH EEH'2EH ' 1EH
82H LZH 9¢H S¢H ¥ZH €ZH 2ZH TZH
BTH ZTH OTH'STHPTH'€IHZIH TTH

US RE39,121 E

YR,
NANTOD
SRS (Mot 10 70

o 01 SNLVIVdY
- NOILNOIXA
5 NOLLYYHdO
e
7

1

2 NAA0DEA
= 3
E LINONI HOLad
A Nouonus
SSTUAAY
NOLLONMLSNI HOL=A
NOX

U.S. Patent

SNE VIVCQ
S(18 S54addV

¢ Jld

US RE39,121 E

Sheet 4 of 17

Jun. 6, 2006

U.S. Patent

NOLVENDRONEZ |{3 9
G “

LINN ONIOANI
ALIIV 10d

tC

US RE39,121 E

ONTT14T
L LYVLS 14T Vi 91 NOILJNRLSN]
185 1XAN OL L3S440° [40¥ NANT0D LXAN OL QIAOK 119 40 1V SSTUAAVE 1V '140Y 0@V 61 NOTLOMYISN]
NHI107 LYAN 01 QEAOK (14 40 0V SSTM(QVH 0¥ NI 1 NOTL)SLSN]
GISYTIONT (20 40 ANT¥A) SNOILVEALI d00TE 20 NI .Ez..:,__a NOTLONEISNI
~ INE 147 Vg 271 NOLLONYISA
- (1] 40 TT41LTON XI¥LVN—108 (%) 10 AON 1 NOTIONGISHI
- WVAT) REEVD d1 DNISSE0084 NOTLVHNLVS NOISYZANOD FAILISOE 14 ISSOH 01 NOTINILSN]
: 135 KEE¥D 41 LYAN 147 01 HONVAL4 IXaN 141 $3¢ 6 NOLLEISN]
7 70 HLTh V101 00T 40 NOSIAVAMOD: 20 “WEARAN dND 8 NOLLONYLSN]
NOLLONAd 100Q08d-H0S HLIA NOILOUWISNI NOILVOTTATLTORS 1000 409VK 'L NOTLONYISN]
. 10100 40 VIVO INTIDI448008 10 (1Y) AOK 9 NOTLONEISN]
= 0014 40 VIVQ CISSTINOOE 00°QOW AOK =S NOILOMYISN]

] | - LAVIST1dT
: 703V TILINT 400TH 20'LINE AON 7 NOTLOAMISN]
E (10 40 SSTUAQV ISHIZE oV 'LMING H AOK '8 NOILONYISNE
Y109 20 SSTUAQY ISAIdE TV AAINE D AOM 7 NOTIONAISNI
B-[14 40 SSTUAQY ISMId: O ‘RXINE d AOK 1 NOILOMALSNL

G OI4

U.S. Patent

U.S. Patent Jun. 6, 2006 Sheet 6 of 17 US RE39,121 E

FIG. 6

MACCB INSTRUCTION

MULTIPLIER MULTIPLICAND

READ ADDRESS READ ADDRESS

INDICATION - INDICATION
11----MCR 11- - -MCR

00 - - -REGISTER DO 00- - - -REGISTER DO
01----REGISTER D1 01----REGISTER D1
10- - - -REGISTER D2 10- - - -REGISTER D2

INDICATION OF CONTENT OF ELEMENTAL OPERATION

- - - -MULTIPLICATION
0----NONE

INDICATION OF CALCULATED CONTENT OF
ALGEBRAIC SUM

1---+-ADDITION
0-+--NONE

INDICATION OF STORAGE ADDRESS
FOR SUM-PRODUCT RESULT

1----MCR
0- -~ -NONE

U.S. Patent Jun. 6, 2006 Sheet 7 of 17 US RE39,121 E

FIG. 7
MCSST INSTRUCTION .
POSITIVE CONVERSION STORAGE ADDRESS
SATURATION CALCULATION INDICATED
WIDTH INDICATION .

00----2bit POSITIVE CONVERSION QO - - - REGISTER DO
01---16bit POSTTIVE CONVERSION Q1 - - - -REGISTER D1

11----8# POSITIVE CONVERSION 10- - - -REGISTER D2
~11----REGISTER D3

U.S. Patent Jun. 6, 2006 Sheet 8 of 17 US RE39,121 E

FIG. 8A
32 17 16
AN l.......l..l..... ..\.\..\:\.k\\
CODEBIT MULTIPLIER, MULTIPLICAND
Fij Ql
25 24 17 16

llllllllllllllll \&L\\h\\\‘:\ .\\\\\
CODE BIT SUM- PRODUCT RESULT

32 2 16 .
SEENEEENANEESEEEEEEEEEEENSSNNNNN

MATRIX MULTIPLICATION RESULT Hij

FIG. 8B

SUM-PRODUCT RESULT

32767 ro---
(7FFF) ; ;

\%J_

- e e g dh A 4 B iR

¥ ar = B O E O
S P oy gy e o A BN S R B EB W W AR

~32767

U.S. Patent Jun. 6, 2006 Sheet 9 of 17 US RE39,121 E

FIG. 9

LOGIC VALUE X|LOGIC VALUE Y| SELECTED INPUT VALUE

0x0000 OOFF

0x0000_0000
0x0000_0000

STORED VALUE OF
SUM-PRODUCT RESULT
REGISTER

U.S. Patent Jun. 6, 2006 Sheet 10 of 17 US RE39,121 E

FIG. 10

EXAMPLE OPERATION: DOXD1(0x7f X 0x70)

MEMORY STORED
REGISTER STORED pg D1 [<00000070
32 4 32/ .
CODE EXTENSION | {CODE EXTENSION
CIRCUIT | ICIRCUIT
0x0000007f 4 32 32 0x00000070
2
MULTIPLIER
64 0x0000000000003790
MCR |°
OUTPUT OF LOWER-ORDER
{POSITIVE CONVERSION M3B : 0
SATURATION CALCULATION | 0x00003790.>0x000000fF
CIRCUIT ~0x000000ff
32 0x000000ff
REGISTER STORED
VALUE D1 10x000000ff

MEMORY STORED VALUE Oxff

U.S. Patent Jun. 6, 2006 Sheet 11 of 17 US RE39,121 E

FIG. 11

EXAMPLE OPERATION: DOXD1(0x7f X 0x80)

MEMORY STORED

VAL UE Ox7f 0x70

iR ER>TORED Do D1

' 32 4 32 .
CODE EXTENSION | /CODE EXTENSION
CIRCUIT CIRCUIT
0x0000007f 4~ 32 32 Oxffffff80
4

64 OxfErEFEEEFFFFc080

MCR }°
OUTPUT OF LOWER-ORDER
32 BITS 32 OxfffchBOS
POSITIVE CONVERSION MSB : 1—0x00000000
SATURATION CALCULATION
CIRCUIT
32 0x00000000

VALUE

MEMORY STORED VALUE 0x00

U.S. Patent Jun. 6, 2006 Sheet 12 of 17 US RE39,121 E

FIG. 12A

N

-
)

=
Z. 1) = = > fx
O
QF O = S m <
= O - My e
Qin OZ D 202 Ho
ST 20 h O~ M
1S mod RS <n 5B
) &, 5175 a g
Z 20 =

U.S. Patent

FIG. 128

Jun. 6, 2006

MOV (A1) D}

ot d pd
S S,
-
S
T D)
SO EOG
Z. 0 U”*(E::)ﬁ
= =1al7,

Sheet 13 of 17

A

NG A" Vi<
N N N A AN
=
e
NG NS
N

EXECUTION
MEMORY
ACCESS
STAGE

STAGE

US RE39,121 E

WRITE STAGE

REGISTER

U.S. Patent Jun. 6, 2006 Sheet 14 of 17 US RE39,121 E

FIG. 13

MCSST INSTRUCTION

POSITIVE CONVERSION
SATURATION CALUCULATION TNDICATED
WIDTH INDICATION

11----MCR
00« --24bit POSTTIVE CONVERSION 00 - - - - REGISTER DO

0116 POSITIVE CONVERSION O1- - - -REGISTER D1
11----8iPOSTTIVECONVERSION ~ 10- - - ~REGISTER D2

READ ADDRESS INDICATION

11----MCR

00- -+ *REGISTER DO
O1----REGISTER DI
10+ - - -REGISTER D2

US RE39,121 E

Sheet 15 of 17

Jun. 6, 2006

U.S. Patent

22 ©O w
JOLWIYINOD M ,

Z
45— m ool 1oy i
A — ! NOISNILXH| | NOISN L)
99 LIAINOILYINITYO 3400
......... NOLLY0LYS NOISEANGD BAILSK ; G
9T

|
_
_
_
_
_
_
_
_
,

L N Ny 3N T §yE__ T s NN W T T e s - 5§ BN _____F¥F _______F§_ " MW 'I.!]_.II.II

US RE39,121 E

Sheet 16 of 17

Jun. 6, 2006

U.S. Patent

S e B el S-Sl AL LI N JSEE———— A - slnssssstay of SEnSgeEeearhEl g SEEEE———— St & Skt G g PSSR TS e S U A LA . S —

_

m £d ,

- \Feorvenan mviswon | (I sorveanan ouz |

| 12 62 . _

TN ONDan ! - ,

- [oLvavanoo AIRVIOd] a _

ﬁ 22 €7 m : .

m _ el oS |

€07} 07| S LMD NOLYINITYY g | M
| 8A 1 NOLLVNLYS NOISYIANOD @.Em.&:.m G _
| s} |
R]

U.S. Patent Jun. 6, 2006 Sheet 17 of 17 US RE39,121 E

FIG. 16

MULBSST INSTRUCTION

MULTIPLIER READ MULTIPLICAND READ
ADDRESS INDICATION ADDRESS INDICATION

11----MCR 11----MCR

00----REGISTERDO 00 ---REGISTER DO
01----REGISTERD1 01----REGISTER DI
10-- - -REGISTER D2 10----REGISTERD?

POSITIVE CONVERSION SATURATION CALCULATION
WIDTH INDICATION

01----24bit POSITIVE VALUE
10----16bit POSITIVE VALUE

tH - - - 8bit POSITIVE VALUE

CALCULATION CONTENT INDICATION

1----MULTIPLICATION
0----NONE

US RE39,121 E

1

PROCESSOR WHICH CAN FAVORABLY
EXECUTE A ROUNDING PROCESS
COMPOSED OF POSITIVE CONVERSION
AND SATURATED CALCULATION
PROCESSING 5

Matter enclosed in heavy brackets [] appears in the
original patent but forms no part of this reissue specifi-
cation; matter printed in italics indicates the additions
made by reissue. 10

Morve than one reissue application has been filed for the

reissue of U.S. Pat. No. 6,237,084. The reissue application
are application Nos. 10/366,502 and 11/016,920, all of
which are divisional reissues of U.S. Pat. No. 6,237,054.

This 1s a divisional application of U.S. Ser. No. 08/980, 15
676 now U.S. Pat. No. 5,974,540 filed Dec. 1, 1997.

BACKGROUND OF THE INVENTION

1. Field of the Invention

The present invention relates to a processor that performs
processing according to instruction sequences that are stored

in a ROM or the like.

2. Background of the Invention

In recent years, there has been a visible increase 1n the use 35
of application software that can interactively reproduce
various kinds of data, such as video data, still image data,
and audio data, that have been compressed according to
techniques such as frame encoding, field encoding, or
motion compensation. As such software has been developed,
there has been increasing demand for multimedia-oriented
processors that can efliciently execute the software. These
multimedia-onented processors are processors designed
with a special architecture to facilitate programming, such as
the compression and decompression of video and audio data.
The high-speed processing required for handling video data
1s the matrix multiplication of compressed data that has N*N
matrix elements with coeflicient data that also has N*N
matrix elements. Representative examples of compressed
data that has N*N matrix elements are the luminescence
block composed of 16*16 luminescence elements, the blue 40
color difference block (Cb block) composed of 8*8 color
difference elements, and the red color difference block (Cr
block) composed of 8*8 color diflerence elements used in
MPEG (Moving Pictures Experts Group) techniques. The
matrix multiplication for compressed data referred to here 1s 45
performed very frequently when executing the approxima-
tion calculations for an iverse DCT (Discrete Cosine
Transform) 1n 1mage compression methods such as MPEG
and JPEG (Joint Photographic Experts Group).

The following 1s a description of conventional s,
multimedia-oriented processors that can perform high-speed
matrix multiplication. The basic architecture of conventional
multimedia-oriented processors 1s provided with a sum-
product result register (hereinafter simply referred to as an
MCR register) as hardware, and 1s provided with an mstruc-
tion set that includes a “MOV MCR.,**” transfer instruction
for transferring a sum-product value.

An example of the hardware construction of a conven-
tional multimedia-oriented processor 1s shown 1n FIG. 1. As
shown i FIG. 1, the arithmetic logic unit (hereinafter,
“ALU”) 61 performs the multiplication of an element Fij
that forms part of the compressed data and an element Gy1
that forms part of the coeflicient matrix 1n accordance with
a multiplication 1instruction. The ALU 61 also reads the
sum-product value stored in the sum-product result register
62, adds the multiplication result of Gj1*F1; to the read 65
sum-product value, and has the result of this addition stored
in the sum-product result register 62. By repeating the above

20

30

35

55

60

2

calculation, a sum-product value 1s accumulated in the
sum-product result register 62. Once the multiplication has
been performed a predetermined number of times, the pro-
grammer 1ssues a sum-product value transier instruction. By
1ssuing a transier instruction, the accumulated value 1n the
sum-product result register 62 1s transierred to the general
registers, and 1s used as the matrix multiplication result for
one row and one column. By performing N*N 1terations of
the above processing, the matrix multiplication of N*N
compressed data and an N*N coeflicient matrix can be
completed.

When a conventional multimedia-oniented processor 1s
used, however, positive correction saturation operations for

amending the sum-product value pose many difhculties for
programmers.

Positive conversion processing refers to the conversion of
a sum-product value that 1s a negative value mnto either zero
or a positive value. Normally, compressed data 1s expressed
as a coded relative value that reflects the relation of the
present value to the preceding and succeeding values. As a
result, there are many cases when the sum of products for
cach element 1n the compressed data and the corresponding
coellicients 1s a negative value. Most reproduction-related
hardware, such as displays and speakers, however 1s only
able to process uncoded data, so that when the sum-product
values are to be reproduced, 1t 1s first necessary to perform
positive conversion processing.

Saturation calculation processing refers to processing that
sets all values that exceed a given range (or, 1n other words,
which are “saturated”) at a predetermined value. This 1s to
say, when an element that includes an erroneous bit gener-
ated during transier 1s used in a sum-product calculation as
part of the sum-product processing for compressed data,
there 1s an increase in the probability of the sum-product
value exceeding a value that can be expressed by the stated
number of bits. Since most reproduction-related hardware 1s
only physically capable of reproducing uncoded data with a
fixed valid number of bits, such as eight bits, saturation
processing 1s required to convert the sum-product value nto
a value that can be expressed using the valid number of bits.

It has been conventional practice to perform this kind of
positive value conversion processing and saturation calcu-
lation processing by converting the-sum-product value using
a subroutine that corrects the sum-product value. An
example ol a subroutine that corrects the sum-product value
1s explained below. In this example, the register width and
the calculation width of the calculation unit are 32 bits, with

the width of the MCR being 32 bits, and the sum- product
value being expressed as a coded 16 bit integer. The data
that can be handled by the reproduction-related hardware
needs to be expressed using uncoded 8-bit integers. This
subroutine 1s set as using the data register D0 for storing the
calculation result. Each istruction 1s expressed using two
operands, with the left and right operands being respectively
called the first and the second operands. The second operand
1s used both to indicate the transfer address of a transfer
instruction and the storage address of an arithmetical
instruction.

Instruction 1: MOV MCR,D0
Instruction 2: CMP OXFFFF_8000,D0
Instruction 3: BCC CARRY
Instruction 4: MOV 0x0000__00000,D0
Instruction 5: BRA END

CARRY

Instruction 6: CMP 0x0000_O0O0FE,DO0
Instruction 7: BCS END

Instruction 8: MOV 0x0000 _00FFE,D0

END: (end of positive conversion saturation calculation
processing)

US RE39,121 E

3

Describing the above nstructions in order, Instruction 1,
“MOV MCR,D0”, transiers the stored value of the MCR
register mto the data register DO0. Instruction 2, “CMP
OxFFFF__8000,D0”, compares the value 1n the data register
with the immediate “OxFFFF__8000”, where “0x” shows
that the value 1s given 1n hexadecimal. This comparison 1s
performed by subtracting the immediate “OxFFFF__ 8000
given 1n the first operand from the stored value of the data
register DO given 1n the second operand.

The sixteenth bit of the immediate “OxFFFF__ 8000 in
Instruction 2 1s the code bit used for a 16-bit coded integer,
so that when the stored value of the data register DO 1s
greater that the immediate “OxFFFF__80007, this shows that
the value stored in the MCR 1s a negative number.

On the other hand, when the stored value of the D0
register 1s less than “OxFFFF_ 80007, this shows that the
value stored by the MCR 1s a positive number. If this number
1s a positive number, a carry 1s performed and the carry flag
in the tlag register 1s set.

The letter “B” 1n the “BCC” 1n Instruction 3 stands for
“Branch”, while the letters “CC” stand for “Carry Clear”.

When the comparison 1n Instruction 2 finds that the stored
value of the register DO 1s less than the immediate

“OxFFFF__8000”, a branch i1s performed to Instruction 6
which has the label “CARRY”. Conversely, when the com-
parison 1n Instruction 2 finds that the stored value of the
register D0 1s greater than the immediate “OxFFFF__ 80007,
Instruction 4, “MOV 0x0000__0000,D0” transiers the value
zero 1nto the register D0, amending the sum-product value
to zero. After this amendment, the unconditional branch
“BRA END” 1n Instruction 5 1s performed to transfer the
processing to the “END” label, thereby completing the
positive conversion processing.

The processing described above 1s performed when the
stored value of the register DO 1s negative. The following 1s
a description of the processing performed when the stored
value of the register D0 i1s greater than the immediate
“OxFFFF_8000”. In such a case, Instruction 6, “CMP
0x0000__00F,D0” compares the stored value of the register
D0 with the immediate “0x0000__00FF”. This comparison 1s
performed by subtracting the immediate “0Ox0000__ 00FF”
given 1n the first operand from the stored value of the data
register D0 given 1n the second operand. When the stored
value of the DO register 1s smaller than the immediate
“Ox0000_00FF”, a carry 1s performed and the carry flag 1n
the flag register 1s set.

The letters “CS” 1n Instruction 7, “BCS END”, stand for
“Carry Set”, so that when the carry flag 1s set, a branch 1s
performed to the label “END” from Instruction 7.

When the carry flag 1s not set, no branch 1s performed in
Instruction 7 and processing advances to Instruction 8,
“MOV 0x0000__00FF, D0, where the immediate “0x0000__
OOFF” 1s transierred into the register D0 to amend the
calculation result to “0x0000_OOFF”, thereby completing
the saturation calculation processing.

The problem with the sum-product value amendment
process described above lies in the considerable increase in
code size caused by the insertion of the above eight instruc-
tions for one amendment of a sum-product value. When the
program 1s written into a ROM to embed the software 1nto
the information processing apparatus, the required amount
of istalled ROM will have to need to be increased by an
amount equal to this increase in code size, leading to an
increase in manufacturing cost. A large number of manu-
facturers of domestic appliances such as digital video
players, electronic notebooks, and word processors seek to

improve on their rivals” products by using their own decom-

10

15

20

25

30

35

40

45

50

55

60

65

4

pression processing programs, although the installation of
such decompression processing programs presently has the
drawback of increasing costs by increasing the required
amount of ROM, making such installation problematic.
There 1s also the problem that since eight instructions
need to be executed to correct one sum-product value, there
1s a large increase 1n processing time. When, as shown 1n
FIG. 2, an approximation calculation for an mverse DCT 1s
performed by multiplying compressed data Fij (where 1,]=
1,2,3,4,5...8) composed of 8*8 elements with a coellicient
matrix Gj1 (Where 1,1=1,2,3,4,5 . . . 8) also composed of 8*8
clements to produce the multiplication result matrix Hij
(where 1,1=1,2,3,4,5 . . . 8), the calculation of the matrix
multiplication result element H21 requires the sum-product

processing of the multiplication results of one column of
compressed data elements F11, F21, F31, F41, F51, F61,

F71, F81 by one row of coeflicient data elements G11, G12,
(13, G14, G15, G16, G17, G18. The result 1s then subjected
to positive conversion saturation calculation processing.
Following this, the calculation of the matrix multiplication
result element H12 requires the sum-product processing of

the multiplication results of the column of compressed data
clements F12, F22, F32, F42, F52, F62, F72, F82 by one row

of coeflicient data elements G11, G12, G13, G14, G15, G16,
G17, G18, with the sum-product result then being subjected
to positive conversion saturation calculation processing.

The same sum-product processing and positive conver-
s1on saturation calculation processing 1s required to obtain
the other matrix multiplication result elements H21, H31,
H41, H51, H61, H71, H81, . . . , and since there are 64
clements in the coeflicient matrix G117 (where 1,1=1,2,3 .4,
5 ... 8), the sum-product value amending subroutine for
positive conversion saturation calculation processing needs
to be performed 64 times. This sum-product value amending
subroutine mncludes branch instructions (as Instructions 3, 3,
and 7), so that when this sum-product value amending
subroutine 1s executed, branches will occur regardless of
whether negative values or saturation occur, so that the 64
iterations of the subroutine will not be performed smoothly.
When attempts are made to improve the processing speed of
the sum-product operation by introducing pipeline process-
ing to the processor, the execution of the stated three branch
instructions will result 1n a noticeable drop 1n processing
eiliciency.

In order to 1increase the speed of the matrix multiplication,
it 1s possible to install a specialized circuit for performing
matrix multiplication. However, i1 all of the matrix multi-
plications are performed by a specialized circuit, there
would be a vast increase in hardware, and the processor
characteristic known as versatility, whereby the processor
executes a variety of processes 1n accordance with the
program written by the programmer, 1s lost. If the versatility
of the processor 1s lost, there 1s the risk that the processor
will not be able to respond to programmers’ wishes, and so
will not, for example, be able to execute an original decom-
pression processing program.

SUMMARY OF THE INVENTION

It 1s a primary object of the present invention to provide
a processor that can perform a rounding process made up of
a positive conversion process and a saturation calculation
process at high speed, while minimizing the increase 1n code
s1ze caused by the rounding process.

The stated object can be achieved by a processor that
successively decodes and executes 1nstructions 1n an instruc-
tion sequence, the instruction sequence including instruc-
tions that indicate a storage address of a value used 1n an

US RE39,121 E

S

operation, the processor including: a detecting unit for
detecting whether a next istruction to be decoded includes
an operation content indication showing that the next
instruction 1s a correction instruction and, if present, reading
the operation content indication; and a rounding unit for
rounding, when the detecting unit has detected an operation
content 1ndication showing that the next instruction 1s a
correction instruction, a coded m-bit integer stored at a
storage address indicated by the instruction to a value
expressed as an uncoded s-bit integer (where s<m).

With the stated construction, the processing for rounding
values 1s performed once each time a correction instruction
1s detected out of the instruction sequence, so that the
rounding process can be executed by the programmer writ-
ing only one 1nstruction.

As the rounding process 1s performed according to one
correction instruction, the execution time for one execution
of the rounding process 1s extremely short. When the round-
ing of calculated values 1s required very often, such as when
decompressing data, there will not be a significant increase
in the time taken by the decompression processing.

Since the rounding process can be performed by simply
executing a correction instruction, when the processor
attempts to perform a sum-products operation at high speed
through pipeline processing, thee will be no confusion in the
pipeline. Accordingly, the code size of the instruction
sequence can be reduced and the execution of the 1nstruction
sequence made faster by adding a small amount of hardware
to the processor.

The stated object can also be achieved by a processor that
successively decodes and executes nstructions in an mnstruc-
tion sequence, the instruction sequence including instruc-
tions that indicate a storage address of a value to be used in
an operation, the processor including: a first detecting unit
for detecting whether a next istruction to be decoded
includes an indication showing that the instruction has a
calculation performed; a second detecting unit for detecting
whether the next instruction to be decoded includes an
indication showing that calculation 1s to be performed and
that rounding 1s-to be performed on a calculation result; a
calculating unit for performing, when the first detecting unit
detects that the next mstruction includes an mndication show-
ing that the instruction has a calculation performed, a
calculation using an m-bit integer in accordance with the
indication; and a rounding unit for rounding, when the
second detecting unit has detected that the next instruction
to be decoded includes an 1indication showing that rounding
1s to be performed, a calculation result of a calculation that
uses an m-bit mteger to a value expressed as an uncoded
s-bit integer (where s<m).

With the stated construction, correction instructions for
performing a rounding process of a coded calculation result
are provided, so that the two processes composed of a
calculation process and a rounding process can be performed
in a single step. As a result, positive conversion saturation
calculation processing 1s performed 1n the same step as the
calculation processing, so that the eflective number of steps
taken the positive conversion saturation calculation process-
Ing 1S Zero.

BRIEF DESCRIPTION OF THE DRAWINGS

These and other objects, advantages and features of the
invention will become apparent from the following descrip-
tion thereof taken in conjunction with the accompanying
drawings which illustrate a specific embodiment of the
invention. In the drawings:

10

15

20

25

30

35

40

45

50

55

60

65

6

FIG. 1 shows a conventional construction composed of an
ALU 61 and a sum-product result register 62;

FIG. 2 gives a representation of multiplication of matrices
composed of N*N elements;

FIG. 3 shows the construction of the processor of the first
embodiment of the present invention;

FIG. 4 shows the construction of the operation execution
apparatus 14 1n the present embodiment;

FIG. 5 shows an instruction sequence composing the
matrix multiplication subroutine 1n the present embodiment;

FIG. 6 shows the instruction format of a sum-product
function multiplication instruction “MACCB D0,D1” 1n the
present embodiment;

FIG. 7 shows the istruction format of a positive conver-
sion saturation calculation instruction “MCSST” 1 the
present embodiment;

FIG. 8A shows the 32-bit expressions that are the
multiplier, the multiplicand, the sum-product value, and the
matrix multiplication result element;

FIG. 8B shows how the sun-product value 1s converted by
the positive conversion saturation calculation circuit 3;

FIG. 9 1s a truth value table showing the relation of the
combination of the output values of the constant generator
21 and the zero generator 25 with the output of the multi-
plexer 24;

FIG. 10 shows the flow of data when performing an 8*8
bit multiplication using a 32*32 bit multiplication/sum-
product unit;

FIG. 11 shows the flow of data when performing an 8*8
bit multiplication using a 32%*32bit multiplication/sum-
product unait;

FIG. 12A shows an example of the pipeline processing
performed by the processor shown in FIG. 3;

FIG. 12B shows the execution according to pipeline
processing ol a matrix multiplication subroutine inside the

processor shown in FIG. 3;

FIG. 13 shows the istruction format of a positive con-
version saturation calculation instruction “MCSST” 1n the
applied example 1n the first embodiment;

FIG. 14 shows the internal construction of the operation
execution apparatus 14 in the first embodiment;

FIG. 15 shows the internal construction of the operation
execution apparatus 14 in the second embodiment; and

FIG. 16 shows the instruction format of a positive con-
version saturation calculation multiplication instruction

“MulBSST Dm,Dn”.

DESCRIPTION OF THE PREFERRED
EMBODIMENTS

First Embodiment

The following 1s an explanation of the first embodiment of
the present invention with reference to the drawings. FIG. 3
shows the internal construction of the processor 1n the first
embodiment of the present invention, which can be seen to
be composed of a ROM 11, an mstruction fetch circuit 12,
a decoder 13, an operation execution apparatus 14, an
address bus 17, and a data bus 18, with the address bus 17
and the data bus 18 being connected to the RAM 10.
The RAM 10 stores the compressed data Fiy (1,1=1,2,3 .4,
5. ..8) composed of 88 matrix elements and coeflicient
data Gp1 (1,)=1,2,3,4,5 . . . 8) composed of 8*8 matrix
clements. When a fetch address for the 1ith row and jth
column 1s outputted to the address bus 17, the data indicated
by the outputted address 1s outputted to the data bus 18.

US RE39,121 E

7

When the operation execution apparatus 14 calculates the 1th
row and jth column element of the multiplication result
matrix Hy (1,=1,2,3,4,5 . . . 8) for the multiplication of the
compressed data Fi1j composed of 8*8 matrix elements and
the 8*8 matrix coellicients G1y, and the ith row and jth 5
column address 1s outputted to the address bus 17 as the
write address, the 1th row and jth column element transierred
to the data bus 18 1s written into the storage area indicated
by the outputted address. The multiplication result matrix
Hij 1s used 1n an approximation calculation using an inverse 10
DCT, 1s subjected to predetermined processing, and 1s used
by the reproduction-related hardware (not illustrated). It
should be noted here that Fij and Gj1 are expressed as 8-bit
coded mtegers whose the eighth bit counted from the LSB
(least significant bit) 1s used as the code biut. 15

ROM 11 stores a decompression processing program for
the compressed data stored in the RAM 10, so that when a
read address 1s outputted from the instruction fetch circuit
12, the mstruction indicated by the read address 1n the stored
decompression processing program 1s outputted to the data 20
bus 18. The decompression processing program stored by
the ROM 11 1s composed of a variety of instructions, such
as transfer instructions, arithmetic instructions, and branch
instructions. Of these, the arithmetic instructions can be
roughly classified into arithmetic calculation instructions, 25
sum-product function multiplication instructions, and logic
operation instructions. Arithmetic calculation instructions,
such as addition instructions, subtraction instructions, and
multiplication nstructions each have a first operand and
second operand. The first operand has two addressing modes 30
that are an indication of an immediate and an indirect
indication of a register. On the other hand, an indirect
indication of a register 1s the only possible addressing mode
for the second operand, although the second operand also
doubles as an indication of the storage address for the 35
calculation result. For the example of the addition instruc-
tion “ADD 1mm,D1”, the first operand i1s the immediate
value 1imm, while the second operand is the register D1.
Since the second operand indicates the storage address for
the calculation result, the calculation result of the addition 40
istruction “ADD D0,D1” stores the result of the addition of
the values 1n registers D0 and D1 1n register D1.

In the present embodiment, the decompression processing,
program 1ncludes a matrix multiplication subroutine that
generates the matrix multiplication result Hiy with 8*8 45
clements by multiplying the compressed data F11 composed
of 8*8 matrix elements by the coellicient data G1j composed
of 8*8 matrix elements. It should be especially noted that
this matrix multiplication subroutine 1s mainly composed of
sum-product function multiplication instructions “MACCB 50
Dm,Dn” and positive conversion saturation calculation
istructions “MCSST Dm”.

The following 1s a description of the generation of the
matrix Hij with 8*8 elements by multiplying the compressed
data Fi3 (1=1,2,3,4,5 . . . 8) composed of 8*8 matrix 55
clements by the coellicient data Gy1 (1,=1,2,3,4.5 .. . 8) also
composed of 8*8 matnx elements. When doing so, the
calculation shown 1n Equation 1 below 1s necessary to
calculate the 1% row, 1°° column element H11 of the matrix
Hij. 60

H11=G11*F11+G12*F21+G13*F31+G14* F41+G15*FS1+
G16*F61+G17*F71+G18*F81 Equation 1

This Equation 1 has Gji*Fij (1,=1,2,3,4,5 . . . 8) as 1ts
clemental operations and 1s a compound operatlon which 65
finds an algebraic sum of the elemental operations. The
calculation of the respective elemental operations and the

8

calculation of the algebraic sum are expressed in the present
matrix multiplication subroutine by a loop statement (this
loop statement being called a “sum-product loop™) that
repeatedly has a sum-product function multiplication
mstruction “MACCB Dm,Dn” performed.

FIG. 5 shows an example of the matrix multiplication
subroutine. It should be noted here that the summaries of the
instructions in FIG. 5 are given 1n the comments given to the
right of each instruction (starting with the symbol “#7). In
FIG. 5, F__ENTRY 1s a label attached to the start of the
region in the RAM 10 that stores the compressed data, while
G__ENTRY 1s a label attached to the start of the region 1n the
RAM 10 that stores the coetlicient data. In the same way,
H_ENTRY 1s a label attached to the start of the region in the
RAM 10 that stores the result of the matrix multiplication.
Instruction 1, “MOV F__ ENTRY,A0”, instruction 2, “MOV
G _JNTRYAI” and 1nstruction 3, “MOV H__ ENTRY,A2”

are transier instructions that respectwely transier the
addresses F__ ENTRY, G ENTRY, and H ENTRY into the
address register A0, the address register Al, and the address
register A2.

As a result of the transfer instructions mentioned above,
the address registers A0, Al, and A2 are used to indicate the
read addresses for the compressed data, the coetlicient data,
and the matrix multiplication result data which are each
composed of 8*8 elements.

Instruction 4, “MOV INIT,D2”, sets the initial value INIT
for the number of iterations 1nto the data register D2, while
istruction 5, “MOV (A0),D0”, has the coeflicient data Fji
read from the address indicated by the address register A0
transierred to the data register DO0. Instruction 6, “MOV
(A1),D17, has the compressed data G1j read from the address
indicated by the address register Al transferred to the data
register D1. Instruction 7, “MACCB D0,D1”, 1s a multipli-
cation instruction with a sum-product function that uses the
data register D0, the data register D1, and the sum-product
result register 6. Instruction 8, “CMP NUMBER,D2” 1s an
instruction which performs an upper limit check on the
number of iterations by subtracting the total number of
iterations NUMBER from the number of iterations stored 1n
the data register D2.

Instruction 9, “BCS LP1__ NEXT” 1s a conditional branch
instruction that branches to instruction 13 “ADD 1,D2” with
the label LP1__ NEX'T when the carry flag 1s ON as a result
on the subtraction performed in instruction 8 “CMP
NUMBER, D2”.

Instruction 10, “MCSST D1” 1s an instruction that per-
forms conversion to a positive value and saturation calcu-
lation processing (hereinafter referred to as “positive con-
version saturation calculation processing”) when the carry
flag 1s OFF.

Instruction 13, “INC D2” 1s an addition instruction that
increments the number of iterations stored in the data
register D2 by 1, while instruction 14, “INC A0, 1s an
addition instruction that increments the read address for
coellicient data stored in the address register A0 by 1.
Instruction 15, “ADD ROW1,A1”, 1s an addition nstruction
that adds one row number ROW1 to the read address of the
coellicient data stored 1n the address register Al. Instruction
16, “BRA LPl1_ START”, 1s an unconditional branch
instruction that branches to the label LP1__ START.

The label LP1_ START 1s attached to instruction 5,
“MOV (A0),D0”, with the instruction sequence Irom
instruction S to instruction 12, “BRA LP1 END” calculat-
ing one elemental operation, with the algebraic sum of the
calculation results of all iterations of this instruction
sequence being found.

US RE39,121 E

9

The label LP1_NEXT 1s attached to instruction 13,
“ADD 1,D2”, with the instruction sequence from 1nstruction
13 to instruction 16, “BRA LP1__ START” moving the read
address of the compressed data to a next row and the read
address of the coeflicient data to the next column when the
matrix multiplication of one row of elements by one column
of elements has been completed. At the same time, the
number of iterations stored in the data register D2 1s incre-
mented by 1.

FIG. 6 shows the format of the sum-product function
multiplication instruction “MACCB Dm,Dn”. As shown in
FIG. 6, the sum-product function multiplication instruction
“MACCB Dm,Dn” includes a one-bit field for indicating the
storage address of a sum-product value, a one-bit field for
indicating the calculated content of the algebraic sum, a
one-bit field for indicating the elemental calculation content
of the elemental operation, a two-bit field for indicating a
read address of the multiplier, and a two-bit field for
indicating a read address of the multiplicand.

The field indicating the read address of the multiplier and
the field indicating the read address of the multiplicand can
cach be set at one of “007, “017, “10”, and “117, thereby
indicating one of data register D0, data register D1, data
register D2, and the sum-product result register 6 as a read
address for the multiplier Gy1 or the multiplicand Fij.

The one-bit field for indicating the calculated content of
the elementary operation shows the content of the calcula-
tion of the elementary operation performed for the multiplier
(11 and the multiplicand F13. When *“1” 1s written 1nto this
field, the multiplication “Gy1*F13” of the multiplier G17 and
the multiplicand Fi; 1s indicated as the content of the
clementary operation on the multiplier Gj1 and the multipli-
cand F1j.

When the one-bit field indicating the storage address of a
sum-product value 1s set at “1”, this indicates that the MCR
(the sum-product result register 6 which 1s described later)
1s set as the storage address of the sum-product value. When
the one-bit field indicating the calculated content of the
algebraic sum 1s set at “1”, this shows that the algebraic sum
1s set so that the multiplication result “Gy1*F17” 1s added to
the sum-product value stored in the sum-product result
register 6.

When the sum-product operation “G11*F11+G12*F21+
G13*F31 . . . ” 1s performed, it should be noted that a bat
error when transierring the element F1;1 of the compressed
data can result 1n a sum-product value ““G11*F11+
G12*F21+G13*F31 . . . ” which 1s beyond a reproducible
range for the reproduction-related hardware. Since this risk
exists, the matrix multiplication subroutine performs the
positive conversion saturation calculation instruction
“MCSST Dm” after the loop processing repeating the sum-
product function multiplication instruction “MACCB
D0.D1” has been completed, so that positive conversion
saturation calculation processing 1s performed for the sum-
product value.

The format of the operation codes for the positive con-
version saturation calculation instruction “MCSST Dm” 1s
shown 1n FIG. 7. As shown 1n FIG. 7, the positive conver-
sion saturation calculation instruction “MCSST Dm”
includes a field (“rounding field”) indicating the positive
conversion/saturation calculation width and a field indicat-
ing the storage address of the positive conversion saturation
calculation result. By writing one of “017, “10”, and “11”
into the rounding field, the rounding width of the positive
conversion saturation calculation processing can be set at 24
bits, 16 bits, or 8 bits. Conversely, by writing one of “007,
“017, 107, and “11” into the storage address indicating

10

15

20

25

30

35

40

45

50

55

60

65

10

field, one of the data register D0, the data register D1, the
data register D2, and the data register D3 can be indicated
as the storage register for the positive conversion saturation
calculation processing.

As described above, the decompression processing pro-
gram stored in the ROM 11 1s such that the elementary
operations and the algebraic sum calculation that compose
the compound operation that 1s required by the matrix
multiplication subroutine are performed by a sum-product
function multiplication instruction “MACCB Dm,Dn”, so
that the algorithm 1s very compact. Since only this operation
needs to be performed by the processor, the memory area of
the ROM 11 that 1s used by the decompression processing
program 1s extremely small.

This completes the description of the instruction
sequences stored mm the ROM 11, so that the following
explanation will instead focus on the constructional ele-
ments of the processor shown in FIG. 3.

The nstruction fetch circuit 12 shown 1n FIG. 3 includes
a program counter that successively generates read
addresses and outputs them to the address bus. This mstruc-
tion fetch circuit 12 then transiers the instructions outputted
to the data bus 18 by the ROM 11 to the decoder 13.

The decoder 13 has an instruction bufler for accumulating,
the plurality of instructions that are read from the data bus
18 and an instruction register for holding an 1nstruction to be
decoded, out of the plurality of instructions accumulated 1n
the instruction bufler. The decoder 13 decodes the instruc-
tion stored in the instruction bufler and has the operation
execution apparatus 14 perform the necessary control to
have the decoded instruction executed. Of the control opera-
tions mentioned here, special attention should be paid to (1)
register output control, (2) calculation execution control, and
(3) constant generation control. These are described 1n more
detail below.

(1) Register output control refers to a controlling of the
operation execution apparatus 14 to output a stored value of
a register indicated by either the first or second operand 1n
an arithmetic calculation instruction, a logic operation
instruction, or a sum-product function multiplication
istruction. (2) Calculation execution control refers to a
controlling of the operation execution apparatus 14 to
execute the calculation indicated by an arithmetic calcula-
tion 1nstruction, a logic operation instruction, or a sum-
product function multiplication instruction. (3) Constant
generation control refers to a controlling of the operation
execution apparatus 14 to generate a maximum value or zero
for performing a positive conversion saturation calculation
istruction. The (1) register output control and the (2)
calculation execution control are performed when an arith-
metic calculation instruction, a logic operation instruction,
or a sum-product function multiplication instruction 1is

decoded by the decoder 13, while the (1) register output
control and the (3) constant generation control are per-
formed when a positive conversion saturation calculation
instruction 1s decoded by the decoder 13. Occurrences of (2)
calculation execution control only happen when a sum-
product function multiplication function 1s decoded, while
occurrences of (3) constant generation control only happen
when a positive conversion saturation calculation instruction
1s decoded, so that the (2) calculation execution control and
the (3) constant generation control are mutually exclusive.

The address bus 17 has a bit width of 32 bits and 1s used
to transier the compressed data Fyi1, the coeflicient data Gij,
and the matrix multiplication data Hij when data 1s outputted
by the RAM 10.

The operation execution apparatus 14 includes a register
file and an ALU circuit, and performs calculation according
to control by the decoder 13.

US RE39,121 E

11

It should be especially noted here that the construction 1s
such that the instruction fetch circuit 12 performs the fetch
stage, the decoder 13 the decoding stage, and the operation
execution apparatus 14 the operation execution stage, the
memory write stage, and the register write stage. These five
stages are realized by a five-stage pipeline process. The
instruction fetch circuit 12 starts to fetch another instruction
once an instruction has entered the decoding stage per-
tformed by the decoder 13, and so does not wait for the
execution of the present and preceding instructions to be
completed. In the same way, the decoder 13 does not wait for
the execution of the present and preceding instructions to be
completed, and so starts to decode a new 1nstruction once a
decoded 1instruction has entered the operation execution
stage performed by the operation execution apparatus 14. By
performing such processing, the processor processes the
istruction sequence stored in the ROM 11 according to a
five-stage pipeline process composed of an instruction fetch
stage, a decoding stage, an execution stage, a memory access
stage, and a register write stage, as shown in FIG. 12A.

This completes the description of the constructional ele-
ments of the processor. The following description will focus
on the iternal construction of the operation execution
apparatus 14. As shown 1n FIG. 4, the operation execution
apparatus 14 1s composed of a register file 1, an ALU circuit
2, a positive conversion saturation calculation circuit 3, a
code extension circuit 4, a code extension circuit 5, a
sum-product result register 6, a first internal bus 15, and a
second 1nternal bus 16. A number of control signal lines are
used to connect these components to the decoder 13 so that
the control operations (1), (2), and (3) described earlier can
be performed, although for ease of understanding these
control signal lines have been omitted from FIG. 4.

The register file 1 1s composed of four 32-bit data registers
D0-D3, and three 32-bit address registers A0—A2. During
(1) register output control, when one or two register names
are 1ndicated by the decoder 13, the register file 1 has the
stored values of the registers with the indicated register
names outputted via paths C2, C3 to the first internal bus 15
and the second internal bus 16. The register file 1 also holds
the value transterred on the data bus 18 which it receives via
the path C1.

The first internal bus 15 1s 32 bits wide and transiers a
32-bit stored value outputted by the register file 1 to the ALU
circuit 2.

The second mternal bus 16 1s also 32 bits wide and
transiers a 32-bit stored value outputted by the register file
1 to the ALU circuit 2.

The code extension circuit 4 performs code extension
when the stored value of a data register transferred from the
register file 1 via the first internal bus 15 1s a negative
number. In the present embodiment, multipliers and multi-
plicands are defined as coded 8-bit numbers, so that the code
extension circuit 4 performs code extension of 8-bit negative
numbers. As one example, when the stored value transterred
via the first internal bus 15 1s the 8-bit negative value
“0x0000 00807, the code in the 87 bit is extended to the 97
through 327 bits so that the value “OxFFFF_FF80” is
outputted to the ALU circuit 2.

The code extension circuit 3 performs code extension
when the stored value of a data register transierred from the
register file 1 via the second internal bus 16 1s a negative
number. In the present embodiment, multipliers and multi-
plicands are defined as coded 8-bit numbers, so that the code
extension circuit 5 performs code extension of 8-bit negative
numbers. The method used for code extension 1s the same as
for the code extension circuit 4.

10

15

20

25

30

35

40

45

50

55

60

65

12

The ALU circuit 2 1s composed of an addition unit, a
multiplication unit, and a barrel shifter that are all 32-bits
wide, and performs calculations according to the (2) calcu-
lation execution control indicated by the decoder 13. Since
the input terminals of the ALU circuit 2 are connected to the
output terminals of the code extension circuit 4 and the
sum-product result register 6, the calculation performed
according to the (2) calculation execution control 1s per-
formed using the 32-bit stored value of a register which 1s
outputted by the code extension circuit 4 and the 32-bit
stored value of a register which i1s outputted by the sum-
product result register 6.

When a sum-product function multiplication instruction
“MACCB Dm.,Dn” 1s decoded, the ALU circuit 2 performs
multiplication of the 32-bit stored value of a register out-
putted by the code extension circuit 4 and the 32-bit stored
value of a register outputted by the code extension circuit 5
and outputs a 64-bit multiplication result. The ALU circuit
2 also adds the 32-bit value transierred on the path P1 to the
lower-order 32 bits of the 64-bit multiplication result and
outputs a 32-bit addition result on the path P2.

It should be noted here that when the sum-product func-
tion multiplication instruction “MACCB DO0,DL1” 1s
decoded, the stored values of the read address registers
indicated by the first and second operands of the sum-
product function multiplication instruction “MACCB
D0,D1” will be transferred on the first internal bus 15 and
the second internal bus 16, so the ALU circuit 2 will perform
the multiplication of the stored value of the register D0 and
the stored value of the register D1. Also, when the sum-
product function multiplication instruction “MACCB
D0.D1” 1s decoded, the stored value of the sum-product
result register 6 will be transterred on the path P1, so that the
multiplication result of the data register D0 and the data
register D1 will be added to the stored value of the sum-
product result register 6 which has been outputted to the path
P1. The result of this addition 1s then outputted on the path
P2.

The sum-product result register 6 stores the sum-product
value which has hitherto been accumulated, and outputs its
stored value on the path P1 every time a sum-product
function multiplication instruction 1s decoded. When the
stored value on the path P1 and the multiplication result have
been added by the ALU circuit 2, the addition result 1s
outputted on the path P2, with this value being latched by the
sum-product result register 6 and stored as the updated
sum-product value. It should be noted here that the sum-
product result register 6 stores the result of the multiplica-
tion by the ALU circuit 2 of the multiplier Gj1 and the
multiplicand F1j as a coded 16-bit value.

The positive conversion saturation calculation circuit 3
rounds the stored value of the sum-product result register 6
expressed as a coded 16-bit value to a positive 8-bit integer.
FIGS. 8A and 8B show the rounding process performed by
the positive conversion saturation calculation circuit 3. The
top part of FIG. 8A shows the multiplier and multiplicand
expressed in 32-bit data. Here, the black-shaded 8” bit is
allocated as the code bit, so that by using oblique-shaded 7
bits, the multiplier Gj1 and the multiplicand F13 can be
expressed as values within the range —127 to +127.

The maddle part of FIG. 8A shows the sum-product result
expressed in 32-bit data. Here, the black-shaded 16™ bit is
allocated as the code bit, so that by using oblique-shaded 15
bits, the sum-product value can be expressed as a value 1n
the range -32767 to +32767.

The lower part of FIG. 8 A shows the multiplication matrix
clement Hij expressed in 32 bits. Here, the oblique-shaded

US RE39,121 E

13

first to eighth bits are used without a code bit, so that the
multiplication matrix element Hij can be expressed as any
value 1n the range 0 to +255.

In FIG. 8B, the bar on the left shows the range of stored
values of registers that can be used as the multiplier and
multiplicand, which 1s a seven bit range of positive and
negative values. The bar 1n the center shows the range of
values that can be stored 1n the sum-product result register
6 as the sum-product value, which 1s a fifteen bit range of
positive and negative values. The bar on the right shows the
range of values that can be used for the multiplication matrix
Hij, which 1s the range of 8-bit positive values that can be
handled by the reproduction-related hardware.

It should be noted here that the range of values that can
be used the sum-product value 1s a range of 15-bit positive
and negative values to avoid the totaling of rounding errors.
In more detail, when the sum-product value 1s found from
the multiplication result of the multiplier Gy1 and the mul-
tiplicand Fi; which are both coded 8-bit values, if the
multiplication result were to be rounded to eight bits every
time because the range of the multiplication matrix element
Hij 1s eight bits, the rounding error would increase every
time multiplication 1s performed. To avoid such increases in
rounding error, the sum-product result register 6 sets the
sum-product result as 16 bits and the positive conversion
saturation calculation 1s only performed when the multipli-
cation of one row by one column has been completed.

The stored value of the sum-product result register 6
shown by the bar 1n the center of FIG. 8B 1s rounded to the
8-bit positive value shown by the right bar, so that the range
of values 1ndicated by the symbol y1 (the range of positive
values that exceed “0x0000__00FF”) are all rounded to

“0x0000__00FF”.

The positive conversion saturation calculation circuit 3
rounds the range of values shown by the symbol y2
(negative values) to the value “0x0000__0000”.

The 1nternal construction of the positive conversion satu-
ration calculation circuit 3 1s shown nside the broken line y8
in FIG. 4. As shown i FIG. 4, the positive conversion
saturation calculation circuit 3 1s composed of a constant
generator 21, a comparator 22, a polarity judging unit 23, a
multiplexer 24, and a zero generator 25. These components
are connected by control lines to the decoder 13, although
these have been omitted from FIG. 4 for ease of understand-
ng.

When the mstruction read by the mstruction fetch circuit
12 and decoded by the decoder 13 1s a positive conversion
saturation calculation instruction “MCSST”, the constant
generator 21 generates a maximum positive value which, 1n
accordance with the content of the positive conversion-
saturation calculation width field, 1s an 8-bit uncoded value,
a 16-b1t uncoded value, or a 24-bit uncoded value. When the
generation of an 8-bit uncoded value i1s indicated by the
positive conversion-saturation calculation width field, the
constant generator 21 generates the 32-bit coded value
“Ox0000_00FF”, which 1s the maximum value for an
uncoded 8-bit value, and outputs 1t to the multiplexer 24.
When the generation of a 16-bit uncoded value 1s indicated
by the positive conversion-saturation calculation width field,
the constant generator 21 generates the 32-bit coded value
“Ox0000__FFFF”, which 1s the maximum value for an
uncoded 16-bit value, and outputs it to the multiplexer 24.
Similarly when the generation of a 24-bit uncoded value 1s
indicated by the positive conversion-saturation calculation
width field, the constant generator 21 generates the 32-bit
coded value “Ox00FF FFFE”, which 1s the maximum value
for an uncoded 24-bit value, and outputs it to the multiplexer

24.

10

15

20

25

30

35

40

45

50

55

60

65

14

The comparator 22 compares the magnitude of the value
held by the sum-product result register 6 with the magnmitude
of maximum value outputted by the constant generator 21.
This comparison 1s performed by subtracting the value held
by the constant generator 21 from the maximum value
outputted by the constant generator 21 and detecting
whether a carry has occurred as a result of the subtraction.
When an 8-bit value 1s indicated by the positive conversion-
saturation calculation width field, the stored value of the
sum-product result register 6 1s subtracted from the 32-bit
coded mteger “0x0000__OOFF”, which 1s the maximum
value for an uncoded 8-bit value. When a 16-bit value 1s
indicated by the positive conversion-saturation calculation
width field, the stored value of the sum-product result

register 6 1s subtracted from the 32-bit coded integer
“Ox0000 FFFF”, which 1s the maximum value for an

uncoded 16-bit value. Similarly, when a 24-bit value 1s
indicated by the positive conversion-saturation calculation
width field, the stored value of the sum-product result
register 6 1s subtracted from the 32-bit coded integer
“Ox00FF__FFFF”, which 1s the maximum wvalue for an

uncoded 24-bit value.

When a carry 1s detected as the result of the subtraction
described above and the latched value 1s judged to exceed
the maximum value, the comparator 22 outputs the logic
value “1” to the multiplexer 24. Conversely, when the value
held by the sum-product result register 6 1s judged to be
equal to or below the maximum value, the comparator 22
outputs the logic value “0” to the multiplexer 24.

The polarity judging unit 23 judges whether the code bit
of the value stored by the sum-product result register 6 1s
“ON”. Here, depending on the content the positive
conversion-saturation calculation width field of the positive
conversion saturation calculation instruction “MCSST”, an
8-bit uncoded wvalue, a 16-bit uncoded value, or a 24-bit
uncoded value 1s 1ndicated, so that the position of the code
bit will change. As a result, the polarity judging umt 23
changes the bit which 1s to be judged in accordance with the
indication in the positive conversion-saturation calculation
width field of the positive conversion saturation calculation
instruction “MCSST™.

When the indication 1n the positive conversion-saturation
calculation width field of the positive conversion saturation
calculation instruction “MCSST” 1s for a 24-bit uncoded
value, the polarity judging unit 23 judges whether the 24
bit from the LSB side 1s “ON”, while when the indication in
the positive conversion-saturation calculation width field of
the positive conversion saturation calculation instruction
“MCSST” 1s for a 16-bit uncoded value, the polarity Judgmg
unit 23 judges whether the 16 bit from the LSB side 1s
“ON”. Similarly, when the indication in the positive
conversion-saturation calculation width field of the positive
conversion saturation calculation instruction “MCSST™ 1s
for an 8-bit uncoded value, the polarity judging unit 23
judges whether the 8” bit from the LSB side is “ON”. This
judgement refers to a judgement of whether the sum-product
value held by the sum-product result register 6 1s expressed
as a negative number when values are expressed 1n accor-
dance with the indication given in the positive conversion-
saturation calculation width field of the positive conversion
saturation calculation mstruction “MCSST1”. When the
value 1s a negative value, the polarnty judging unit 23 outputs
the logic value “1” to the multiplexer 24. Conversely, when
the value 1s zero or a positive value, the polarity judging unit
23 outputs the logic value “0” to the multiplexer 24.

The zero generator 25 generates the integer “0x0000__
0000 when the decoded instruction 1s a positive conversion
saturation calculation instruction “MCSST”.

US RE39,121 E

15

The multiplexer 24 selects and outputs one of the maxi-
mum value generated by the constant generator 21, the zero
value “0x0000__0000” generated by the zero generator 25,
and the sum-product value held by the sum-product result
register 6, 1n accordance with the combination of the logic
values outputted by the comparator 22 and the polarity
judging unit 23.

If the logic value outputted by the comparator 22 1s set as
the logic value x and the logic value outputted by the
polarity judging unit 23 1s set as the logic value vy, the
correspondence between the combinations of these logic
values and the output value of the multiplexer 24 can be
expressed by the truth table shown in FIG. 9. It should be
noted here that the example truth table shown in FIG. 9
shows the case when the maximum value outputted by the
constant generator 21 “0x0000__00FE™.

As shown i FIG. 9, when the output value of the
comparator 22 1s “0” and the output value of the polarity
mudging unit 23 1s “0”, the multiplexer 24 outputs the held
value of the sum-product result register 6.

When the output value of the comparator 22 1s “1”” and the
output value of the polarity judging unit 23 i1s “07, the
multiplexer 24 outputs the maximum value “0x0000__00FEF”
generated by the constant generator 21.

When the output value of the comparator 22 1s “0” and the
output value of the polanty judging unmit 23 1s “17, the
multiplexer 24 outputs the zero value “0x0000__0000” gen-
crated by the zero generator 25. When the output value of the
comparator 22 1s “1” and the output value of the polarity
mudging unit 23 1s “17, the multiplexer 24 outputs the zero
value “0x0000__0000” generated by the zero generator 25.

FIGS. 10 and 11 show the data flows in the operation
execution apparatus 14. FIG. 10 shows the case when the
sum-product function multiplication instruction “MACCB
D0.D1” 1s decoded by the decoder 13, indicating the data
register D0 as the multiplier and the data register D1 as the
multiplicand. In this case, the stored value “0x0000__007F”
of the data register D0 and the stored value “0x0000__0070”
of the data register D1 stored in the register file 1 are
outputted to the first internal bus 15 and to the second
internal bus 16 to transier the values to the code extension
circuit 4 and the code extension circuit 3. The multiplication
of the 32-bit values outputted by the code extension circuit
4 and the code extension circuit 5 1s then performed by the
ALU circuit 2 (since the operation performed by the ALU
circuit 2 here 1s a multiplication, the term “multiplier” 1s
given in FI1G. 10), and the lower 325-bits “0x0000__3790” of
the 64-bit value “0X0000__0000__0000_3790” that 1s the
multiplication result are outputted to the sum-product result
register 6. Since the positive conversion saturation calcula-
tion 1nstruction “MCSST D1” 1s next decoded, the held
value of the sum-product result register 6 1s outputted to the

positive conversion saturation calculation circuit 3, where
the outputted value “0x0000__3790” 1s judged to exceed the
maximum value “0x0000__00FF” for an uncoded 8-bit
value, so that the maximum value “0x0000_OOFF” for an
uncoded 8-bit value 1s outputted to the data bus 18 and
stored 1n the data register D1 1n the register file 1.

In FIG. 11, the sum-product function multiplication
instruction “MACCB D0,D1” which indicates the data reg-
ister D0 and the data register D1 as the read addresses for the

multiplier and the multiplicand has been decoded by the
decoder 13. As a result, the held value “0x0000__007F” of

the data register D0 and the held value “0x0000__0080” of

the data register D1 stored in the register file 1 are trans-
ferred to the code extension circuit 4 and the code extension
circuit 5 via the first internal bus 15 and the second internal

10

15

20

25

30

35

40

45

50

55

60

65

16

bus 16. The held value “0x0000__0080” of the data register
D1 1s an 8-bit negative number, so that the code extension
circuit 5 extends the eighth bit of the held value “0x0000__
0080 of the data register D1 to the ninth through thirty-
second bits, and so outputs the value “OxFFFF__FF80” to the
ALU circuit 2.

The multiplication of the 32-bit held value “0x0000__
007F” of the data register D0 outputted by the code exten-
sion circuit 4 and the 32-bit value “OxFFFF_ FF80”
extended by the code extension circuit 3 1s performed by the
code extension circuit 5, and the lower 32-bits “OxFFF.
CO80” of the 64-bat multlphcatlon result “OxFFFF__FFFI]
FFFF__CO080” are outputted to the sum-product result reg-
1ster 6. When the positive conversion saturation calculation
instruction “MCSST” has been decoded, the sum-product
result register 6 outputs its held value to the positive
conversion saturation calculation circuit 3, which judges that
the 32-bit value “OxFFFF__(CO080” 15 a coded 16-bit negative
number. As a result, the positive conversion saturation
calculation circuit 3 outputs the 8-bit zero value “0x0000__
0000 to the data bus 18 so that this zero value 1s held by the
data register D1 in the register file 1.

The following 1s a description of the operation of the
processor constructed as described above. A transter mnstruc-
tion 1ncluded 1n the matrix multiplication subroutine 1s first
written into the mstruction bufler of the decoder 13 by the
instruction fetch circuit 12 and the struction “MOV(AQ),
D0 1s decoded by the decoder 13. Thus instruction 5:*MOV
(A0),D0” 1s a transier instruction that indicates a data read
for the RAM 10 using indirect register referencing that
indicates the read address using the address register A0. As
a result, an element on the first row and first column (F11)
of the compressed data matrix F1j that 1s composed of 8*8
matrix elements stored in the RAM 10 1s transferred to the
data register DO0. The following instruction, instruction
6:“MOV(A1),D0” similarly writes an element on the first
row and first column (G11) of the coetlicient data matrix Gj1
that 1s composed of 8*8 matrix elements into the data
register D1 1n the register file 1 via the data bus 18.

The next instruction 1n the matrix multiplication subrou-
tine 1s nstruction 7 which 1s the sum-product function
multiplication instruction “MACCB D0,D1”. This 1s fetched
by the nstruction fetch circuit 12 and written into the
instruction bufler of the decoder 13, before being decoded
by the decoder 13. When the decoder 13 decodes the
sum-product function multiplication instruction “MACCB
D0,D17, the held values F11 and G11 of the data register DO

and the data register D1 are transierred to the first internal
bus 15 and the second internal bus 16.

When the sum-product function multiplication instruction
“MACCB D0,D1” 1s decoded, the first internal bus 15 and
the second internal bus 16 transfer the held values F11 and
(11 of the read address registers indicated by the first and
second operands of the sum-product function a multiplica-
tion 1nstruction “MACCB D0.D1”. These values are then
outputted by the code extension circuit 4 and the code
extension circuit 5 into the ALU circuit 2, where the
multiplication of the held value of the data register D0 and
the held value of the data register D1 1s performed. The
multiplication result “F11*G11” 1s then transierred to the
sum-product result register 6 and 1s held by the sum-product
result register 6.

Once the sum-product result register 6 has stored the
multiplication result “F11*G11”, a branch 1s performed to
the label “LP1__NEXT” due to the execution of instruction
8: “CMP NUMBER,D2” and “instruction 9:“BCS LP1__
NEXT”, so that the instruction 13:“ADD 1,D2” 1s decoded.

.L_] g

US RE39,121 E

17

This 1nstruction 13:“ADD 1,D2” increments the number of
iterations. After instruction 13:*“ADD 1,D2”, instruction
14:“ADD 1,A0” and struction 15:“ADD ROW,A1” are
executed, so that read addresses of the ROM 11 are
advanced to the next column and row. As a result of the
incrementing in these instructions, the read address of the
compressed data is advanced to the 2"¢ row, 1** column
clement and the read address of the coeflicient data Gy 1s
advanced to the 1%’ column, 2”¢ row element.

After the read addresses have been incremented, the
tollowing instruction, mstruction 16:“BRALP1__ START™ 1s
decoded. The branch address of instruction 16:“BRA LP1__
START” 1s instruction 5:“MOV(A0),D0” which has label
“LP1__START” attached, so that the branch 1n instruction 16
has 1nstruction 5:“MOV(A),D0” and instruction 6:“MOV
(A1),D1” re-executed.

As a result of these transfer instructions, the 27 row, 1*
column element F21 in the compressed data in the RAM 10
is transferred into the data register D0, while the 1°* row, 2”4
column element G12 1n the compressed data 1s transferred
into the data register D1 1n the register file 1 via the data bus
18.

In the matrix multiplication subroutine, these transier
instructions are followed by the sum-product function mul-
tiplication istruction “MACCB D0,D1”, so that this sum-
product function multiplication 1instruction “MACCB
D0,D1” 1s written into the internal bufler of the decoder 13
by the instruction fetch circuit 12 and 1s decoded by the
decoder 13. As a result of the decoding, the held values of
the data register D0 and the data register D1 are transierred
to the first internal bus 15 and the second internal bus 16.

When the sum-product function multiplication 1nstruction
“MACCB D0,D1” 1s decoded, the first internal bus 15 and
the second internal bus 16 transier the held values F11 and
(11 of the read address registers indicated by the first and
second operands of the sum-product function multiplication
instruction “MACCB D0,D1”. These values are the matrix
clements G12 and F21, so that the multiplication of the held
value G12 of the data register D0 and the held value F21 of
the data register D1 i1s performed by the ALU circuit 2. At
this point, the sum- product result register 6 holds the value
“G11*F11” which 1s the total of the elemental operations
thustar performed in the sum-product calculation. When the
sum-product function multiplication istruction “MACCB
D0,D1” 1s decoded, the sum-product result register 6 outputs
the held value onto the path P1.

Since the held value of the same-product result register 6
1s outputted onto the path P1, the multiplication result
“G12*F21” of the data register D0 and the data register D1
1s added to the held value of the sum-product result register
6 on the path P1. The result of the addition 1s then outputted
onto the path P2.

Once the addition of the held value “G11*F11” and the
multiplication result “G12*F21” has been pertormed by the
ALU circuit 2, the addition result “G11*F11+G12*F21” 1s
outputted onto the path P2, so that the sum-product result
register 6 holds this addition result as the sum-product value
“G11*F11+G12*F21”.

The processing described above 1s repeated for all of the
clements on the first row of the coeflicient data Gq1 and all
of the elements 1n the first column of the compressed data

F1j, so that the sum-product value 1s calculated for
“G11*F11+G12*F21+G13*F31+G14*F41+G15*F51+

G16*F61+G17*F71+G18*F81” and stored in the sum-

product result register 6. Here, should there be a bit error
during the transter of the element 31 from the RAM 10, there
1s the risk that the sum-product value held by the sum-

10

15

20

25

30

35

40

45

50

55

60

65

18

product result register 6 will be a value (such as “0x0000__
78FE”) that clearly exceeds the range of values that can be
reproduced by the reproduction-related hardware.

After this, the next loop statement 1n the ROM 11, the
positive conversion saturation calculation instruction
“MCSST D17, 1s written into the internal buffer of the
decoder 13, this positive conversion saturation calculation
istruction “MCSST D1 1s decoded by the decoder 13.

When the positive conversion saturation calculation
instruction “MCSST D1” 1s decoded by the decoder 13, the
held value “0x000__78FF” of the sum-product result register
6 1s outputted onto the path P1. After this value has been
outputted to the P1, the comparator 22 i1s activated by the
decoder 13. The comparator 22 compares the held value of
the sum-product result register 6 with the 32-bit coded
integer “0Ox0000__00FF” to see which 1s larger. Here, since
the held value of the sum-product result register 6 “0x000__
78FF” exceeds the 32-bit coded integer 0x0000__0O0FF”, the
comparator 22 outputs the logic value “1” to the multiplexer
24.

The polarity judging unit 23 judges whether the 16” bit
counting from the LSB side in the value held by the
sum-product result register 6 1s “ON”. This judgement
equates to a judgement as to whether the held sum-product
value of the sum-product result register 6 1s a negative
number. The held value “0x000__78FF” expressed 1n binary
1s “0000__0000 0000_0000 0111__1000 1111_11117, so
that the 16” bit counting from the LSB side can be seen to
be “0”. As a result, the logic value “0” 1s outputted to the
multiplexer 24.

In the present case, the maximum value “0x0000__O0OFEF”
and the zero value “0x0000__0000” are generated by the
constant generator 21 and the zero generator 25, and the
multiplexer 24 selectively outputs one of the maximum
value, the zero value, and the held value of the sum-product
result register 6 in accordance with the combination of the
logic values outputted by the comparator 22 and the polarity
judging unit 23. In the present example, the output of the
comparator 22 1s “1” and the output-of the polarity judging
umt 23 1s “0”, so that the multiplexer 24 outputs the
maximum value “0x0000__00FF” to the data bus 18.

According to control by the decoder 13, the selected
maximum value outputted to the data bus 18 1s transierred
to the data register D1 that 1s indicated by the operand of the
positive conversion saturation calculation instruction
“MCSST D17, and 1s held by the data register D1. This held
value 1s then written into the RAM 10 as the element H11 for
the 1% row, 1°* column of the multiplication result matrix
Hij.

When the sum-product has been completed for all of the
clements 1n the first column of the compressed data matrix
F11 and the elements on the first row of the coeflicient matrix
(371, the sum-product processing 1s performed for the ele-
ments i the second column of the compressed data matrix

F11 and the elements on the first row of the coellicient matrix
Gj1. When the calculation of “G11*F12+G12*F22+

G13*F32+G14*F42+G15*F52+G16*F62+G17*F72+
G18*F82” has been completed, the sum-product value 1is
held by the sum-product result register 6.

Here, 11 there 1s a bit error when transferring the element
F32 from the RAM 10, the sum-product value held by the
sum-product result register 6 ends up at a negative value
“Ox0000__86FF” that cannot be reproduced by the
reproduction-related hardware.

After this, the next loop statement in the ROM 11, the
positive conversion saturation calculation instruction
“MCSST D17, 1s written into the internal bufier of the

US RE39,121 E

19

decoder 13, this positive conversion saturation calculation
istruction “MCSST D1” 1s decoded by the decoder 13.

When the positive conversion saturation calculation
instruction “MCSST D1” 1s decoded by the decoder 13, the
held value “0x000__86FF”” of the sum-product result register
6 1s outputted onto the path P1. After this value has been
outputted to the P1, the comparator 22 1s activated by the
decoder 13. The comparator 22 compares the held value of
the sum-product result register 6 with the 32-bit coded
integer “0x0000__00FF” to see which 1s larger. Here, since
the held value of the sum-product result register 6 “0x000__
86FF” exceeds the 32-bit coded integer “0x0000__00FF”,
the comparator 22 outputs the logic value “1” to the multi-
plexer 24.

The polarity judging unit 23 judges whether the 16 bit
counting from the LSB side in the value held by the
sum-product result register 6 15 “ON”. This judgement
equates to a judgement as to whether the held sum-product
value of the sum-product result register 6 1s a negative
number. The held value “0x000__86FF” expressed in binary
1s “0000__0000 0000__0000 1000_0110 1111_11117, so
that the 16™ bit counting from the LSB side can be seen to
be “1”. As a result, the logic value “1” 1s outputted to the
multiplexer 24.

In the present case, the maximum value “0x0000__00FEF”
and the zero value “0x0000__0000” are generated by the
constant generator 21 and the zero generator 25, and the
multiplexer 24 selectively outputs one of the maximum
value, the zero value, and the held value of the sum-product
result register 6 in accordance with the combination of the
logic values outputted by the comparator 22 and the polarity
judging unit 23. In the present example, the output of the
comparator 22 1s “1” and the output of the polarity judging
unit 23 1s “17, so that the multiplexer 24 outputs the zero
value “0x0000__0000” to the data bus 18.

According to control by the decoder 13, the selected zero
value outputted to the data bus 18 1s transierred to the data
register D1 that 1s indicated by the operand of the positive
conversion saturation calculation instruction “MCSST D1,
and 1s held by the data register D1. This held value 1s then
written into the RAM 10 as the element H12 for the 1% row,
2" column of the multiplication result matrix Hij.

By repeating the above processing and writing in the
remaining elements 1 the matrix multiplication table, the
matrix multiplication table 1s written 1nto the RAM 10, and
by using the result of this matrix multiplication as the result
of an approximation calculation of an mverse DCT, the
decompression processing ol compressed data can be per-
formed.

FIG. 12B shows the execution of the matrix multiplica-
tion subroutine according to a pipeline process composed of
five stages which namely are an instruction fetch stage, an
istruction decoding stage, an execution stage, a memory
access stage, and a register write stage. When 1nstruction
10:“MCSST D17 1s fetched by the decoder 13, the preceding
instruction 9:“BCS LP1__NEXT” will be in the decode
stage. Since 1n instruction 8:“CMP NUMBER,D2” a calcu-
lation 1s performed to subtract the total iteration number
“NUMBER” from the number of iterations held by the data
register D2, 1f the carry flag 1s set at “ON” as a result of the
subtraction, a branch 1s performed to instruction 13:“ADD
1,D2” so that the execution stage of 1nstruction 10:MCSST
D1 1s stopped.

On the other hand, when the carry flag 1s set at “OFF”, the
decoding stage of instruction 10:“MCSST D1” 1s performed
at the same time as the execution stage of instruction 9:“BCS
LP1__NEXT”. After this, the execution stage of instruction

10

15

20

25

30

35

40

45

50

55

60

65

20

10:“MCSST D1” 1s performed at the same time as the
memory access stage of instruction 9:“BCS LP1__NEXT”.
The positive conversion saturation calculation processing
for the matrix multiplication result of one row of elements
by one column of elements 1s performed when the nstruc-
tion located before 1t 1s in the memory access stage, so that
the processing can be seen to be performed without confu-
sion 1n the pipeline.

In this way, even if the processor provided in the positive
conversion saturation calculation circuit 3 needs to perform
the matrix multiplication of one row of elements and one
column of elements with a very high frequency, the positive
conversion saturation calculation processing 1s expressed 1n
the machine language program as a single instruction, so that
there 1s no confusion in the pipeline. As a result, the
processor can operate at high speed.

With the present embodiment described above, the posi-
tive conversion saturation calculation processing of sum-
product values 1s performed by subjecting the sum-product
value accumulated 1n the sum-product result register 6 to
positive conversion saturation calculation processing, so that
application programs for matrix approximation calculations
required by decompression processing of video data and
audio data can be easily coded using a remarkably small
code size. Since there 1s a large reduction 1n code size, a
large reduction-can be made in the amount of ROM that
needs to be installed to store the program.

The positive conversion saturation calculation processing,
for the sum-product value 1s such that the positive correction
processing and the saturation calculation processing are
performed at the same time for the held value of the
sum-product result register 6, so that the processing 1s
performed at high speed. The positive conversion saturation
calculation processing needs to be performed every time one
row of elements 1s multiplied by one column of elements so
that when 8 rows are multiplied by 8 rows, 64 executions of
the positive conversion saturation calculation processing are
necessary. However, since the positive correction processing
and the saturation calculation processing are performed
smoothly, each execution of the positive conversion satura-
tion calculation processing 1s completed 1n a very short time.
If the positive conversion saturation calculation processing
1s completed 1n a short time, the decompression processing
for 1image data and audio data that require the matrix
multiplication of a large amount of data can be performed at
high speed.

Since the positive conversion saturation calculation pro-
cessing performed by the positive conversion saturation
calculation circuit 3 does not include branch instructions, the
processor can perform high-speed pipeline processing with-
out the risk of confusion 1n the pipeline. By executing such
a high-performance pipeline, matrix multiplication can be
performed at an improved speed.

Since positive conversion saturation calculation process-
ing 1s performed without nstalling a specialized circuit for
matrix multiplication, there 1s no loss 1n versatility for the
processor. Accordingly, should a user wish to control the
processor according to an original decompression process-
ing program, this 1s still possible.

Applied Example for the First Embodiment

In this example, one of the data registers D0 to D2 1s
indicated as the read address for the positive conversion
saturation calculation processing according to the positive
conversion saturation calculation instruction “MCSST”,
with the sum-product result register 6 being indicated as the
storage address for the calculation. In this example, the
instruction format of the positive conversion saturation

US RE39,121 E

21

calculation instruction “MCSST” 1s shown 1 FIG. 13. As
shown 1 FIG. 13, the positive conversion saturation calcu-
lation instruction “MCSST” has a read address indication
field which can be set a value which 1s one of “117, “00”,
“10”, and 017, thereby indicating the sum-product result
register 6, the data register D0, the data register D1, or the
data register D2.

By wrting one of “117, “00”, “10”, and “01” into the
storage address indication field, one of the sum-product
result register 6, the data register D0, the data register D1,
and the data register D2 can be indicated as the storage
address.

The 1nstruction format of this positive conversion satu-
ration calculation instruction “MCSST” has been amended
so the internal construction of the operation execution
apparatus 14 shown 1n FIG. 4 1s also slightly changed, as
shown 1n FIG. 14. The changes 1n the operation execution
apparatus 14 shown in FIG. 14 are the addition of the paths
C6 to C8 and the selector 30.

The path C6 1s a path for transferring the held value of the
data register D0, the data register D1, or the data register D2
on the second internal bus 16 to the positive conversion
saturation calculation circuit 3.

In the same way, the path C7 1s a path for transterring the
held value of the data register D0, the data register D1, or the
data register D2 on the first internal bus 135 to the positive
conversion saturation calculation circuit 3.

The selector 30 outputs one of the held value of the data
register DO, the data register D1, or the data register D2
transierred on the path C6 or C7, or the held value of the
sum-product result register 6 to the comparator 22 in the
positive conversion saturation calculation circuit 3 based on
an indication of the storage address field in the positive
conversion saturation calculation instruction “MCSST™.

The path C8 1s a path for transferring the processing result
of the positive conversion saturation calculation circuit 3
from the data bus 18, to which 1t has been transferred from
the positive conversion saturation calculation circuit 3 via
the path C4, to the sum-product result register 6.

By making the simple addition described above, the
functioning of the positive conversion saturation calculation
instruction “MCSST” can be extended in the present
embodiment.

Second Embodiment

The second embodiment of the present invention executes
positive conversion saturation calculation processing for a
multiplication result when multiplication 1s performed by
the ALU circuit 2. To perform positive conversion saturation
calculation processing for a multiplication result, the second
embodiment 1s constructed as shown 1n FIG. 15, so that the
positive conversion saturation calculation circuit 3 1s con-
nected via the path P3 to the output stage of the ALU circuit
2 to enable the positive conversion saturation calculation
circuit 3 to perform positive conversion saturation calcula-
tion processing on the multiplication results outputted by the
ALU circuit 2. In order to activate the positive conversion
saturation calculation circuit 3, the decompression process-
ing program stored in the ROM 11 of the present embodi-
ment also includes the “MULBSST Dm,Dn” instruction
described below.

A “MULBSST Dm,Dn” instruction 1s a multiplication
instruction that indicates that the multiplication result should
be turther subjected to positive conversion saturation cal-
culation processing. In other words, multiplication 1s per-
tormed using the lower 8 bits of the Dm register and the Dn
register, and the positive conversion saturation calculation
circuit 3 1s then instructed to perform positive conversion

10

15

20

25

30

35

40

45

50

55

60

65

22

saturation calculation processing on the coded 16-bit mul-
tiplication result.

FIG. 16 shows the instruction format of the positive
conversion saturation calculation function multiplication
instruction “MULBSST Dm,Dn”. As shown 1n FIG. 16, this
positive conversion saturation calculation function multipli-
cation instruction “MULBSST Dm.,Dn” includes a 1-bit
field indicating the calculation content of an eclemental
operation, a 2-bit field indicating the read address of the
multiplier, a 2-bit field indicating the read address of the
multiplicand, and a 2-bit field indicating the storage address
for the result of the positive conversion saturation calcula-
tion processing.

By writing one of “017, *“10”, and *“11” into the positive
conversion saturation calculation processing field, it 1s pos-
sible to specily that the positive conversion saturation cal-
culation processing with a rounding width of a 24-bat
positive number, a 16-bit positive number, or an 8-bit
positive number.

By writing one of “00”, “017, “10”, and “11” into the
multiplier read address indicating field and the multiplicand
read address indicating field, any of the data register D0, the
data register D1, the data register D2, and the sum-product
result register 6 can be indicated as the read address register
for the multiplier F11 and the multiplicand Gn.

When executing the positive conversion saturation calcu-
lation function multiplication instruction “MULBSST
Dm,Dn”, the register file 1 outputs the held values of the
registers with the register names indicated by the first and
second operands. The ALU circuit 2 then multiplies the
values of registers Dm and Dn and outputs the multiplication
result. The same positive conversion saturation calculation
processing as 1n the first embodiment 1s then performed on
the multiplication result by the positive conversion satura-
tion calculation circuit 3, and the result of the positive
conversion saturation calculation processing 1s stored in the
register 1indicated by the second operand of the positive
conversion saturation calculation function multiplication
istruction.

The following 1s an explanation of the operation of the
above processor based on a matrix multiplication subrou-
tine. First, a transfer instruction included in the matrix
multiplication subroutine 1s written into the instruction
bufler of the decoder 13 by the instruction fetch circuit 12,
and the fetched transfer instruction 1s decoded by the
decoder 13. As a result, the first row, first column element
(F11) of the compressed data F11 which 1s composed of 8*8
matrix elements stored in the RAM 10 1s transferred in the
data register D0 and the first row, first column element (G11)
of the coellicient data Gj1 which 1s also composed of 8*8
matrix elements 1s transferred into the data register D1.

In the matrix multiplication subroutine, the positive con-
version saturation calculation function multiplication
instruction “MULBSST DO0,D1” follows the transfer
instruction, so that this instruction 1s next fetched by the
instruction fetch circuit 12 and written 1nto the instruction
bufler of the decoder 13, before being decoded by the
decoder 13. When the decoder 13 decodes the positive
conversion saturation calculation function multiplication
instruction “MULBSST D0,D1”, the values F11 and G11
held by the data register D0 and the data register D1 are
transferred to the first internal bus 15 and the second internal
bus 16.

When the positive conversion saturation calculation func-
tion multiplication instruction “MULBSST D0,D1” 1s
decoded, the held values F11, G11 of the read address

instructions indicated by the first and second operands of the

US RE39,121 E

23

positive conversion saturation calculation function multipli-
cation instruction “MULBSST D0,D1” are transferred onto
the first internal bus 15 and the second internal bus 16, so
that held value of the data register D0 and the held value of
the data register D1 are multiplied by the ALU circuit 2, with
the multiplication result being outputted onto the path P1.
Here, however, a bit error occurs for F11, so that the
multiplication result becomes “0Ox0000__78FF”’, which 1s a
value that cannot be expressed using one byte.

When the decoder 13 has decoded the positive conversion

saturation calculation function multiplication 1nstruction
“MULBSST D0.D1”, the decoder 13 also activates the

positive conversion saturation calculation circuit 3. As a
result, the comparator 22 compares the magnitude of the
held value of the sum-product result register 6 with the
32-bit coded nteger “0x0000__00FF”. Here, since the held
value of the sum-product result register 6 exceeds the
maximum value “0x0000__00FF” for the held value of the

sum-product result register 6, the comparator 22 outputs the
logic value “1” to the multiplexer 24.

The polarity judging unit 23 judges whether the sixteenth
bit of the value held by the sum-product result register 6 1s
“ON”. This refers to a judgement as to whether the value
held by the sum-product result register 6 1s a negative
number. When expressed in binary, the held number
“Ox0000__78FF” 1s “0000_0000 0000_0000 0111__1000
1111_11117, so that the sixteenth bit can be seen to be “1”.
As a result, the polarity judging unit 23 outputs the logic
value “0” to the multiplexer 24.

In the present case, the constant generator 21 generates
the maximum value “0Ox0000__00FF” and the zero generator
25 generates the zero value “0x0000__0000”. The multi-
plexer 24 selects and outputs one of the maximum value, the
zero value, and the held value of the sum-product result
register 6 1 accordance with the combination of the logic
values outputted by the comparator 22 and the polarity
judging unit 23. In the present example, the output of the
comparator 22 1s “1” and the output of the polanty judging
unit 23 1s “0”, so that the multiplexer 24 outputs the
maximum value “0x0000__00FF” generated by the constant
generator 21 to the data bus 18.

According to control by the decoder 13, the value out-
putted to the data bus 18 1s transferred to the data register D0
indicated by the operand of the positive conversion satura-
tion calculation instruction “MULBSST D07, and is held by
the data register DO.

By means of the second embodiment described above, a
calculation instruction that performs saturation calculation
processing and positive conversion processing on the coded
calculation result 1s provided, so that three types of process-
ing composed of calculation processing, positive conversion
processing, and saturation calculation processing can be
performed in one step, meaning that positive conversion
saturation calculation processing 1s performed 1n the same
step as the calculation processing. As a result, the eflective
number of execution steps required by positive conversion
saturation calculation processing 1s reduced to zero.

It should be noted here that this second embodiment has
been described as performing a rounding process for an
uncoded 8-bit width, although the maximum number can be
freely set at any positive integer.

Although the present invention has been fully described
by way of examples with reference to accompanying
drawings, it 1s to be noted that various changes and modi-
fications will be apparent to those skilled in the art.
Therefore, unless such changes and modifications depart
from the scope of the present invention, they should be
construed as being included therein.

10

15

20

25

30

35

40

45

50

55

60

65

24

What 1s claimed 1s:
1. A processor that decodes and executes instructions,

the processor comprising:

a source register configured to store a signed m-bit
integer;

a destination register configured to store an unsigned s-bit
register,;

a detecting unit for detecting whether an instruction to be
decoded 1s a predetermined instruction; and

a rounding unit for rounding, when the detecting unit 1s
detecting that the instruction 1s the predetermined
instruction, [a] #ke signed m-bit integer [stored at an
operand designated by the predetermined instruction]
to a value expressed as an unsigned s-bit iteger and
storing the unsigned s-bit integer in the destination
register wherein s 1s less than m,

wherein a bit length of the destination vegister where the
unsigned s-bit integer is stoved is smaller than a bit
length of the source rvegister where the signed m-bit
integer is stored.

2. The processor of claim 1, wherein the predetermined
instruction includes a transier address of a value rounded by
the rounding unit, and the rounding umt includes:

a first judging circuit for judging, when the detecting unit
1s detecting that the instruction is the predetermined
instruction, whether a signed m-bit integer stored at the
operand 1s a negative number; and

a second judging circuit for judging when the detecting
unit 1s detecting that the instruction i1s the predeter-
mined instruction, whether a signed m-bit integer
stored at the operand exceeds a maximum value
expressed as an unsigned s-bit integer, and

wherein the processor further comprises:

transierring unit for transferring one of a first predeter-
mined value expressed as an unsigned s-bit integer a
second predetermined value expressed as an unsigned
s-bit mteger, and a value stored at the operand to the
transier address for a rounding result, based on the
combination of respective judging results of the first
judging circuit and the second judging circuit.

3. The processor of claim 2,

wherein the transferring unit transiers a value zero
expressed as an s-bit integer as the first predetermined
value to the transier address for the rounding result,
when the first judging circuit judges that the signed
m-bit mteger stored at the operand 1s a negative num-
ber:

wherein the transierring unit transfers the maximum value
expressed as an unsigned s-bit integer as a second
predetermined value to the transfer address for the
rounding result, when the second judging circuit judges
that the signed m-bit integer stored at the operand
exceeds the maximum value expressed as an unsigned
s-bit integer, and

wherein the transferring unit transfers the value stored at
the operand to the transfer address for the rounding
result, when the first judging circuit judges that the
signed m-bit integer stored at the operand 1s not a
negative number and the second judging circuit judges
that the signed m-bit integer stored at the operand does
not exceed the maximum value.

4. The processor of claim 3,

wherein the first judging circuit includes a judging unit for
judging whether a sign bit of an s-bit integer i1n the
signed m-bit integer stored at the operand 1s on or off,
and

US RE39,121 E

25

wherein the second judging circuit includes a calculator
for subtracting a maximum positive value for an s-bit
integer from the signed m-bit integer stored at the
operand.
5. The processor of claim 4, wherein m-bit 1s 32 bits in
s1ze and the predetermined 1nstruction includes an indication
field indicating one of 8 bits, 16 bits, and 24 bits as s-bit,

wherein the judging unit of the first judging circuit
examines one of an e1ghth, sixteenth, and twenty-fourth
bit counted from a least significant bit side as the sign
bit, 1n accordance with a content of the indication field
included in the predetermined instruction, and

wherein the second judging circuit includes a generating
unit for generating one of an unsigned 8-bit integer, and
an unsigned 16-bit integer, and an unsigned 24-bit
integer, 1n accordance with a content of the indication
field included 1n the predetermined instruction.

6. The processor of claim 2, further comprising a special-
1zed register and a calculation unit for performing a calcu-
lation 1n the 1nstruction sequence and adding a calculation
result to a value held by the specialized register,

wherein the predetermined 1nstruction designates the spe-
cialized register as the operand, and

the transierring unit transfers the value stored in the
specialized register to the transier address for the
rounding result, when the first judging circuit judges
that a signed m-bit 1integer stored in the specialized
register 1s not a negative number and the second
judging circuit judges that the signed m-bit integer
stored 1n the specialized register does not exceed the
maximum value.

7. The processor of claim 6, further comprising a register

file composed of a plurality of general registers,

wherein the predetermined instruction designates one of
the general registers in the register file as a transier
address for a rounding result, and

wherein the transferring unit transfers one of a first
predetermined value express as an unsigned s-bit
integer, a second predetermined value expressed as an
unsigned s-bit integer, and a value stored 1n the spe-
cialized register to the general register being designated
by the predetermined instruction.

[8. A processor that decodes and executes instructions,

the processor comprising:

first detecting unit for detecting whether an instruction to
be decoded 1s an mstruction performing a calculation;

second detecting unit for detecting whether an instruction
to be decoded 1s an struction performing both a
calculation and a rounding of the calculation result;

calculating unit for performing, when the first detecting
umt detects that the instruction performs a calculation,
a calculation using a signed m-bit integer; and

rounding unit for rounding, when the second detecting

umt detects the 1nstruction performing both a calcula-

tion and a rounding, a result of the calculation per-

formed with a signed m-bit integer to a value expressed

as an unsigned s-bit integer wherein s is less than m.}

[9. The processor of claim 8, wherein the instruction

performing both a calculation and a rounding further

includes an indication of a transfer address for a rounding
result,

and wherein the rounding unit includes:

a first judging circuit for judging, when the second
detecting unit detects the 1nstruction performing both a
calculation and a rounding, whether the calculation
result of the calculating unit 1s a negative number; and

10

15

20

25

30

35

40

45

50

55

60

65

26

a second judging circuit for judging, when the second
detecting unit detects that the instruction performing
both a calculation and a rounding, whether the calcu-
lation result of the calculating unit exceeds a maximum

value expressed as an unsigned s-bit integer, and
wherein the processor further comprises:

transferring unit for transferring one of a first predeter-
mined value expressed as an unsigned s-bit integer, a
second predetermined value expressed as an unsigned
s-bit integer, and the calculation result of the calculat-
ing unit to the transfer address, based on the combina-
tion of respective judging results of the first judging
circuit and the second judging circuit.}

[10. The processor of claim 9,

wherein the transferring unit transiers a value zero
expressed as an s-bit integer as the first predetermined
value to the transfer address, when the first judging
circuits judges that the calculation result of the calcu-
lating unit 1s a negative number;

wherein the transferring unit transier the maximum value
expressed as an unsigned s-bit integer as the second
predetermined value to the transfer address, when the
second judging circuit judges that the calculation result
of the calculating unit exceeds the maximum value
expressed as an unsigned s-bit integer; and

wherein the transferring unit transfers the calculation
result of the calculating unit to the transier address for
the rounding result, when the first judging circuit
judges that the calculation result of the calculating unit
1s not a negative number and the second judging circuit
judges that the calculation result of the calculating unit
does not exceed the maximum value.]

[11. The processor of claim 10, wherein the first judging
circuit includes a judging unmit for judging whether a sign bit
of the calculation result of the calculating unit 1s on or off,
and

wherein the second judging circuit includes a calculator
for subtracting a maximum positive value for an
unsigned s-bit integer from the calculation result of the
calculation unit.}

[12. The processor of claim 11, wherein m bits is 32 bits
in size and the correction instruction includes an indication

field imndicating one of 8 bits, 16 bits, and 24 bits as s bits,

wherein the judging unit of the first judging circuit

examines one of an e1ghth, sixteenth, and twenty-fourth

bit from a least significant bit as the sign bit, 1n

accordance with a content of the indication field
included 1n the correction instruction, and

wherein the calculator includes a generating unit for
generating one ol an unsigned 8-bit integer, an
unsigned 16-bit integer, and an unsigned 24-bit integer,
in accordance with a content of the indication field
included in a correction instruction.}
[13. The processor of claim 12, further comprising a
register file composed of a plurality of general registers,

wherein each calculation instruction designates one of the
general registers 1n the register file as a transfer address
for a rounding result.}

[14. A machine readable medium storing a program that
enables a processor for executing a rounding process com-
prising:

detection step for directing the processor for detecting

whether an instruction to be decoded by the processor
1s a predetermined instruction; and

rounding step for directing the processor for rounding a
signed m-bit integer stored at an operand designated by

US RE39,121 E

27

the predetermined instruction to a value expressed as an
unsigned s-bit integer wherein s is less than m.]
[15. A program recording medium that enables a proces-
sor to decode and execute 1nstructions comprising:

first direction for directing the processor to detect whether
an 1nstruction to be decoded 1s an instruction for
performing a calculation;

second direction for directing the processor to detect
whether an instruction to be decoded 1s an 1nstruction
performing both a calculation and a rounding of the
calculation result;

third direction for directing the processor to perform,
when the processor detects that the istruction performs
a calculation, a calculation using a signed m-bit integer;
and

fourth direction for directing the processor, when the
processor 1s detecting an instruction performing both a
calculation and a rounding, for rounding a result of the
calculation performed with a signed m-bit integer to a
value expressed as an unsigned s-bit integer wherein s
is less than m.}

[16. The program recording medium of claim 15 further
including fifth direction for directing the processor to des-
ignate a register as a transfer address for a rounding result.}

[17. The program recording medium of claim 16 wherein
the fourth direction includes:

a first judging step for judging, when the processor detects
the instruction performing both a calculation and a
rounding, whether the calculation result of the calcu-
lating means 1s a negative number; and

a second judging step for judging, when the processor

detects that the instruction performing both a calcula-
tion and a rounding, whether the calculation result of

the calculating means exceeds a maximum value
expressed as an unsigned s-bit integer, and

transferring step for directing the processor to transfer one
of a first predetermined value expressed as an unsigned
s-bit mteger, a second predetermined value expressed
as an unsigned s-bit integer, and the calculation result
of the calculating data to the transfer address, based on
the combination of respective judging results of the first
judging step and the second judging step.]

[18. The program recording medium of claim 17 wherein
the transterring step directs the processor to transier a value
zero expressed as an s-bit integer as the first predetermined
value to the transfer address, when the first judging data
judges that the calculation result of the calculating data 1s a
negative number,

wherein the transferring step directs the processor to
transier the maximum value expressed as an unsigned
s-bit integer as the second predetermined value to the
transier address, when the second judging step judges
that the calculation result of the calculating data
exceeds the maximum value expressed as an unsigned
s-bit integer; and
wherein the transierring step directs the processor to
transier the calculation result of the calculating data to
the transfer address for the rounding result, when the
first judging step judges that the calculation result of
the calculating data 1s not a negative number and the
second judging step judges that the calculation result of
the calculating data does not exceed the maximum
value.]
[19. The processor of claim 18, wherein the first judging
step directs the processor to determine whether a sign bit of
the calculation result of the calculating data 1s on or off, and

5

10

15

20

25

30

35

40

45

50

55

60

65

28

wherein the second judging step directs the processor to
subtract a maximum positive value for an unsigned
s-bit integer from the calculation result of the calcula-

tion data.}
[20. The program recording medium of claim 19, wherein
m-bit 1s 32 bits in size and the fourth direction includes an
indication field indicating one of 8 bits, and 24 bits as s bits,

wherein the first judging step directs the processor to
examine one of an eighth, sixteenth, and twenty-fourth
bit from a least significant bit as the sign bit, 1n
accordance with a content of the indication field,

wherein the second judging step directs the processor to
generate one of an unsigned 8-bit integer, an unsigned
16-bit integer, and an unsigned 24-bit integer, 1n accor-
dance with a content of the indication field.]
21. A processor that decodes and executes instructions,
the processor comprising:

a source register,
a destination register;
a positive conversion and saturation calculation unit for

a) converting a data stored in the source register to zero
and storing the zevo in the destination register when the
data is negative, and

b) saturating a data stored in the source rvegister to a
maximum value and stoving the maximum value in the
destination register when the data exceeds the maxi-
mum value,

wherein at least one of the converting and the saturating
is performed by omne instruction,

wherein a bit length of the destination register where the
zevo ov maximum value is stored is smaller than a bit
length of the source vegister where the signed m-bit
integer is stoved.

22. The processor of claim 21, further comprising:

a decoding unit for decoding an instruction including a
first instruction, whervein the first instruction designates
the data.

23. The processor of claim 22,

wherein the positive conversion and saturation calcula-
tion unit truncates the data when the data designated
by the first instruction is neither negative norv exceeds
the maximum value.

24. The processor of claim 23,

wherein the data is a signed integer, each of the maximum
value and the truncated data is an unsigned integer,
and an available vange of the signed integer entirely
includes an available range of the unsigned integer.
25. The processor of claim 24,

wherein the signed integer is m-bit long and the unsigned
integer is s-bit long, wherein s is less than m.
26. The processor of claim 22,

wherein the positive conversion and saturation calcula-
tion unit includes:

a zero genervator for outputting data having a zevo value,
and

a constant generator for outputting data of the maximum
value.
27. The processor of claim 26,

wherein the positive conversion and saturation calcula-
tion unit further includes a selection unit for

selecting the output of the zevo generator when the data
designated by the first instruction is negative, and

selecting the output of the constant genevator when the
data exceeds the maximum value.

US RE39,121 E

29
28. The processor of claim 27,

whevrein the selection unit selects one of the output of the
zervo genmerator, the output of the comnstant generator,
and a value obtained by truncating the data designated
by the first instruction, when the data is neither nega-
tive nor exceeds the maximum value.

29. The processor of claim 22,

wherein the data designated by the first instruction is a
result of executing a second instruction which is dif-
Jerent from the first instruction.

30. The processor of claim 22,

wherein the positive conversion and saturation calcula-
tion unit includes

a zero generator for outputting a value zero represented
as an s-bit integer,

a constant genervator for outputting data of the maximum
value rvepresented as an unsigned s-bit integer,

a truncating unit for truncating the data designated by the
first instruction and which is vepresented as a signed
m-bit integer, to an unsigned s-bit integer, s being less
than m, and

a selection unit for a) selecting the output of the zero
generator when the data designated by the first instruc-
tion is negative, b) selecting the output of the constant
generator when the data exceeds the maximum value,
and c) selecting the output of the truncating unit when
the data is neither negative nor exceeds the maximum
value.

31. The processor of claim 30,

whevrein the positive conversion and saturation calcula-
tion unit further includes

a polarity judging unit for detecting whether the data
designated by the first instruction and which is repre-
sented as a signed m-bit integer is negative, and

a comparator for detecting whether the data exceeds the
maximum value,

whevrein the selection unit a) selects the output of the zero
generator when the polarity judging unit has detected
that the data is negative, b) selects the output of the
constant genervatov when the comparator has detected
that the data exceeds the maximum value, and c) selects
the output of the truncating unit when neither the
polarity fudging unit has detected that the data is
negative, nov the comparator has detected that the data
exceeds the maximum value.

32. The processor of claim 21, further comprising a

calculating unit for calculating,

wherein the positive conversion and saturation calcula-
tion unit converts orv saturates data provided by the
calculating unit, and the calculating together with at
least one of the converting and the saturating are
performed by one instruction.

33. The processor of claim 32, further comprising:

a decoding unit for decoding an instruction including a
fivst instruction,

whevrein the calculating unit performs calculations on the
data designated by the first instruction.
34. The processor of claim 33,

whevrein the positive conversion and saturation calcula-
tion unit, when the data provided by the calculating
unit is neither negative nor exceeds the maximum
value, truncates the data.

35. The processor of claim 34,

wherein the data provided by the calculating unit is signed
integer and each of the maximum value and the trun-
cated data is an unsigned integer, and an available

5

10

15

20

25

30

35

40

45

50

55

30

range of the umsigned integer entively includes an
available vange of the unsigned integer.
36. The processor of claim 35,

wherein the signed integer is m-bit long and the unsigned
integer is s-bit long, wherein s is less than m.
37. The processor of claim 33,

wherein the positive conversion and saturation calcula-
tion unit includes

a zevo generator for outputting a value zero vepresented
as an s-bit integer,

a constant generator for outputting data of the maximum
value rvepresented as an unsigned s-bit integer,

a truncating unit for truncating the data provided by the
calculating unit and which is vepresented as a signed
m-bit integer, to an unsigned s-bit value, s being less
than m; and

a selection unit for a) selecting the output of the zero
generator when the data provided by the calculating
unit is negative, b) selecting the output of the constant
generator when the data exceeds the maximum value,
and c) selecting the output of the truncating unit when
the data is neither negative nor exceeds the maximum
value.

38. The processor of claim 37,

wherein the positive conversion and saturation calcula-
tion unit further includes

a polarity judging unit for detecting whether the data
provided by the calculating unit and represented as a

signed m-bit integer is negative, and

a comparator for detecting whether the data exceeds the
maximum value,

wherein the selection unit a) selects the output of the zero
generator when the polarity judging unit has detected
that the data provided by the calculating unit is
negative, b) selects the output of the constant genervator
when the comparator has detected that the data pro-
vided by the calculating unit exceeds the maximum
value, and c) selects the output of the truncating unit
when neither the polarity judging unit has detected that
the data provided by the calculating unit is negative nor
the comparator has detected that the data provided by
the calculating unit exceeds the maximum value.

39. The processor of claim 32,

wherein the positive conversion and saturation calcula-
tion unit includes

a zero genervator for outputting a data having a zevo value,
and

a constant generator for outputting data of the maximum
value.

40. The processor of claim 39,

wherein the positive conversion and saturation calcula-
tion unit further comprises a selection unit for a)
selecting the output of the zero generator when the data
provided by

the calculating unit is negative, and b) selecting the
output of the constant generator, when the data exceeds
the maximum value.

41. The processor of claim 40,

wherein the selection unit selects one of the output of the
zevo generator, the output of the comnstant generator,
and a value obtained by truncating the data provided
by the calculating unit, when the data provided by the
calculating unit is neither negative nor exceeds the
maximum value.

UNITED STATES PATENT AND TRADEMARK OFFICE
CERTIFICATE OF CORRECTION

PATENT NO. : RE 39,121 E Page 1 of 1
APPLICATION NO. : 10/366502

DATED : June 6, 2006

INVENTOR(S) : Toru Morikawa et al.

It is certified that error appears in the above-identified patent and that said Letters Patent Is
hereby corrected as shown below:

On the title page under item “(56) References Cited, FOREIGN PATENT
DOCUMENTS?”,

change “EP 0768 169 Al 4/1997" to -- EP 0 766 169 Al 4/1997 --, and
insert -- JP 9-97178 4/1997 --

Signed and Sealed this

Thirty-first Day of March, 2009

), . (.20

JOHN DOLL
Acting Director of the United States Patent and Trademark Olffice

UNITED STATES PATENT AND TRADEMARK OFFICE
CERTIFICATE OF CORRECTION

PATENT NO. : RE39,121 E Page 1 of 1
APPLICATION NO. : 10/366502

DATED : June 6, 2006

INVENTOR(S) . Toru Morikawa et al.

It is certified that error appears in the above-identified patent and that said Letters Patent is hereby corrected as shown below:

On the front page of the patent, in the section (62) please replace this section with the
following paragraph --Reissue of Patent No. 6,237,084, which is a Division of application No.
08/980.676, filed on December 1, 1997, now Pat. No. 5,974.540--.

Also, m Column 1, Lines 11-16, please replace with the following paragraph:

--More than one reissue application has been filed for the reissue of U.S. Pat. No. 6,237,084.
The reissue applications are present application No. 10/366,502, filed on February 13, 2003 (reissued
as RE 39,121 on June 6, 2006), which 1s a reissue application for U.S. Pat. No. 6,237,084; Application
No. 11/016,920, filed on December 21, 2004 (reissued as RE 43,145 on January 24, 2012), which 1s a
divisional reissue application of Application No. 10/366,502; and Application No. 13/092,453, filed
on April 22, 2011, which 1s a divisional reissue application of Application No. 11/016,920. This
application is a reissue of U.S. Patent No. 6,237,084 (filed on September 20, 1999 as Application No.
09/399,577), which 1s a divisional of Application No. 08/980,676, filed on December 1, 1997, now
Pat. No. 5.974.540.--

Signed and Sealed this
Eighteenth Day of September, 2012

P - . -
....... - - .
' - b - - - K - . - . - o o=
- . .1 . - T [N
. . - . 1 - PR . . - - -
. . - - : - = = B = .. gl
. - a - . .
. ¢ - . - - . 4 - . [. . -
. . - oe ok - . B - = - -
- gt PR [254
. . . . -
. . - .
. f - . N - F o
. L - . L] LY
. - [
'
" [

David J. Kappos
Director of the United States Patent and Trademark Office

UNITED STATES PATENT AND TRADEMARK OFFICE
CERTIFICATE OF CORRECTION

PATENT NO. : RE39,121 E Page 1 of 1
APPLICATION NO. : 10/366502

DATED : June 6, 2006

INVENTOR(S) . Toru Morikawa et al.

It is certified that error appears in the above-identified patent and that said Letters Patent is hereby corrected as shown below:

In the Claims

At column 24, claim number 1, line number 7, please change “register;” to --integer;--.

Signed and Sealed this
Seventeenth Day of May, 2016

Michelle K. Lee
Director of the United States Patent and Trademark Office

	Front Page
	Drawings
	Specification
	Claims
	Corrections/Annotated Pages

