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PIPELINED INSTRUCTION DISPATCH UNIT
IN A SUPERSCALAR PROCESSOR

Matter enclosed in heavy brackets [ ] appears in the
original patent but forms no part of this reissue specifi-
cation; matter printed in italics indicates the additions
made by reissue.

This application is a [division of Ser.] continuation of
application Ser. No. 09/583,097, filed Aug. 2, 1999, which is
itself a continuation of application Ser. No. 08/662,582, filed
Jun. 11, 1996, now U.S. Pat. No. 5,958,042.

BACKGROUND OF THE INVENTION

1. Field of the Invention

This 1nvention relates to computer architecture. In
particular, this mvention relates to the design of an instruc-
fion unit 1n a superscalar processor.

2. Discussion of the Related Art

Parallelism 1s extensively exploited in modern computer
designs. Among these designs are two distinct architectures
which are known respectively as the very long instruction
word (VLIW) architecture and the superscalar architecture.
A superscalar processor 1s a computer which can dispatch
one, two or more Instructions simultaneously. Such a pro-
cessor typically includes multiple functional units which can
independently execute the dispatched mstructions. In such a
processor, a control logic circuit, which has come to be
known as the “grouping logic” circuit, determines the
instructions to dispatch (the “instruction group™), according
to certain resource allocation and data dependency con-
straints. The task of the computer designer 1s to provide a
grouping logic circuit which can dynamically evaluate such
constraints to dispatch instruction groups which optimally
use the available resources. A resource allocation constraint
can be, for instance, in a computer with a single floating
point multiplier unit, the constraint that no more than one
floating point multiply mstruction 1s to be dispatched for any
grven processor cycle. A processor cycle 1s the basic timing
unit for a pipelined unit of the processor, typically the clock
period of the CPU clock. An example of a data dependency
constraint 1s the avoidance of a “read-after-write” hazard.
This constraint prevents dispatching an instruction which
requires an operand from a register which 1s the destination
of an write 1instruction dispatched earlier, but yet to be
unretired.

A VLIW processor, unlike a superscalar processor, does
not dynamically allocate system resources at run time.
Rather, resource allocation and data dependency analysis are
performed during program compilation. A VLIW processor
decodes the long imstruction word to provide the control
information for operating the various independent functional
units. The task of the compiler 1s to optimize performance of
a program by generating a sequence of such instructions
which, when decoded, efficiently exploit the program’s
inherent parallelism in the computer’s parallel hardware.
The hardware 1s given little control of instruction sequenc-
ing and dispatch.

A VLIW computer, however, has a significant drawback
in that 1ts programs must be recompiled for each machine
they run on. Such recompilation 1s required because the
control information required by each machine 1s encoded 1n
the 1nstruction words. A superscalar computer, by contrast,
1s often designed to be able to run existing executable
programs (i.€., “binaries”). In a superscalar computer, the
instructions of an existing executable program are dis-
patched by the computer at run time according to the
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2

computer’s particular resource availability and data integrity
requirements. From a computer user’s point of view,
because existing binaries represent significant investments,
the ability to acquire enhanced performance without the
expense of purchasing new copies of binaries 1s a significant
advantage.

In the prior art, to determine the instructions that go into
an 1nstruction group of a given processor cycle, a superscalar
computer performs the resource allocation and data depen-
dency checking tasks in the immediately preceding proces-
sor cycle. Under this scheme, the computer designer must
ensure that such resource allocation and data dependency
checking tasks complete within their processor cycle. As the
number of the functional units that can be independently run
increases, the time required for performing such resource
allocation and data dependency checking tasks grows more
rapidly than linearly. Consequently, in a superscalar com-
puter design, the ability to perform resource and data integ-
rity analysis within a single processor cycle can become a
factor that limits the performance gain of additional paral-
lelism.

SUMMARY OF THE INVENTION

The present invention provides a central processing unit
which includes a grouping logic circuit for determining
simultaneously dispatchable instructions in an processor
cycle. The central processing unit of the present mmvention
includes such a grouping logic circuit and a number of
functional units, each adapted to execute one or more
speciflied 1nstructions dispatched by the grouping logic cir-
cuit. The grouping logic circuit includes a number of pipe-
line stages, such that resource allocation and data depen-
dency checks can be performed over a number of processor
cycles. The present invention therefore allows dispatching a
large number of instruction simultaneously, while avoiding
the complexity of the grouping logic circuit from becoming
limiting the duration of the central processing unit’s pro-
cessor cycle.

In one embodiment, the grouping logic circuit checks
intra-group data dependency immediately upon receiving
the 1nstruction group. In that embodiment, all instruction 1n
a group of 1nstructions received 1n a first processor cycle are
dispatched prior to dispatching any instruction of a second
ogroup of instructions received at an processor cycle subse-
quent to said first processor cycle.

The present invention 1s better understood upon consid-
eration of the detailed description below 1n conjunction with
the accompanying drawings.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 1s a block diagram of a CPU 100, 1n an exemplary
4-way superscalar processor of the present invention.

FIG. 2 shows schematically a 4-stage pipelined grouping
logic circuit 109 1n the 4-way superscalar processor of FIG.

1.

DETAILED DESCRIPTION OF THE
PREFERRED EMBODIMENTS

An embodiment of the present invention 1s illustrated by
the block diagram of FIG. 1, which shows a central pro-
cessing unit (CPU) 100 in an exemplary 4-way superscalar
processor of the present invention. A 4-way superscalar
processor fetches, dispatches, executes and retires up to four
instructions per processor cycle. As shown 1n FIG. 1, central
processing unit 100 includes two arithmetic logic units 101
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and 102, a load/store unit 103, which includes a 9-deep load
buffer 104 and an 8-deep store bufier 105, a floating point
adder 106, a floating point multiplier 107, and a floating
point divider 108. In this embodiment, a grouping logic
circuit 109 dispatches up to four instructions per processor
cycle. Completion unit 110 retires instructions upon comple-
tion. A register file (not shown), including numerous integer
and float point registers, 1s provided with sufficient number
of ports to prevent contention among functional units for
access to this register file during operand fetch or result
write-back. In this embodiment also, loads are non-blocking,
1.e., CPU 100 continues to execute even though one or more
dispatched load instructions have not complete. When the
data of the load instructions are returned from the main
memory, these data can be placed 1n a pipeline for storage 1n
a second-level cache. In this embodiment, floating point
adder 106 and floating point multiplier 107 each have a
4-stage pipeline. Similarly, load/store unit 103 has a 2-stage
pipeline. Floating point divider 108, which 1s not pipelined,
requires more than one processor cycle per instruction.

To simplify the discussion below, the state of CPU 100
relevant to grouping logic 109 1s summarized by a state
variable S(t), which is defined below. Of course, the state of
CPU 100 includes also other variables, such as those con-
ventionally mcluded in the processor status word. Those
skilled in the art would appreciate the use and 1implemen-

tation of processor states. Thus, the state S(t) at time t of
CPU 100 can be represented by:

S(H)={ALU, (1), ALU,(t), LS(t), LB(t), SB(t), FA(t), FM(t),
FSD(t)}

where

ALU,(t) and ALU,(t) are the states, at time t, of arithmetic
logic units 101 and 102 respectively; LS(t) and LB(t)
are the states, at time t, of store buffer 105 and load
buffer 104 respectively; FA(t), FM(t), and FDS(t) are
the states, at time t, of floating point adder 106, floating
point multiplier 107 and floating point divider 108
respectively.

At any given time, the state of each functional unit can be
represented by the source and destination registers specified
in the instructions dispatched to the functional unit but not
yet retired. Thus,

ALU,={ALU_.1s1(t), ALU,.rs2(t), ALU,.rd(t)}

where

rs1(t), rs2(t) and rd(t) are respectively the first and second
source registers, and the destination of registers of the
Instruction executing at time t 1 arithmetic logic unit
101.

Similarly, the state of arithmetic logic unit 102 can be
defined as:

ALU,={ALU,.1s1(t), ALU,.rs2(t), ALU,.rd(t)}

For pipelined functional units, such as floating point adder
106, the state 1s relatively more complex, consisting of the
source and destination registers of the instructions 1n their
respectively pipeline. Thus, for the pipelined units, 1.e.,
load/store unit 103, load buffer 104, store butter 105, float-
ing point adder 106, and floating point multiplier 107, their
respective states, at time t, LS(t), LB(t), SB(t), FA(t) and
FM(t) can be represented by:
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4

LS={1LS.rs1,(t), LS.rs2,(t), LS.rd;(t)} for i={1, 2}
LB={LB.rs1(t), LB.rs2(t), LB.rd,(t)} for i={1,2, ... .9}
SB={SB.rs1,(t), SB.rs2(t), SB.rd,(t)} for i={1,2, ... .8}
FA={FA.rs1(t), FA.rs2,(t), FA.rd(t)} for i={1, ... .4}

Finally, floating point divider 108’s state FSD(t)

FM={FM.rs1 (t), FM.1s2,(t), FM.rd(t)} for i={1, ... 4}

can be represented by:

FDS={FDS.rs1;(t), FDS.rs2,(t), FDS.rd(t) }

State variable S(t) can be represented by a memory
clement, such as a register or a content addressable memory
unit, at either a centralized location or i1n a distributed
fashion. For example, 1n the distributed approach, the por-
tion of state S(t) associated with a given functional unit can
be implemented with the control logic of the functional unit.

In the prior art, a grouping logic circuit would determine
from the current state, S(t) at time t, the next state S(t+1),
which 1ncludes information necessary to dispatch the
instructions of the next processor cycle at time t+1. For
example, to avoid a read-after-write hazard, such a grouping
circuit would exclude from the next state S(t+1) an instruc-
fion having an operand to be fetched from a register desig-
nated for storing a result of a yet incomplete 1nstruction. As
another example, such a grouping circuit would include 1n
state S(t+1) no more than one floating point “add” instruc-
tion 1 each processor cycle, since only one floating point
adder (i.e. floating point adder 106) is available. As dis-
cussed above, as complexity increases, the time required for
propagating through the grouping logic circuit can become
a critical path for the processor cycle. Thus, 1n accordance
with the present invention, grouping logic circuit 109 1s
pipelined to derive, over T processor cycles, a future state
S(t+t) based on the present state S(t). The future state S(t+t)
determines the instruction group to dispatch at time t+r.
Pipelining grouping logic 109 1s possible because, as dem-
onstrated below, (1) the values of most state variables in the
state S(t+7) can be estimated from corresponding values of
state S(t) with sufficient accuracy, and (i1) for those state
variables for which values can not be accurately predicted,
it 1s relatively straightforward to provide for all possible
outcomes of state S(t+t), or to use a conservative approach
(i.e. not dispatching an instruction when such an 1nstruction
could have been dispatched) with a slight penalty on per-
formance.

The process for predicting state S(t+t) is explained next.
The following discussion will first show that most compo-
nents of next state S(t+1) can be precisely determined from
present state S(t), and the remaining components of state S(t)
can be reasonably determined, provided that certain non-
deterministic conditions are appropriately handled. By
induction, it can therefore be shown that future state S(t+t),

where T 1s greater than 1, can likewise be determined from
state S(t).

Since an mstruction 1n floating point adder 106 or floating
point multiplier 107 completes after four processor cycles
and an 1nstruction 1n load/store unit 103 completes after two
processor cycles, the states FA, FM and LS at time t+1 can
be derived from the corresponding state S(t) at time t, the
immediately preceding processor cycle. In particular, the
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relationship governing the source and destination registers
of each instruction executing 1n floating point adder 106,
floating point multiplier 107 and load/store unit 103 between
time t+1 and time t are:

rs1,(t+1)=rs1, ,(t), for 1<i=k
rs2.(t+1)=rs2. ,(t), for 1<iZ=k
rd,(t+1)=rd, ,(t), for 1<i=k

where k 1s the depth of the respective pipeline.

The state FSD(t+1) of floating point divider 108, in which
the time required to execute an instruction can exceed an
processor cycle, is determined from state FSD(t) by:

FSD(t+1)=FSD(t) {if last stage} else null

Whether or not floating point divider 108 1s 1n 1ts last stage
can be determined from, for example, a hardware counter or
a state register, which keep tracks of the number of processor
cycles elapsed since the instruction 1n floating point divider
108 began execution.

In load buffer 104 and store buffer 103, since the pending
read or write operation at the head of each queue need not
complete within one processor cycle, the state LB(t+1) at
time t+1 cannot be determined from the immediately pre-
vious state LB(t) at time t with certainty. However, since
state LB(t+1) can only either remain the same, or reflect the
movement of the pipeline by one stage, two possible
approaches to determine state LB(t+1) can be used. First, a
conservative approach would predict LB(t+1) to be the same
as LB(t). Under this approach, when load buffer 104 is full,
an 1nstruction 1s not dispatched until the pipeline 1n load
buffer 106 advances. An incorrect prediction, 1.e. a load
instruction completes during the processor cycle of time f,
this conservative approach leads to a penalty of one proces-
sor cycle, since a load istruction could have been dis-
patched at time t+1. Alternatively, a more aggressive
approach provides for both outcomes, 1.e. load buffer 104
advances one stage, and load buffer 104 remains the same.
Under this aggressive approach, grouping logic 109 1s ready
to dispatch a load instruction, such dispatch to be enabled by
a control signal which indicates, at time t+1, whether a load
instruction has in fact completed. This aggressive approach
requires more a complex logic circuit than the conservative
approach.

Thus, the skilled person would appreciate that state S(t+1)
of CPU 100 can be predicted from state S(t). Consequently,
both the number of mstructions and the types of instructions
that can be dispatched at time t+1 (i.e. the instruction group
at time t+1) based on predicted state S(t+1) can be derived,
at time t, from state S(t), subject to additional handling based
on the actual state S,(t+1) at time t+1.

The above analysis can be can be extended to allow state
S(t+7) at time t+t to be derived from state S(t) at time t. The
instruction group at time t+t can be derived from time f,
provided that, for each instruction group between time t and
t+t, all instruction from that instruction group must be
dispatched before any instruction from a subsequent 1nstruc-
tion group is allowed to be dispatched (i.e. no instruction
group merging).

Since instructions from different instruction groups are
not merged, intra-group dependencies and inter-group
dependencies can be checked in parallel. The instructions
are either fetched from an 1nstruction cache or an instruction
buffer. An instruction buffer 1s preferable in a system in
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which not all accesses (e.g. branch instructions) to the
instruction cache are aligned, and multiple entry points in
the basic blocks of a program are allowed.

Once four candidate instructions for an instruction group
are 1dentified, intra-group data dependency checking can
begin. Because of the constraint against instruction group
merging described above, 1.e., all instructions 1n an 1nstruc-
tion group must be dispatched before an instruction from a
subsequent 1nstruction group can be dispatched, intra-group
dependency checking can be accomplished m a pipelined
fashion. That 1s, intra-group dependency checking can span
more than one processor cycle and all inter-group depen-
dency checking can occur independently of inter-group
dependency checking. For the purpose of intra-group depen-
dency check, each instruction group can be represented by:

IntraS(t)={rs1,(t), rs2;(t), rd;(t), res{t)} for 0=i<W-1

where W 1s the width of the machine, and res; represents the
resource utilization of instruction I. An example of a four-
stage pipeline 200 1s shown 1n FIG. 2. In FIG. 2, at first stage
201, as soon as the instruction group 1s constituted, intra-
oroup dependency checking 1s performed immediately.
Thereafter, at stage 202, resource allocation within the
instruction group can be determined. At stage 203, inter-
ogroup decisions, ¢.g. resource allocation decisions taking
into consideration resource allocation 1n previous instruction
groups, are merged with the decisions at stages 201 and 202.
For example, if the present instruction group includes an
instruction designated for floating point divider 108, stage
203 would have determined at by this time 1f a previous
instruction using floating point divider 108 would have
completed by the time the present instruction group 1s due to
be dispatched. Finally, at stage 204, non-deterministic
conditions, €.g. the condition at store buffer 105, 1s consid-
ered. Dispatchable instructions are issued mto CPU 100 at
the end of stage 204.

The above detailled description 1s provided to 1llustrate the
specific embodiments of the present invention and is not
intended to be limiting. Numerous variations and modifica-
tions within the scope of the present invention are possible.
The present invention 1s defined by the following claims.

I claim:

1. A central processing unit, comprising;:

a plurality of functional units, each functional unit
adapted to execute an instruction of said central pro-
cessing unit; and

a grouping logic circuit, including a number of pipeline
stages and receiving, at each processor cycle, a group
of 1nstructions and one or more state vectors each
representing states of instructions previously received
at said grouping logic circuit in a preceding processor
cycle wherein, based on said state vectors, said group-
ing logic circuit dispatches each of said currently
received instructions to be executed by one of said
functional units, and provides a current state vector
representing states of instructions of said currently
received 1nstructions.

2. A central processing unit as 1 claim 1, wherein said
grouping logic circuit checks data dependency among said
group of instructions to determine whether said group of
instructions can be dispatched simultaneously.

3. A central processing unit as in claim 1, wherein said
ogrouping logic circuit checks for resource contention within
said group of instructions.

4. A central processing unit as 1n claim 1, wherein said
ogrouping logic circuit checks data dependency of an instruc-
tion group at one processor cycle and a group of instruction
received 1n a previous processor cycle.
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5. A central processing unit as in claim 1, wherein the state
of said central processing unit 1s represented 1n a register,
said state including representation of destination registers of
instructions 1n said group of instructions.

6. A central processing unit as in claim 1, wherein all
mnstruction 1 a group ol instructions received 1 a {first
processor cycle are dispatched prior to dispatching any
instruction of a second group of instructions received at an
processor cycle subsequent to said first processor cycle.

7. A central processing unit as 1n claim 1, wherein said
functional units include a pipelined functional unit capable
of recelving an instruction every processor cycle and com-
pleting said instruction at a subsequent processor cycle.

10

3

8. A central processing unit as 1 claim 1, wheremn said
functional units include a functional unit requiring multiple
processor cycles to complete an instruction executed at said

functional unat.
9. A central processing unit as 1 claim 1, wherein said

grouping logic circuit derives a state vector for a group of
mnstructions received at a first processor cycle based on a

number of state vectors derived for groups of instructions
received 1n a number of processor cycles immediately

preceding said first processor cycle, said number of proces-
sor cycles being equal to said number of pipeline stages.
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