(19) United States
(12) Reissued Patent

(10) Patent Number:

USOORE38514E

US RE38,514 E

James et al. 45) Date of Reissued Patent: May 11, 2004
(54) SYSTEM FOR AND METHOD OF 5,297,269 A 3/1994 Donaldson et al. 395/425
EFFICIENTLY CONTROLLING MEMORY 5,325,503 A 6/1994 Stevens et al. 395/425
ACCESSES IN A MULTIPROCESSOR 5,325,504 A 6/1994 Tipley et al. 395/425
5,353,428 A 10/1994 Shibatacooenenene. 395/425
COMPUTER SYSTEM 5,361,342 A 11/1994 Tonecevvnnvninnnnnenn... 395/425
(75) Inventors: David V. James, Palo Alto, CA (US): 5,829,035 A * 10/1998 James et al. 711/141
Glen D. Stone, Campbell, CA (US) OTHER PUBLICATIONS
(73) Assignee: Apple Computer, Inc., Cupertino, CA Chaiken, D., et al., “Directory—Based Cache Coherence 1n
(US) Large—Scale Multiprocessor”, IEEE Computer, Jun. 1990,
pp. 49-58.
(*) Notice: This patent 1s subject to a terminal dis- Maa, Y-C., et al., “A Hierarchical Directory Scheme for
claimer. Large—Scale Cache Coherent Multiprocessors”, Proc. Sixth
International Parellel Processing Symposium, 1992, pp.
(21) Appl. No.: 09/836,314 43-40.
(22) Filed: Apr. 18, 2001 (List continued on next page.)
Primary Examiner—Iuan V. Thai
Reissue of Related U.5. Patent Documents (74) Attorney, Agent, or Firm—Fenwick & West LLP
(64) Patent No.: 5,895,496 (57) ABSTRACT
Issued: Apr. 20, 1999
Appl. No.: 08/972,559 A system for controlling memory accesses In a memory
Filed: Nov. 18, 1997 device 1n a multi-processor computer system comprises a

U.S. Applications:

memory controller and a data storage. The data storage
comprises a plurality of memory lines. Each memory line

(63) Continuation of application No. 08/794,479, filed on Feb. 4, has a ChejCk ﬁelq for storing a GQNE code that‘ indicate% that
1997, now abandoned, which is a continuation of application the da‘[ails held 1n a C‘aChe, a g bit field for storing a G bt for
No. 08/342,131, filed on Nov. 18, 1994, now abandoned. confirming the code 1n the check field, a tag field for storing
- _ an 1dentification of the processor 1n whose cache the data 1s
(51) Int- Cll -------------------------- G06F 12‘/00? GO6F 13/00 held? and a d bit ﬁeld for Storing the true Value Of the G bit
(52) US.CL ..o, 711/163; 711/100; 711/144; in rare situations. The memory controller comprises a data
711/154 buffer, an address bufler, and a memory sequencer. The
(58) Field of Search 711/3, 100, 118, memory sequencer is a state machine for controlling the
, , , , , nctions of the memory device. ¢ method mcludes the
7117130, 141, 144, 145, 154, 163 functi f th y device. Th hod 1ncludes t]
steps of reading a memory line; determining if the data
(56) References Cited contained 1 a check field portion of the memory line
matches a GONE code generated from the address of the
U.S. PATENT DOCUMENTS memory line; 1f the check field and GONE code values do
eteh not match, reading the data as data; if the check field and
4?4845267 A 11/1984 Fletcher 364/200 GONE matCh, CheCkng the G blt, if the GG bit is 1, Olltpllttiﬂg
4,622,631 A 11/1986 Frank et al.v.......... 364/200 > _
5 . the address of the processor that holds the data 1n its cache;
,L130,922 A 771992 L1u covvviiiiiiininnns, 3957200 4if the G bit is 0 ructine the data £ D bit and
5136691 A 81992 BArOr .ooooeveeereereeennn.. 395,200 AHOGLLTIC N ! 55 ’recéms tucling the dald ot 4 L7 bitdh
5206941 A 4/1993 Eikill et al. vvovvvevevenn... 395/425 outputling the data as data.
5,247,643 A 9/1993 Shottancevvennen.n. 395/425
5,283,886 A 2/1994 Nishi et al. 395/425 44 Claims, 9 Drawing Sheets
Addrs_-ss_ Nol
XII Mfr:?h;y .
Store Uato;
Status=SAME . e

Monitor Bus for
Reagd or Write
Command arnd
Address Within
Memory

Data#Hash %

Xil
Set D Bit=G Bit;
Set G Bit=0"
Store [} Bit

Witfin

% Memory

'

Unowned

Data=Hash

Send Coche Line; Set
Tag: Setl Check; 5Set G

Address FegdOwned

Colcufote Hash

Gat First Word OF Cache Line
Oultpul Tag; Compare Word
fo Hash

i

Eit: S5lotus=NONE;
Updale Memory

Owned By
Anolher
FProcessor

X1
Receive first
Line of Dofa

Signal

VIIf
Compare Hash to
Check; Lompoare
Cacheld fo Tog,
And Check G Oil

Owned By
Accessmng
Frocessor

Writeffeturn

Sgnal
and
Hosh#Word vif
Status=DIFF;
Set Tag;
Update
v Memory
Get D it
G Bit=1
ecricd
fag=
Cocheld
G Bit=1
and
ReadOwned IV Tag#
Signal Check G Bit Cacheld
ond ond Tag

Hash= Word

US RE38,514 E
Page 2

OTHER PUBLICATIONS Omran, R. & Lee, D., “A Multi—Cache Coherence Scheme
for Shuffle—-Exchange Network Based Multiprocessors”,

Proc. of the IEEE Fifth Symposium on the Frontiers of
Massively Parallel Computation, Sep. 1995, pp. 72-79.

Omran, R. & Aboclaze, M., “An Eflicient Single Copy

Cache Coherence Protocol for Multiprocessors With Multi-) _
stage Interconnection Networks”, Proc. Of The IEEE Scal- T'hakkar, S., et al., “Scalable Shared-Memory Multiproces-

able High Performance Computing Conference, Aug. 1994, sor Architectures”, ILEE Computer, Jun. 1990, pp. 71-74.
pp. 1-8. * cited by examiner

US RE38,514 E

Sheet 1 of 9

May 11, 2004

U.S. Patent

§¢C

(14y J01d) | E)[-
[§

13(j01)u0?") AI0WaNW

CZ
7 67 44
ot
A\
G [1—N] bD]
O
O
O
zs [4] 501
—] &
e [0] 60} | 7
b
o Ov

- [1] eurt

[1—-N] 2uIT

O O O

[0] aulT

US RE38,514 E

Sheet 2 of 9

May 11, 2004

U.S. Patent

¢ 9l

£ 9400
be 9/ 9t |
&t
%
H J0SS920.4 § 4055990/
9l
ve
14 g 200j9) U]
v 90D)I3) U] 97
cC Cl
| J0SS900.
07 \ﬂkogm»é
0¢

ce

US RE38,514 E

Sheet 3 of 9

18/{0 U0
AJoWa N

May 11, 2004

Gy

U.S. Patent

LV

c/

& Ol

06

8/
vE

9/
4%

74

08

0c

98

8

LL

US RE38,514 E

Sheet 4 of 9

May 11, 2004

U.S. Patent

vy ld

96 ~ G 02
[E-NJp O 0Z ! 011 0201
Ay
O
O
[t/p | [o]p
/
\.N.IE.\ 0]0p —~ 90|
e oo | e [|
96 — -
13/]01}U07) - Shy
AIOWI W ol
[1] #98u5
/0] pojop
[0] bo] [0]b \& %m%
811 m:

cb

QQN

US RE38,514 E

Sheet 5 of 9

May 11, 2004

U.S. Patent

G Ol

[LT T Eieis Sl SEmmmm W

9gcl

134)ng
SS8.IpPY

104]UO?)

- _.|
96 _
|
cb _
SSoUppY
2b0.10) G
D)O(] 06
[04)UO7) j04)UO7)
D]0(]
00!
ﬂum g S

yy
SSIIPPY j01)UO7)
SSaIpPY
130u3nNbag
A 10 LIS WY
[0 U0
010 0]0(J
§¢ 1
j0)UO)
18))ng
vel D}10(]

sng

SS38.pPY

N9

pIa4oD)

s$NJ0}S

I3UM()
}SO7

A4

sng
0)0(]

AA

x — | SN

Of

US RE38,514 E

Sheet 6 of 9

May 11, 2004

U.S. Patent

pPI9Y20))
#boj
puo
{=¥8 9
. pPI8YI07)
H.mb.m
pupo
=18 O
A1oWwap
a0pdn
boy)88
AA[G=SMD}S

11/

9 Old

I

JWVS =5M1015
1y

1A

joubis

0=1418 9 uinjoya) iy ~ 40SS820.4
Joyjouy
Ag paum(
YSOH O]
ng (g 199 pJoyM duodwoy ‘boy ynding

dUIT Ya0) JO PIOM 1S4 199

y ySDL 81DIN2JD) paumMouf)
IT
PIOM #YSOH
puo AIOWBH
joubIg UM
paUMOPLEY ssa.ppy
Aiowap 910pdn AI0WaW
INON=5SM)D]S 314 L !
_, . 1YIM SS8ppy
2, ?mv.m._ﬂ 32849 18S ‘boj pUD PUDUWILIO))
}8S ‘aui] ayopy puss S} 10 PD3Y |
[10] Sng JOUOW
\ .N.
AJOLLIBW

UM
JON SS3.pPY

/\ﬁ paUM()

D)D(] JO dUIT
1541 BAIBIBY

PION ={SOH g 9 A28yl puy
pupD .._@D.N 0} bM%QUDU 10552204+
joubig 210dwWon o3y?) buissaoay
POUMOPDIY 0} YsoH a.0duwio?)

ysoiH=0}D(

1g g 24015
0=4g 9 195
g 9=H8 J 1°S

IIX

4SOHF#0}0(

INYS=SND}1S
‘D)o 810}S

11X

U.S. Patent

May 11, 2004

Sheet 7 of 9

Receive Address, Control, 200
and Dato Signals

202

Address
Within
Memory?

Yes

Calculate Hash Of Address
Get First Word Of Cache

!

Line From Memory

No

204

Output Tag From Word 206

208

ReadOwned
Command?

No

Check=Hash

and
G Bit=1

Yes

Y
= Tag=Cacheld?

216

220

210 212
J

[ransfer Data

to Bus;
Status=NONE

Yes No

Set and Record
Hash, G=1 and
Tag=Cacheld

Status=NONE

Status=DIFF
O
227

No
214

END

N

FIG. 7A

US RE38,514 E

U.S. Patent May 11, 2004 Sheet 8 of 9 US RE38,514 E

236 238

240

Yes

— G Bit=0D Bit

248 | Iransfer Qm‘o
to Bus,
No Status=NONE

Status=0D[FF

lag=Cacheld?
242

Yyes

250

!

Status=SAME

|

| 246 Set And Record
l | Hash, G=1 and
| Tag=Cacheld

]

END

U.S. Patent May 11, 2004 Sheet 9 of 9 US RE38,514 E

224 220

No

Record Data,

— 0
Bus Data=Hash! Status=SAME

Record Data in

Memory;
Status=DONE

Yes
228
Set D Bit=G Bit
250
Record D Bit
232
Set G Bit=0
254 |
|

END

US RE38,514 E

1

SYSTEM FOR AND METHOD OF
EFFICIENTLY CONTROLLING MEMORY
ACCESSES IN A MULTIPROCESSOR
COMPUTER SYSTEM

Matter enclosed in heavy brackets [] appears in the
original patent but forms no part of this reissue specifi-
cation; matter printed in italics indicates the additions
made by reissue.

RELATED APPLICATIONS

This 1s a continuation of application Ser. No. 08/794,479
filed Feb. 4, 1997, now abandoned, which 1s a continuation
of application(s) Ser. No. 08/342,131 filed on Nov. 18, 1994,

now abandoned.

BACKGROUND OF THE INVENTION

1. Field of the Invention

The present 1invention relates generally to computer sys-
tems having multiple processors with caches. In particular,
the present invention relates to a system and method for
implementing cache tags 1n a memory for maintaining cache
coherence.

2. Description of the Background Art

The use of multiple processors 1s a recent trend 1in
computer design. Each processor may work on a separate
portion of a problem, or work on different problems, simul-
taneously. The processors used 1n the multi-processor archi-
tectures generally each have cache. A cache 1s a relatively
small group, when compared to shared memories, of high
speed memory cells that are specifically dedicated to a
processor. A processor’s cache 1s usually on the processor
chip itself or may be on separate chips.

Processors use caches to hold data that the processor has
recently accessed. A memory access 1s any action, such as a
read or a write, where a processor receives, modifies, or
receives as well as modifies the contents of a memory
location. Generally, a processor can access data 1n 1ts cache
faster than 1t can access data 1n the main memory of the
computer. Furthermore, by using data 1n 1ts cache, a pro-
cessor does not use the bus of the computer system to access
data. This leaves the bus free for use by other processors and
devices.

A particular problem associated with the use of caches 1s
that the data becomes “stale.” A {irst processor may access
data 1in the main memory and copy the data mto its cache.
The first processor may then modify the data in 1ts cache. At
the instant when the data in the cache of the first processor
1s modified, the corresponding data in the memory 1s stale.
If a second processor subsequently accesses the original data
in the main memory, the second processor does not find the
most current version of the data. The most current version 1s
in the cache of the first processor. The second processor,
however, needs the most current version of the data. A prior
art solution to this problem 1s for processors to eavesdrop on
the bus. When the first processor detects the main memory
access by the second processor for data that the first pro-
cessor holds 1n 1ts cache, the first processor inhibits the main
memory and supplies the data to the second processor. In

this way, a processor always receives the most current
version of the data.

This prior art solution suifers from a number of problems.
Computer architectures are moving to multiple-processor,
multiple-bus configurations. The busses are coupled through
an 1nterface. For efficiency purposes, many signals on a bus

10

15

20

25

30

35

40

45

50

55

60

65

2

arc not transmitted across the interface to other busses.
Among signals, which are not transmitted across the
interface, are memory access signals where the path between
source and target devices does not cross the interface. Many
other devices also do not transmit all signals that they
receive. For example, cross-bar switches, which concur-
rently connect multiple pairs of source and target ports, limait
the transmission of memory access signals to the data path
between source and target. When devices do not transmat all
memory access signals over 1ts data path, 1t 1s impossible for
processors, which are not the source and target, to eavesdrop
on memory accesses and therefore, impossible to determine
when the data 1s stale. Thus, this prior art solution 1s not
clfective 1n systems that use devices that do not transmit all
Mmemory access signals.

Decreases 1n access time of main memories and increases
in the size of caches have created other problems with
cavesdropping. Eavesdropping on the bus assumes that a
processor can inhibit the main memory and place the data on
the bus faster than the main memory can access the data.
Memories may, however, cache copies of recently accessed
data within themselves; in which case, they often can
provide data before a processor can inhibit the memory.
Also, caches have become larger. Generally, larger
memories, whether main memories or caches, require more
fime to access. Processors, with large caches, cannot access
the larger cache fast enough to make the prior art solution
workable unless other memory access are delayed while
cavesdropping 1s performed. Such a delay would signifi-
cantly degrade the performance of the processor.

Memory tags have been used to overcome some of these
problems. A memory tag 1s associated with a memory
address whose data 1s held 1n a cache. When a processor
copies the data at that address into its cache, a memory tag
1s updated to 1dentily the processor in whose cache the data
1s held. If a second processor attempts to access the data in
the memory, the processor will receive the memory tag.
Memory tags remove the need for eavesdropping. The
memory tags are held 1n a separate memory device called a
tag storage. When a processor reads or writes data to a
memory address, both the tag storage and the memory
address are accessed. The memory address 1s accessed for
the data, and the tag storage 1s accessed for the possibility of
a memory tag. If the accesses are performed sequentially,
two accesses greatly slow the operation of the memory. It
done 1n parallel, the tag storage greatly complicates the
design of the memory controller. The width of the tag
storage differs from the width of the main memory, 1n one
embodiment the tag storage 1s 20 bits wide and the main
memory 15 64 bits wide. The different sized memories
require complicated modifications to the memory controller.
Furthermore, the tag storage requires changes in the bus
width and requires additional circuit chips that occupy
space, consume power, and add to the expense of the
computer system.

Referring now to FIG. 1, a block diagram of a prior art
memory 23 1s shown. The prior art memory 23 comprises a
data storage 40, a tag storage 42, and a memory controller
25. The data storage 40 comprises a plurality of memory
lines. Each memory line comprises one or more words and
has an unique address. A first memory line 44 has address O,
and a second memory line 46 has address 1. Each address
indicates a complete memory line. The remaining memory
lines of the data storage 40 are addressed similarly so that a
last memory line 48 has address N-1, where N 1s the total
number of memory lines 1n the data storage 40. Each word
has a fixed bit size. A word may be any number of bits long,

US RE38,514 E

3

but currently 1s preferably 64 bits long or other powers of 2.
A memory line 44, 46, 48 may include any number of words,
but within the data storage 40 each memory line 44, 46, 48
has the same number of words. The tag storage 42 comprises
a tag cell for each memory line of the data storage 40. Each
tag cell has an address that corresponds to a memory line of
the data storage 40. A tag cell 50 has an address 0 and
corresponds to the first memory line 44. Similarly, a tag cell
52 has an address 1 and corresponds to a second memory
line 46, and a tag cell 54 has address N-1 and corresponds

to a final memory line 48. Each tag cell 50, 52, 54 1s more
than one bit wide and contains data that indicates if the data

held m the corresponding memory line 44, 46, 48 1s valid
data or 1f a processor holds the data. Data 1s Vahd or “fresh,”
if no processor holds the data 1n its cache. Fresh data may
also be referred to as “unowned” data. Data 1s referred to 1n
this application as “owned” and 1s not fresh if a processor
holds a copy of the data 1n 1ts cache. If a processor owns the
data, the tag cell 50, 52, 54 contains an indicator for
indicating that the data 1s owned and a tag that identifies the
processor that owns the data.

Any memory operation that requires the data held at an

address 1s referred to as an access. The basic operations are
ReadOwned and WriteReturn. ReadOwned and WriteReturn

will be discussed 1n detail below. Other operations may also
be performed. The processor that 1s executing an operation
1s referred to as the accessing processor. Every memory
access requires an operation on the addressed memory line
44, 46, 48 and the assigned tag cell 50, 52, 54. This 1s true
whether the memory access 1s a ReadOwned or a WriteR-
eturn. If the access 1s a ReadOwned, the data storage 40 must
be read, and the tag storage 42 must be read to determine if
the data 1s fresh. If the memory access 1s a WriteReturn, the

appropriate address must be written to and the assigned tag
cell 50, 52, 54 must be set to indicate fresh data.

The memory controller 25 1s a state machine for control-
ling the operation of the memory 23. The memory controller
25 1s coupled to processors and other devices of a computer
system by a bus 31. Data, control, and address signals are
transmitted to the memory 23 on the bus 31. The memory
controller 1s coupled to the data storage 40 by a line 27 and
1s coupled to the tag storage 42 by a line 29. In this
application, a line refers to one or more wires. When the
memory controller 25 receives a memory access signal, it
must perform an operation on both the data storage 40 and
the tag storage 42. For example, 1f the memory controller 25
receives a ReadOwned command on the bus 31 for a
memory location 1n the data storage 40, the memory con-
troller 25 first asserts a signal on line 27 for the data storage
40 to transmit the contents of the first memory line 44 to the
memory controller 25. For purposes of this example, 1t will
be assumed that the memory address was O for the first
memory line 44. The data storage transmits the data on line
27. The memory controller 25 simultaneously asserts a
signal on line 29 for the tag storage 42 to transmit the
contents of tag cell 50 to the memory controller 25. The
memory controller 25 determines 1f the data, received from
the tag storage 42, indicates that the data contained in
memory line 44 1s owned. If the data contained in memory
line 44 1s unowned, the memory controller outputs the data
onto the bus 31. If the data 1s owned, the memory controller
25 outputs the tag contained in the tag cell 50. Other memory
accesses such as WriteReturn also require an operation on
both the data storage 40 and the tag storage 42. This prior art
memory 23 1s slow and requires more complicated memory
controller lines 27, 29.

As can be scen from the above example, there 1s a
continuing need for a faster system and method for ensuring

10

15

20

25

30

35

40

45

50

55

60

65

4

that processors receive fresh data and for i1dentifying pro-
cessors holding cached data. This system and method should
not require modifications to other devices of a computer
system.

SUMMARY OF THE INVENTION

The present invention overcomes the deficiencies and
limitations of the prior art with a system and method for
controlling memory accesses 1n a multi-processor computer
system. The present imnvention advantageously provides a
system for storing data that identifies valid data and 1denti-
fies data held 1n a processor’s cache without a separate tag
storage. The present 1nvention also advantageously reduces
the number of read functions that must be executed to access
a memory location.

The system comprises a data storage device and a
memory controller. The data storage device comprises a
plurality of memory lines, each memory line having an
unique address. A memory line comprises one or more 64 bit
words. Words having any number of bits, however, may be
used. Each memory line comprises a check field, a g bit field,
a tag field, and a data field. A small portion of the data
storage 1s used for a plurality of d bit fields. Each memory
line 1n the remaining portion of the data storage has an
assigned d bit field. A memory line may contain data or
codes; the codes indicate that a processor owns the data in
the cache.

When a memory line contains unowned data, the data
resides 1n the memory line as 1n a conventional memory
device. The check field, g bit field, and tag field are used to

hold the data along with the rest of the memory line.

When the memory line contains owned data, the data
resides 1n a cache of a processor. The check field and tag
fields contain codes; the check field code contains a GONE
code and the tag field code 1s a encoded i1dentifier of the
processor that holds the data. Thus, on each memory access,
the data 1s output, or the location of the data in a cache 1s
output. As opposed to the prior art, a second memory access
1s generally not required. A special case occurs, however,
when data 1s being held 1n a memory line that happens by
chance to have a check field equal to GONE. In this case, the
data 1n the data storage 1s unowned, but 1t appears that the
data 1s owned. For this rare situation, the present invention
advantageously uses a g bit field. The g bit field contains a
G bit. Whenever the data 1s owned, the G bit 1s set to 1. If
the data 1s 1n the memory line, but the data 1n the check field
by chance matches the GONE value, the G bit 1s set to 0 and
the actual data value, normally held 1n the g bit field, is
contamed 1n the assigned d bit field. Thus, there are three
cases: 1) The data is owned. In this case, the check field code
1s GONE, the g bit field contains a 1, and the tag field
contains an indicator of the processor that owns the data; 2)
The data 1s unowned, and the data contained in the check
field portion of the memory line does not match the GONE
code for i1dentifying owned data. In this case the memory
line contains the data; and 3) The data is contained in the
memory line, and the data held in the check field portion of
the memory line matches the GONE code. In this case, the

o bit field holds a O and the d bit field holds the true value
of the G bit.

As can be seen, only 1 the rare third case 1s a second
memory access required to obtain the requisite data. For any
memory line, the GONE code may be any value but is
preferably the result of a hashing function of the address of
the memory line.

The memory controller comprises a data buffer, an
address buffer, and a memory sequencer. The data buffer

US RE38,514 E

S

receives data signals and outputs data signals for the
memory device. Similarly, the address buifer receives
address signals for the memory device. The memory
sequencer 1s a state machine that receives control signals,
compares data recerved by the data buffer to data stored in
the data storage, and generates signals to control the opera-
fion of the memory device.

The present invention mcludes a method for implement-
ing cache tags for multi-processor computer systems. The
method includes the steps of reading a memory line; deter-
mining 1f the data contained 1n a check field portion of the
memory line matches a GONE code generated from the
address of the memory line; 1f the GONE code and data do
not match, reading the data as data; if the GONE code and
data match, checking a G bat; if the G bit 1s 1, outputting the
address of the processor that holds the data in its cache; and
if the G bit 1s 0, reconstructing the data from a D bit and
outputting the data as data.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 1s a block diagram of a prior art system of a main
memory and a memory for storing memory tags that identify
processors holding data;

FIG. 2 1s a block diagram of an exemplary multi-
processor, multi-bus computer system;

FIG. 3 1s a block diagram of a memory constructed
according to the present 1nvention;

FIG. 4 1s a block diagram of a second embodiment of a
memory constructed according to the present invention;

FIG. 5 1s a block diagram of the second embodiment of
the memory and associated control circuitry constructed
according to the present invention;

FIG. 6 1s a state diagram of the states of a memory
sequencer of the present invention; and

FIGS. 7A, 7B, and 7C are flow charts showing a method

for accessing a memory device according to the present
invention.

DETAILED DESCRIPTION OF THE
PREFERRED EMBODIMENTS

Referring now to FIG. 2, a block diagram of a computer
system 10 1s shown. While the system 10 will now be
described with reference to 4 processors, those skilled 1n the
art will realize that the present invention applies to any
system having a plurality of processors. The computer
system 10 comprises a first processor 12, a second processor
14, a third processor 16, a fourth processor 18, and a
memory 20. The first processor 12, a second processor 14,
and memory 20 are coupled by a first bus 22, and the third
processor 16 and fourth processor 18 are coupled by a
second bus 24. The first bus 22 and the second bus 24 are
coupled by an A interface 26 and a B interface 28. The A
interface 26 1s coupled to the first bus 22, and the B interface
28 1s coupled to the second bus 24.

In an exemplary embodiment, the processors 12, 14, 16,
18 are Power PC processors from Motorola Corporation of
Schaumberg, Ill. The processors 12, 14, 16, 18 may alter-
nately be Alpha Processors from the Digital Equipment
Corporation of Maynard, Mass. or any other microprocessor
capable of being used in a multi-processor computer system.
The first processor 12, second processor 14, and fourth
processor 18 each has an integrated cache 30, 32, and 34,
respectively. An integrated cache 30, 32, 34 1s a group of
memory cells that are integrated into the same circuit or chip
as the processor 12, 14, and 18. The third processor 16 has

10

15

20

25

30

35

40

45

50

55

60

65

6

an off chip cache 36. The off chip cache 36 1s mtegrated 1n
a separate circuit and 1s coupled to the third processor 16 by

a line 38. Each cache 30, 32, 34, 36 holds data for its
processor 12, 14, 16, 18. Each processor 12, 14, 16, 18 can

ogenerally access data 1n its cache 30, 32, 34, 36 faster than
it can access data 1n the memory 20. Furthermore, by
accessing data 1n 1ts cache 30, 32, 34, 36, a processor 12, 14,
16, 18 does not utilize the bus 22, 24. Thus, leaving the bus

22, 24 free for use by other devices.

The memory 20 comprises random access memory
(“RAM”). The memory 20 holds data and program instruc-
tion steps for the processors 12, 14, 16, 18. The memory 20
will be described 1n greater detail with reference to FIGS. 2,
3.4, and 5.

The A interface 26 and B interface 28 are conventional
interfaces such as IEEE Std 1596 Scalable Coherent Inter-
faces. The A interface 26 and B interface 28 do not transmut
memory access commands for which they are not in the
transier path. For example, the A interface 26 and B interface
28 would transfer memory access commands from the third
processor 16 or the fourth processor 18 to the memory 20
since the path between processors 16 and 18 and memory 20
1s through the interfaces 26, 28. The interfaces 26, 28,
however, would not fransmit memory access commands
from the first processor 12 or second processor 14 since the
interfaces 26, 28 are not 1n the path between these processors
12, 14 and the memory 20. Thus, the third processor 16 and
fourth processor 18 cannot eavesdrop on accesses of the

memory 20 by the first processor 12 or the second processor
14.

Referring now to FIG. 3, a block diagram of a first
embodiment of the memory 20 constructed 1n accordance
with the present invention 1s shown. The memory 20, shown
in FIG. 3, comprises a data storage 72 and a memory
controller 45. The data storage 72 comprises a plurality of
memory lines. As before, each memory line 74, 76, 78 has
an address. A memory line 74 has address 0; a memory line
76 has address 1; and a memory line 78 has address N-2. N
1s the number of memory lines 1n data storage 72. Each
memory line 74, 76, 78 may hold data or check and tag
codes. Tags codes are contained 1n a tag field of a first word
of each memory line 74, 76, 78, and check codes are held in
a check field of the first word of each memory line 74, 76,
78. When the data of a memory line 1s owned (cached and

possibly modified), the check field contains a GONE code
value and the tag field holds a tag field code. The tag field
code 1s an encoded 1dentifier of the owning processor 12, 14,
16, 18. Memory line 74 has a check field 73 and tag field 80.
Similarly, memory lines 76 and 78 have check fields 75 and
77, respectively as well as tag ficlds 82 and 84, respectively.
This first embodiment advantageously uses any portion of
data storage 72 for the t bit storage 86. The t bit storage 86
comprises a plurality of t bit fields. Each t bit field of the t
bit storage 86 1s assigned to a memory line 74, 76, or 78. For
example, a first t bit field 88 15 assigned to memory line 74,
a second t bit field 89 1s assigned to memory line 76, and a
t bit field 90 1s assigned to memory line 78. At bit field 88,
89, 90 1s preferably 1 bit wide, and holds a T bit that
confirms whether a memory line 74, 76, 78 holds data or a
tag.

The memory controller 45 controls the operation of the
first embodiment of the memory 20 and 1s coupled to the
data storage 72 by a line 47. The memory controller 45
contains combinational logic circuits and data storage
device. If the memory controller 45 receives a ReadOwned
signal for the first memory line 74, the memory controller 45
first asserts a signal on the line 47 for the data storage 72 to

US RE38,514 E

7

transfer the contents of check field 73 to the memory
controller 45. If the check field contains a GONE code, the

memory controller 45 signals the data storage to transfer the
T bit, held 1n t bit field 88, to the memory controller 45. For
example, 1f the check field 73 holds a GONE code and the
T bit 1s a 1, then the data 1s owned; otherwise the data 1s
unowned. If the data 1s owned, the memory controller 45
outputs the code contained 1n the tag field 80, onto the bus
22 along with a signal that the data 1s owned. If the data 1s
not owned, the memory controller 45 outputs the contents of

the first memory line 74 onto the bus 22.

This first embodiment of the present invention eliminates
the need for a separate tag memory 42 (shown in FIG. 1) and
the accompanying problems of controller design. Although
unowned data can be quickly returned and special tag
storage 1s not required, two operations must still be executed
whenever a memory line 74, 76, 78 1s accessed. In this first
embodiment, the t bit storage 86 1s much smaller than the tag
storage 42.

Referring now to FIG. 4, a second embodiment of the
memory 20, constructed according to the present invention,
1s shown. The memory 20 comprises a data storage 92 and
a memory confroller 94. The memory controller 94 1s
coupled to the bus 22 to receive data, address, and control
signals and 1s coupled to the data storage 92 by a first line
96 for address signals, a second line 98 for control signals,
and a third line 100 for data signals. Alternately, the memory
controller 94 may be coupled to the data storage 92 by a
single line. In this alternate embodiment, the single line
would be used sequentially for data, address, and control
signals. The memory controller 94 interprets incoming
signals, determines 1f data contained 1n the data storage 92
1s fresh or 1s owned by another processor 12, 14, 16, or 18,
and generates and outputs data, address, and control signals
on the bus 22.

The data storage 92 comprises a plurality of memory
lines. Each memory line has an address. Memory line 102
has address 0; memory line 104 has address 1; and memory
line 108 has address N-2. N 1s the number of memory lines
in the data storage 92. Each memory line 102, 104, 106
comprises one or more words, all memory lines 102, 104,
106, however, have the same number of words. Whenever an
address 1s accessed, all words of the memory line 102, 104,
106 at the address are accessed. For example, if the first
memory line 102 is being read, all words of the memory line
102 are output by the memory 20. While the words may have
any number bits, currently and preferably each word com-
prises 64 bits. A portion of the data storage 92 1s used for
storing D bits. FIG. 4 shows a final portion 108 of the data
storage 92 being used for holding D bits. Any portion of the
data storage 92 may be dedicated to contain D bits. Each D
bit 1s one bit 1n length and 1s contained in a d bit field. The
d bit fields are arranged according to the memory lines 102,
104, 106 to which they are assigned. For example, a d bit
field 110 1s assigned to memory line 102; a d bit field 120 1s
assigned to memory line 104; and a d bat field 1s assigned to
memory line 106. Each memory line between memory line
104 and memory line 106 also has an assigned d bit field.
The D bits will be explained in greater detail below.

According to the present imnvention, a first word of each
memory line has 3 fields. As can be seen with reference to
the first memory line 102 of FIG. 4, the first word has a
check field 114, a g bit field 116, and a tag field 118. The
check field 114, g bit field 116, and tag field 118 are used in
two different ways. First, if the first memory line 102 1s not

owned, then the check field 114, g bit field, and tag field 118
of the first word are used to contain data. Second, if the

10

15

20

25

30

35

40

45

50

55

60

65

3

memory line 102 1s owned, the first word 1s used to contain
the tag. The g bit field 116 1s at least one bit 1n length, and
the bits of the check field 114, ¢ bat ficld 116, and tag field

116 total 64 1 the exemplary embodiment that will be
described. In the exemplary embodiment, the check field 114
1s 32 bits 1n length, and the tag field 118 1s 31 bits in length.
In other applications, the lengths may be different. When
owned, the check field 114 contains a GONE code that
indicates that the data held in memory line 102 1s owned by
a processor 12, 14, 16, 18. The GONE code value 1s
preferably generated by the memory controller 94. If the
GONE code 1s not contained 1n the check field 114, then the
memory line 102 contains unowned data, and the contents of
the check field 114, ¢ bit field 116, and tag field 118 are a part
of the data. There 1s a rare case where the check field 114
holds unowned data that happens by chance to match the
GONE code. If the data 1s owned by a processor 12, 14, 16,
18, then the tag field 118 holds a coded 1dentification of the
owning processor 12, 14, 16, 18, a tag. The g bit field 116
1s required for the rare situations where unowned data
contamned 1n the first memory line 102 matches the GONE
code that 1s normally contained 1n the check field 114 and
used to indicate that the data 1s owned by a processor 12, 14,
16, 18. When data 1s owned by a processor 12, 14, 16, 18,
the check field 114 holds the GONE code indicating
ownership, and the g bit field 116 contains a 1. If the data 1s
not owned but the data held in the check field 114 matches
the GONE code used to indicate that the data 1s owned, the
o bit field 116 contains a 0. In this case, the g bit field 114
contains a O regardless of whether the actual data 1s a 1 or
a 0, and the d bit field 110 1s set to hold the actual data value
of the G bit. Thus for most memory accesses, the present
invention requires only one read function. Only when the
data 1n the check field 114 matches the GONE code used to
indicate ownership and the g bit field 116 holds a 0, must
there be a second read function to determine the true data
value of the G bit. In this case the true data value of the G
bit 1s obtained from the assigned D bit.

The GONE code contained 1n the check field 114 and used
to indicate that the data 1s owned may be any code value.
Preferably, the GONE code 1s the result of a hashing
function where the input to the hashing function 1s the
address of the first memory line 102. For example, when
using a 32-bit address, a 32-bit hashing function may be an
exclusive-or of the address and the bit-reversed version of
the address. Alternately, when usimng a 64 bit address, a
32-bit hashing function may be an exclusive-or of the even
bits and the bit-reversed odd bits. There are many other
hashing functions that may be employed with the present
invention, and those skilled 1n the art will recognize these
functions.

The present invention advantageously eliminates the need
to eavesdrop on memory accesses by other processors 12,
14, 16, 18. Whenever a processor 12, 14, 16, 18 accesses a
memory address, the processor 12, 14, 16, 18 either receives
valid data or receives the 1dentity of the processor 12, 14, 16,
18 that owns the valid data. The present invention does this
without having to modify the size or shape of the memory
20 or bus 22. The present invention 1s particularly advan-
tageous because the unique field system of check fields. G
bit fields, and tag ficlds greatly improves the performance of
the memory controller. While the prior art required two
memory controller accesses of the data storage to provide
the data and even more for outputting the tag, the present
invention 1s able to provide the data or the tag in a majority
of instances with only a single access of the data storage.
Furthermore, the second embodiment shown 1n FIG. 4 1s an

US RE38,514 E

9

improvement over the first embodiment shown in FIG. 3.
The first embodiment requires a second access of the data

storage 72 whenever the data held 1n the check field 73, 735,
77 matches the GONE code. By contrast, the second
embodiment requires a second access 1n the rare instances

when the data 1s unowned and matches the GONE code; that
1s the data held happens by chance to match the GONE code
for the memory line 102, 104, 106. This eliminates some of
the second accesses required by the first embodiment.

Referring now to FIG. 5, a block diagram of the second
embodiment of the memory 20, with the memory controller
94 1n detail, 1s shown. The memory controller 94 comprises
a memory sequencer 122, a data buffer 124, and an address
buffer 126. The memory controller 94 may include other
clements of conventional memories such as systems for
refreshing the memory; these conventional elements may
alternatively be 1 another structure. The data buffer 124 1s
a conventional buffer for receiving digital data. The data
buffer 124 has a first input/output and a second 1nput/output
and a control mput. The first 1nput/output and the second
input/output are bi-directional, that 1s they may either
receive or transmit digital data. The first 1nput/output is
coupled to the data bus of the bus 22 to receive and transmit
data signals. The second mput/output of the data buffer 124
1s coupled to the data storage 92 by the line 100. Similarly,
the address buifer 126 1s a conventional buffer for storing
addresses. The address buffer 126 has an input, which 1s
coupled to the address bus of the bus 22, for receiving
addresses, a control mnput, and an output. The output of the
address buffer 126 1s coupled to the data storage 92 by line

96.

The memory sequencer 122 1s a state machine that
receives signals and generates signals for controlling
accesses to the data storage 92. The memory sequencer 122
comprises combinational logic and data storage devices to
implement 1ts functions. Those skilled 1n the art will realize
how to construct a memory sequencer 122 from the inputs,
outputs, and states that are described below. The memory
sequencer 122 has a first input/output, coupled to the address
buffer 126 and to the data storage 92 by line 96, for receiving,
and transmitting addresses. A second mput/output 1s coupled
to the data buffer 124 and to the data storage 92 by line 100.
The memory sequencer 122 receives and outputs data sig-
nals through the second input/output. The memory
sequencer 122 has a first output for transmitting control
signals to the data storage 92. The first output 1s coupled to
the data storage by line 98. The memory sequencer 122
transmits data control signals to the data buffer 124 through
a second output. The second output 1s coupled to the data
buffer 124 by a line 128. A third output of the memory
sequencer 122 transmits address buifer control signals and 1s
coupled to the address butfer 126 by a line 130. The memory
sequencer 122 outputs signals indicating the identity of a
processor 12, 14, 16, 18 that owns data that another proces-
sor 12,14, 16, 18 1s attempting to access onto the control bus
of the bus 22 through a fourth output. The fourth output is
coupled to the control bus of the bus 22 and 1s labeled “Last
Owner.” Often when a processor 12, 14, 16, 18 attempts to
access memory line 102, that processor 12, 14, 16, 18
becomes the new owning processor 12, 14, 16, 18 that 1s
identified 1n the tag field 118. If another processor 12, 14, 16,
18 already owns the data, the accessing processor 12, 14, 16,
18 will request the data from the prior owner. Thus, the
accessing processor 12, 14, 16, 18 becomes the new owner.
For this reason, the fourth output of the memory sequencer
122 1s labeled “Last Owner.” The memory sequencer 122
has a fifth output that 1s coupled to the control bus of the bus

10

15

20

25

30

35

40

45

50

55

60

65

10

22. The memory sequencer 122 outputs a Status signal,
which indicates the success of the memory access, through
the fifth output. If another processor 12, 14, 16, 18 owns the
data, the memory sequencer 122 generates and outputs,
through the fifth output, a DIFF Status signal. If the data 1s
unowned, the memory sequencer 122 generates and outputs,
through the fifth output, a NONE Status signal. The memory
sequencer 122 generates and outputs a SAME Status signal
in certain situations. The memory sequencer 122 would
oenerate the SAME Status signal 1f the accessing processor

12, 14, 16, 18 1s the processor 1dentified in the tag field 118
as the owning processor 12, 14, 16, 18.

The memory sequencer 122 has a first input, which 1s
coupled to the control bus of the bus 22, through which the
memory sequencer 122 receives the 1identity of the processor
12, 14, 16, 18 which 1s attempting a memory access, and the
memory sequencer 122 has a second mput, also coupled to
the control bus of the bus 22, through which the memory

sequencer 122 receives the command of the processor 12,
14,16, 18. The first input 1s labeled Cacheld, and the second
input 1s labeled CMD.

The two basic commands are ReadOwned and WriteR-
eturn. The ReadOwned command 1s used when the access-
ing processor 12, 14, 16, 18 i1s to become the owning
processor 12,14, 16, 18 on the completion of the command.
The WriteReturn command 1s used when the accessing
processor 12, 14, 16, 18 i1s to write data that becomes
unowned. If a processor 12, 14, 16, 18 attempts a Read-
Owned command on data that another processor 12, 14, 16,
18 owns, the accessing processor 12, 14, 16, 18 becomes the
owning processor 12, 14, 16, 18 and DIFF Status signal 1s
oenerated. The accessing processor 12, 14, 16, 18 then
requests the data from the last owning processor 12, 14, 16,
18. If a processor 12, 14, 16, 18 attempts a ReadOwned on
unowned data, a NONE Status signal 1s generated, the data
1s returned to the accessing processor 12, 14,16, 18, and the
accessing processor 12, 14, 16, 18 becomes the owner of the
data. If a processor 12, 14, 16, 18 attempts a ReadOwned
command on data 1t owns, a SAME Status signal results and
no data 1s returned. This 1s usually an error condition. When
a WriteReturn command 1s 1ssued on data that 1s owned by
the accessing processor 12, 14, 16, 18, the data, from the
accessing processor 12, 14, 16, 18, 1s written at the memory
location, a SAME Status signal 1s generated, and the data
becomes unowned. When a WriteReturn command 1s 1ssued
on data owned by a processor 12, 14, 16, 18 other than the
accessing processor 12, 14, 16, 18, a DIFF Status signal 1s
generated, and neither ownership nor the data held in the
memory 20 1s modified. Finally, when a WriteReturn com-
mand 1s 1ssued on unowned data, a NONE Status signal 1s
generated, and the data 1s not modified. This last situation 1s
usually an error situation. There are two additional com-
mands that are closely related to the ReadOwned and
WriteReturn commands. These commands are ReadFresh
and WriteCheck. The ReadFresh command 1s used when
unowned data 1s to be read and 1s to remain unowned when
the command 1s completed. The ReadFresh command 1is
similar to the ReadOwned command, but when the Read-
Fresh command 1s executed on unowned data, the data
remains unowned. The WriteCheck command 1s used to
update unowned data and that data 1s to remain unowned. If
the WriteCheck command 1s 1ssued on data owned by a
processor 12, 14, 16, 18 other than the accessing processor,
a DIFF Status signal 1s generated, the data 1s modified, and
ownership changes to the accessing processor 12, 14,16, 18.
If a WriteCheck command 1s 1ssued on unowned data, the
data 1n the memory line 1s modified, a NONE Status signal

US RE38,514 E

11

1s generated, and the data 1n the memory line remains
unowned. Finally, if the WriteCheck command 1s 1ssued on
data owned by the accessing processor 12, 14, 16, 18, a
SAME Status signal 1s generated; this 1s usually an error
situation. There are other possible commands. From the
commands described here, those skilled 1mn the art waill

recognized these commands.

Referring now to FIG. 6, a state diagram for an exemplary
embodiment of the memory sequencer 122 1s shown. FIG. 6
shows the significant states of the memory sequencer 122;
other states may be necessary to implement fully the
memory sequencer 122. These additional states will be
understood by those skilled in the art. FIG. 6 shows the
significant states for the ReadOwned and WriteReturn com-
mands. Those skilled 1n the art will recognize the states
necessary for other commands. The memory sequencer 122
receives command signals through 1ts CMD 1nput, address
data through the input to the address buffer 126, and a
Cacheld signal through i1ts Cacheld input. The Cacheld
signal identifies the accessing processor 12, 14, 16, 18.
When the memory sequencer 122 receives a ReadOwned,
WriteReturn, or other appropriate command signal, the
memory sequencer 122 generates a signal and asserts the
signal on line 130 for the address buifer 126 to capture the
address and to transfer the address to the memory sequencer
122. The address buifer 126 transfers the address by assert-
ing a signal on line 96, which 1s coupled to the address
input/output of the memory sequencer 122. The memory
sequencer 122 then analyzes the address to determine if the
address 1s for a location within the data storage 92. As shown
in FIG. 2, the computer system 10 has only one memory 20.
Computer systems may, however, have multiple memories.
Where a computer system has multiple memories, the
memory sequencer 122 must determine 1f the address is
within its data storage 92. If the address 1s not for an address
within 1ts data storage 92, the memory sequencer 122
remains 1n state I.

If the address 1s for a location within the data storage 92,
the memory sequencer 122 enters state II. For this
explanation, 1t will be assumed that the received address 1s
0, and the memory line to be accessed 1s the first memory
line 102. Those skilled 1n the art will realize how the
description applies to all memory lines of the data storage
92. In state II, the memory sequencer 122 generates the
GONE code for the address 0. As described above with
reference to FIG. §, the memory sequencer 122 preferably
uses a hashing function to generate the GONE code for the
address. The memory sequencer 122 then generates a signal
instructing the data storage 92 to output the first word of the
first memory line 102 at the address to the memory
sequencer 122. The memory sequencer 122 transmits the
signal to this data storage 92 on line 98, and in response, the
data storage 92 transmits the first word to the memory
sequencer 122 on line 100. The memory sequencer 122
outputs the data contained in the tag ficld 118 of the first
word, through 1ts Last Owner output, onto the control bus of
the bus 22. Note that the memory sequencer 122 has not yet
determined if memory line 102 1s owned by a processor 12,
14,16, 18. If the first memory line 102 1s not owned, the tag
that has been output 1s meaningless and will be 1gnored. If
the first memory line 102 1s owned, the data in the tag field
118 1dentifies the owning processor and will be used by the
accessing processor 12, 14, 16, 18. Once the memory
sequencer 122 has output the data from the tag field 118
through the Last Owner output, it compares the data in the
check field 114 to the GONE code that 1t just generated. The

memory sequencer 122 then transitions out of state II.

10

15

20

25

30

35

40

45

50

55

60

65

12

If the memory sequencer 122 received a ReadOwned
command at 1ts CMD 1nput and the GONE code does not
match the data contained in the check field 114, the memory
sequencer 122 transitions from state II to state III. In this

case, the first memory line 102 1s not owned by any
processor 12, 14, 15, 18, since the GONE code 1s not equal
to the data held i1n the check field 114. In state III, the

memory sequencer 122 asserts a signal on line 98 instructing
the data storage 92 to output the contents of the first memory
line 102 onto line 100. The memory sequencer 12 then
asserts a signal on line 128 for the data butfer 124 to receive
the data and to output the data onto the data bus of the bus
22. This 1s done for each word until the entire contents of
memory line 102 have been transferred to the bus 22. The
first memory line 102 1s now owned by the accessing
processor 12, 14, 16, 18. The memory sequencer 122 signals
the data storage 92 to store the GONE code, which the
memory sequencer 122 determined in state II, in the check
field 114, to set the G bit 1n the g bit field 116 to 1, and to
store the 1dentity of the accessing processor 12, 14, 16, 18
in the tag field 118. The memory sequencer 122 received the
identity of the accessing processor 12, 14, 16, 18 through its
Cacheld mput. Finally, the memory sequencer 122 generates
a NONE Status signal and asserts this signal onto the control
bus through the Status output. The memory sequencer 122
then leaves state III and returns to state 1.

If 1n state II, the memory sequencer 122 determines that
the GONE code matches the data held 1n the check field 114
and the memory sequencer 122 received a ReadOwned
signal, the memory sequencer 122 enters state IV. The first
memory line 102 may be owned by a processor 12, 14, 16,
18; 1t 1s also possible that the data contained 1n check field
114 simply matches the GONE code. In state IV, the memory
sequencer 122 gets the G bit from the g bit field 116. The
memory sequencer 122 has already obtained the first word
from the data storage 92 1n state II. If the G bit 1s O, the first
memory line 102 1s unowned and the memory sequencer 122
proceeds to state V. In state V, the memory sequencer 122
signals the data storage 92 to transfer the value of the D bat
for the first memory line 102, which is held in the d bit field
110, to the memory sequencer 122. The memory sequencer
122 then sets the value contained 1n the g bit field 116 equal
to the value of the D bit and proceeds to state III. This 1s the
very rare occurrence where the present invention must make
two reads to accomplished the memory access. This only
occurs when the data held 1n a memory line 1s unowned, and

the data held 1n the check field happens by chance to match
the GONE code.

If 1n state IV, the G bit, contained 1n the g bit field 116, 1s
equal to 1, the memory sequencer 122 checks the tag held in
the tag field 118. If the tag matches the Cacheld received at
the Cacheld mput, the memory sequencer 122 moves to state
V1. In this case, the first memory line 102 1s owned by the
accessing processor 12, 14, 16, 18. The data held 1n the first
memory line 102 may not be read since 1t 1s owned. In state
VI, the memory sequencer 122 generates a SAME Status
signal and asserts the signal on the control bus through the
Status output. A SAME Status signal indicates that a
memory line 1s owned by the accessing processor 12,14, 16,
18 and usually indicates an error condition. The memory
sequencer 122 then returns to state 1.

If 1n state IV the G bit 1s 1 and the tag does not match the
Cacheld received at the Cacheld input, the memory
sequencer 122 enters state VII. As in State VI, the data in the
first memory line 104 of the data storage 92 1s not valid data.
The memory sequencer 122 generates and outputs a DIFF
Status signal. The DIFF Status signal indicates that the first

US RE38,514 E

13

memory line 104 1s owned. The memory sequencer 122
already output the i1dentity of the owning processor 12, 14,
16, 18 when it output the contents of the tag field 118 1n state
I. The accessing processor 12, 14, 16, 18 will receive the
DIFF Status signal along with the contents of the tag field
118, and the accessing processor 12, 14, 16, 18 will then be
able to obtain the valid data by requesting the data from the
owning processor 12,14, 16, 18. The memory sequencer 122
then signals the data storage 92 to store an i1dentifier for the

accessing processor 12, 14, 16, 18 1n the tag field 118. The
accessing processor 12, 14, 16, 18 now becomes the owner
of the first memory line 102. The memory sequencer 122
then returns to state I.

In state II, if the memory sequencer 122 received a
WriteReturn signal in state I, the memory sequencer 122
moves to state VIII. With the WriteReturn command, only an
owning processor 12,14, 16, 18 may write to a memory line.
In state VIII, the memory sequencer 122 compares the
GONE code determined 1n state II from the address to the
code contained in the check field 114 and compares the
Cacheld signal received from the control bus to the tag held
in the tag field 118. The memory sequencer 122 also
determines 1f the G bit contained in the g bit field 116 1s a
1. If the first memory line 102 1s owned by another processor
12, 14, 16, 18, then the memory sequencer 122 moves to
state IX. The first memory line 102 1s owned by another
processor 12, 14, 16, 18 if the code held 1n the check field
114 matches the GONE code that the memory sequencer 122
generated from the address 1n state II, if the G bit contained
in the g bit field 114 1s 1, and 1f the tag held 1n the tag field
118 does not match the Cacheld signal received from the
control bus. If any one of these three conditions 1s not met,
then the first memory line 102 1s not owned by another
processor 12,14, 16, 18 and the memory sequencer 122 does
not enter state IX. In state IX, the memory sequencer 122
ogenerates a DIFF Status signal and asserts this signal on the
control bus of the bus 22. The memory sequencer 122 then
returns to state 1.

If, 1n state VIII, the first memory line 102 1s unowned, the
memory sequencer 122 moves to state X. An accessing
processor may only write to a memory line owned by 1tsell.
The first memory line 102 1s unowned if one of two
conditions 1s met. The first condition 1s that the code, held
in the check field 114, does not match the GONE code
ogenerated 1n state II. The second condition 1s that the code,
held in the check field 114, matches the GONE code
ogenerated 1n state 11, but the G Bit, held 1n the g bit field 116,
1s a 0. In state X, the memory sequencer 122 generates a
NONE Status signal. As was explained above, this 1s usually
an error condition. The memory sequencer 122 then returns
to state I.

If, 1n state VIII, the first memory line 102 1s owned by the
accessing processor 12, 14, 16, 18, the memory sequencer
122 enters state XI. The first memory line 102 1s owned by
the accessing processor 12, 14, 16, 18 1f three conditions are
met. The first condition 1s the code held 1n the check field
114 matches the GONE code generated by the memory
sequencer 122 from the address in state II. The second
condition 1s the G bit, held 1n the g bt field 116, 1s a 1. The
third condition 1s the Cacheld signal, received from the
control bus, matches the tag held 1n the tag field 118. If these
three conditions are met, the memory sequencer 122 pro-
ceeds to state XI.

In state XI, the memory sequencer 122 generates a signal
and asserts the signal on line 128 for the data buffer 124 to
transfer the first word of the data to be written in the first

memory line 102 to the memory sequencer 122. The

10

15

20

25

30

35

40

45

50

55

60

65

14

memory sequencer 122 then compares the GONE code
cgenerated 1n state II to the data received from the data buifer
124. Note that in state VIII, the memory sequencer 122
compared the GONE code to the data contained in the check
field 114. In state XI, however, the memory sequencer 122
1s comparing the GONE code to the first 32 bits of the first
word of the data that is entering the memory 20. The
memory sequencer 122 1s not comparing the GONE code to
the data already held 1n the memory 20. When a processor
12,14, 16, 18 writes data to the memory 20 the data becomes
unowned. The memory sequencer 122 must, however, deter-
mine 1f the data, by chance, matches the GONE code. If the
first 32 bits of the first word match the GONE code, the
memory sequencer 122 moves to state XII. In state XII, the
memory sequencer 122 sets the D bit to the value of the G
bit of the first word and records this value 1n the d bit field
110. The memory sequencer 122 then assigns to the G bait the

value of O.

From state XII or, 1f the data did not match the GONE
code, from state XI, the memory sequencer 122 enters state
XIII. In state XIII, the memory sequencer 122 first generates
a signal instructing the data storage 92 to store the incoming,
data 1n the first memory line 102. The first word 1s trans-
mitted from the memory sequencer 122, the remainder is
transmitted from the data butfer 124. The memory sequencer
122 then generates a SAME Status Signal. The SAME
Status signal indicates to the accessing processor 12, 14, 16,
18 that the WriteReturn was successful. The memory
sequencer 122 then returns to state 1.

Referring now to FIGS. 7A, 7B, and 7C, flow charts of a
method for accessing a memory utilizing the present inven-
tion are shown. The method begins in step 200 where a
memory sequencer 122 receives address, control, and data
signals. The memory sequencer 122 receives an address
signal, a command signal, and a Cacheld signal that 1den-
tifies the accessing processor 12, 14, 16, 18. In step 202, the
memory sequencer 122 determines if the address 1s within
its associated data storage 92. If the address 1s not within the
data storage 92, the method returns to step 200 to await
another address. If the address 1s within the data storage 92,
the method moves to step 204.

In step 204, the memory sequencer 122 determines a
GONE code from the address. The memory sequencer 122
may use any method for generating the GONE code. The
memory sequencer 122 preferably uses a hashing function to
ogenerate the GONE code. For example, if a 32 bit address 1s
used, the memory sequencer 122 may use an exclusive-or of
the address and the bit-reversed version of the address.
Alternately, if a 64 bit address 1s used, the memory
sequencer 122 may use an exclusive-or of the even bits of
the address and the bit-reversed version of the odd bats.
There are many other hashing functions that may be used;
those skilled in the art will recognize these functions. Also
in step 204, the memory sequencer 122 signals for and
receives the first word of data contained i1n the addressed
memory line. In this description 1t will be assumed that the
address was 0 and the first memory line 102 1s to be
accessed. Those skilled 1n the art will recognize how the
method applies to all memory lines of the data storage 92.

In step 206, the memory sequencer 122 outputs, through
its Last Owner output, onto the control bus of the bus 22,
data held in a tag field 118 of the first memory line 102. It
the first memory line 102 1s owned, then the tag identifies the
owning processor 12, 14, 16, 18 to the accessing processor
12,14, 16, 18. I1 the first memory line 102 1s not owned, then
the tag will be 1gnored. In step 208, the memory sequencer
122 determines 1f the control signal received through 1its

US RE38,514 E

15

CMD 1nput 1s a ReadOwned command. The memory
sequencer 122 1gnores command signals on the bus 22 that
do not affect the memory 20. For this description it will be
assumed that there are only two memory operations, Read-
Owned and WriteReturn. Those skilled in the art will realize
how the method may be modified for other memory opera-

tions such s ReadFresh, WriteCheck, and others. If the
command 1s a ReadOwned command, the method moves to
step 210 where the memory sequencer 122 compares the
GONE code, determined in step 204, to the data contained
in the check field 114. If the GONE code does not match the
data contained 1n the check field 114, the memory sequencer
122, m step 212, signals the data storage 92 and data buffer
124 to output the contents of the first memory line 102 onto
the data bus of the bus 22. The memory sequencer 122 also
generates and outputs, through 1ts Status output, onto the
control bus a NONE Status signal. In step 214, the memory
sequencer 122 signals the data storage 92 to store the GONE
code, generated 1n step 204, 1n the check field 114, a 1 1n the
o bit field 116, and the Cacheld, received from the control
bus through the Cacheld mput, 1n the tag field 118. This
identifies the first memory line 102 as owned by the access-
ing processor 12, 14, 16, 18 which was i1dentified by the
input through the Cacheld mput. The method then ends.

If in step 210 the GONE code [did not] does match the
data held 1n the check field 112, the method continues 1n step
236 of FIG. 7B. In step 236, the memory sequencer 122
determines if the G bit 1s equal to 0. The G bit 1s held 1n the
o bit field 116. I the G bit 1s equal to 0, the method continues
in step 238. This i1s the rare situation where the data
contained in memory line 102 is not owned, but the data held
in the check field 114, by chance, matches the GONE code
ogenerated from the address for memory line 102. This 1s the
situation where a second read function must be executed. In
step 238, the memory sequencer 122 signals the data storage
92 to read the D bit contained 1n the d bit field 110 and to
provide the D bit to the memory sequencer 122. In step 240,
the memory sequencer 122 sets the G bit equal to the D bat.
Since the data contained in the memory line 102 1s not
owned and the data contained in the check field 112 hap-
pened to match the GONE code, the G bit was forced to O.
This O value for the G bit indicates that the data 1s not
owned. The D bit 1s the actual data value of the bit occupied
by the G bit. By setting the G bit equal to the D bit before
outputting the data, the memory sequencer 122 restores the
true value of the bit occupied by the G bit. Next, in step 242,
the memory sequencer 122 transfers the first word of the first
memory line 102, with the restored D bit, to the data buffer
124 and signals the data buffer 124 and data storage 92 to
output the contents of the first memory line 102 onto the data
bus of the bus 22. The memory sequencer 122 also generates
and outputs a NONE Status signal.

The memory sequencer 122 then, 1n step 246, signals the
data storage 122 to store the GONE code, generated 1n step
204, 1n the check field 114, a 1 1n the g bit field 116, and the
Cacheld, recerved from the control bus through the Cacheld
input, in the tag field 118. This i1dentifies the first memory
line 102 as owned by the accessing processor 12, 14, 16, 18
which was 1denfified by the input through the Cacheld input.
The method then ends.

If 1in step 236 the G bit was not equal to O, then the first
memory line 102 1s owned by a processor 12,14, 16, 18 and
the data storage 92 does not have valid data. The accessing
processor 12, 14, 16, 18 must request the data from the
owning processor 12, 14, 16, 18. In step 244, the memory
sequencer 122 determines if the Cacheld signal matches the

tag held 1n the tag field 118. If the Cacheld signal matches

10

15

20

25

30

35

40

45

50

55

60

65

16

the tag, the method continues 1n step 248. In step 250, the
memory sequencer 122 generates and outputs a SAME
Status signal. This 1s usually an error condition, and the
method ends. If 1n step 244 the tag does not match the
Cacheld mput, the memory sequencer 122 generates, 1n step
248, a DIFF Status signal and outputs this signal onto the
control bus of the bus 22. The accessing processor 12, 14,
16, 18 will receive this signal and, having already received
the tag output 1n step 206, will request the data from the
owning processor 12,14, 16, 18. The memory sequencer 122
assumes that the accessing processor 12, 14, 16, 18 will
receive the data from the owning processor 12, 14, 16, 18.
Therefore, the method proceeds to step 246 where the
memory sequencer 122 identifies the first memory line 102
as owned by the accessing processor 12, 14, 16, 18. The
method then ends.

If 1n step 208 the command 1s not a ReadOwned
command, the command must be a WriteReturn command.

In step 216 the memory sequencer 122 determines 1f the data
contained in the check field 114 matches the GONE code

and 1f the G bat, held in the g bit field 116, 1s 1. If either
condition 1s false, then the first memory line 102 1s not
owned. This 1s usually an error condition. In step 218, the
memory sequencer 122 generates and outputs a NONE
Status signal. After step 218, the method ends.

If both conditions of step 216 are true, the first memory
line 102 1s owned. In step 220, the memory sequencer 122
determines 1f the data contained 1n the tag field 118 matches
the Cacheld received through the Cacheld input. If the tag

matches the Cacheld, then the accessing processor 12, 14,
16, 18 1s the owner. If there 1s no match, the memory

sequencer 122 generates a DIFF Status signal in step 222,
outputs the DIFF Status signal, and the method ends.

If the accessing processor 12, 14, 16, 18 1s the owner, then
the method continues 1n step 224 of FIG. 7C. In step 224, the
memory sequencer 122 determines 1f the first bits of the
incoming data match the GONE code. Note that the memory
sequencer 122 1s comparing the incoming data to the GONE
code. In step 216, the memory sequencer 122 compared the
data already contained in the first memory line 102 to the
GONE code. If there 1s no match 1n step 224, the memory
sequencer 122 signals, in step 226, the data buffer 124 and
data storage 92 to store the data in the first memory line 102.
The memory sequencer 122 generates and outputs a SAME
Status signal, and the method ends. If 1n step 224 there 1s a
match, the memory sequencer 122 sets the D bit equal to the
G bit 1n step 228. The memory sequencer 122 then 1n step
230 signals the data storage to store the D bit 1n the d bit field
110. In step 232, the memory sequencer 122 sets the G bit
equal to 0, and 1n step 234 the memory sequencer 122
51gnals the data buffer 124 and data storage 92 to store the
data 1n the first memory line 102. The data storage 92 stores
the data with the G bit set to 0. The memory sequencer 122

then generates and outputs a SAME Status signal, and the
method ends.

While the present invention has been described with
reference to certain preferred embodiments, those skilled 1n
the art will recognize that various modifications may be
provided. For example, the present invention 1s described for
performing certain memory operations, the present mven-
fion may be used to perform any operation. The g bit field
need not comprise only one bit. The g bit field may comprise
more than one bit and may contain data in addition to data
indicating that, despite matching check field data and GONE
code values, the memory line 1s unowned and contains data.
These and other variations upon and modifications to the
preferred embodiments are provided for by the present
invention, which 1s limited only by the following claims.

US RE38,514 E

17

What 1s claimed 1s:
1. A memory system for a computer system having a
plurality of processors, the memory system comprising:

a data storage device having address and data inputs,
outputs, a command 1nput, a plurality of memory lines,
and a bit field portion, each memory line having a tag
field portion for holding a processor identification code
when not being used to hold data and having a check
field portion for holding a GONE code, the bit field
portion having at least one bit for each memory line for
holding a flag indicates whether the tag field portion of
the memory line holds said processor identification
code; and

a memory controller having inputs and outputs coupled to
communicate commands, addresses, and data with the
processors, the memory controller coupled to the data
storage device for storing and retrieving data and
processor 1dentification codes 1n the tag field portions
of the memory lines, said GONE code 1n the check field
portion of a memory line when the tag field portion
thereof contains said processor 1dentification code, and
the flags in the bit field portion of the data storage
device, the memory controller using nformation
received from the processors to determine the appro-
priate updating of the flags for properly indicating
which tag field portions contain said processor 1denti-
fication code;

wherein the memory controller further comprises:

a data buffer, having inputs and outputs coupled to the
data inputs and outputs of the data storage device, for
receiving and outputting data;

an address builer, having inputs coupled to the plurality
of processors, and having inputs and outputs coupled
to the address inputs of the data storage device, for
receiving addresses; and

a memory sequencer, having inputs and outputs, the
outputs coupled to control input of the data storage
device, the address buifer, and the data builer, gen-
erating signals that instruct the data storage device to
store and retrieve said data and said processor 1den-
tification codes for updating the bit field portion of
the data storage device.

2. The memory system of claim 1, further comprising a
plurality of t bit fields, each t bit ficld being assigned to a
corresponding memory line for confirming whether the tag
field portion of said memory line holds a processor identi-
fication code.

3. The memory system of claim 1, wherein each memory
line further comprises a g bit field for confirming whether
the check field portion of the memory line holds the GONE
code, thereby 1ndicating whether the tag field portion of the
memory line holds a processor i1dentification code.

4. The memory system of claim 3, wherein a g bit field 1s
one or more bits of a memory line, and wherein the bit field
portion comprises a plurality of d bit fields, with each
memory line having an assigned d bit field for holding data
for the portion of the memory line occupied by the g bit field.

5. The memory system of claim 1, wherein a memory line
has an address, and wherein the GONE code for the memory
line 1s a result of a hashing function applied to the address
of the memory line.

6. The memory system of claim 1, wherein the memory
sequencer contains combinational logic.

7. The memory system of claim 1, wherein each memory
line of the data storage device has an unique address and the
GONE code 1s based on the address.

8. The memory system of claim 7, wherein the GONE

code held 1n the check field of a memory line 1s a result of
a hashing function performed on the address of the memory
line.

10

15

20

25

30

35

40

45

50

55

60

65

138

9. A method for reading a data storage device having
memory lines addressed by memory addresses, the method
comprising the steps of:

receiving a memory address for requested data and a read
command from a processor;

retrieving from the data storage device information held
in the memory line addressed by the memory address;

generating a GONE code for the memory line;
comparing the GONE code to the information retrieved;

outputting the mnformation retrieved as the requested data
if the GONE code does not match the information
retrieved;

generating a signal indicating that a processor holds the
requested data if the GONE code matches the infor-
mation retrieved;

determining whether a G bit indicates that a processor
holds requested data of the memory address, 1f the
GONE code matches the information retrieved;

retrieving a D bit if the G bit indicates that a processor
does not hold the requested data and the GONE code
matches the information retrieved; and

outputting the information retrieved as the requested data,
with the D bit replacing the G bit, if in the determining
step the G bit indicated that a processor does not hold
the requested data.

10. The method of claim 9, further comprising the steps
of:

generating a signal indicating that a processor holds the
requested data if 1n the determining step the G bat
indicated that a processor holds the requested data; and

modifying the information being held 1n the memory line
addressed by the memory address so that 1t 1dentifies
the processor that generated the read command.
11. The method of claim 9, wherein the step of outputting
comprises the steps of:

outputting the information retrieved;

storing the GONE code 1n the memory line addressed by
the memory address;

storing a G bit in the memory line, the G bit indicating that
a processor holds the requested data; and

storing the 1denfity of the processor which generated the
read command 1n the memory line.
12. A method for writing a data storage device having
memory lines addressed by memory addresses, the method
comprising the steps of:

receving a processor identifier, a write command, a
memory address, and data from a processor;

generating a GONE code for the memory line addressed
by the memory address;

comparing the GONE code to information being held 1n
the memory line;

comparing the processor identifier to the information
being held 1n the memory line if the GONE code
matches the information being held 1n the memory line;

generating a first signal indicating that a different proces-
sor than the processor that generated the write com-
mand owns a right to provide data addressed by the
memory address, 1f the GONE code matches and the
processor 1dentifier does not match the information
being held in the memory line, otherwise generating a
second signal indicating that the processor that gener-
ated the write command has a right to write the memory
line; and

US RE38,514 E

19

storing the data received in the receiving step in the
memory line unless said different processor owns a
right to provide data addressed;

wherein the step of storing further comprises the steps of:

storing the data, received in the receiving step, in the
memory line addressed by the memory address;

comparing the data, received in the receiving step, to the
GONE code for the memory line;

recording data value of a G bit taken from the data as a D
bit, 1f the data matches the GONE code for the memory
line; and

setting the G bit to indicate that the data 1s not held by the
processor 1f the data matches the GONE code for the
memory line.

13. A system for reading a data storage device having
memory lines addressed by memory addresses, the system
comprising;

means for receiving a memory address for requested data
and a read command from a processor;

means for retrieving from the data storage device infor-
mation held 1n the memory line addressed by the
memory address;

means for generating a GONE code for the memory line;

means for comparing the GONE code to the information
retrieved;

means for outputting the information retrieved as the
requested data 1f the GONE code does not match the
mmformation retrieved;

means for generating a signal 1indicating that a processor
holds the requested data, if the GONE code matches the
information retrieved;

means for determining whether a G bit indicates that a

processor holds requested data, if the GONE code
matches the information retrieved;

means for retrieving a D bit if the G bit indicates that a
processor does not hold the requested data;

means for modifying the G bit equal to the D bit if the G
bit indicated that a processor does not hold the
requested data; and

means for outputting the information retrieved as the
requested data, with the modified G bit, if prior to
replacement, the G bit indicated that a processor does
not hold the requested data.

14. The system of claim 13, further comprising:

means for generating a signal indicating that a processor
holds requested data if 1n the determining step the G bit
indicated that a processor holds the data;

means for generating a signal that indicates the processor
that holds the requested data; and

means for modifying the information being held in the
memory line addressed by the memory address so that
it 1dentifies the processor that generated the read com-
mand.

15. The system of claim 13, wherein the means for
outputting comprises:
means for outputting the retrieved information;

means for storing the GONE code 1n the memory line
addressed by the memory address;

means for storing a G bit 1n the memory line, the G bit
indicating that a processor holds the requested data; and

means for storing the identity of the processor that gen-
erated the read command 1n the memory line.
16. A system for writing a data storage device having
memory lines addressed by memory addresses, the system
comprising:

10

15

20

25

30

35

40

45

50

55

60

65

20

means for receiving a processor identifier, a write
command, a memory address, and data from a proces-
SOfr;

means for generating a GONE code for the memory line
addressed by the memory address;

means for comparing the GONE code to information
being held 1in the memory line;

means for comparing the processor identifier to the infor-
mation being held in the memory line, if the GONE
code matches the information being held in the memory
line;

means for generating a first signal indicating that a
different processor than the processor that generated the
write command owns a right to provide data addressed
by the memory address if the GONE code matches and
the processor 1dentifier does not match the information
being held 1n the memory line;

means for generating a second signal indicating that the
processor that generated the write command has a right
to write the memory line if either the GONE code does
not match or the processor 1dentifier matches the infor-
mation being held in the memory line; and

means for storing the data received in the receiving step
in the memory line unless said different processor owns
a right to provide data addressed by the memory
address:

wherein the means for storing further comprises:
means for storing the data, received by the means for
receiving, 1n the memory line addressed by the
memory address;
means for comparing the data, received by the means
for receiving, to the GONE code for the memory
line;
means for recording data value of a G bit taken from the
data as a D bat, 1f the data matches the GONE code
for the memory line; and means for setting the G bit
to indicate that the data, received by the means for
receiving, 1s not held by the processor if the data
matches the GONE code for the memory line.
17. A memory system for a computer system having a
plurality of processors, the memory system comprising:

a data storage device comprising a plurality of memory

lines, each memory line having a tag field and a check

field, the data storage device further including a bat

field; and

a memory controller coupled to said plurality of proces-
sors for communicating read commands, write
commands, and data therewith, the memory controller
further coupled to the data storage device for reading
and writing data 1n the memory lines thereof, including,
in the check and tag fields thereof, in response to said
commands, and for reading and writing GONE codes
and processor identifiers in the check and tag fields
respectively when said fields are not holding data from
the processors;

wherein data from plurality of processors can match the
GONE codes of the memory lines, and the memory
controller writes 1n the bit field an indication of authen-
ticity of each GONE code written 1n the check field,
and wherein 1n response to receiving a command to
read the first memory line from f{irst processor, the
memory controller further supplies the contents thereot
to said first processor 1n response to the contents of the
check field matching the GONE code thereof and the
contents of the bit field not authenticating said match-
ing of the GONE code thereof.

US RE38,514 E

21

18. The memory system of claim 17, wherein:

1n response to receiving a command to read a memory line
from a processor, the controller reads the memory line,
supplies the contents thereof to the processor 1n
response to the contents of the check field thereof not
matching the GONE code thereof, writes the processor
identifier of the processor to the tag field thereof, and
writes the GONE code thereof in the check field
thereof.

19. The memory system of claim 17, wherein:

In response to receiving a command to write data 1n a
memory line from a processor, the controller reads the
check and tag fields thereof, writes the data therein in
response to the contents of the check field thereof not
matching the GONE code thereof, and writes said data
therein 1n response to the contents of the tag field
thereof matching the processor 1dentifier of the proces-
SOT.

20. A method for writing a data storage device having

memory lines addressed by memory addresses, the method
comprising the steps of:

receiving a processor 1dentifier, a write command, a
memory address, and data from a processor;

generating a GONE code for the memory line addressed
by the memory address;

comparing the GONE code to information being held in
said memory line;

comparing the processor identifier to said information;

generating a signal 1 response to either the GONE code

not matching said information or the processor identi-
fier matching said information; and

storing the data received in the receiving step in the
memory line 1 response to said signal;

wherein the step of storing comprises the steps of:

storing the data, received in the receiving step, in the
memory line addressed by the memory address;

comparing the data, received in the receiving step, to the
GONE code for the memory line;

recording data value of a G bit taken from the data as a D
bit, 1f the data matches the GONE code for the memory

line; and
setting the G bit to indicate that the data 1s not held by a
processor 1f the data matches the GONE code for the

memory line.
21. A system for writing a data storage device having

memory lines addressed by memory addresses, the system
comprising:

means for receiving a processor identifier, a write
command, a memory address, and data from a proces-
SOT;

means for generating a GONE code for the memory line
addressed by the memory address;

means for comparing said GONE code to information
being held 1in the memory line;

means for comparing the processor idenfifier to said
information,;

means for generating a signal 1n response to either the
GONE code not matching said information or the
processor 1dentifier matching said information; and

means for storing the data received 1n the receiving step
in the memory line 1n response to said signal;

wherein the means for storing comprises:
means for storing the data, received by the means for
receiving, 1n the memory line addressed by the
memory address;

22

means for comparing the data, received by the means
for receiving, to the GONE code for the memory
line;
means for recording data value of a G bit taken from the
5 data as a D bat, if the data matches the GONE code
for the memory line; and means for setting the G bait
to indicate that the data, received by the means for
receiving, 1s not held by said processor if the data
matches the GONE code for the memory line.

10 22. A method of managing memory access to a data
storage in a multi-processor system including a plurality of
processors, each processor coupled to a memory cache,
each processor having a processor ID, the method compris-
Ing:

15 receiving from an accessing processor a request to read a

memory line of the data storage;

reading the memory line from the data storage;

determining only from the read memory line whether the
memory line stores current data, or stores the processor
ID of an owner processor holding the current data of
the memory line in its memory cache by comparing a
first portion of the memory line with a code that
indicates that the current data is held in the memory
cache of a processor; and

responsive to the determination, providing portions of the
memory line to the accessing processor as either the
current data, or the processor ID of the owner proces-
SOF:

23. The method of claim 22, wherein reading the memory
line from the data storage consists of a single memory
access.

24. The method of claim 22, further comprising:

providing a control signal to the accessing processor in
conjunction with the provided portions of the memory
line, for indicating to the accessing processor whether
the provided portions include the current data or
processor 1D of the owner processor:

25. The method of claim 22, further comprising:

10 Fesponsive to determining only from the read memory line
that the memory line stores current data, providing the
memory line to the accessing processor as data and
storing n the memory line the processor ID of the
accessing processor as the processor ID of an owner

45 processor holding the data of the memory line in its
memory cache; and

responsive to determining only from the read memory line
that the memory line stores the processor ID of an
owner processor currently holding the current data in
50 its memory cache, providing from the memory line the
processor ID of the owner processor to the accessing
processor, and storing in the memory line the processor
ID of the accessing processor as the processor ID of an
owner processor currently holding the data of the
55 memory line in its memory cache.
20. The method of claim 22, wherein providing portions of
the memory line to the accessing processor as current data,
further comprises:

prior to providing the portions of the memory line, setting
60 a portion of the memory line to an actual value of the
portton held in a storage area separate from the

memory line.
27. The method of claim 22, further comprising:

deriving the code from an address of the read memory

65 line.
28. The method of claim 22, wherein determining only
from the read memory line whether the memory line stores

20

25

30

35

US RE38,514 E

23

current data, or stores the processor ID of an owner
processor holding the current data of the memory line in its
memory cache, further comprises:

responsive to the first portion of the memory line matching

the code, determining from a second portion of the
memory line whether the first portion contains data that
incidentally maiches the code; and

responsive to the first portion of the memory line con-

taining data that incidentally maiches the code, retriev-
ing current data for the second portion, and setting the
second portion of the memory line to the current data
prior to providing the portions of the memory line to the
accessing processor as the current data.

29. A method of managing memory access to a dala
storage in a mulii-processor system including a plurality of
processors, each processor coupled to a memory cache,
each processor having a processor ID, the method compris-

Ing:
recetving from an accessing processor a request 1o access
a memory line of the data storage;

reading the memory line from the data storage;

responsive to the request being a request to read the
memory line:
determining only from the read memory line whether
the memory line stores current data, or stores the
processor 1D of an owner processor holding the
current data of the memory line in its memory cache
by comparing a first portion of the memory line with
a code that indicates that the current data is held in
the memory cache of a processor; and

responsive to the determination, providing portions of

the memory line to the accessing processor as etther
the current data, or the processor ID of the owner
processor; and

responsive to the request being a request to write data to

the memory line:

determining only from the read memory line whether
the accessing processor ID is an owner processor
holding the current data of the memory line in its
memory cache, or is another processor; and

responsive to the accessing processor being the owner
processor, writing the current data to the memory
line.

30. The method of claim 29, wherein reading the memory
line from the data storage consists of a single memory
access.

31. A memory circuit for managing memory access 1o a
data storage in a multi-processor system including a plu-
rality of processors, each processor coupled to a memory
cache, each processor having a processor 1D and coupled to
a data bus, the memory circuit COmprising:

a data storage comprising a plurality of memory lines,
each memory line adapted to store a plurality of data
words;

a memory controller adapted to access a memory line in
the data storage in response to a request from an
accessing processor, and further adapted to:
receive from an accessing processor a request to read
a memory line of the data storage;

read the memory line from the data storage;

determining only from the read memory line whether
the memory line stores current data, or stores the
processor ID of an owner processor holding the
current data of the memory line in its memory cache
by comparing a first portion of the memory line with
a code that indicates that the current data is held in
the memory cache of a processor; and

5

10

15

20

25

30

35

40

45

50

55

60

65

24

responsive to the determination, provide portions of the
memory line to the accessing processor via the data
bus as either the current data, or the processor ID of
the owner processor.

32. The memory circuit of claim 31, wherein the memory
controller is adapted to read the memory line from the data
storage in a single memory access.

33. The memory circuit of claim 31, further comprising:

a control bus that couples the memory controller to the
plurality of processors; and

the memory controller is further adapted to provide a
control signal to the accessing processor via the control
bus in conjunction with the provided portions of the
memory line on the data bus, for indicating fo the
accessing processor whether the provided portions
include the current data or processor 1D of the owner
Processor.

34. The memory circuit of claim 31, wherein the memory

controller is further adapted to:

responsive to determining only from the read memory line
that the memory line stores current data, provide the
memory line to the accessing processor as data via the
data bus and storing in the memory line the processor
ID of the accessing processor as the processor ID of an
owner processor holding the data of the memory line in
its memory cache; and

responsive to determining only from the read memory line
that the memory line stores the processor ID of an
owner processor currently holding the current data in
its memory cache, provide from the memory line the
processor ID of the owner processor to the accessing
processor as data via data bus, and store in the memory
line the processor ID of the accessing processor as the
processor ID of an owner processor currently holding
the data of the memory line in its memory cache.

35. The memory circuit of claim 31, wherein the memory

controller is further adapted to:

prior to providing the portions of the memory line via the
data bus to the accessing processor, set a portion of the
memory line to an actual value of the portion held in a
storage area separate from the memory line.
36. The memory circuit of claim 31, wherein the memory
controller is further adapted to:

derive the code from an address of the read memory line.

37. The memory circuit of claim 31, wherein in determin-
ing only from the read memory line whether the memory line
stores current data, or stores the processor ID of an owner
processor holding the current data of the memory line in its
memory cache, the memory controller is adapted to:

responsive to the first portion of the memory matching the
code, determine from a second portion of the memory
line whether the first portion contains data that inci-
dentally matches the code; and

responsive to the first portion of the memory containing
data that incidentally matches the code, retrieve cur-
rent data for the second portion, and setting the second
portion of the memory to the current data prior to
providing the portions of the memory line to the access-
Ing processor as the current data.

38. A memory circuit for managing memory access 10 a
data storage in a multi-processor system including a plu-
rality of processors, each processor coupled to a memory
cache, each processor having a processor ID and coupled to
a data bus, the memory circuit comprising.

a data storage comprising a plurality of memory lines,
each memory line adapted to store a plurality of data
words;

US RE38,514 E

25

a memory controller adapted to access a memory line in
the data storage in response to a request from an
accessing processor, and further adapied to.
receive from an accessing processor a request 1o access

a memory line of the data storage;
read the memory line from the data storage;
responsive to the request being a request to read the
memory line:
determining only from the read memory line whether
the memory line stores current data, or stores the
processor ID of an owner processor holding the
current data of the memory line in its memory
cache by comparing a first portion of the memory
line with a code that indicates that the current
data is held in the memory cache of a processor;
and
responsive to the determination, provide portions of
the memory line to the accessing processor via the
data bus as either the current data, or the proces-
sor ID of the owner processor;
responsive to the request being a request to write data
o the memory line:
determine only from the read memory line whether
the accessing processor ID 1s an owner processor
holding the current data of the memory line in its
memory cache, or is another processor; and
responsive to the accessing processor being the
OwHner processor, Writing the current data fo the
memory line.

39. The memory circuit of claim 38, wherein the memory
controller is adapted to read the memory line from the data
storage in a single memory access.

40. The memory circuit of claim 38, further comprising:

a control bus that couples the memory controller to the
plurality of processors; and

the memory controller is further adapted to provide a
conirol signal to the accessing processor via the control
bus in conjunction with the provided portions of the
memory line on the data bus, for indicating fo the
accessing processor whether the provided portions
include the current data or processor ID of the owner
Processor:

41. A multiprocessor system, comprising.

a plurality of processors, each processor coupled to a
memory cache, each processor having a processor ID;

a bus coupled to each of the processors, and adapted to
transmit requests from the processors for data stored in
a memory and data stored in the memory (o the
PFOCESSOFS;

a memory, coupled to the bus, and comprising:

a data storage comprising a plurality of memory lines,
each memory line adapted to store a plurality of data
words, each memory line including:

a) a first portion that can be either:

[) a code for indicating that the data words of the
memory line are currently held in the memory
cache of one of the processors, or

ii) data for processing; and

b) a second portion that can be either:

i) the processor ID of an owner processor cur-
rently holding the data words from the memory
line in its memory cache; or

it) data for processing;

a memory controller adapted to access a memory line
in the data storage in response to a request from an
accessing processor, and further adapied to:

10

15

20

25

30

35

40

45

50

55

60

65

26

[) if the first portion does not contain the code, then
provide the first and second portions of the
memory line as data to the accessing processor via
the bus, store the code in the first portion of the
memory line, and store the processor ID of the
accessing processor n the second portion of the
memory line as the processor ID of an owner
processor; and

ii) if the first portion contains the code, then provide
the processor ID of the owner processor from the
second portion of the memory line to the accessing
processor via the bus, and store the processor I
of the accessing processor in the second portion of
the memory line as the owner processor.

42. The system of claim 41, wherein:

each memory line further includes a third portion adapted
lo store a bit indicating whether the first portion
contains the code or contains data; and

the data storage includes a storage area separate from the
memory lines, that stores for each memory line, a
corresponding data field holding the actual bit value of
the third portion of the memory line;

wherein the memory controller is further adapted to:
iit) if the first portion contains the code and the third

portion stores a bit indicating that the first portion
contains data, set the third portion to the actual bit
value stored in the data field corresponding to the
memory line, provide the first, second, and third
portions of the memory line to the accessing proces-
sor via the bus, store the code in the first portion of
the memory line, and store the processor ID of the
accessing processor in the second portion of the
memory line as the processor ID of the owner
Processor.

43. A multiprocessor system, cOmprising:

a) a plurality of processors, each processor coupled to a
memory cache, each processor having a processor ID;

b) a bus coupled to each of the processors, and adapted
lo transmit requests from the processors for data stored
in a memory and data stored in the memory to the
Processors;

c) a memory, coupled to the bus, and comprising:
1) a data storage comprising:

a) a plurality of memory lines, each memory line
adapted to store a plurality of data words, each
memory line including:

[) a first portion that can be either:

a first code for indicating that the data words of
the memory line are currently held in the
memory cache of one of the processors, or

data for processing by one of the processors; and

it) a second portion that can be either:

the processor ID of an owner processor currently
holding the data words from the memory line in
its memory cache; or

data for processing;

iit) a third portion that can be either:

an owned code indicating that the memory line is
data;

data for processing;

b) a storage area separate from the memory lines,
and including for each memory line a correspond-
ing data field that stores an actual data value of
the third portion of the memory line;

2) a memory controller adapted to access a memory
line in the data storage in response to a read request
from an accessing processor, and further adapted to:

US RE38,514 E

27

1) if first portion does not contain the first code, then
provide the memory line to the accessing
processor, set the accessing processor as the
owner processor by storing the processor ID n the
second portion, and store a new code in the first
portion,

ii) if the first portion does contain the code and the
third portion does not stores the owned code, set
the third portion of the memory line to the actual
value of the third portion stored in the correspond-
ing data field in the separate storage area, the
provide the first, second, and third portions of the
memory line to the accessing processor as data,
sel the accessing processor as the owner proces-
sor by storing the processor ID of the accessing
processor in the second portion of the memory
line, and store the first code in the first portion of
the memory line; and

iit) if the first portion does contain first code and the
third portion does store then owned code, and the
accessing processor is not the owner processor,
then provide the accessing processor with the
processor ID of the owner processor from the
second portion of the memory line, and set the
accessing processor as the owner processor by
storing the processor ID of the accessing proces-
sor in the second portion of the memory line.

44. A multiprocessor system, cOomprising:

a) a plurality of processors, each processor coupled to a
memory cache, each processor having a processor 1D;

b) a bus coupled to each of the processors, and adapted
lo transmit requests from the processors for data stored
in a memory and data stored in the memory to the
PrOCesSors;

c) a memory, coupled to the bus, and comprising:
1) a data storage comprising:

10

15

20

25

30

35

23

a) a plurality of memory lines, each memory line
adapted to store a plurality of data words, each
memory line including:

a first portion that can be either:

[) a first code for indicating that the data words
of the memory line are currently held in the
memory cache of one of the processors, or

it) data for processing by one of the processors;
and

a second portion that can be either:

[) the processor ID of an owmner processor cur-
rently holding the data words from the memory
line in its memory cache; or

it) data for processing;

a third portion that can be either:

1) an owned code indicating that the memory line
is data;

if) data for processing;

b) a storage area separate from the memory lines,
and including for each memory line a correspond-
ing data field that stores an actual data value of
the third portion of the memory line;

2) a memory controller adapted to access a memory
line in the data storage in response to a write request
from an accessing processor, and further adapted to:
if the first portion contains the first code, the third

portion stores the owned code, and the second
portion stores the processor ID of the accessing
processor, store updated data words from the
accessing processor in the memory line; and

if the first portion contains the first code, the third
portion stores the owned code, and the second
portion stores the processor ID of a non-
requesting processor, then perform no update on
the memory line, in order to prevent the memory

line from storing invalid data.

	Front Page
	Drawings
	Specification
	Claims

