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1

BUS TRANSACTION REORDERING IN A
COMPUTER SYSTEM HAVING
UNORDERED SLAVES

Matter enclosed in heavy brackets [ ] appears in the
original patent but forms no part of this reissue specifi-
cation; matter printed in italics indicates the additions
made by reissue.

This application is a continuation-in-part of U.S. patent
application Ser. No. 08/432,0622, filed May 2, 1995, now

abandoned.

FIELD OF THE INVENTION

The present invention relates to the computer architecture,
in particular to computer architecture for small computer
systems such as personal computers.

STATE OF THE ART

The PowerPC computer architecture, co-developed by
Apple Computer, represents a departure for prior-generation
small computer architectures, PowerPC machines currently
sold by Apple are based largely on the Motorola MPC601
RISC microprocessor. Other related processors, mcluding
the MPC 604, MPC 603, MPC 603¢, and MPC 602 are
currently available and additional related processor includ-
ing the MPC 620 will be readily available in the future. The
MPC60x permits separate address bus tenures and data bus
tenures, where tenure 1s defined as the period of bus mas-
tership. In other words, rather than considering the system
bus as an indivisible resource and arbitrating for access to
the entire bus, the address and data buses are considered as
separate resources, and arbitration for access to these two
buses may be performed independently. A transaction, or
complete exchange between two bus devices, 1s minimally
comprised of an address tenure; one or more data tenures
may also be mvolved 1n an exchange. There are two kinds
of transactions: address/data and address-only.

A tenure consists of three phases: arbitration, transfer, and
termination. During termination, a signal occurs that marks
the end of the tenure. The same signal 1s used to acknowl-
edge the transfer of an address or data beat. A beat corre-
sponds generally to a particular state of the address bus or
the data bus. Transfers include both single-beat transfers, 1n
which a single piece of data 1s transferred, and burst data
transfers, 1n which a burst of four data beats 1s transferred.

Referring more particularly to FIG. 1, note that the
address and data tenures are distinct from one another and
that both consist of three phases—arbitration, transfer, and
termination. FIG. 1 shows a data transfer that consists of a
single-beat transfer (up to 64 bits). In a four-beat burst
transfer, by confrast, data termination signals are required
for each beat of data, but re-arbitration i1s not required.
Having independent address and data tenures allows address
pipelining (indicated in FIG. 1 by the fact that the data tenure
begins before the address tenure ends) and split-bus trans-
actions to be mmplemented at the system level. Address
pipelining allows new address bus transactions to begin
before the current data bus transaction has finished by
overlapping the data bus tenure associlated with a previous
address bus tenure with one or more successive address
tenures. Split-bus transaction capability allows the address
bus and data bus to have different masters at the same time.

For clarity, the basic functions of address and data tenures
will be discussed 1n somewhat greater detail.

In the case of address tenure, during address arbitration,
address bus arbitration signals are used to gain mastership of
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the address bus. Assuming the CPU to be the bus master, 1t
then transfers the address on the address bus during the
address transfer phase. The address signals, together with
certain transier attribute signals discussed 1n greater detail
hereinafter, control the address transfer. After the address
transfer phase, the system uses the address termination
phase to signal that the address tenure 1s complete or that 1t
must be repeated.

In the case of data tenure, during address arbitration, the
CPU arbitrates for mastership of the data bus. After the CPU
1s the bus master, during the data transfer phase, 1t samples
the data bus for read operations or drives the data bus for
write operations. Data termination signals occur in the data
termination phase. Data termination signals are required
after each data beat 1n a data transfer. In a single-beat-
transaction, the data termination signals also indicates the
end of the tenure, while 1n burst accesses, the data termi-
nation signals apply to individual beats and indicate the end
of the tenure only after the final data beat.

Address-only transfers use only the address bus, with no
data transfer involved. This feature 1s particularly useful in
multi-master and multiprocessor environments, where exter-
nal control of on-chip primary caches and TLB (translation
look-aside buffer) entries is desirable. Additionally, the
MPC60x provides a retry capability that supports an efficient
“snooping” protocol for systems with multiple memory
systems (including caches) that must remain coherent.

Pipelining and split-bus transactions, while they do not
inherently reduce memory latency, can greatly improve
cffective bus-memory throughput. The MPC60x bus proto-
col does not constrain the maximum number of levels of
pipelining that can occur on the bus between multiple
masters. In a system in which multiple devices must com-
pete for the system bus, external arbitration is required. The
external arbiter must control the pipeline depth and synchro-
nization between masters and slaves.

In a traditional pipelined implementation, data bus tenures
arc kept 1n strict order with respect to address tenures.
However, external hardware can further decouple the
address and data buses, allowing the data tenures to occur
out of order with respect to the address tenures. Second-
generation PowerPC computers include computers whose
architecture was especially designed for high performance
and that incorporated such hardware. This architecture sup-
ports true split-bus operation with ordered slaves and
ordered masters. “Ordered” means each master and each
slave has i1ts own independent FIFO structure supporting
“ordered” service to transactions posted to 1t. If a slave
receives three transactions A, B, and C, then 1t will respond
to A first, B second, and C third. If a master performs
transactions D, E, and F, then it expects servicing of those
transactions in the order of D first, E second, and F third.
There can be up to a selected number of outstanding
master/slave pair transactions in the architecture at one time.
In one preferred embodiment, this selected number 1s three
outstanding pair transactions. As a result, in the foregoing
architecture, an expansion bridge may concurrently have
one outstanding slave transaction to 1t and one outstanding
master transaction from it. Although ordered masters and
slaves, as opposed to unordered masters and slaves, provide
an overall simplification to system architecture, they can
lead to deadlocks when there are conflicting completion
dependencies.

Deadlock occurs in a computer system when one resource
cannot complete an access to another resource, and the
access blocks other resources from performing transactions
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on the bus. Livelock occurs 1n a computer system when one
resource cannot complete an access to another resource,
does not block resources from performing transactions on
the bus, but no forward progress can be made due to the
resource’s 1nability to complete its access.

Due to the plethora of design methodologies and 1mple-
mentations utilized by expansion card vendors, systems are
most prone to deadlocks and livelocks when there 1s an
expansion bridge in the system. Some potential deadlocks
may be detected and prevented at the bridge level; however,
other pieces of the overall solution may need to be 1mple-
mented at a higher level in system arbitration.

The main reason that a deadlock or livelock occurs 1s that
cach of two different resources that communicate with each
other assumes that 1t has top priority in the system.
Unfortunately, when they communicate with each other this
causes a conflict, and if one does not back off its access, the
end result 1s deadlock or livelock.

In the architecture of certain Power PC computers of the
assignee, the top priority bus 1s known as the ARBus; 1t 1s
the one bus assumed to never have to back off an access.
However, there may be a need for the ARBus to communi-
cate with an ISA bus behind an expansion bridge. As history
recalls, the ISA bus design assumed that any 1nitiated access
would complete; therefore, an ISA master would not have to
back off 1ts access. Therein lies the problem. The Power PC
architecture, 1n one 1nstance, chose the ARBus to be the bus
to not back off, and the PC-world chose the ISA bus to be

the bus to not back off. This conflict of interest could result
1in deadlock.

In another 1nstance, the Power PC architecture may incor-
porate a PCI bus-to-PCI bus (“PCI2PCT”) bridge having an
interlocking behavior that disallows access to its slave port
on one side of the PC12PCI bridge while 1ts master on the
same side of the PCI2ZPCI bridge has a transaction to
perform. This behavior also means that the PCI2ZPCI bridge
assumes that it does not have to be backed off, and any
communication between the ARBus and a target behind the

PCI2PCI bridge could result in deadlock.

Although decoupling the address and data buses in a
computer system enables bus utilization to be greatly
increased, 1t would be desirable to further increase bus
utilization beyond what can reasonably be achieved 1n a
system having both ordered masters and ordered slaves.
Especially desirable would be a computer architecture in
which bus utilization 1s increased and 1n which deadlocks
are more readily avoided.

SUMMARY OF THE INVENTION

A mechanism 1s provided for reordering bus transactions
to 1ncrease bus utilization 1in a computer system in which a
split-transaction bus 1s bridged to a single-envelope bus. In
one embodiment, both masters and slaves are ordered,
simplifying implementation. In another embodiment, the
system 1s more loosely coupled with only masters being
ordered. Greater bus utilization 1s thereby achieved. In
accordance with one embodiment of the invention, a queu-
ing structure includes multiple master queues and multiple
slave queues. The queuing structure receives bus grant
signals and respective slave acknowledge signals from
respective slave devices. Each time an address bus grant is
1ssued a record 1s entered 1n the queuing structure, the record
comprising a first entry in a master queue 1dentified by the
address bus grant signals, and a second entry in a slave
queue 1dentified by the slave acknowledge signals. The first
entry 1dentifies a target slave device 1n accordance with the
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slave acknowledge signals, and the second entry identifies
an originating master device 1n accordance with the address
bus grant signals. A matching circuit i1s responsive to queue
entries from the queuing structure for producing match bits
identifying selected records the first entry of which 1s at the
head of a master queue. A data arbitration circuit 1s respon-
sive to the match bits and to queue entries from the queuing

structure for generating data bus grant signals for the master
devices and for generating for each slave device a multibat
signal which when active i1dentifies a transaction within the
transaction queue of the slave device.

DESCRIPTION OF THE DRAWINGS

The present invention may be further understood from the
following description 1n conjunction with the appended
drawing. In the drawing:

FIG. 1 1s a diagram 1llustrating overlapping tenures for a
single-beat transfer on a conventional MPC601 bus;

FIG. 2 1s a system-level block diagram of a computer
system 1n which the present invention may be used;

FIG. 3 1s a block diagram of the memory controller 300
of FIG. 2;

FIG. 4 1s a timing diagram showing conventional usage of
the MPC601 bus;

FIG. § 1s a timing diagram showing usage of the ARBus
(a superset of the MPC601 bus) in the high-performance
computer architecture of FIG. 2;

FIG. 6 Is a block diagram of the arbiter 600 of FIG. 3;

FI1G. 7 comprising FIGS. 7A and 7B 1s a block diagram of
the expansion bridge 700 of FIG. 2;

FIG. 8 1llustrates a deadlock 1n which an ARBus master
read of an expansion bridge 1s followed by an ARBus master
read of memory;

FIG. 9 1llustrates a deadlock 1n which an ARBus master

read of an expansion bridge 1s followed by an ARBus master
L2 hit or allocate operation;

FIG. 10 illustrates a deadlock 1n which a processor read
of an expansion bridge 1s followed by a processor write to
that expansion bridge;

FIG. 11 illustrates a deadlock in which a Bus Grant signal
and an Address Retry signal occur concurrently;

FIG. 12 1llustrates a deadlock m which a Bus Request
signal and an Address Retry signal occur concurrently;

FIG. 13 1llustrates a deadlock 1n which expansion bridges
read each other concurrently;

FIG. 14 1illustrates a deadlock in which one master
attempts to read both expansion bridges;

FIG. 15 1llustrates a deadlock 1n which an ISA bus master
reads a target behind an opposite expansion bridge;

FIG. 16 1llustrates a deadlock 1n which a PCI bus master
read gets stuck behind a posted PCI bus master write;

FIG. 17 illustrates a deadlock 1n which the ARBus trans-
action limit 1s hit, and accesses cannot complete;

FIG. 18 illustrates a deadlock mm which one expansion

bridge, with an outstanding ARBus read, accepts a read from
another expansion bridge;

FIG. 19 15 a block diagram of another embodiment of the
arbiter 600 of FIG. 3;

FIG. 20 1s a block diagram showing the mput and output
signals of the ArbMux 603' of FIG. 19;

FIG. 21 1s a block diagram showing the mput and output
signals of the ArbMux 603' of FIG. 19 1n greater detail;

FIG. 22 1s a block diagram showing the mput and output
signals of the ArbDatSM 604" of FIG. 19;
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FIG. 23 1s a block diagram of a bit filter portion of the
ArbDatSM 604' of FIG. 19;

FIG. 24 1s a block diagram showing the input and output
signals of the ArbDatSM 604" of FIG. 19 1n greater detail;

FIG. 25 1s a block diagram showing the 1nput and output
signals of the ARtryGen block 613' of FIG. 19; and

FIG. 26 1s a block diagram showing the input and output

signals of the ARtryGen bock 613' of FIG. 19 1n greater
detail,;

DETAILED DESCRIPTION OF THE
INVENTION

In the following description, the system architecture of a
computer system 1in which the present invention may be used
will first be described, including a description of the
MPC601 bus, the ARBus, which 1s a superset of the
MPC601 bus, a system arbiter and an expansion bridge.
Deadlock avoidance will then be described, beginning with
a description of the types of deadlocks and livelocks that
may occur 1n the system, followed by a description of
specific deadlock and livelock situations for both a system
having a single expansion bridge and a system having two
or more expansion bridges. Rules will be identified for
avolding deadlock. These rules will then be summarized,
both for the case of a single expansion bridge and for the
case of two or more expansion bridges. Finally, the manner

in which the rules are 1implemented 1n the system will be
described.

Referring now to FIG. 2, the present invention may be
used 1n a computer system of the type shown. A CPU 203
(for example a Power PC 601 microprocessor) is connected
to a system bus 204, including a data bus 205, an address bus
206, and a control bus (not shown). A memory subsystem
288 mncludes, m the 1llustrated embodiment, a main memory
209, a read-only memory 211, and a level-two cache
memory 212. The CPU 203, through the system bus 204, is
connected directly to the level-two cache memory 212. The
CPU 203 1s connected indirectly to the main memory 209
and the read-only memory 211, through a datapath circuit
221 and a memory controller 300. In general, the datapath
circuit 221 provides for 64- or 128-bit reads from and writes
fo memory, in either big-endian or little-endian mode. The
memory controller 300 controls the various memory devices
within the memory subsystem 208 1n response to signals on
the system bus 204 and, in particular, provides address and
control signals (i.e., RAS and CAS) to the main memory
209. The datapath circuit 221 and the memory controller 300
are connected by a register data bus 217.

Also shown 1s an optional secondary processor 218
which, like the CPU 203, may be a Power PC 601 micro-
processor for example.

The system bus 204 1s also connected to an expansion bus
bridge 219 (possibly more than one) and, optionally, a video
bus bridge 220. In a preferred embodiment, the system bus
204 1s a superset of the conventional Power PC 601 micro-
processor 1nterface referred to herein as the Apple RISC
Bus, or ARBus. An expansion bus connected to the expan-
sion bus bridge 219 may be a standard PCI bus. Likewise,

a video bus connected to the video bus bridge 220 may be
a PCI-like bus.

Referring to FIG. 3, the memory subsystem 208 including
the memory controller 300 of FIG. 2 are shown 1n greater
detail, with particular emphasis on the various signals input
to and output from the memory controller 300. The memory
controller 300 includes a main memory controller 302, a

cache/ROM controller 305, and an arbiter 600. The main
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memory controller 302 produces address and control signals
for the main memory 209 and includes a DRAM sequencer
303 and certain memory address logic. The cache/ROM
controller 305 produces control signals for the level-two
cache memory 212 and the read-only memory 211 and
includes a cache/ROM sequencer 306 and certain cache
logic. Both the main memory controller 302 and the cache/
ROM controller 306 exchange control signals with the
arbiter 600, which executes overall control of the memory
controller 300 and which 1s more particularly the subject of
the following description.

The arbiter 600 includes a register file (not shown) that
may be written and read by the CPU 203 across the register
data bus 217. The register file includes, 1n addition to
numerous base address registers, various 1D, configuration
and timing registers. The particulars of these registers are
not essential to an understanding of the present invention
and will not be further described. The arbiter 600 1nputs
various control signals from and outputs various control
signals to a control bus 309. Some of the control signals
carried by the control bus 309 are part of the conventional
PowerPC 601 microprocessor interface. The majority of the
signals carried by the control bus 309, however, are side-
band information signals used i1n accordance with the

present mvention to mdependently control the address bus
206 and the data bus 205.

Prior to describing 1n detail the manner 1n which these
side-band 1nformation signals are used to decouple the
address bus 206 and the data bus 205, it will be useful to
consider what 1s termed herein conventional usage of the
PowerPC 601 microprocessor interface.

As shown 1n FIG. 1, address tenure and data tenure both
have arbitration, transfer and termination phases. Each of
these phases involves the exchange of respective handshak-
ing signals. Referring to FIG. 4, the handshaking signals that
characterize the address arbitration phase are a bus request
signal BR and a bus grant signal BG. The bus request signal
BR 1s an output signal of the CPU 203. The bus grant signal
1s an 1nput signal of the CPU 203 and is output by the arbiter
600. Both the bus request signal BR and the bus grant signal
BG relate to the address bus 206. When the CPU 203 has
received the bus grant signal BG, 1t 1s free to enter the
address transfer phase.

During the address transfer phase, a transfer start signal
TS 1s asserted by the CPU 203 when the CPU 203 begins to
drive the address bus 206. The address 1s decoded by a slave
device as belonging to that address, 1.e., falling within the
device’s assigned address space. During the address termi-

nation phase, the slave device asserts the address acknowl-
edge signal AACK after it has sampled the address on the
address bus 206.

During the address transfer phase, certain transfer
attribute signals are used indicate the nature of transaction,
including whether the transaction 1s an address-only trans-
action. Assuming that the transaction 1s not, then the transfer
start signal TS 1s treated by the arbiter 600 as an implicit data
bus request, starting the data arbitration phase. Following
assertion of the acknowledge signal AACK, a data bus grant
signal DBG 1s asserted by the arbiter 600 once the data bus
2035 1s available for use by the CPU 203. The CPU 203 may
then begin the data transfer phase on the next cycle by
driving the data bus 205. During a subsequent data termi-

nation phase, the slave device asserts a transfer acknowledge
signal TA after it has sampled the data on the data bus 2085.

The foregoing sequence of operations 1s repeated for a
second subsequent transaction. In FIG. 4, the transaction to
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which address and data information pertain is indicated in
parentheses, 1.e., transaction (1) and transaction (2).

Note that in FIG. 4, address tenures and data tenures,
although they may be pipelined, are tightly ordered. That 1s,
data bus tenure on the system 1s granted 1n the same order
as address tenure 1s granted even 1if the address tenures are

granted to different masters. In precise terms, if TS(n) is for
Master A and TS(n+1) is for Master B, then DBG(n) will be

for Master A and DBG(n+1) will be for Master B.

This tight ordering of the conventional MPC601 bus may
result 1n considerable system performance degradation,
especially as bus speed increases. A read transaction to an
expansion-bus device, for example, will typically be high-

latency as compared to a main-memory read transaction.
Tight ordering of address and data tenures results 1n such
latency impacting the data bus. That 1s, even though another
fransaction might be ready to use the data bus first, during
the latency period, it cannot because of the tight ordering of
address and data tenures. If a system 1s to handle information
streams having real-time constraints, such as video streams,
it 1s 1important to ensure that the data bus 1s not unavailable
for use during substantial periods of time; otherwise real-
fime deadlines may be missed, resulting in objectional
artifacts during presentation.

The architecture of the computer system of FIG. 2
decouples address and data tenures such that data bus
utilization 1s increased. This increase 1n data bus utilization
allows for higher real-time performance to be achieved. In
particular, the present invention allows for a true split-bus
architecture with ordered slaves and ordered masters.
“Ordered,” 1n one usage, means each master and each slave
has 1ts own 1ndependent FIFO structure supporting
“ordered” service to transactions posted to it. If a slave
receives three transactions A, B, and C, the 1t will respond
to A first, B second, and C third. If a master performs
transactions D, E, and F, then it expects servicing of those
transactions 1n the order of D first, E second, and F third. In
one embodiment, there can be up to three outstanding
master/slave pair transactions at one time.

Referring briefly again to FIG. 3, the side-band informa-
fion signals carried by the control bus 309 are side-band
information signals used to decouple the address bus 206
and the data bus 2035. These side-band information signals
include, 1n addition to the bus request signal BR, the bus
orant signal BG and the data bus grant signal DBG of FIG.
4, corresponding signal for each master besides the CPU

203.

In one embodiment, the system 1ncludes, besides the CPU
203, four additional masters for up to a total of five masters:
the CPU 203, the secondary processor 218 (if present), the
expansion bus bridge 219, one additional expansion bus
bridge (if present), and the video bus bridge 220 (if present).

The control bus 309 therefore carries five bus request signals
BR|0:4], five bus grant signals BG[0:4], and five data bus

orant signals DBG|[0:4].

In the same embodiment, the system includes six slaves:
the expansion bus bridge 219 (also a master), the additional
expansion bus bridge (also a master, if present), the video
bus bridge 220 (also a master, if present), the main memory
209, the read-only memory 211, and memory controller
registers accessible via the register data bus 217. For each
slave, the control bus 309 carries three signals: a slave
acknowledge signal SACK, a read data available signal
RDDA, and a source- or sink-data signal SSD. The control
bus 309 therefore carries six slave acknowledge signals
SACK][0:5], six read data acknowledge signals RDDAJ0:5],

and six source- or sink-data signals SSD[0:5].
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The manner mm which the foregoing signals are used to
decouple address tenures and data tenure may be appreciated
with reference to FIG. 5. For simplicity, the address arbi-
tration phase has not been illustrated. The address transfer
phase 1s essentially the same as 1n the conventional case. The
address termination phase, however, differs. The addressed
slave asserts the AACK signal 1n the conventional manner,
the AACK signal being used by the master. In parallel with
AACK, the addressed slave generates a SACK signal for use
by the arbiter 600. The arbiter uses this information about
which slave has acknowledged 1n order to reorder transac-
tions on the system bus 204.

In the data arbitration phase, the data bus 1s granted to
masters based on a priority ordering of masters, and 1is
oranted to slaves based 1n part on the priority of the master
of the transaction and 1n part on the availability of data from
the slave. What may be considered in effect two sets of grant
signals are therefore defined, DBGJ| 0:#Masters—1] for mas-

ters and SSD|[0:#Slaves—1] for slaves.

Assume, for example, that in FIG. 5 the first transaction
1s a read by the CPU 203 from the expansion bus bridge 219
and that the second and third transactions are writes to
memory from the video bus bridge 220. In general, video
transactions will be assigned a higher priority than transac-
tions by the CPU 203 because of the real-time requirements
of video transactions. Data bus grant signals are therefore
1ssued to video bus bridge 220 for the first video transaction
(2), which proceeds through the data transfer phase, and the
second video transaction (n), which also proceeds through
the data transfer phase. The CPU 203 will not be 1ssued a
data bus grant signal for i1ts read from the expansion bus
bridge 219 until a read data acknowledge signal has been
returned to the arbiter 600 from the expansion bus bridge
219. Then, the CPU 203 will be 1ssued a data bus grant
signal for 1ts read and the expansion bus bridge 219 will
simultaneously be 1ssued a corresponding slave source-data

signal causing it to present its data on the data bus 205 to be
sampled by the CPU 203.

As may be appreciated from the foregoing description, the
data arbitration phase 1n accordance with the present inven-
fion 1s very different than in the conventional case. This
different manner of operation allows address and data ten-
ures to be decoupled, increasing utilization of the data bus.
The data transfer and data termination phases, however, are
essentially the same as 1n the conventional case.

Transaction reordering 1s controlled by the arbiter 600.
The general characteristics of the arbiter 600 will first be
described, after which the arbiter 600 will be described 1n

orcater detail.

The basic behavior that the arbiter 600 guarantees 1s as
follows:

Any given ARBus master has 1ts own address and data
tenures strictly ordered. That 1s, DBG(n) always cor-

responds to TS(n) and for a set of TS(n) and TS(n+1),
DBG(n) will always occur before DBG(n+1).

Any given ARBus slave has 1ts own data tenures strictly
ordered. That 1s, SSD(n) always corresponds to TS(n)
and for a set of TS(n) and TS(n+1), SSD(n) will always
occur before SSD(n+1).

Data bus tenure 1s not necessarily granted on the ARBus
in the same order as address tenure 1s granted if the

address tenures are granted to different masters. That 1s,
is TS(n) is for Master A and TS(n+1) is for Master B,

DBG(n) may be for Master B and therefore DBG(n+1)

for Master A.
In the illustrated embodiment, the arbiter 600 supports
five logical masters. The five masters arbitrate for use of the
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bus 1 accordance with a fixed priority as follows: the video
bus bridge 220, the expansion bus bridge 219, an additional
expansion bus bridge (if present), the CPU 203, and the
secondary processor 218. By giving highest priority to the
video bus bridge 220, the arbiter 600 allows the video bus
bridge 220 to “hog” the ARBus.

The arbiter 600 may optionally “park” the CPU 203 or the
video bus bridge 220 on the ARBus by asserting the appro-
priate BG wire during 1dle bus cycles. The default mode of
operation 1s to park the most recent master.

Address bus arbitration occurs in every cycle that an
address tenure 1s not active. Masters assert their individual
bus request signals (BR) to the arbiter 600 to signal a request
for service. The arbiter 600 signals the master which has
won the arbitration by asserting bus grant (BG). Masters that
have BG asserted 1n a given cycle are free to assert TS and
therefore start a transaction 1n the next cycle.

The arbiter 600 controls the use of the data signals as a
function of the address and the availability of read data. If
a given ARBus address receives an AACK, the arbiter 600,
by sampling the SACK signals, knows which slave will
accept write data or will return read data. A slave that asserts
AACK for a write transaction gives implicit permission to
the arbiter 600 to grant the data bus to the master and allow
it to assert the associated write data. Slaves must assert
RDDA when requested return read data 1s available.

The arbiter 600 grants the data bus to a selected master via
the assertion of DBG (Data Bus Grant) and indicates to the
slave that data 1s to be asserted or accepted via the assertion
of SSD (Source of Sink Data).

Transactions which do not involve a data transfer
(Address-Only transactions) are typically generated by the
CPU 203 or the secondary processor 218 and are simply
acknowledged (AACK asserted) by the arbiter 600.

Referring now to FIG. 6, the arbiter 600 will be described
in greater detail. The arbiter 600 includes master queues 601,
one for each master 1n the system, and slave queues 602, one
for each slave 1n the system. Each of the master queues 601
are connected at their respective data imputs to a SACK
vector composed of the slave acknowledge signals SACK of
cach of the slaves, 1n addition to a Rd/Wr signal. Herematter,
the term “SACK vector” will be understood to mean signals
including the slave acknowledge signals SACK of each of
the slaves and the Rd/Wr signal. Each of the slave queues
602 arc connected at their respective data inputs to a BG
vector composed of the bus grant signals BG of each of the
masters. (In more precise terms, the BG vector is the
physical bus grant signals sampled in the cycle that the TS
signal is asserted.) The bus grant signals BG are produced by
an address bus arbiter state machine 605 1n response to the
bus request signals BR of each of the masters.

Each time the address acknowledge signal AACK 1s
presented on the system bus 204, the master queues 601 and
the slave queues 602 are updated by pushing the SACK
vector onto one (and only one) of the master queues 601 and
pushing the BG vector onto one (and only one) of the slave
queues 602. In particular, the SACK vector 1s pushed onto
one of the master queues 601 1dentified by the BG vector,
and the BG vector 1s pushed onto one of the slave queues
602 1dentified by the SACK vector.

The SACK vectors at the heads of the master queues 601
and the BG vectors at the heads of the slave queues 602 are
input to an arbiter multiplexer 603. The arbiter multiplexer
603 looks at the SACK vectors at the head of the master
queues 601 and determines which of the slave queues 602
designated by the SACK vectors have at their heads a BG
vector that designates the reciprocal one of the master
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queues 601. On the next data tenure of the masters for which
this condition 1s satisfied, data will be sourced from the
corresponding slave. The arbiter multiplexer 603 also
receives a read-ready vector RDDA composed of the read
data acknowledge signals RDDA of each of the slaves.

Based on the foregoing input signals, the arbiter multi-
plexer 603 produces a slave match vector SlvMatch and a
slave read ready vector SIvRdReady. The slave match vector
SlvMatch designates those masters finding matching slaves,
1.€., slaves expecting to next respond to transactions from
those respective masters. The slave read ready vector SIvR-
dReady i1dentifies, of those masters, which have slaves that
are actually ready to source data. The slave match vector
SlvMatch and the slave read ready vector SIvRdReady are
input to an data bus arbiter state machine 604.

The SACK vectors at the head of the master queues 601
are also 1mput to the data bus arbiter state machine 604. The
data bus arbiter state machine 604 determines which trans-
action 1s ready to go by examining the bits of the SlvMatch
vector 1n priority order and, it a bit indicates a matching
master/slave pair, determining further whether either the
tfransaction is a write transaction (by examining the Rd/Wr
bits at the front master queue entries) or the corresponding
bit 1n the SIvRdReady vector 1s set, indicating that the slave
1s ready to source data. In Verilog notation, the data bus
arbiter state machine 604 computes a vector TransReady as

follows:
TransReady|[0:4]=SIlvMatch|[0:4]&

({5{Write } HISIvRdReady[0:4]) Based on the computed
TransReady vector, the data bus arbiter state machine 604
asserts a corresponding one of the data bus grant signal
DBG. The data bus arbiter state machine 604 also asserts a
corresponding one of the source-or-sink-data signals SSD,
in accordance with the SACK vector at the front of the
winning master queue.

Operation of the arbiter 600 may be further understood
from the following illustrative examples.

To take a relatively simple example, assume that Master
1 (the expansion bus bridge 219) issues a read transaction to
Slave 3 (the video bus bridge 220). Slave 3, when it is ready
to service the transaction, asserts the AACK signal on the
ARBus and, at the same time, generates a SACK signal to
the arbiter 600 i1dentifying Slave 3. When the arbiter 600
receives the AACK signal, the SACK vector 1s pushed onto
one of the master queues 601 based on the BG vector. At the
same time, the SACK vector 1s pushed onto one of the
master queues 601 based on the BG vector. Assuming that
no other transactions are presently queued, a SACK vector
value representing Slave 3 (for example b111011) will
appear at the head of the one of the master queues 601 for
Master 1, and a BG vector value representing Master 1 (for
example b10111) will appear at the head of the one of the
slave queues 602 for Slave 3. The arbiter multiplexer 603
will therefore cause the SlvMatch vector to have a value
indicating a match for Master 1 (for example b01000). When
Slave 3 1s ready with read data, 1t will assert its RDDA
signal, 1n response to which the arbiter multiplexer 603 will
cause the SlvRdReady vector to have a value indicating the
readiness of Slave 3 (for example b00100). If no other
fransactions having higher priority have in the meantime
become ready to go, the data bus arbiter state machine 604
will then 1ssue a data bus grant signal DBG to Master 1 and
a sink/source data signal SSD to Slave 3, and the data
transier phase of the transaction will proceed.

To take another, more complex example, assume that after
Master 1 has issued the foregoing transaction request
(shown below as Transaction 1) but before Slave 3 has
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responded with an RDDA signal, a series of further trans-
actions 1s 1ssued, 1 accordance with the following chrono-

logical sequence:
1. Master 1 Rd Slave 3

Master 3 Wr Slave 3
Master 3 Wr Slave ()
Master 4 Rd Slave 1
Master 2 Wr Slave 4

Note that transactions 1 and 2 both involve Slave 3, and
transactions 2 and 3 both involve Master 3. Because masters
and slaves are ordered, data dependencies are created. That
1s, transaction 2 cannot complete until transaction 1 has
completed. Similarly, transaction 3 cannot complete until
fransaction 2 has completed. Transactions 4 and 5, on the

other hand, have no data dependencies. Transaction 4 1s a
read from Master 4 (CPU 1) to Slave 1 (ROM). In the case
of ROM and RAM, because read latency 1s minimal and 1s

know 1n advance, the RDDA signals for ROM and RAM are
tied asserted.

Transaction 2, Master 3°s write of Slave 3, 1s queued up
behind Master 1°s read of Slave 3. Transaction 3, Master 3’s
write of Slave 0, 1s queued up behind Master 3’s write of
Slave 3. When transaction 4 1s queued, there are matching
queue entries at the head of the master and slave queues for
transactions 1 and 4. Transaction 1, however, 1s a read
transaction and 1s not allowed to proceed until an RDDA 1s
received from Slave 3.

Therefore, the arbiter 600 first grants the data bus to
Master 4 and Slave 1 for transaction 4. When transaction 5
1s queued, there are matching queue entries at the head of the
master and slave queues for transactions 1 and 5. Assume,
however, that an RDDA has still not been received from
Slave 3. The arbiter 600 will then grant the data bus to
Master 2 and Slave 4 for transaction 5.

Assume now that an RDDA 1s received from Slave 3.
Transactions 1, 2 and 3 will then, 1n that order, be granted the
bus and will complete. In the foregoing example, whereas
the address order of the transactions 1s 1, 2, 3, 4, 5, the data
order 1s 4, 5, 1, 2, 3.

When the system 1s totally 1dle, 1.e., the data bus 1s not
busy and all queues are empty, a CPU memory read trans-
action 1s executed immediately without queuing the trans-
action.

The expansion bridge responds to transactions on the
ARBus and PCI Bus and forwards them to the “other” bus
appropriately. The primary function of the expansion bridge
1s to map transactions from one bus to the other. The job of
the expansion bridge to transfer data between the ARBus
and the PCI Bus 1s complicated by the fact that the ARBus
and the PCI Bus are very different in a number of respects
as shown 1n the following table:

2.
3.
4.
5.

TABLE 1

BUS

BUS CHARACTERISTIC ARBUS PCI Bus

ADDRESS/DATA TENURES Full split transaction Single envelope
(pended) (non-pended)

ENDIANESS Big endian Little endian

CYCLE TYPES One cycle type Many cycle types

TRANSACTION LENGTHS Fixed (3.2-byte)

burst length

Arbitrary length
transaction with

byte-enabled writes.

BUS SPEED Up to 50 MHz 33 MHz

The PowerPC architecture and the ARBus do not “natu-
rally” generate many types of cycles that are required by the
PCI specification. These unique PCI Bus cycles are included
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in the PCI specification to provide backwards compatibility
for x86/ISA/IBM PC-AT cards and software. The expansion
bridge provides facilities for generating PCI Bus configu-
ration cycles, I/O cycles and PCI “Special Cycles”/
“Interrupt Acknowledge” via special address spaces.

Referring now to FIG. 7, the expansion bridge 700 will be
described 1n greater detail. The expansion bridge 1s con-
structed with two main state machines for the ARBus and
PCI Bus. The two main state machines actually consist of a
number of smaller sub-state machines. These state machines
operate 1n different clock domains and require that hand-
shake signals be synchronized. Transactions passed between
the ARBus and the PCI Bus are staged 1n a large packet-
buffer structure. Data endian conversion 1s performed on the
ARBus side of the packet buffer with data being stored in the
packet buffer in PCI Bus Little Endian format. Address
endian swizzling 1s performed on the master side of a
transaction. For a master cycle to the PCI Bus from the
ARBus, the address swizzling occurs on the ARBus side.
For a master cycle to the ARBus from the PCI Bus, the
address swizzling occurs on the PCI Bus side.

As explained previously, systems are most prone to dead-
locks and livelocks when there 1s an expansion bridge 1n the
system. In the description that follows, a deadlock will be
introduced, together with its LockUp type (A, B, or C as
described below), a solution for the deadlock, and where in
the system the deadlock prevention logic preferably resides.
Deadlock prevention rules assume a starting point behavior
in which the expansion bridge allows concurrent reads
through the bridge, and the ARBus arbiter performs the
DBWO* protocol as necessary. The DBWO* protocol
allows the Processor to re-order a write data phase around a
read data phase for snoop pushes.

An entire class of deadlocks and livelocks 1s related to the
PCI Bus being stalled during reads. During a read, the PCI
Bus can potentially remain stalled for micro-seconds at a
time when the target of the read i1s on the other side of a
bridge. For instance, a Master on PCI Bus 1 wants to read
from a target behind a PCI2ZPCI bridge on PCI Bus 2. In this
case the master incurs the latency of three bridges (a first
expansion bus bridge, a second expansion bus bridge, and a
PCI2PCI bridge) before actually reaching the target, and no
other transactions can occur on PCI Bus 1 as long as the read
1s stalling the bus. If other transactions from the ARBus were
able to get access to the PCI Bus and complete, then the class
of deadlocks related to contlicting completion orders would
disappear. This type of lockup 1s referred to herein as Type-A

LockUp.

Another class of deadlocks and livelocks 1s related to the
ISA bus and PCI2ZPCI bridge behavior. When an ARBus read
occurs to an ISA bus or a target behind a PCI2ZPCI bridge,
it has no way of knowing whether 1t will complete or be
blocked. A “block™ can occur for the ISA bus 1f there 1s an
ISA bus master already on the ISA bus with a pending
transaction; this transaction may or may not require ARBus
access. A “block™ can also occur for the PCI2PCI bridge 1f
the bridge has writes posted to it that it must perform on the
host side of the PCI2PCI bridge before completing the read.
In either of these two cases, there 1s an ARBus master that
will wait forever for its read to either the ISA bus or
PCI2PCI bridge to complete. If anything “blocks” the ISA
bus or PCI2ZPCI bridge from completing 1ts non-back-offable
access, deadlock will occur. This type of lockup 1s referred
to herein as Type-B LockUp.

A third class of deadlocks and livelocks 1s related to the
ARBus arbiter being fixed priority, and to cross-
communication problems between devices on the bus who
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are both masters and slaves. Lower priority master can be
starved from gaining ownership of the ARBus when follow-
ing the generic ARBus rules set forth for behavior following
an ARBus ARTRY*. If 1n addition, the lower priority master
1s unable to accept transactions as a slave, deadlocks or
livelocks can occur. This type of lockup 1s referred to herein
as Type-C LockUp.

Deadlock avoidance 1s complicated by the fact that in
some systems there may be more than one expansion bridge.
Hence, deadlocks 1n a true split bus architecture having only
a single expansion bridge connected to the ARBus will be
considered first, followed by a consideration of deadlocks in
a true split bus architecture having two expansion bridges.
Systems having more than two expansion bridges will not be
considered, although similar deadlock avoidance principles
may be applied to such systems.

Various deadlocks can occur with a single expansion
bridge in a system implemented with a split bus (ARBus),
ordered masters, ordered slaves, and utilizing a fixed priority
arbitration scheme for the masters on the ARBus. These
deadlocks can also occur 1n a dual expansion bridge system
with the same characteristics, but only one expansion bridge
need be mnvolved to cause the deadlock.

Referring to FIG. 8, deadlock may occur when an ARBus
master read of an expansion bridge 1s followed by an ARBus
master read to memory. A typical sequence of transactions 1s
as follows:

1. PCI Bus 1 Master 1nitiates read of main memory, and
stalls PCI Bus 1.

2. Processor 1 reads target behind Expansion Bridge 1
(Expansion Bridge 1 AAck™*s without ARTRY™®).

3. Processor 1 reads main memory (Memory Controller
AAck*s without ARTRY*).

4. Expansion Bridge 1 forwards read of main memory
(Memory Controller AAck*s without ARTRY™).

Master Processor 1 has ordered itself: a) Expansion
Bridge 1, b) Read main memory. Slave main memory has
ordered itself: a) Read by Processor 1, b) Read by Expansion
Bridge 1. PCI Bus 1 has an implied ordering of a) Read main
memory, b) Read by Expansion Bridge. PCI Bus 1 is stalled
by the read of main memory and will not get off the bus until
the read has completed. In this case, the completion order of
Master Processor 1 directly conflicts with completion order
of PCI Bus 1. This 1s a Type-A LockUp. There are two
potential solutions: 1) Retry the Expansion Bridge 1 read of
main memory, OR 2) Retry the Processor 1 read of main
memory. For reasons described hereinafter. Solution 2 1s
preferred for ease of implementation. This deadlock 1s
therefore avoided by having the ARBus arbiter prevent the
Processor from reading main memory (via ARTRY*) fol-
lowing the Processor’s read of an expansion bridge.

Referring to FIG. 9, deadlock may occur when an ARBus
master read of an expansion bridge 1s followed by an ARBus
master L2 hit or allocate operation. A typical sequence of
transactions 1s as follows:

1. PCI Bus 1 Master 1nitiates read of main memory, and
stalls PCI Bus 1.

2. Master A reads target behind Expansion Bridge 1
(Expansion Bridge 1 AAck®*s without ARTRY™®).

3. Master A issues memory read causing the L2 (second
level cache) to allocate the cache line.

4. Expansion Bridge 1 must complete its read of main
memory, but it cannot complete.
Because the TAG SRAMSs utilize a latch to capture the
address from the main Address Bus during a TS__, no future
TS__ can occur until the completion of the TAG update. The
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system arbiter prevents future TS__ events by deasserting all
Bus Grants to Masters unftil the completion of the TAG
update. Unfortunately, in the scenario described above, the
TAG update will not complete until the PCI Bus Master A
read of main memory has occurred. Master A has ordered
itself: a) Read of Expansion Bridge 1, b) Read of main
memory. Expansion Bridge 1 has ordered itself: a) Read of
main memory, b) Read by Master A. This is a Type-A
LockUp. Since the TAG update must complete without
future occurrences of TS , the deadlock fix 1s to have the
ARBus arbiter prevent an access by Master A that would
cause a second level cache hit or allocate (via ARTRY*)
following Master A’s read of an expansion bridge.

Referring to FIG. 10, deadlock may occur when a pro-
cessor read of an expansion bridge 1s followed by a proces-
sor write to that expansion bridge. A typical sequence of
transactions 1s as follows:

1. Processor 1 reads target behind PCI2PCI bridge behind
Expansion Bridge 1. PCI2PCI bridge blocks read
completion 1n order to flush posted write data to target

upstream of PCI2PCI bridge.

2. Processor 1 writes target behind Expansion Bridge 1.

3. Expansion Bridge 1 write attempt to main memory

causes Processor 1 to attempt Snoop Push.
The PCI2PCI bridge has become interlocked, and must

flush a posted write upstream of 1tself; 1n this case the write
1s headed toward the ARBus, and Expansion Bridge 1’s
buffers are full and cannot currently accept the write. The
first two outstanding transactions in this scenario are 1)
Master Processor 1 has an outstanding read of Expansion
Bridge 1, followed by 2) Master Processor 1 has an out-
standing write to Expansion Bridge 1. The third attempted
fransaction 1s a write cycle from Expansion Bridge 1 to main
memory. However, this write cycle 1s to copyback-cacheable
space and causes a snoop hit 1n Processor 1°s cache. Pro-
cessor 1 retries Expansion Bridge 1°s write cycle, but now
needs to push the dirty cache line to main memory. However,
at this point it 1s unable to push the dirty cache line due to
its outstanding write to Expansion Bridge 1. With the use of
DBWO®*, Processor 1 could have re-ordered the snoop push
write transaction around its outstanding read of Expansion
Bridge 1 (transaction number 1). However, the MPC60x
microprocessor 1s not capable of re-ordering the snoop push
write transaction around 1ts own outstanding write. This 1s a
Type-B LockUp, caused by Processor 1’s mability to com-
plete its read due to the PCI2ZPCI bridge’s interlocking
behavior. This deadlock 1s avoided by having the ARBus

arbiter prevent the Processor from writing to an expansion
bridge 1if 1t has an outstanding read of the expansion bridge.
This will allow the Processor to perform the Snoop Push
write transaction if required.

There 1s a set of deadlocks that only occur with more than
one an expansion bridge 1n a system implemented with a
split bus (ARBus), ordered masters, ordered slaves, and
utilizing a fixed priority arbitration scheme for the masters
on the ARBus. In one particular system architecture, high to
low priority is: 1) Video, 2) Expansion Bridge 1, 3) Expan-
sion Bridge 2, 4) Processor 1, 5) Processor 2, Deadlock rules
described previously also apply to a multiple expansion
bridge environment. The following new rules are 1n addition
to the previous rules.

Referring to FIG. 11, deadlock may occur in the case of
concurrent Bus Grant and Address Retry signals. A typical
sequence of transactions 1s as follows:

1. Expansion Bridge 1 attempts a write to Expansion

Bridge 2 but Expansion Bridge 2 buffers are full.

2. Expansion Bridge 2 has a write to Expansion Bridge 1
and recerved Bus Grant during Expansion Bridge 1
cycle.
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3. Expansion Bridge 2 ARTRY *s Expansion Bridge 1 due
to full buffers. As per ARBus specification, Expansion

Bridge 2 1gnores 1ts Bus Grant and does not take the
ARBus.

4. As per ARBus specification, following ARTRY* both
Expansion Bridge 1 and Expansion Bridge 2 deassert
therr Bus Requests for one clock. Both re-assert Bus
Requests. Expansion Bridge 1 wins. The foregoing
sequence of transactions 1s repeated indefinitely.

Following ARBus protocol after an ARtry*, a master who

has a Bus Grant 1gnores 1t. All masters must deassert their
Bus Requests the clock followmng an ARtry*, and then
re-assert them. In a fixed priority arbitration scheme, the
higher priority master will win every time, and 1f 1t cannot
complete 1ts access, an ARBus livelock results. This 1s a
Type-C LockUp, and 1s avoided by having the expansion
bridge disregard the ARBus protocol, and take the address
tenure 1f a Bus Grant occurs during an ARtry*. An expansion
bridge can do this without adverse side-etfects because it 1s
not a snooping bus master.

Referring to FIG. 12, deadlock may occur in the case of

concurrent Bus Request and Address Retry signals. A typical

sequence of transactions 1s as follows:

1. Video attempts a write to Expansion Bridge 1 but
Expansion Bridge 1 buffers are full;

2. Expansion Bridge 1 has its Bus Request asserted
because it has a read of memory to perform, but Video,
with multiple cycles to perform, keeps its Bus Request
asserted.

3. Expansion Bridge 1 ARTRY®*s Video due to {full

buffers. As per ARBus specification, Expansion Bridge
1 and Video deassert their bus requests the clock
following ARTRY ™.

4. Video and Expansion Bridge 1 reassert the bus requests.
Since Video has a fixed higher priority than Expansion
Bridge 1, 1t constantly gets Bus Grant. The foregoing
sequence of transactions 1s repeated idefinitely.

Following ARBus protocol after an ARTRY *, all masters

on the bus deassert their Bus Requests to give the Processor
a guaranteed window being the only bus requestor. This
cguarantees that the Processor, who normally has lowest
ARBus priority, acquires the bus next in order to complete
a high priority transaction such as a Snoop Push. In this case,
the ARBus protocol causes the lower priority expansion
bridge to never receive a Bus Grant due to the higher priority
Video requesting the ARBus to complete its access. Since
the completion of the Video access 1s dependent on the
expansion bridge freeing up some buffer space, and since the
expansion bridge must get the ARBus to complete 1ts access
or receive an ARTRY ™ 1n order to free up PCI Bus 1 to free
up butfer space for the Video write to come 1n, the expansion
bridge effectively needs higher priority than Video this time.
This 1s a Type-C LockUp, and 1s avoided by having an
expansion bridge keep its Bus Request asserted the clock
following an ARTRY™* 1f it 1s the source of the ARTRY™*.
This 1s precisely the protocol the MP60X processor per-
forms to effectively achieve a higher priority when neces-
sary.

Referring to FIG. 13, deadlock may occur in the case of

expansion bridges reading each other concurrently. A typical
sequence of transactions 1s as follows:

1. A Master Behind Expansion Bridge 1 reads a target
behind Expansion Bridge 2 (Expansion Bridge 2

AAck*s) stalling PCI Bus 1. The read remains out-
standing within Expansion Bridge 2.

2. A Master Behind Expansion Bridge 2 reads a target
behind Expansion Bridge 1 (Expansion Bridge 1
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AAck*s) stalling PCI Bus 2. The read remains out-
standing within Expansion Bridge 1.

This 1s the most basic deadlock case. Each expansion
bridge has a stalled bus, and yet each expansion bridge
accepts the read from the opposite expansion bridge. Neither
of the accepted reads can complete because the buses they
are attempting to get onto are stalled. At least one of the
buses must free itself for this basic deadlock to be avoided;
one expansion bridge must not accept the read, but must
ARTRY™* the read attempt to it. This 1s a Type-A LockUp,
and 1s avoided by having an expansion bridge disallow a
read of its slave while it has an outstanding master read
tenure (AAck* without ARTRY*). Once the data bus grant
1s received corresponding to the address tenure, then the
transaction 1s guaranteed to complete and slave reads can be
accepted.

Referring to FIG. 14, deadlock may occur 1n the case of
onc master attempting to read both expansion bridges. A
typical sequence of transactions 1s as follows:

1. PCI Bus 1 Master initiates read of target behind
Expansion Bridge 2, and stalls PCI Bus 1.

2. Processor 1 reads target behind Expansion Bridge 1
(Expansion Bridge 1 AAck*s without ARTRY*).

3. Processor 1 reads target behind Expansion Bridge 2
(Expansion Bridge 2 AAck*s without ARTRY*).

4. PCI Bus 1 Master’s read of target behind Expansion
Bridge 2 occurs on ARBus (Expansion Bridge 2
AAck*s without ARTRY*).

Master Processor 1 has ordered itself: a) Read Expansion
Bridge 1, b) Read Expansion Bridge 2. Slave Expansion
Bridge 2 has ordered itself: a) Read by Processor 1, b) Read
by Expansion Bridge 1. Expansion Bridge 1 has implied
ordering due to stalled PCI Bus of: a) Read of Expansion
Bridge 2, b) Read by Processor 1. In this scenario, all three
devices 1nvolved have conflicting completion orders.
Although Processor 1°s read of the target behind Expansion
Bridge 2 can complete on PCI Bus 2, it cannot complete on
the ARBus unfil Processor 1°s read of Expansion Bridge 1
has completed. Expansion Bridge 1°s read of Expansion
Bridge 2 must complete before Processor 1°s read of Expan-
sion Bridge 1 can complete. Since Expansion Bridge 2 is
ordered to deliver the response to Processor 1°s read before
delivering the response to Expansion Bridge 1’s read, the
deadlock results. This 1s a Type-A LockUp, and 1s avoided
by preventing one master from reading both an expansion
bridges. This prevents the response ordering dependencies
for the master.

Referring to FIG. 15, deadlock may occur 1n the case of
an ISA bus master reading a target behind an opposite

expansion bridge. A typical sequence of transactions 1s as
follows:

1. PCI Bus 2 Master reads ISA target behind Expansion
Bridge 1, stalling PCI Bus 2 (Expansion Bridge 1
AAck*s)

2. ISA Master on ISA mmitiates read of target behind
Expansion Bridge 2. ISA Master cannot be backed off.

3. Expansion Bridge 1 forwards ISA Master’s read to
Expansion Bridge 2. Expansion Bridge 2 retries Expan-
sion Bridge 1 because PCI Bus 2 Master read 1is
outstanding. This occurs indefinitely.

The fact that the master behind Expansion Bridge 2 got 1ts
read AAck*ed by Expansion Bridge 1 on the ARBus prior to
the ISA bus master behind Expansion Bridge 1, implies that
Expansion Bridge 2’s completion order 1s: 1) Complete read
to ISA bus behind Expansion Bridge 1, 2) Accept incoming
read from Expansion Bridge 1 (or whomever). However, the
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ISA bus has 1nitiated an access and will retry all accesses to
it until its read of the target behind Expansion Bridge 2 has
completed. The ISA bus completion order is: 1) Complete
read to target behind Expansion Bridge 2, 2) Accept incom-
ing read from Expansion Bridge 2 (or whomever). These
two masters have conflicting completion orders. Note that 1f
PCI Bus 2 had not been stalled by 1ts read and Expansion
Bridge 2 could have accepted the read from Expansion
Bridge 1, then all transactions would be able to complete.

This is a Type-A (PCI Bus 2 stall) and Type-B LockUp (ISA
bus block). The fix is to allow ISA bus master cards to
communicate only with main memory or targets behind the
same expansion bridge. For example, system software may
remap accesses across the bridges to memory and complete
transfers virtually.

Referring to FIG. 16, deadlock may occur when a PCI bus
master read gets stuck behind a posted PCI bus master write.
A typical sequence of transactions 1s as follows:

1. Three transactions: a) Processor 1 Reads Expansion
Bridge 1, b) Processor 1 Reads Expansion Bridge 1, ¢)
Processor 2 Reads Expansion Bridge 2.

2. Meanwhile: a) Expansion Bridge 1 has a write trans-
action destined for Expansion Bridge 2, and a PCI Bus
Master on PCI Bus 1 issues a read of memory, stalling
PCI Bus 1, b) Expansion Bridge 2 has a write trans-
action destined for Expansion Bridge 1, and a PCI Bus
Master on PCI Bus 2 1ssues a read of memory, stalling
PCI Bus 2.

The normal means to get a PCI Bus Master read to free up
the PCI Bus 1s to retry a transaction from the PCI bus when
it cannot be serviced. Normally, the PCI Bus Master read
would propagate to the ARBus, attempt its cycle on the
ARBus, and either complete or get an ARTRY*. In either
event, 1t frees up the bus. For a high-performance
architecture, concurrent reads are desired at all times. The
scenar1o on both PCI buses 1s that they are stalled with reads
heading to memory, but there are write transactions to the
opposite expansion bridge 1n each expansion bridge which
cannot complete (because the transaction limit has been
reached). Since neither expansion bridge’s ARBus master
write transactions can complete their address tenure, their
respective PCI Bus Master read tenures cannot gain access
to the ARBus to complete or receive an ARTRY*. In this
instance the PCI buses will remain stalled indefinitely. This
1s a Type-A LockUp, and 1s avoided by having an expansion
bridge immediately retry PCI Bus master reads if 1t has a
PCI Bus master write transaction queued up in front of 1t that
has not completed. This will ensure that the PCI Bus master
read has access to the ARBus to complete the access or
receive an ARTRY*.

Referring to FIG. 17, deadlock may occur when the
ARBus transaction limit 1s hit, and accesses cannot com-
plete. A typical sequence of transactions 1s as follows:

1. Three transactions: a) Processor 1 Reads ISA target
behind Expansion Bridge 1, b) Processor 2 Reads target
behind Expansion Bridge 2, ¢) Expansion Bridge 2

Reads target behind Expansion Bridge 1, stalling PCI
Bus 2.

2. Meanwhile: a) Expansion Bridge 1 has a write trans-

action destined for Expansion Bridge 2, and b) an ISA

Bus has 1nitiated a read access of main memory on the

ISA Bus. The ISA bus master cannot be backed off.

This ISA bus master access blocks the Processor 1
Read from completing.

The fundamental problem with this scenario 1s that the

transaction queue depths are limited to three transactions. If

the depth were four, then the Expansion Bridge 1 write
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transaction destined for Expansion Bridge 2 could complete,
allowing the ISA bus master read of main memory to
complete, etc. Given that the transaction queue depths are
limited to three transactions, the other two problems to note

are that the PCI Bus Master on PCI Bus 2 has stalled 1ts bus
with the read of the target behind Expansion Bridge 1 and
that the ISA bus master has stalled its ISA bus with the read
of main memory. If either bus were not stalled, then either
the Processor 2 read of the target behind Expansion Bridge
2 would complete, or the Processor 1 read of the ISA target
would complete. This is a Type-A (PCI Bus 2 stall) and
Type-B LockUp (ISA bus block). Since neither the PCI Bus
2 stall or the ISA bus block can be prevented, the deadlock
1s avoided by the ARBus arbiter to prevent Expansion
Bridge 2 from reading Expansion Bridge 1 if Expansion
Bridge 2 has an outstanding read. In general terms, if an
expansion bridge-A has an outstanding ARBus Master’s
Slave Read, then the ARBus arbiter should prevent
(ARTRY ™) an expansion bridge-A from reading an expan-
sion bridge-B until the outstanding read has completed.

Referring to FIG. 18, deadlock may occur when one

expansion bridge, with an outstanding ARBus read, accepts
a read from another expansion bridge. A typical sequence of
transactions 1s as follows:

1. Expansion Bridge 1 accepts two ARBus to PCI Bus 1
writes. Meanwhile, a PCI Bus Master on PCI Bus 1 has
initiated a read access from a target behind Expansion
Bridge 2.

2. Expansion Bridge 2 accepts a read from Processor 2 to
the PCI2PCI bridge, followed by a read from Expan-
sion Bridge 1. Meanwhile, Expansion Bridge 2 also
accepts two PCI Bus to Expansion Bridge 1 write
cycles.

3. The Processor 2 read of the PCI2ZPCI bridge causes the

bridge to attempt to flush posted write data to main
memory. Since all buffers are filled in the direction of

PCI Bus 2 to PCI Bus 1, and PCI Bus 1 is stalled, the
PCI2ZPCI bridge cannot flush its data.

The problem with this scenario is that the two PCI buses
have conflicting completion orders. Since Expansion Bridge
2 AAck*ed Expansion Bridge 1’s read, PCI Bus 1 has
committed to completing the read before allowing any other
accesses to occur, thereby stalling the PCI Bus. The Pro-
cessor 2 read of the PCI2ZPCI bridge has kicked oif the
interlocking behavior of the bridge. The PCI2PCI bridge
will not service the read until 1t has completed its writes.
Unfortunately, to complete 1ts write, an access must occur on
PCI Bus 1 to free up some bufler space. PCI Bus 2 won’t
service the read until 1t executes the write, and PCI Bus 1
won’t service the write until 1t completes the read. This 1s a

Type-A (PCI Bus 1 stall) and Type-B LockUp (PCI2PCI
bridge block). Since neither the PCI Bus 1 stall or the
PCI2PCI bridge block can be prevented, the fix i1s for the
ARBus arbiter to prevent Expansion Bridge 1 from reading
Expansion Bridge 2 if Expansion Bridge 2 has an outstand-
ing read. In general terms, 1f an expansion bridge has an
outstanding ARBus master’s Slave Read, then the ARBus
arbiter should prevent (ARTRY*) another expansion bridge
from reading that expansion bridge until the outstanding
read has completed.

The following summary 1s a compilation of the foregoing
rules. Items below 1n italic text are deadlock avoidance rules
for which an expansion bridge 1s responsible, and items
below 1n plain text are deadlock avoidance rules for which
the ARBus arbiter or processor bus arbiter is responsible.

Al. The ARBus arbiter must prevent an ARBus master
from reading main memory (via ARTRY *) if that master has
an outstanding read of an expansion bridge.
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A?2. The ARBus arbiter must prevent an access by an
ARBus master that would cause a second level cache hit or
allocate (via ARTRY ™) if that master has an outstanding read
of an expansion bridge.

A3. The ARBus arbiter must prevent a snooping ARBus
master from writing to an expansion bridge if the master has
an outstanding read of an expansion bridge to allow for
required Snoop Push write transactions. DeadlLock Avoid-
ance Rules for Multiple Expansion Bridges, Split Bus, Fixed
Priority, Ordered Masters and Slaves:

B1. An expansion bridge must disregard ARBus protocol
and take the address tenure 1f a Bus Grant occurs concurrent
with an ARtry®.

B2. An expansion bridge must disregard ARBus protocol
and keep 1ts Bus Request asserted the clock following an
ARTRY ™ 1f 1t 1s the source of the ARTRY™*.

B3. An expansion bridge must disallow a read of its slave
while 1t has an outstanding master read transaction and its
corresponding data tenure has not begun.

B4. The ARBus arbiter must prevent one master from
reading both expansion bridges.

B5. ISA bus master cards must not read targets behind the
opposite bridge. Software must restrict target accesses from
ISA to the same bridge or main memory.

B6. An expansion bridge must retry PCI Bus master reads
if 1t has a PCI Bus master write transaction queued up 1n
front of 1t that has not completed.

B7. If an expansion bridge has an outstanding ARBus
master’s Slave Read, the ARBus arbiter must prevent
(ARTRY*) that expansion bridge from reading another
expansion bridge until the read completes.

BS. If an expansion bridge has an outstanding ARBus
master’s Slave Read, the ARBus arbiter must prevent
(ARTRY®*) another expansion bridge from reading that
expansion bridge until the read completes.

As noted above, some of the deadlock avoidance rules are
implemented in the expansion bridge itself. Others of the
deadlock avoidance rules are implemented 1n the system
arbiter. In either case, the general technique employed 1s to
detect a deadlock hazard, a condition which, 1f a single
further “deadlocking” transaction were accepted, would
result in deadlock and, if that transaction 1s requested,
refusing to accept 1t by 1ssuing a retry signal.

Referring again to FIG. 6, a block 613 monitors the state
of the master queues 601 to detect a deadlock hazard, and
monitors the BG and SACK vectors to detect a deadlocking
fransaction. When such a transaction i1s requested, an
ARTRY signal 1s generated, causing the transaction to be
backed off instead of being accepted and queued.

Each master queue locally generates two signals, a
ValidBr1Rd signal, indicating that the master has a read to
Expansion Bridge 1 pending, and a ValidBr2Rd signal,
indicating that the master has a read to Expansion Bridge 2
pending. These signals are bussed to the block 613 instead
of actual queue entries.

From the foregoing signals, the block 613 detects dead-
lock hazards. Also input to the block 613 are the BG vector
and the SACK vector, which together indicate the master/
slave pair for a requested transaction. From the latter signals,
the block 613 detects deadlocking transactions and in
response generates a ARTRY signal.

Referring again to FIG. 7, in the case of the expansion
bridge 700, deadlock avoidance 1s implemented 1n an
ARBus control block 710 and 1n a PCIBus control block
720. In particular, an Address Master state machine
| AMst601 | causes the expansion bridge 700 to disregard the
ARBus protocol and take address tenure 1f a Bus GRant
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occurs concurrent with an ARTRY signal. Likewise, the
Address Master state machine | AMst601 | causes the expan-
sion bridge 700 to disregard to ARBus protocol and keep its
Bus Request asserted the clock following an ARTRY 1f it 1s
the source of the ARTRY.

An Address Slave state machine and a PCI Master state
machine each implement a further deadlock avoidance rule
in similar manner as described previously 1n relation to the
system arbiter. That 1s, a deadlock hazard 1s detected, during
which 1f a deadlocking transaction 1s detected, that transac-
tion 1s refused. In particular, the Address Slave state machine
disallows a read of its slave while it has an outstanding
master read transaction and its corresponding data tenure has
not begun. The PCI Master state machine retries PCI Bus
master reads 1f 1t has a PCI Bus master write transaction
queued up 1n front of 1t that has not completed.

Use of the described deadlock avoidance techniques
enables a high-performance split-transaction system bus to
be interfaced to a single-envelope expansion bus without
compromising system reliability. Rather than the character-
istics of the expansion bus limiting the performance of the
system bus, performance of the system bus may be sepa-
rately optimized. As a result, overall system performance 1s
oreatly improved.

Increased Efficiency by Allowing Transaction Independence
Within Slave Devices

The description thus far has assumed a system 1n which
both masters and slaves are ordered. In particular, the 60X
microprocessor assumes that its transactions are ordered. As
a consequence, master ordering 1s to some extent ingrained
within the underlying system architecture. Slave ordering,
on the other hand, although 1t may be convenient from an
implementation perspective, 1s not required. Increased efli-
ciency may be achieved by relaxing the constraint of slave
ordering, thereby allowing transaction independence within
slaves. To achieve unordered slaves, additional information
must be exchanged between the slaves and the arbiter. As
before, this information may be exchanged i the form of
additional side-band signals not provided for by the
MPC60X bus specification.

Referring to FIG. 19, a block diagram 1s shown of a
modified arbiter that allows for unordered slaves. The arbiter
of FIG. 19 differs from the arbiter of FIG. 6 principally in the
signals 1nput to and output from the blocks ArbMux 603,
ArbDatSM 604 and ARtryGen 613, as well as 1n the logical
function of these blocks. In other respects, the arbiter of FIG.
19 and the arbiter of FIG. 6 remain substantially the same.
Like designations have therefore been used 1n FIG. 19 as in
FIG. 6, with the ArbMux, ArbDatSM and ARtryGen blocks
being differentiated by prime designations 603, 604' and
613, respectively.

Considering first the block ArbMux 603, 1n order to allow
for transaction independence within slaves, the ArbMux 603
receives as nputs all of the queue entries of all of the slave
queues (instead of just all of the front entries as in FIG. 6).
Theretfore, 1f the masters are numbered O through M, the
slaves are numbered O through S and the queues locations
within each slave queue are numbered O through Q, then the
ArbMux 603' receives (S+1)(M+1+1)(Q+1) bits of informa-
tion from the slave queues. One of the bits 1n the expression
(M+1+1) 1s a valid bit that allows for a flop-based queue
implementation 1nstead of one requiring random-access
memory. In an exemplary embodiment with S=5, M=4, and
=2, the number of bits received from the slave queues 1s
6x6x3=108 bits. Since masters remained ordered, the Arb-
Mux 603' continues to receive only the front entries from the
master queues, the same as i FIG. 6. In the 1llustrated
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embodiment, the ArbMux 603' receives from the master
queues (M+1)(S+1+1+1)=5x8=40 bits. As in the case of the
slave queue entries, one of the bits in the expression (S+1+
1+1) 1s a valid bit. The extra bit in the expression (S+1+1+1)
1s a read/write bit as described previously.

Furthermore, the ArtbMux 603, instead of receiving only
a single RDDA signal from each slave, now receives an

RDDA signal for each slave queue entry. In the illustrated
embodiment, the ArbMux 603' therefore receives (S+1)(Q+

1)=6x3=18 bits.

In the arbiter of FIG. 6, the ArbMux 603 outputs two bits
(SlvMatch and SlvRdReady) for each master in the system.
The ArbMux 603' of FIG. 19, on the other hand, outputs two
bits for each master for each queue location. Hence, the
ArbMux 603' outputs 2(M+1)(Q+1) bits which are input to
the ArbDatSM 604'. In the illustrated embodiment, the
ArbMux 603' outputs 2x5x3=30 bits for mput to the Arb-
DatSM 604'. The front queue entries from each of the master
queues are mput to the ArbDatSM 604' as before.

The ArbDatSM 604 of FIG. 6 produces two sets of output
signals, DBG and SSD. The DBG output signals remain
unchanged in the case of the ArbDatSM 604'. One DBG
signal 1s output for each master for a total of M+1 DBG
signals. Instead of outputting out a single SSD signal for
cach slave device, however, the ArbDatSM 604' outputs an
SSD signal for each queue location within each slave device,
for a total of (S+1)(Q+1) bits (6x3=18 bits in the illustrated
embodiment).

The ArbDatSM 604' receives multiple address coinci-
dence (AC) signals from each of the slave devices. In the
1llustrated embodiment the ArbDatSM 604' receives from
cach slave device a separate signal for every possible pair of
queue entries within the slave device, indicating whether the
same cache line 1s the target of both transactions queued
within the pair of queue entries. In general there are Q(Q+
1)/2 possible pairs of queue entries within a slave device.
The ArbDatSM 604' therefore receives (S+1)[Q(Q+1)/2]
total address coincidence bits or, 1in the 1illustrated
embodiment, 6x2x3/2=18 bits. The ARtryGen Block 613,
in addition to the BG and SACK vector inputs previously
described 1n relation to the ARtryGen block 613 of FIG. 6,
also receives the same address coincidence signals.

In the case of some slave devices, the average latency of
the slave device may be reduced by reordering transactions
involving the slave device. In the case of DRAM, for
example, page mode reads take less time than non-paged
reads. Hence, 1n the embodiment of FIG. 19, the ArbDatSM
604' further receives page coincidence (PC) signals from at
least one slave device, 1.e., DRAM. The ArbDatSM block
604' receives from the slave device a separate signal for
every possible pair of queue entries within the slave device,
indicating whether the targets of both transactions queued
within the pair of queue entries are within the same page.
The ArbDatSM block 604' therefore receives Q(Q+1)/2 total
page coincidence bits or, 1 the illustrated embodiment,
2x3/2=3 bits.

Referring now to FIG. 20, the inputs and outputs of the
ArbMux block 603" are 1llustrated 1n greater detail. For each
master M, through M,,,, ,,, the ArbMux 603’ receives the
frontmost queue entry, represented as Q5. The 1nputs from
the master queues to the ArbMux 603" are therefore repre-
sented as MqQq, M;Qq, . . ., M, 1yQ0.

In the case of the slave queues, every slave queue entry 1s
input 1nto the ArbMux 603'. Hence, for the slave queue S,
inputs to the ArbMux 603" include S, Q. S,Q,, . . .,
S0Q(o.1) and likewise for each slave queue 1 sequence up
to and including the last slave queue S, ;, Whose nputs

10

15

20

25

30

35

40

45

50

55

60

65

22

include Sis,1yQos Sis:1yQ15 - - - 5 Sis21yQo11y- The ArbMux
603' receives from the slave devices themselves individual

Read Ready signals for each queue location. From Slave O,
therefore, the ArbMux 603" receives RDDA,,,
RDDA,;, . .., RDDAy ., 1y, and likewise for each slave up
to and including the last slave device, Slave S+1, whose
inputs include RDDA, ;y0, RDDA, 1y, - - -,
RDDA(S+1)(Q+1)'

In FIG. 6, a transaction 1s allowed to proceed only 1f 1t 1s
the frontmost transaction of both the master and the slave.
The matching queue location within the slave 1s by defini-
fion always the frontmost valid queue location within the
slave. In the case of ArbMux 603 of FIG. 6, therefore, its
function 1s to 1dentily masters whose next transaction in
order 1s also the next transaction 1n order of the target slave
device. In the case of the ArbMux 603' of FIG. 19, slave
ordering 1s no longer required. Hence, the function of the
ArbMux 603' 1s to identify for each master the queue
location within the target slave that matches the frontmost
transaction of the master. The ArbMux 603' also indicates
whether transaction data for that queue location 1s ready.
Hence, for each master, two bits, a SlvMatch bit and a
SlvRdReady bait, are output for each queue location. In the
case of master M,,, the bit pairs output by the ArbMux 603’
are designated MQQO, M.Q,, ..., MOQ(Q+1), a.nd likewise
for each succeeding master up to and including the last
master M ,,, 1y, the outputs for which are M ,,, 1yQq, Mz, 1y
Qi - - -5 Mar1yQoy1y- It @ master has a valid transaction
in its queue, then for the frontmost valid transaction, the
SlvMatch signal for that master that corresponds to the
matching target slave queue location will be asserted. If the
master has no valid transaction 1n 1ts queue, then no signal
1s asserted for that master.

The mputs and outputs of ArbMux 603' are 1llustrated 1n
oreater detail in FIG. 21 for the case M=4, S=5 and Q=2.

Referring to FIG. 22, the inputs and outputs of the
ArbDatSM 604' are 1llustrated 1n greater detail. The outputs
of the ArbMux 603' described previously are shown as being
input to the ArbDatSM 604" at a top edge therecof. These
inputs are used by the ArbDatSM 604' to determine which
master 1s to be granted the bus by asserting one of the Data
Bus Grant signals DBG, through DBG,,, , output by the
ArbDatSM 604'. The same inputs are also used by the
ArbDatSM 604' to determine which SSD signal of the target
slave 1s to be asserted according to the queue location that
the transaction occupies within the slave queue. Which slave
1s 1n fact the target slave 1s 1dentified by the frontmost master
queue entries, shown as being input to the ArbDatSM 604
at a left edge thereof 1n like manner as 1 FIG. 6.

The ArbDatSM 604' outputs an SSD signal corresponding,
to each slave queue location. Hence, for Slave 0, the outputs
of the ArbDatSM 604' include SSD,,, SSD,,, . . .,
SSDg 41y, and so forth for each slave up to and including
Slave S+1, the outputs for which include SSD g, 1y,
SSD g, 1y15 - - + 5 SSD (s, 1y041)-

The 1mputs to the bottom edge of the ArbDatSM 604" arc
observed and to realize a further optimization as described
more fully heremnafter.

In 1ts basic operation, the ArbDatSM 604' performs the
following functions:

1. Determines the highest priority master having a trans-
action “ready to go” based on:
a) the SlvMatch bits for all of the masters;
b) the read/write bits from the frontmost queue loca-
tions of all of the master queues; and

c¢) the SIvRdReady bits for all of the master.
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2. Asserts the corresponding DBG signal for the winning,
master; and

3. Asserts the correct SSD signal for the target slave based
on:
a) the SlvMatch bits for the winning master; and
b) the SACK vector in the frontmost queue location of
the winning master.
As may be appreciated from the foregoing description, the
system of FIG. 19 1s much more loosely coupled than the

system of FIG. 6. The loosely-coupled nature of the system
of FIG. 19 may be taken advantage of to improve the way
in which deadlocks are avoided.

As previously described in relation to FIG. 6, slave
ordering 1s a major cause of deadlock. When what would
otherwise be a deadlocking transaction 1s detected, it 1s
“killed” by 1ssuing an ARtry signal. Without slave ordering,
a large proportion of what would otherwise be deadlocking
fransactions, 1nstead of being killed, can now be accepted
and reordered 1n relation to other transactions so as to avoid
deadlock. Such reordering 1s not possible, however, when a
data dependency exists. For example, a read of one data
location by one device followed by a write of the same data
location by another device does not yield the same result as
if the execution order 1s reversed. If a deadlock situation
cannot be avoided by transaction reordering because of a
data dependency, the need remains to kill the deadlocking
transaction.

Of course, data dependencies may also exist absent any
potential deadlock situation. Observing such data dependen-
cies will not cause any transaction to be killed as 1 a
deadlock situation, although i1t may reduce somewhat the
utilization of the bus.

Information regarding data dependencies i1s mput to the
ArbDatSM 604' in the form of address coincidence (AC)
signals from each of the slaves. Using this information, the
ArbDatSM 604' schedules transactions so as to observe all
data dependencies. For each of slave devices 0 to S+1, the
ArbDatSM 604' receives Q(Q+1)/2 address coincidence bits.
In the case of Q=2, for example, the ArbDatSM 604' receives
three address coincidence bits from each slave: AC,,, AC,,,
and AC,,, each mndicating that the two subscripted queue
locations have target addresses within the same cache line.

In operation, the ArbDatSM 604' uses the address coin-
cidence signals as follows:

1. The ArbDatSM selects for each master a set of address
coincidence bits from a particular slave 1n accordance
with the SACK vectors at the head of the respective
master queues.

2. Each selected set of address coincidence bits 1s used to
determine for that particular slave device which queue
location or locations cannot have the transaction
queued therein go next without violating a data depen-
dency.

3. For each master, the SlvMatch bits 1mnput to the Arb-
DatSM are modified in accordance with the results of
Step 2 to turn off selected SlvMatch bits, 1f necessary,
in order to ensure that data dependencies are observed.

To take a concrete example, assume that the frontmost

queue entry for Master 0 designates Slave 0. Assume further
that the SlvMatch bits for Master 0 are 010, indicating that
the match 1s for queue entry 1 of Slave 0. Without taking into
account the address coincidence bits of Slave 0, the trans-
action 1 queue entry 1 will be executed 1f Master 0 1s the
winning master. Now assume that the address coincidence
bits of Slave 0 are 100, indicating that the transactions
within queue locations () and 1 are directed to the same cache
line. A data dependency therefore exists between the trans-
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actions such that they must be executed in order. To prevent
the transaction 1 queue entry 1 from being executed before
the transaction in queue entry 0, the SlvMatch bits of Master
0 are modified, 1.e., changed from 010 to 000. The same
modification 1s performed for each arbitration cycle until the
fransaction 1 queue entry 0 has executed. The address
coincidence bits for Slave 0 will then be 000. The SlvMatch
bits of Master () then, instead of being modified, remain 010
such that the transaction in queue entry 1 may be executed
next 1if Master 0 1s the winning master.

The ArbDatSM 604' uses the page coincidence (PC) bits
in a similar manner, not to enforce data dependencies but to
reduce slave latency and boost system performance. In the
llustrated embodiment, PC bits are received from DRAM
only. In other embodiments, PC bits may be received from
other or additional slave devices. The slave device 1is
responsible, once a PC bit has been asserted, to keep that PC
bit asserted until both of the page-coincident transactions
have been executed (or, more precisely, scheduled for

execution).

In operation, the ArbDatSM 604' determines to which
masters the PC bits will be applied, e.g., which masters have
a DRAM transaction at the front of their queues, 1n accor-
dance with the SACK vectors at the head of the master
queues. The PC baits are then used to determine which queue
locations cannot have the transactions queued therein go
next without forfeiting the speed advantage to be gained
from paged access. In practice, 1f a PC bit 1s asserted, the
transactions to which the PC b1t relates will be scheduled for
execution prior to any other transactions involving the
DRAM. In other words, 1f the DRAM has three transactions
queued, two of which are to the same page, the execution
order will be COINCIDENT, COINCIDENT, NON-
COINCIDENT, instead of NON-COINCIDENT,
COINCIDENT, COINCIDENT, although both sequences
yield the same speed advantage. In other embodiments, any
execution order that results 1n the page-coincident transac-
tions being executed one after another without any inter-
vening transaction may be acceptable for purposes of the PC
bits.

The AC and PC bits may be regarded as control inputs to
a bit filter that operates upon the SlvMatch bits, as shown 1n
FIG. 23.

The 1nputs and outputs of ArbDatSM 604" are 1llustrated
in greater detail in FIG. 24 for the case M=4, S=5 and Q=2.

Referring to FIG. 25, the inputs and outputs of the
ARtryGen block 613' are illustrated in greater detail. The
inputs along the top and left edges of the ARtryGen block
613' remain unchanged compared to the ARtryGen block
613 of FIG. 6. Unlike the ARtryGen block 613 of FIG. 6,
however, the ARtryGen block 613', instead of generating
ARftry based on the assumption of ordered slaves, uses
certain deadlock address-coincidence (DLAC) inputs
received at the bottom edge of the block to generate a
“qualiied” ARftry signal only when a data dependency
prevents transactions from being reordered so as to avoid the
deadlock. The slave devices each monitor each system bus
address tenure and compare the address placed on the bus to
addresses queued within the respective slave devices. If the
address on the bus 1s the same as an address already queued
within the slave device, the slave device raises its DLAC
signal to the ARtryGen block 613'. All slave devices or only
selected slave devices (most importantly DRAM) may
monitor the bus and signal the ARtryGen block 613' 1n this
manner. In the illustrated embodiment, all slave devices are
assumed to provide a DLAC signal. The ARtryGen block
613' theretore receives signals DLAC, through DLAC 4 4.
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In operation, when the ARtryGen block 613' detects a
potential deadlocking ftransaction to a particular slave
device, 1t checks to see 1f the DLAC bait for that slave device
1s asserted. If the DLAC bit for that slave 1s not asserted,
then no ARtry signal 1s generated. If the DLAC bit for that
slave device 1s asserted, then an ARtry signal is generated.

The iputs and outputs of ARtryGen block 613" are
illustrated 1n greater detail in FIG. 26 for the case M=4, S=5
and Q=2.

It will be apparent to those of ordinary skill in the art that
the present mnvention may be embodied 1n other speciiic
forms without departing from the spirit or essential character
thereof. The presently disclosed embodiments are therefore
considered 1n all respects to be illustrative and not restric-
tive. The scope of the invention 1s indicated by the appended
claims rather than the foregoing description, and all changes
which come within the meaning and range of equivalents
thereof are intended to be embraced therein.

We claim:

1. In a computer system having a system bus and having
arbitration circuitry, multiple master devices including a
system microprocessor, and multiple slave devices, all
coupled to the system bus, a method of reordering system
bus transactions, comprising the steps of:

receiving and queuing within a particular slave device a
plurality of transactions;

within said arbitration circuitry, arbitrating between pend-
Ing transactions based on arbitration policies including
an arbitration policy that responses are received by
respective master devices 1n the same order as requests
were 1ssued by the respective master devices; and

at least some of the time, said arbitration circuitry, without
signalling said microprocessor, signalling said particu-
lar slave device such that the system bus 1s granted for
a later queued transaction within said particular slave
device prior to being granted for an earlier queued
transaction.

2. The method of claim 1, comprising the further step of
maintaining for each master device a master queue in which
respective queue entries 1dentify respective target slave
devices, and maintaining for each slave device a slave queue
in which respective queue entries 1dentify respective origi-
nating master devices.

3. The method of claim 2, wherein the step of arbitrating
further comprises identifying a winning master device based
at least 1 part on a priority ordering of said master devices,
and determining for at least said winning master device a
matching queue entry within a slave queue 1dentified by a
frontmost queue entry within the master queue of the
winning master device, the matching queue entry 1dentitying,
the winning master device.

4. The method of claim 3, wherein the step of signalling,
said particular slave device comprises signalling to the
particular slave device the matching queue entry identifying,
the winning master device.

5. The method of claim 4, comprising the further step of
the slave devices 1dentifying to the arbitration circuitry pairs
of transactions mvolving the same address block.

6. The method of claim 5, wherein the arbitration
circuitry, 1n 1dentifying the winning master device, ensures
that for each pair of transactions identified by the slave
devices, a corresponding earlier queued transaction 1s
executed prior to a corresponding later queued transaction.

7. A computer system comprising;:

a system bus;

multiple master devices, i1ncluding a system
microprocessor, each coupled to the system bus;
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multiple slave devices each coupled to the system bus and
cach comprising a transaction queue for queuing mul-
tiple transactions; and

arbitration circuitry coupled to the system bus and sepa-
rately coupled to the multiple slave devices for, without
signalling said microprocessor, signalling a particular
slave device such that within said particular slave
device a later queued transaction 1s executed prior to an
carlier queued transaction.

8. The apparatus of claim 7, wherein said arbitration

CIrCuitry comprises:

multiple master queues, each corresponding to one of said
master devices, 1n which respective queue entries 1den-
tify respective target slave devices;

multiple slave queues, each corresponding to one of said
slave devices, 1n which respective queue entries 1den-
tify respective originating master devices;

means for determining a winning master device based at
least 1n part on a priority ordering of said master
devices; and

means for determining for at least the winning master
device a matching queue entry within a slave device
identified by a frontmost queue entry within the master
queue of the winning master device, the matching
queue entry 1dentifying the winning master device.

9. An arbiter comprising:

an address arbitration circuit for receiving bus request
signals from multiple master devices and 1n response
thereto generating address bus grant signals for the
master devices;

a queuing structure including multiple master queues,
cach corresponding to one of the master devices, and
multiple slave queues, each one corresponding to one
of multiple slave devices each having a transaction
queue, the queuing structure receiving the bus grant
signals and receiving respective slave acknowledge
signals from respective slave devices, wherein each
time an address bus grant 1s 1ssued a record 1s entered
in the queuing structure, the record comprising a first
entry in a master queue 1dentified by the address bus
orant signals, the first entry 1dentifying a target slave
device 1 accordance with the slave acknowledge
signals, and a second entry 1n a slave queue 1dentified
by the slave acknowledge signals, the second entry
identifying an originating master device 1in accordance
with the address bus grant signals;

a matching circuit responsive to queue entries from the
queuing structure for producing match bits identifying,
selected records the first entry of which 1s at the head
of a master queue; and

a data arbitration circuit responsive to the match bits and
to queue entries from the queuing structure for gener-
ating data bus grant signals for the master devices and
for generating for each slave device a multibit signal
which when active identifies a transaction within the
transaction queue of the slave device.

10. The apparatus of claim 9, wheremn said selected
records include all records within the queuing structure the
first entry of which 1s at the head of a master queue.

11. The apparatus of claim 10, wherein the match bits
partially identity said selected records, entries at the head of
the master queues being used 1n combination with the match
bits to uniquely identify the selected records.

12. The apparatus of claim 11, wherein the matching
circuit 1s responsive to read-ready signals from the slave
devices for producing read-ready bits 1in one-to-one corre-
spondence with the match bats.
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13. The apparatus of claam 12, wherein the matching
circuit produces a match bit and a read-ready bit for each
queue location of the slave device transaction queues.

14. The apparatus of claim 12, wherein the data arbitration
circuit produces a signal bit for each queue location of the
slave device transaction queues.

15. The apparatus of claim 12, wherein the data arbitration
circuit comprises a bit filter and 1s responsive to address
coincidence signals from the slave devices for filtering the
match bits prior to selecting a winning master device.

16. The apparatus of claim 15, wherein the address
coincidence signals 1idenftify pairs of transactions mnvolving
the same block of addresses.

17. The apparatus of claim 16, wherein the data arbitration
circuit ensures that for each pair of transactions identified by

the slave devices, a corresponding earlier queued transaction
1s executed prior to a corresponding later queued transaction.

18. A method of avoiding deadlock in a computer system
having a split-transaction bus and a single-envelope bus
bridged by a bus bridge, the split-transaction bus and the
single-envelope bus each having at least one master device
and one slave device connected thereto, comprising:
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storing data from one or more accepted bus fransactions;

determining, prior to a request for a bus transaction from
a requestor, if execution of such bus transaction would
cause deadlock based on the stored data; and

responsive to the determination that execution of the bus
transaction would cause deadlock, sending a retry
signal to the bus transaction requestor.

19. An apparatus for avoiding deadlock in a computer
system having a split-transaction bus and a single-envelope
bus bridged by a bus bridge, the split-transaction bus and
the single-envelope bus each having at least one master
device and one slave device connected thereto, comprising:

a memory for storing data from one or more accepted bus
[ransactions,; and

deadlock avoidance logic coupled to the memory for
determining, prior to a request for a bus transaction
from a requester, if execution of the bus transaction
would cause deadlock based on the stored data, the
deadlock avoidance logic adapted to send a retry signal
lo the bus transaction requester if execution of the bus
transaction would cause deadlock.
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