USOORE38365E

(19) United States

a2 Reissued Patent US RE38,365 E

(10) Patent Number:

Shindo 45) Date of Reissued Patent: Dec. 23, 2003
(54) DATA UPDATING METHOD USING 5,442,790 A * 8/1995 Nosenchuck 717/9
OVERLAP AREA AND PROGRAM 5,457,799 A * 10/1995 Srivastavaceceevnven... 717/9
CONVERTING DEVICE FOR 5,581,762 A * 12/1996 Hayashi et al. 717/9
CONVERTING UPD ATE PROGRAM IN 5?5965732 A : 1/1997 HOﬁS({i 7}7/9
DISTRIBUTED-MEMORY PARAIIEL 5,634,059 A 5/1997 Zaiklcoooiiiiiinnnnn.n. 717/6
PROCESSOR OTHER PUBLICATIONS
75) 1 tor: Tat Shindo, K ki (JP
(75) - lnventor atsuya Shindo, Kawasaki (JF) Walker et al., Pipeline ring data—flow architecture for solv-
(73) Assignee: Fujitsu Limited, Kawasaki (JP) ing large iterative structures, IEEE, p. 212-220, 1994.*
Huang et al., Parallel Architectures for Digital Optical
(21) Appl. No.: 09/466,661 Celluar Image Processing, IEEE, p. 1711-1723, 1994.%
(22) Filed: Dec. 21. 1999 Gray et al., Summary of a Distributed Control Algorithm for
’ a Dynamically Reconfigurable Array Architecture, IEEE, p.
Related U.S. Patent Documents 131-140, 1989.%
Reissue of: | |
(64) Patent No.. 5,764,993 * cited by examiner
Issued: Jun. 9, 1998
Appl. No.: 08/575,590 Primary Examiner—Tuan Q. Dam
Filed: Dec. 20, 1995 Assistant Examiner—John Q. Chavis
(30) Foreign Application Priority Data (74) Attorney, Agent, or Firm—Staas & Halsey LLP
Mar. 17, 1995 (JP) ceoeeeeeeeeeeeeeeeeeeeeee e, 7-059151 (57) ABSTRACT
(51) Int. CL7 oo GO6F 9/44 In a parallel processor, a local area and an overlap area are

(52) US.CL .. 717/160; 717/150; 717/154

(58) Field of Search 717/9, 6, 150,
717/154, 160

References Cited

U.S. PATENT DOCUMENTS

(56)

2

4/1994 Inouve et al.oovvvvrenen.... 717/9

assigned to the memory of each processing element (PE),
and each PE makes calculations to update the data in both
arcas at the runtime. If the data 1n the overlap area 1s updated
in processes closed 1n the PEs, the data transfer between
adjacent PEs can be reduced and the parallel processes can
be performed at a high speed.

5,303,357 A 11 Claims, 23 Drawing Sheets

PED PEl PE? PE3
it | 1] 2] 3]s 6] g__s Imy s s efEfEE BT iafiofaoa 22;3_24 17
P T
Undate 131415 16171819 1415161718192021222324252627
s
ter | 13(1415116[17)18[s 16171 8fvs |20 [o2fasfeaasaefd Fidaalodas
WY
ter 2 131415161 73 EEzsiief17]18vo 20212223]24]as
tor 3 R 71809 2020 222324 E EEE
Update 14]15016{17]18]19|20(21122}2 24252627 77 2324 25126(27|28
\m , 0'0 ol
ATA A AA
ter 4 1501601701819 2021 22123 (24[25 12615 [23[a4]25]26/27]28
A 4
TIME
AMENDED' DIRTY OVERLAP AREA

[] CLEAN OVERLAP AREA
LOCAL AREA

US RE38,365 E

00aN3
(G5Z:2'VSZ:1)B+(G6Z:Z ‘95 7€)

g

. L

- +(pG2:1'GGZ-¢)e+(9GZ-€ GG C)e) <0 = (GG "GGC C)e g

. 1 "L =1 00 G

s p

d uo (30|q “§o0|q)e anquisip $4dHi €

- G {9G¢ "9G¢)e |eal ¢

& (¥ ‘p)d 108S8304d §4dH] |
Z

| Ol

U.S. Patent

U.S. Patent Dec. 23, 2003 Sheet 2 of 23 US RE38,365 E

PRIOR ART

U.S. Patent Dec. 23, 2003 Sheet 3 of 23 US RE38,365 E

FIG. 3

—-——--—TIME

PROCESSOR i-" 7, T, A,

PROCESSOR | 222222, ‘m ‘m m

PROCESSOR i+ EZ2ZZ2, ‘m m Yz
PROCESSOR i+2 E2222 m ‘m \m

COMPUTATION
-—---= DATA TRANSFER

U.S. Patent Dec. 23, 2003 Sheet 4 of 23 US RE38,365 E

FIG. 4

——»[|ML

PROCESSOR i-1 EZZZZ2, ,m ,m P
PROCESSOR | M W W m

COMPUTATION
-—---= DATA TRANSFER

US RE38,365 E

Sheet 5 of 23

Dec. 23, 2003

U.S. Patent

OUUNA

((gz:gle’(9z:T)e)IF=(LC2)®

d uo

SwTl ‘0=T Od
(o0Tq)® °30ATIRSTP SAdH |

q “(8z)e Te=ax
(7)d xossoooxd $idH;

— N M <) \O

US RE38,365 E

Sheet 6 of 23

Dec. 23, 2003

U.S. Patent

Wil

vidv VIO

Y4V dVTHIA0 NYIT) [
V34V dVT43A0 ALYNIQ FE

8¢

LG

9¢

n.

T

Lzjozfsefr

%

_mm

LG

9C|5¢

i

(8¢

4/

9¢

2

wr
L ~

8¢

LL

9

A

[L

9¢

¢1d

LAJUANINY,,

(1¥V HOIdd)

9 Ol

e

A/

1&

0¢

bl

8l

] -@

sipljetjziteol] o

tl

A

1L

0C

31

v
E:

,_.. ,_..,

SUvliEl|cl

L

..__. ..._..
....._

-:

XA

AARTA(/

6l

gl

:. mf:zm_ :

N/ :

£l

A/

1€

0¢

6l

81

L1{91 -2

L E[et|ZL L0

_mmﬂm

~
P

g1

(o] feto

i mfm vl Eﬁ

[

SLPLIELIC]

m::;;m

A

ELIZE]LLD

61d

ANTASRRREI R

11d

5718 G b |€ |2
€ |

318 51p[€ |z
\

B m_w@m

p 1))

ajopdp

£ 131

ajopdf)

Z 19}

ajopdp

| 18K

ajopdp

LIN]

US RE38,365 E

Sheet 7 of 23

Dec. 23, 2003

U.S. Patent

[D13

WVIH0¥d (4144ANOD

=1 L WL

L0 BN L3313

#,

NV HD0dHd

1 o

)

US RE38,365 E

Sheet 8 of 23

Dec. 23, 2003

U.S. Patent

US RE38,365 E

¥ snd_TYNNELNI
S T
2
1771 -

U.S. Patent

A 51 WHOMLAN Ol

Hi0di0) 150N

US RE38,365 E

Sheet 10 of 23

Dec. 23, 2003

U.S. Patent

IWIL

>

Y4V 1201 | |
V34V dYTIAO NYITD []
VYV dVTYIAO ALYIQ B

LJAFJUNTINY,

ST i

8C|LL
A

8C|L

YAITAL]!

WO/ ::«. WAKN P ALK ».: :;‘.r

SpTE R

AngEon:zR:100nE

52 IEH H-E v2|£2)22|17/02

._l.l .I-I. _-..__l.ll.l lvl -

.-‘ }
.Il‘! - - — ..l-.._.r .-lr...l

T

:E-E EE-@_

/

vle[z]t] poen

SLipLi€lic!

@ E-n

.-l. ...-. ._..l. _.r..-. _r.r

‘

TATAAY,

—
.._.l_..,.....

- - o R l-.-. .rr__
-...‘..

PN RO

sselvebigs Bt selveler]ze1zog]

ol

oL L

ﬁ_z

SlLiplL|ELCL

AN EHMH %

/R

A

g[s[p[efe]t] emeir
o [T E[e]L] €
IAIERAL

1016 |8 BSRH pEH6 8 |/

pelslrilen Eoeiseie

:

(618

8C|LC

/00000000

E-m 016

,.11,..4!".. g

2_;

2092 &% gmw 22]1702

gzfse[vefeu BEE: ¢z/22]12/0z]6 181 :E-E
» W ,._._.

0, 00000, STOOneoNe

KUOOUO

| 3l

AW

b ™
_llv
.I__.I._‘.l.
—
ll.l_

t1d

(1d

811 ﬁmm %,ﬁﬁ@ :z_:_z

EE!E::&E:S@E-E EEHm

5w e [e]t] opdn

._.-.r ._.....__ iﬂ. i -

ln _— .

™~
._Illl.
™
- My, Ty _l_____...r.l

0L 9ld

| 1d

Eg

@_L:

%mnﬁi

LINI

Al

(1d

U.S. Patent Dec. 23, 2003 Sheet 11 of 23 US RE38,365 E

= ART

STRCTING APLICARLE PORLICH R
0D WAL B

IR

> DEEERENING UPTIHUM EXTENDED i

ESS (NG EXTENDED P EEEE

S5 TISERIIN TG00 QYLD
CALCULATION CODE

6 _ INSERTING BXTEADED OVERLAP ARE
POATE (0D *

—
FIG 11

U.S. Patent

Dec. 23, 2003 Sheet 12 of 23

'S PARALLEL
CONNECTIONifPPLICABLE

'S OVERLAP
AREA EFFECTIVE
DO LOOP 7

10

DOES SERIAL
LOOP TIGHTLY ENCOMPASS

SERIAL LOOP
?

51-0

“NTERING SELECTED DO LOOP AS
2PPLICABLE PORTION FOR EXTENT ION

OVERLAP AREA

91-0

DOES ANOTHER
DO LOOPoEXIST

YES

US RE38,365 E

US RE38,365 E

of 23

Sheet 13

Dec. 23, 2003

U.S. Patent

V34V dVId3A0 40

4313NVvHYd NOISNE1X3 &

vVady dVIH3AO0
JZIS M

IYNOILN3ANOD 40

v3dV 1vOo071 40

v INVY
V43N0 Q3AN3LX3 U

3ZIS

[

\\\\\\\\\\\\\\

s

G

\\\\\
A

€l 914

257/ 20
\ w_&‘\\\\\ A

“\ !
\\ \ vo01 |/
)

0/

7
\\\\\\a\\\
I, \\\\

‘M\\\\

..S

\\\

\
ARNNNNY \\‘x\\

W

\\‘

‘\\\\

N \7:;\\\\\ .

\\\

AV

=

U.S. Patent Dec. 23, 2003 Sheet 14 of 23 US RE38,365 E

T i’rer(eo) """"

PROCESS TIME Titer (e)

EXTENSION PARAMETER e

U.S. Patent Dec. 23, 2003 Sheet 15 of 23 US RE38,365 E

S T ART

NEW DATA S|ZE 3 04-1
'« INITIAL DATA S|ZE
|+ OVERLAP AREA S| ZE

> EXTENSION PARAMETER

0h4=2

RE-DECLARING DATA W) T4
NEW DATA S|ZE

U.S. Patent Dec. 23, 2003 Sheet 16 of 23 US RE38,365 E

FI1G. |6

LOCAL DATA AREA

[Z53 DIRTY OVERLAP AREA
[1 CLEAN OVERLAP ARFA

|
v
TIME

|

26(77 28] |

93l2al25]2627] 70 PEO

PE3

Sl oo palsfas] (SR 2s[ael27]2s

PE2

PE]

g 9 o iaf1a[14rs]re

([3[als]e [7e]

PEO

INH

U.S. Patent Dec. 23, 2003 Sheet 17 of 23 US RE38,365 E

OQANT™
+,T-)e (GZ+,T:,T=,L)TTI9904
SWT kOﬂxl._u Od

US RE38,365 E

._,u....v.mvkﬁ._“._r\ﬁ._;\..m[v.@vmﬂ AN+~.

(")
+
)
+
N,

6l Ol

Sheet 18 of 23

OdANH
((e+0)e’ (T+0)e)I=(z+0)e (gz:0=L[)TTIVY0d
SUT3 “0=T 0d

Dec. 23, 2003

3l 9l

U.S. Patent

OQANA

TIYI0AANE
((E+D)V (T+0)V¥) I=(E+D) ¥ HSTH
AN+WV£HAM+.©V#N A®N+ y L==,0 "dO" L= s Ll== va
(9C+ ., T:T—-,T=L) TIVH0A

SQWTY “‘0=,T Q4

US RE38,365 E

~

= :

> L 9DI|A

E:

—

& 9

- OddNH
M.,, T'IVIJOHANH
QX ((g+, L+, 1) (T+, L+, T-)e)I=(z+,L+,T—)® qSTH

M AN+_.H+ _‘HIV@HANIT...ﬁlT k.ﬂiv.m. A®N+ u_l_u““x.ﬁ dO ._Hls._uﬂﬂ.xﬂv_mum

(0Z+,T:T—,T=,0) TIVd0d
@En_un.. ! HL_.._H OQ

0¢ Ol

U.S. Patent

US RE38,365 E

Sheet 20 of 23

Dec. 23, 2003

U.S. Patent

FIG. 22

/.\\

..;'N ceooo-
,4{

/

N

\

- A 4Oy - b

sty ia Rl ATy R ol

.) ’
/ 7 VO .\
- ’

US RE38,365 E

Sheet 21 of 23

Dec. 23, 2003

U.S. Patent

U.S. Patent Dec. 23, 2003 Sheet 22 of 23 US RE38,365 E

US RE38,365 E

Sheet 23 of 23

Dec. 23, 2003

U.S. Patent

oW}]

V3uy vo01 [

_1_eazpebepeke Y A1 ;

i

MR 7.9.77
¢ dd

ELJ%»

I 1

|| | | Bepepeisepeepehz EUWHUEE!

G 91 4

V3uv dVIH3A0 NV3AID [

HEM@EEEH

.,,,,,,/

\

EEE

" AN

\

AR NN
N NN N\
N AN NN NN

eljit EEEI%\\‘

W
i

ﬁ
)

HEEE EIEIIEIED EHBEIEE E.EEIEEH%&%%

VUV dVIH3A0 ALNIO B

A

Eumanm%\ lmmammanawx

i I

,_,.///.
NN NN
NNV N
NN AN
NN NN

) dd O 4d

747 BEIEEH.I\\‘Q:\\ Z

2 1911

WEIg

2i1opdn

LIN]I

US RE38,365 E

1

DATA UPDATING METHOD USING
OVERLAP AREA AND PROGRAM
CONVERTING DEVICE FOR
CONVERTING UPDATE PROGRAM IN
DISTRIBUTED-MEMORY PARALLEL
PROCLESSOR

Matter enclosed in heavy brackets [] appears in the
original patent but forms no part of this reissue specifi-
cation; matter printed in italics indicates the additions
made by reissue.

BACKGROUND OF THE INVENTION

1. Field of the Invention

The present invention relates to a method of executing a
program at a high-speed through a distributed-memory
parallel processor, and more specifically to a data updating,
method using an overlap area and a program converting
device for converting a data update program.

2. Description of the Related Art

Recently, a parallel processor draws people’s attention as
a system of realizing a high-speed processor such as a
super-computer in the form of a plurality of processing
elements (hereinafter referred to as PE or processors) con-
nected through a network. In realizing a high processing
performance using such a parallel processor, it 15 an 1mpor-
tant problem to reduce the overheads of the data communi-
cations to the lowest possible level. One of the effective PE
of reducing the overheads of the data communications
between processors 1s to use an overlap area for specific
applications.

The time required for data communications depends on
the number of times of packet communications rather than
the total volume of data. Therefore, integrating the commu-
nications and representing the messages by vector (S, WP,
K. Kennedy, and C. WP “Compiler WP for Fortran D on WP
Distributed-Memory Machines,” 1n Proc. WP 91 pp.
86—100, Nov. 1991.) are important in reducing the commu-
nications overheads. An overlap area 1s a special type of
buffer area for receiving vector data, and 1s assigned such
that it encompasses a local data area (local area) to be used
in computing data internally. The data value of the overlap
arca 1s determined by the adjacent processor.

FIG. 1 shows the program code (Jacobi code) of the
Jacob1 relaxation written 1n high performance Fortran
(HPF). In the Jacobi code shown in FIG. 1, the values of
element a (i, j) of the two-dimensional array A are updated
using the values of four adjacent elements a (1, j+1), a(1, j—1),
a(i+1, 7), and a(i-,)). The size of the array a 1s specified by
a (256, 256). The elements where 1=1, 256, =1, 256 are not
updated. For example, the element a(2:255) in the DO loop
of the update of data 1s an array description of Fortran 90,
and the number of times of occurrences of the DO loop 1s t
times. This code refers to a typical example of the update of
data using an overlap area.

FIG. 2 shows an example of the overlap area 1n which the
Jacobi1 code shown 1 FIG. 1 1s executed. According to the
data distribution specified in the program shown 1n FIG. 20,
the elements in the array a (256, 256) are distributed into the
local areas of 16 processors P (x, y) (x=1, 2, 3, 5, y=1, 2, 3,
4) and stored therein. For example, the processor p (2, 2)
controls the range of a (65:128, 65:128) in the array a. In
FIG. 2, the shadowed portion around the local area of the
processor p(2,2) indicates the overlap area at p(2, 2).

The processor p(2, 2) has a considerably large area of
a(64:129, 64:129) including an overlap area so that, when

10

15

20

25

30

35

40

45

50

55

60

65

2

a(i,) 1s calculated, the adjacent a(i, j+1), a(1, j—-1), a(i+1, j),
and a(i-1, j) can be locally accessed.

Without an overlap area, data should be read from adja-
cent processors 1n the DO loop and a small volume of data
are frequently communicated, resulting 1n a large commu-
nications overheads. However, having an overlap area
allows the latest data to be copied to the overlap area by
collectively transferring data before an updating process.

Therefore, data can be locally updated and the communica-
tions overheads can be considerably reduced.

Thus, the overlap area can be explicitly speciiied by VPP

Fortran (“Realization and Evaluation of VPP Fortran Pro-
cess System for AP1000” Vol. 93-HPC-48-2, pp. 9-16. Aug.

1993 published at SWOPP Tomonoura “93 HPC Conference
by Tatsuya Sindoh, Hidetoshi Iwashita, Doi1, and Jun-ichi
Ogiwara). A certain compiler automatically generates an
overlap area as a form of the optimization.

The data transmission patterns for performing parallel
processes can be classified mto two types. One 1s a single
direction data transfer SDDT, and the other 1s a

bi-directional data transter BDDT. FIG. 3 shows an example
of the SDDT, and FIG. 4 shows an example of the BDDT.

In FIGS. 3 and 4, processors1—1, 1+1, and 1+2 are arranged
in a specified dimension and forms a processor array. The
SDDT 1s a transfer method in which all transfer data are
transferred 1n a single direction from the processor 1 toward
the processor 1+1 with time 1n the specified dimension. The
BDDT 1s a transfer method in which data 1s transferred
between adjacent processors 1n two directions. Thus, some
pieces of data are transmitted from the processor 1 to the
processor 1+1 while other pieces of data are transmitted from
the processor 1+1 to the processor 1.

FIG. 5 shows the program code of the Jacob1 relaxation
for a one-dimensional array. In the Jacobi code shown in
FIG. §, the value of the element a(1) of the one-dimensional
array a 1s updated by the output of a function { obtained by
inputting to the function f the two adjacent elements a(i—1)
and a(i+1). The size of the array a is specified by a(28), and
a(1) and a(28) are not updated. The data is updated repeat-
edly for the time specified by time.

FIG. 6 shows an example in which data 1s updated using,
the conventional overlap arca when a program shown in
FIG. 5 1s executed. In FIG. 6, PEO, PE1, PE2, and PE3 are
four PEs for dividing and managing the array a. Each PE has
an arca for storing 9 array elements. A dirty overlap area
stores old data and a clean overlap areca stores the same latest
data as the adjacent PE. A local area stores data to be
processed by each PE.

The word “INIT” indicates an 1nitial state and “Update”™
indicates the data communications between adjacent PEs to
update the overlap area. Iter 1, 2, 3, and 4 indicate parallel
processes for the update of data at each iteration of the DO
loop. In FIG. 6, the overlap area 1s updated by the BDDT for
each 1teration.

However, the data update method using the conventional
overlap area has the following problems.

Each processor forming part of the parallel processor
should update the data in the overlap arca into the latest
value before making a calculation using the data value of the
overlap area. The update process 1s performed by reading the
latest value from the adjacent processor through the com-
munications between processors. In parallel processors, the
overheads are heavy for a rise time. Therefore, the time
required for the communications process depends on the
number of times of data transfers rather than the amount of
transferred data. If an overlap area i1s updated each time a

US RE38,365 E

3

calculation 1s made using the overlap area, then each com-
munications rise time 1s accompanied by overheads.

In a parallel processor connected through a torus network
such as an AP1000 (“An Architecture of Highly Parallel

Computer AP1000,” by H. Ishihata, T. Horie, T. Shimizu,
and S. Kato, in Proc. IEEE Pacific Rim Conf. on
Communications, Computers, and Signal Processing, pp.

13—-16, May 1991), the SDDT excels to the BDDT in

characteristic because the SDDT can reduce the time of data
transfers and the overheads required 1in a synchronization
process between adjacent processors more than the BDDT.
However, in the conventional data update process as shown
in FIG. 6, the data in the overlap areas should be exchanged
between adjacent processors, and the data transfer pattern 1s
based on the BDDT. In the BDDT, each processor should
perform communications 1n synchronism with adjacent pro-
cessors. As a result, the time of data transfers increases and

the overheads for the synchronization processes become
heavier than the SDDT.

3. Summary of the Invention

The present 1nvention aims at updating data with the
overheads for the communications between PEs reduced 1n
the distributed-memory parallel processors, and providing a
program converting device for generating a data updating
program.

The program converting device according to the present
invention 1s provided 1n an information processing device,
and converts an mnput program 1nto the program for a parallel
processor. The program converting device 1s provided with
a detecting unit, setting unit, size determining unit, and a
communications change unit.

The detecting unit detects a portion including the descrip-
tion of the loop where optimization can be realized using an
overlap area 1n the input program. The setting unit assigns an
overlap area to the memory of the PE for processing the
program at the description of the loop, generates a program
code for calculating the data in the area, and then adds 1t to
the 1nitial program. Thus, each PE updates the data in the
local area managed by the PE, and also updates the data in
the overlap area managed by other PEs at the runtime of the
program converted by the parallel processor. The overlap
arca updated by the closed calculation 1n each PE requires no
data transfer for update, thereby improving the efficiency in
parallel process.

The size determining unit estimate the runtime for the
description of the loop and determines the optimum size of
the overlap area. Normally, the larger the overlap area 1s, the
smaller number of times the data is transferred while the
longer time 1s taken for updating the data in the area. It the
size of an overlap area 1s fixed such that the runtime 1s the
shortest possible, the data update process can be efliciently
performed.

The communications change unit checks the data depen-
dency at the detected portion of the description of the loop.
If the data i1s dependent bi-directionally, the description
should be rewritten such that the data 1s dependent 1n a
single direction, and subscripts are generated in the arrange-
ment optimum for data transfer. Thus, each PE only has to
communicate with the adjacent PE corresponding to either
upper limit or lower limit of the subscripts in the array,
thereby successtully, reducing the overheads of the commu-
nications.

Thus, the overlap areca has been updated using the data
transterred externally. However, it 1s updated 1n a calculation
process 1n each PE, thereby reducing the overheads for the
communications and performing the parallel process at a
high speed.

10

15

20

25

30

35

40

45

50

55

60

65

4
BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 shows
array,

FIG. 2 shows the conventional overlap area;

FIG. 3 shows the data transfer in a single direction;

FIG. 4 shows the data transfer in two directions;

the Jacob1 code 1n the two-dimensional

FIG. 5 shows the Jacobi code 1n a one-dimensional array;

FIG. 6 shows the update of data using the conventional
overlap area;

FIG. 7 shows the configuration of the program converting,
device according to the embodiment of the present inven-
tion;

FIG. 8 shows the configuration of the parallel processor
according to the embodiment of the present invention;

FIG. 9 shows the configuration of the host computer;

FIG. 10 shows the update of data using an extended
overlap area;

FIG. 11 1s an operating tlowchart showing the extended
overlap area setting process;

FIG. 12 1s an operating flowchart showing the extended
overlap area available portion detecting process;

FIG. 13 shows a two-dimensional extended overlap area;

FIG. 14 shows the relationship between the extended
parameter and the runtime;

FIG. 15 1s an operating flowchart showing the extended
overlap area assigning process;

FIG. 16 shows the update of data through the data transfer
in a single direction;

FIG. 17 1s an operating flowchart showing the data update
setting process through the data transfer in a single direction;

FIG. 18 shows the original program;

FIG. 19 shows the program after converting the calcula-
fion space;

FIG. 20 shows the program with uncalculated elements
added,;

FIG. 21 shows the program after converting indices;

FIG. 22 shows the distance vector for the original pro-
oram;
FIG. 23 shows the distance vector after the conversion;

FIG. 24 1s an operating flowchart showing the setting
Process;

FIG. 25 shows the update of data using an extended
overlap area and data transfer 1in a single direction;

DESCRIPTION OF THE PREFERRED
EMBODIMENTS

The embodiments of the present invention 1s described 1n
detail by referring to the attached drawings.

FIG. 7 shows the configuration of the program converting
device according to the embodiment of the present inven-
tion. The program converting device shown 1n FIG. 7 1s
provided 1n an mformation processing device and converts
an mput program into a program for a parallel processor
comprising a plurality of PEs and a communications net-
work. The program converting device comprises a detecting
unit 1, a setting unit 2, a size determining unit 3, and
communications change unit 4.

The detecting unit 1 detects a loop including one to be
possibly optimized using an overlap arca from the input
program.

The setting unit 2 assigns an overlap area to a PE for
processing the loop, generates a code for calculating the data
in the overlap area, and outputs a converted program.

US RE38,365 E

S

The size determining unit 3 estimates the runtime for
processing the loop, determines the optimum size of the
overlap area. The setting unit 2 assigns the overlap arca
having the size determined by the size determining unit 3 to
the PE for processing the loop.

The communications change unit 4 changes the data
dependency of the process of the loop from the
bi-directional dependency to the uni-directional dependency
to generate the subscripts of the array through which data 1s
transferred uni-directionally (SDDT). The setting unit 2
generates a code for updating data through the uni-
directional data transfer and adds the generated code to the
converted program.

The detecting unit 1, setting unit 2, size determining unit
3, and communications change unit 4 shown i FIG. 7
correspond to a host computer 11 shown 1n FIGS. 8 and 9,
and more specifically to each function of a compiler 25
shown 1n FIG. 9. The compiler 25 1s activated by a central
processing unit (CPU) 22.

The detecting unit 1 scans an mput program and detects
a loop to which an overlap area can be applied. For example,
the portion where a calculation process capable of perform-
ing a parallel process by a plurality of PEs 1s encompassed
by the serial DO loop 1s detected as shown 1n FIGS. 1 and
S.

The setting unit 2 assigns an overlap area to each PE for
sharing the process for the detected loop, and generates a
code for calculating and updating the data in the overlap
arca. Thus, at the runtime of a converted program, each PE
locally calculates the data 1n the overlap arca as well as the
data 1n the local area. Therefore, the time of communications
in which data 1n the overlap area 1s updated can be reduced,
thereby also reducing the communications overheads.

The size determining unit 3 estimates the runtime for
processing the loop, and determines, for example, the mini-
mal size of the overlap area. If the overlap area of the
optimum size 1s assigned to each PE, the throughput of the
parallel processor can be considerably improved.

The setting unit 2 generates a code for updating data
through the SDDT, act through the BDDT. As a result, each
PE does not have to communicate with both adjacent PEs at
the upper limit and lower limit of the subscript in the array.
Theretore, the synchronizing process 1s not required for the
PE not to communicate with, and saving the overheads for
the synchronization.

The communications change unit 4 checks the data-
dependent vector 1n the array data used in the above
described loop, converts the data into uni-directional trans-
fer from bi-directional transfer, and generates a subscript in
the array to perform the SDDT. The setting unit 2 generates
a code for updating data using the subscripts in the converted
array.

Thus, a program for use 1n a parallel processor 1s gener-
ated by the program converting device shown 1n FIG. 7. As
a result, the overheads for the communications can be
reduced.

FIG. 8 shows the configuration of the parallel processor
for realizing the present invention. The parallel processor
shown m FIG. 8 comprises the host computer 11, a network
12, and a processor array 13 comprising a plurality of PEs
(PEO, PEL, . . ., PEn). The host computer 11 controls the
entire parallel processor and performs i1nput and output
processes. The processor array 13 performs a parallel pro-

cess. The host computer 11 1s connected to each PE through
the network 12.

FIG. 9 shows the configuration of the host computer 11.
The host computer 11 shown 1n FIG. 9 comprises an

10

15

20

25

30

35

40

45

50

55

60

65

6

input/output unit 21, the CPU 22, and a memory 23. These
units are connected via an internal bus 24. In the host
computer 11, the CPU 22 converts (compiles) a single
program 26 1nto a program to be executed 1n parallel by each
PE using the compiler 25 stored in the memory 23. The
compiled program code 1s downloaded to each PE through
the input/output unit 21 and 1s executed by each PE. The
network 12 1s used 1n downloading a program code or
transferring data between processors at runtime.

Two methods are used for the embodiments of the present
invention. One 1s to use an extended overlap area, and the
other 1s -to update data through the SDDT of the overlap

dread.

An extended overlap area 1s described by referring to
FIGS. 10 through 15.

An extended overlap area 1s a data storage areca which 1s
multiple of common overlap areas. Using an extended
overlap area reduces the total number of times of the
communications performed to update the overlap areca when
a process ellectively using the overlap area 1s repeated for
plural times 1n a loop of the loops performed 1n parallel 1n
a program. In the program according to the Jacobi relaxation
shown 1n FIG. 1, data can be updated for ¢ times after a data
transfer 1f the width of the overlap area shown 1 FIG. 20 1s
extended ¢ times.

FIG. 10 shows the update of data when the Jacob1 codes
shown 1n FIG. § are executed using the extended overlap
arca. In FIG. 10, the conventional overlap areas of PO, P1,
P2, and P3 shown 1n FIG. 6 are three times extended. These
PEs perform parallel processes using the extended overlap
arca. The meanings of the dirty overlap area, clean overlap
area, local area, INIT, Update, and Iter 1, 2, 3, and 4 are the
same as those m FIG. 6. By locally calculating a part of the
data 1n the extended overlap area shown 1n FIG. 10, data can
be transferred only once each time the data 1s updated three
times.

For example, PE1 updates the elements in the range of
a(9:16) of the array a, holds the elements in the local area,
and contains the storage arca as an extended overlap area for
the elements in the range of a(6:8) and a(17:19) (INIT), PE1
first establishes communications between PEO and PE2 and
updates the data 1n the extended overlap areca as the latest
data (Update).

Then, the first calculation 1s made using the data in the
range of a(6:19) to update the data a(9:16) in the local area
and the data a (7:8) and a (17:18) in the extended overlap
area (Iter 1). Then, the second calculation is made using the
data in the range of a (7:18) to update the data a (9:16) in the
local area and the data a (8) and a (17) in the extended
overlap area (Iter 2). Then, the second calculation is made
using the data in the range of a (8:17) to update only the data
a (9:16) (Iter 3).

Since all data 1n the extended overlap area are dirty, that
1s, unavailable, PE1 establishes communications again with
the adjacent PE to update the extended overlap area and

similarly repeats the data updating process of and after Iter
4

In F1G. 10, each element a(1) before the update of data and
cach element a(i) after the update of data are stored in
physically different memory areas. That 1s, in each PE, the
local area and extended overlap area are both provided with
data before the update and data after the update. However,
the memory area 1s automatically segmented at the compi-
lation of the program 26.

When the conventional overlap area 1s compared with the
extended overlap area of the present invention, the total

US RE38,365 E

7

quantity of data transferred for the update of the overlap arca
remains the same. Since the communications overhead time
depends more seriously on the time of transfer than the total
quantity of the transferred data, the communications over-
heads can be more efficiently reduced by using the extended
overlap.

Since each PE should make a calculation on a part of the
extended overlap area referred to by the subsequent
iteration, the calculation and process for the present PE are
the same as those for the update of data 1n the adjacent PE.
Therefore, the larger the size of the extended overlap area 1s,
the more heavily the parallelism of the processes 1is
impaired. As an extreme example, 1if an extended overlap
arca 1s set such that a single PE stores the data for all PEs,
no communications are required with no parallelism
obtained, though. To determine the optimum size of the
extended overlap area, the commumcatlons overheads and
the process parallehsm should be traded of

FIG. 11 1s an operating flowchart Showmg the extended
overlap area setting process performed by the host computer
11 to realize the extended overlap arca. The extended
overlap area setting process shown 1n FIG. 11 1s performed
as a part of the optimizing process by the compiler 25. The
input of the optimizing process refers to an instruction
(directive) to start the program 26 (serial program) and the
process, while the output refers to a program to be executed
by each PE. After the program 26 1s converted in the
optimizing process into the program for each PE, the pro-
oram and necessary data 1s downloaded to each PE to
perform a parallel process.

If a process starts according to FIG. 11, the host computer
11 detects an applicable point for the extended overlap area
contained in the program 26 (step S1). That is, the portion
where a parallel loop applicable for the optimization using,
an overlap area 1s encompassed by a serial loop 1s detected
as a portion to be effectively processed using the extended
overlap area. The parallel loop refers to loop processes
which can be processed 1n parallel by a plurality of PEs as
the operations described 1n lines 6 and 7 shown 1n FIG. 1.
The serial loop refers to loop processes repeatedly per-

formed 1n series as a DO loop described 1n lines 5 and 8
shown 1n FIG. 1.

FIG. 12 1s an operating flowchart showing an example of
the process 1n step S1 shown 1 FIG. 11. When a process
starts according to FIG. 12, the host computer 11 selects a
DO loop contained in the program 26 (step S1-1) and checks
whether or not the process can be performed in parallel (step
S1-2). In the case shown in FIG. 1, the parallel loop
corresponds to the selected DO loop. If it can be processed
in parallel, then it 1s determined whether or not 1t 1s a DO
loop applicable effectively using an overlap area (step S1-3).
A Do loop effectively applicable using an overlap area refers
to a process locally performed by each PE by providing an
overlap area. If the overlap area 1s effective, then 1t 1s
determined whether or not the DO loop (parallel loop) is
tightly encompassed by a serial loop (step S1-4). If the DO
loop 1s tightly encompassed, the selected DO loop 1s entered
In an appropriate area in a memory 23 as an applicable
portion for the extended overlap area (step S1-5).

Then, 1t 1s checked whether or not any other DO loops
exist (step S1-6). If yes, the processes in and after step S1-1
1s repeated. If not, the process terminates. If the determina-
tion results are “No” 1n steps S1-2, S1-3, and S1-4, control
1s passed to the process 1n step S1-6.

As aresult of the extended overlap area applicable portion
detecting process shown in FIG. 12, for example, the parallel
loops shown 1n FIGS. 1 and 4 are entered as applicable
portions.

10

15

20

25

30

35

40

45

50

55

60

65

3

In FIG. 11, the host computer 11 performs the process n
step S1, generates an executable model using the extended
overlap area, and estimates the runtime for the program (step
S2). Described below is the method of estimating the
runtime by referring to an example of the extended overlap
arca for a common two-dimensional array.

FIG. 13 shows an extended overlap area provided at and
around the local area of a PE storing a two-dimensional
array. In FIG. 13, 1 shows the size (number of array elements
in each dimension) of a local area, w shows the size (width)
of the conventional overlap area, ¢ 1s a parameter showing
how much the conventional overlap area 1s extended, and ew
shows the size (width) of the extended overlap area.

Assuming that the calculation time for a unit area (1
element) in a local area or an extended overlap area is a, the
overhead time (prologue and epilogue time) taken for the
activation and termination of one data transfer process 1s c,
and that the time taken for a data transfer per unit area 1s d,
then the data transfer time 1s calculated by the equation
c+dxsize of transferred area.

In the optimization using an extended overlap area, com-
munications are established first for ¢ times of data update
(e iteration). The data to be communicated is the extended
overlap area shown as a shadowed portion 1n FIG. 13. The
area (number of elements) of this portion is 4ew(ew+1). The
communications are established 8 times between the eight
PEs processing array elements in the upper, lower, right, left,
and 1n four diagonal directions. Therefore, the total com-
munications time required for the € iteration 1s calculated by
the following equation:

Se+4dew(ew+])

(1)

The communications time for an iteration 1s obtained by
dividing equation (1) by e as follows.

8c + ddewiew + 1)

(2)

c

Then, the time taken for the calculations for the update of
data 1s estimated. Since the number of calculation elements
in the local area is 17, the calculation time required for e
iteration of the calculation for the local area is ael”. If the
size (width) of the updated area in the extended overlap area
1s kw 1n each iteration, the number of calculation elements
in the extended overlap area is 4kw(kw+1), where k is a
parameter representing how many times of the conventional
overlap area the update portion 1s 1n the extended overlap
arca 1n each 1iteration. If data 1s locally updated without
communications, the extended overlap area sequentially
becomes dirty from outside to inside for each iteration, the
width of the updated portion in the extended overlap area
decreases by w each time. Accordingly, the calculation time
taken for calculating the extended overlap area during the ¢
iteration 1s obtained by the following equation;

e (3)
4aZ kw(kw + 1)

Since the calculation time taken for calculating the
extended overlap area at the e-k-th iteration is 4akw(kw+1),
the sum of k from 1 to e-1 is calculated by equation (3). The
calculation time for an iteration i1s obtained by adding the
calculation time for the local area for e iterations to the

US RE38,365 E

9

calculation time for the extended overlap area and then by
dividing the sum by ¢ as follows.

c—1 (4)
432 kw(kw + 1) + ael®
k=1

e

le¥ (e) for

one serial loop using the extended overlap area is repre-
sented as a function of ¢ as follows.

According to equations (2) and (4), the runtime T,

ce—1 (5)
4aZ kw(kw + 1) + ael?
k=1

8c + 4dew(ew + 1) 8¢
Tiwc(e) = R + R = ? +

2 no w-a
(Adw* — 2w*a + Z2alw)e +

2
e? + (4dlw +al® + §wza — Qalw]

If the calculation time 1s estimated, the host computer 11
determines the optimum size of the extended overlap arca
according to the estimate result (step S3). The optimum size
of the extended overlap area refers to the size for the shortest
possible runtime.

For example, assuming that, in equation (5), the coeffi-
cient of the term of e~ is s, the coefficient of the term of e is
t, the coefficient of the term of 1/e 1s u, and the term O 1s V

for e, then equation (5) is rewritten as follows.

T, (€)=se+te+u+v

(6)
FIG. 14 1s the graph showing the relationship between
T,,., () and e in equation (6). The value ¢, for e corre-
sponding to the minimum value T, __(e,) for T, (e) shown
in FIG. 14 can be obtained by solving the following equation
for e.
d Titer (€) (7)
de |

The obtained ¢, 1s a value of the extension parameter for
optimizing the size of the extended overlap area. The size of
the extended overlap area 1s provided by the e, ,w.

If the optimum size of the extended overlap area 1s
determined, the host computer 11 assigns the extended
overlap area of the size to each PE (step S4).

FIG. 15 1s an operating flowchart showing an example of
the extended overlap area assigning process performed in
step S4 shown 1n FIG. 11. When the process starts according
to FIG. 15, the host computer 11 first adds the optimum size
of the extended overlap area to the data size (original data
size) of the local area of each PE as a new data size (step
S4-1). The optimum size of the extended overlap area is
obtained as a product of the optimum extension parameter
obtained 1n step S3 by the width of the conventional overlap
arca. According to the example shown in FIG. 13, the
optimum size 1s €,w. Then, the data 1s declared again with
the new data size (step S4-2), and the process terminates.

Thus, the extended overlap area of each PE 1s assigned the
data, of the size of the extended overlap area, of the local
arca for another PE.

If the process 1s step S4 1s completed, the host computer
11 1nserts a program code for use 1n calculating an extended
overlap area (step S5). Thus, a code is generated such that
the range of the process of each PE 1n a parallel loop can be
extended by the size of the extended overlap area. The
generated code 1s put into the program.

10

15

20

25

30

35

40

45

50

55

60

65

10

For example, the range of the indices 1n an array managed
by the PE1 shown in FIG. 10 1s originally 9-16. If a code 1s
cgenerated for the range 7-18 1n Iter 1, new values of indices
7,8, 17 and 18 are obtained from the values 1n the extended
overlap area. Likewise, the calculation for the range 8—17 1n
Iter 2 can be made. Thus, the new values for the indices &
and 17 can be obtained using the values 1n the extended
overlap area obtained 1n Iter 1.

Then, a program code 1s 1nserted to update the extended
overlap area (step S6). In this process, a code is generated
such that communications are established each time a serial
loop encompassing a parallel loop 1s repeated for the times
indicated by the extension parameter to update the data in
the extended overlap area. Then, the code 1s put into the
program of each PE.

For example, communications are established for each
iteration of three serial loops 1n the example shown 1n FIG.
10. In the example shown 1 FIG. 13, communications are
established for each iteration of € serial loops. After step S6,
the host computer 11 terminates the process.

The update by the SDDT of the overlap area 1s described
below by referring to FIGS. 16 through 23. Even if the
overlap areas are provided on both sides of the local area as
shown 1n FIG. 6, the communications can be converted 1nto
the uni-directional communications by shifting the data
layout 1mnto the communications direction between the PEs
cach time the data 1s updated.

FIG. 16 shows an example of updating data by the SDDT
when the program shown 1 FIG. § 1s executed. In FIG. 16,
the meanings of the dirty overlap area, clean overlap area,
local area, INIT, Update, and Iter 1, 2, 3, . . . are the same
as those shown 1n FIG. 6.

The storage position of the data 1s shifted for each
iteration 1nto one direction in a torus form 1n the system
using the SDDT. To convert the conventional system in
which an overlap area 1s updated by the BDDT into the
system using the SDDT, the data required to obtain a new
value 1s sent to the adjacent PE for one direction of the
two-directional communications instead of receiving the
data required to calculate the new value from the adjacent
PE. As a result, the communications are established uni-
directionally and the overlap area can be provided for only
one side of the local area.

For example, at the initial state, PE1 holds the elements 1n
the range of a (9:16) in the array a, and has the storage area
for the elements in the range of a (7:8) as an overlap area
(INIT). Then, the PE1 receives the data from the PEO,

updates the data 1 the overlap area, and transmits the data
in the range of a (15:16) to the PE2 (Update).

Then, the PE1 makes the first calculation using the data 1n
the range of a (7:16), updates the data in a (8:15) (Iter 1), and
stores the data after shifting the storage position in the
communications direction by 1. At this time, the data in a
(16) initially stored by the PE1 is updated in parallel by the
PE2. Since the data 1n the overlap area have become all dirty,
the PE1 established uni-directional communications
between the PE1 and the adjacent PE, updates the extended
overlap area, and performs the data update process for Iter
2.

Since repeating these processes sequentially shifts the
storage positions of all data over the PEO through PE3 1n a
torus form, after data update process for Iter 4, the data in a
(27:28) of the PE3 is transferred to the overlap area of the
PEO.

The result of the data updated by the SDDT shown 1n FIG.
16 matches the result conventionally updated by the BDDT.
Between the BDDT and SDDT, the total volume of trans-

US RE38,365 E

11

ferred data 1s the same, but the transfer time with the SDDT
can be reduced into half the transfer time with the BDDT.
Therefore, by using the SDDT, the overheads required to
activate the data transfer and the overheads required in the
synchronization process between adjacent PEs can be
reduced.

FIG. 17 1s an operating flowchart showing the setting
process 1n updating the data by the SDDT. The setting,
process shown 1 FIG. 17 can be performed by the host
computer 11 as a part of the optimizing process by the
compiler 25.

When the process starts as shown 1n FIG. 17, the host
computer 11 detects the point of data update by the SDDT
contained in the program 26 (step S11). That is, the point
where a parallel loop applicable for the optimization using,
the overlap areas 1s encompassed by a serial loop and the
overlap areas are provided for both sides (at upper and lower
limits) of the local area of each PE is detected as a point
where the update by the SDDT effectively works.

Then, a computational transformation is made (step S12).
In this process, the position of the data calculated according
to the count of the outer serial loop 1s shifted and the SDDT
1s used 1n updating the overlap areas.

In the computational transformation, a loop nest for
determining a computational space 1s converted such that all
data-dependent vectors can be positive 1n the direction along
L
C

e axis of the processor array 13. For the loop where the
ata-dependency 1s represented by a distance vector, the
computational space conversion can be performed as an
application of unimodular transformation (M. E. Wolf and
M. S. Lam. “A loop transformation theory and an algorithm
to maximize parallelism,” 1n IEEE Transaction on Parallel
and Distributed Systems, pp. 452—471, Oct. 1991). In this
case, the transform matrix T can be represented as follows
with the dimension of the array set to m, and with the
parameter of the skew 1n each dimension set to a,, a,, . . .,

(3)

The skew vector S containing the parameters a,, a,, . . .,
a_ of equation (8) can be defined as follows.

ay (9)

FIG. 18 shows the program (original program) rewritten
from the parallel loop of the program shown in FIG. § 1n the
FORALL syntax. FIG. 22 shows the distance vector (i, j)
representing the data-dependency of the original program. In
FIG. 22, 1 indicates a time axis and corresponds to the serial
loop repetition parameter, and j indicates a space axis over
the PEs and 1s mapped along the memory space axis
corresponding to the PE-connection direction (PE arrange-

ment direction). The “3” corresponds to the parameter of the

FORALL syntax shown 1n FIG. 18.

In the program shown 1n FIG. 18, the communications for
the update of the overlap area 1s the BDDT because the
distance vector 1s bi-directional over a plurality of PEs 1f the

10

15

20

25

30

35

40

45

50

55

60

65

12

1 axis 1s mapped 1n the PE array. When a pair of distance
vectors representing the program data dependency 1s D, the
following equation exists.

D={(1:_1)9 (1:1)}

Next, a conversion matrix 1T 1 which the time axis i1s
removed to make the program loop nest fully permutable 1s
obtained. Since the array 1s one-dimensional, the conversion
matrix T in equation (&) forms a 2x2 matrix (2 rows by 2
columns) and the following equation exists.

[1 }
—
a; 1

With T set as shown above, the distance vector (1,-1) and
(1, 1) are converted as follows.

B
MRS

a; + |

Equation (12) indicates that the distance vector (1, —1) 1s
converted by T into the distance vector (1, a,—1). Equation
(13) indicates that the distance vector (1, 1) 1s converted by
T into the distance vector (1, a,+1).

To make the loop nest fully permutable, both components
a,—1 and a,+1 of the converted distance vector should be
equal to or larger than 0. This condition 1s represented by the
following equation.

(11)

(12)

(13)

a,=1

(14)

The minimum value of a,, satisfying the conditions to make
the loop nest permutable 1s 1. The “T” 1n equation (11) is
represented as follows.

|

The converted distance vectors obtained from equations
(12) and (13) are (1, 0) and (1, 2) respectively, and the skew
vector S (a scalar in this case) 1s S=a,=1 by equation (9).

FIG. 23 shows the distance vector obtained by applying
the conversion matrix T of equation (15) to the distance
vector shown 1n FIG. 22. In FIG. 23, the component j of all
distance vectors 1s positive, and the data over all PEs
depends uni-directionally.

If the “T” in equation (15) i1s applied to (1, j) of the
program shown in FIG. 18, the converted values (1', ;') are
obtained by the following equation.

HE s

FIG. 19 shows the program obtained by rewriting the
virtual array a of the program shown in FIG. 18 by the
paradigm of a shared memory. The actual array correspond-
ing to the virtual array a 1s distributed over plural PEs and

statically assigned a memory area.
When the computational space transform 1s completed,
the host computer 11 performs an index transformation (step

(15)

(16)

1

1+]

US RE38,365 E

13

S13). In this process, the data layout is shifted according to
the changes 1n data dependency.

With the changes 1n data dependency, the data layout 1n
the memory space of each PE should be aligned into the
mapping for the calculation process. However, it cannot be
aligned 1nto the mapping in which the calculation position 1s
shifted with the static data layout declared in the data
parallel language such as the HPF, thereby disabling the
SDDT. As a result, the relationship between the virtual array
and the actual array should be changed with time so that the
data alignment to each PE can be shifted for each iteration
of the serial loop.

Assuming that the subscript vector of the m-dimensional

virtual arrayis I, 1., ..., I,) and the subscript vector of
Fhe corresponding actual array is [=1,,,1,,...,L,), the
index transform from I, to I, 1s represented as follows.

(L (17)

[z
[=1, +1tS, I, =

—
&
|

i IF'm |

However, the time step t 1s used for the subscript 1n the
virtual array before update while the time step t+1 1s used for
the subscript 1n the virtual array after update. After perform-
ing such indexing processes, the storage positions of all
clements 1n an actual array can be sifted 1n each time step.
However, since the elements at the upper and lower limaits of
the virtual array are not calculated and not updated unless
new values are assigned, the storage positions should be
shifted with the values of the elements stored. A code 1s
inserted to ensure such consistency before applying the
index conversion process.

FIG. 20 shows the program obtained by adding to the
program shown 1n FIG. 19 a code to hold an uncalculated
clement value. In FIG. 20, the cases where j'=1=-1 and
1'=1'+26 correspond to the processes of the element at the
upper and lower limit respectively, and a statement 1s
inserted to set these element values constant.

FIG. 21 shows the program obtained by applying the
index conversion process to the program shown 1n FIG. 20.
In FIG. 21, A shows an actual array corresponding to the
virtual array a. At this time, the conversion of the parameter
in the mndex conversion process 1s represented as follows.

Je—1'+t (18)
(19)

(20)

t<—i'+1 for LHS (left side)

t<—1' for RHS (right side)

where the conversion by equation (18) replaces all j’s in the
program with J after converting j appearing in the equations
shown 1n FIG. 20 into j'+t. The conversion by equation (19)
substitutes 1'+1 for t of the left part while the conversion by
equation (20) substitutes 1' for t of the right part.

According to the latest program shown m FIG. 21, the
positions of the elements at both ends corresponding to
J=1'-1, 1'+26 are shifted by 1 per time step with their values
remaining unchanged. Other elements are updated using the
values of the adjacent elements in each time step, and the
positions are shifted by 1. Thus, the data can be updated
using the SDDT as shown 1n FIG. 16.

After the index conversion process, the host computer 11
inserts a code for use in restoring the data layout (step S14),
and terminates the process. To restore data layout refers to

10

15

20

25

30

35

40

45

50

55

60

65

14

a process of returning the storage position of each element
shifted in the data update process using the SDDT to the
initial position specified by the programmer.

For example, 1n the data update process shown 1n FIG. 16,
the storage position of the actual array 1s shifted by 1 to right
for each iteration of the serial loop, the position 1s shifted by
1. to the right ot the initial position after i, iterations. If it 1s
returned to the original position by shifting all elements by
1 to the left after all serial loops are processed, then the
influences by the shift can be 1gnored m the succeeding
processes. Such restoration codes are further added to the
program shown 1n FIG. 21.

In FIG. 16, the data transfer time in a single update
process on the overlap area can be reduced by using the
SDDT. However, since the overlap area 1s not updated
through a calculation, the communications are erected for
cach iteration of the serial loop to update the overlap area.
If the above described extended overlap area 1s applied to the
data update using the SDDT, the overhead required for the
communications can be further reduced.

FIG. 24 1s an operating flowchart showing the setting
process 1n which the extended overlap area 1s set and data
update 1s set using the SDDT. The setting process shown 1n
FIG. 24 15 also performed by the host computer 11 as a part
of the optimization process by the compiler 25. When the
process starts as shown 1n FIG. 24, the host computer 11 first
performs the extended overlap area setting process (step
S21) shown in FIG. 11, then performs the data update setting
process (step $22) using the SDDT shown in FIG. 17, and
terminates the process. Thus, the program 1s generated such
that the data can be updated using the SDDT 1n the extended
overlap area.

FIG. 25 shows an example of updating data using both
SDDT and extended overlap area when the program shown
in FIG. § 1s executed. In FIG. 25, the meanings of the dirty
overlap area, clean overlap area, local area, INI'T, Update,
and Iter 1, 2, 3, . . . are the same as those shown 1n FIG. 6.

For example, at the 1nitial state, PE1 holds the elements 1n
the range of a (9:16) in the array a in the local area, and has
the storage area for the elements in the range of a (5:8) as an
overlap area (INIT). Then, the PE1 receives the data from
the PEO, updates the data in the overlap area, and transmits
the data in the range of a (13:16) to the PE2 (Update).

Then, the PE1 makes the first calculation using the data in
the range of a (5:16), updates the data in a (6:15) (Iter 1), and
stores the data after shifting the storage position in the
communications direction by 1. At this time, the data in a
(16) initially stored by the PE1 is updated in parallel by the
PE2. Then, the PE1 makes the second calculation using the
data in the range of a (6:15), updates the data in a (7:14) (Iter
2), and stores the data after shifting the storage position in
the communications direction by 1. At this time, the data in
a (15) initially stored by the PE1 is updated in parallel by the
PE2. Since the data in the extended overlap area have
become all dirty, the PE1 established uni-directional com-
munications between the PE1 and the adjacent PE, updates
the extended overlap area, and performs the data update
process for Iter 3.

According to the data update shown in FIG. 25, the data
can be locally updated twice consecutively after the
extended overlap area 1s updated through the communica-
tions. Therefore, the total volume of the transferred data 1s
the same as that in FIG. 16. However, the overhead required
for the communications can be reduced. In the example
shown 1 FIG. 25, two overlap areas are added to the left of
the overlap area of each PE shown 1n FIG. 16. An extended
overlap area provided with additional overlap arcas of an
even number can also be used.

US RE38,365 E

15

According to the present invention, the overhead synchro-
nously used with the communications can be reduced when
a parallel process 1s performed using an overlap areca 1n a
distributed-memory parallel processor, thereby realizing a
high speed parallel process.

What 1s claimed 1s:

1. A program converting device for use 1n an information
processing device for converting an mmput program into a
program to be executed 1n a parallel processor comprising a
plurality of processing elements and a communications
network, comprising:

a detecting [means for detecting] unir to detect in the input

program a loop portion 1n which optimization can be
realized using an overlap area; and

a setting [means for converting] unit to convert the input
program by assigning an overlap area to a processing,
clement processing the loop portion and generating a
code based on which data in the overlap area is [cal-
culated] updated through calculations in multiple itera-
fions using only the data in the processing element, and
for outputting a converted program.

2. The program converting device according to claim 1,
wherein said detecting [means] unit detects as said loop
portion a parallel loop encompassed by a serial loop, said
parallel loop bemng able to be optimized using the overlap
area.

3. The program converting device according to claim 1,
wherein said setting [means] unit generates a code such that
data can be processed twice consecutively without commu-
nications after the processing element processing said loop
portion updates the overlap area through communications
with an adjacent processing element.

4. The program converting device according to claim 1

further comprising|:] a size determining [means for | unit
determining an optimum size of the overlap area after
estimating process time for said loop portion, and

wherein said setting [means] unir assigns the overlap area
of a size determined by said size determining [means}
unit to the processing element processing said loop
portion.

5. The program converting device according to claim 4,
wherein said size determining [means] unir determines the
optimum size such that the process time for said loop portion
becomes short.

6. A program converting device for use 1 an information
processing device for converting an mmput program into a
program to be executed 1n a parallel processor comprising a
plurality of processing elements and a communications
network, comprising:

a detecting [means for detecting] unir to detect in the input

program a loop portion 1n which optimization can be
realized using an overlap area; and

a setting [means for converting] unit to convert the input
program by assigning an overlap area to a processing,

10

15

20

25

30

35

40

45

50

16

clement processing the loop portion and generating a
code based on which data 1s updated 1n the overlap area
through single direction data transfer and data in the
processing element is shifted in a direction of the data
fransfer, and for outputting a converted program.

7. The program converting device according to claim 6,

further comprising[:] & communications change [means
for changing] unir to change data dependency in pro-
cessing said loop portion from bi-directional transfer to
single direction transfer and for generating a subscript
of an array 1n which the single direction data transfer
can be performed, and

wherein said setting [means] unit generates a code for use
in updating the data using the subscript in said array
generated by said communications change [means}
Unit.

8. The program converting device according to claim 7,
wherein said communications change [means] unir changes
a direction of a distance vector representing the data depen-
dency 1nto single direction among processing elements and
ogenerates the subscript of the array using a changed distance
vector.

9. The program converting device according to claim 7,
wherein said communications change [means] unit gener-
ates the subscript of the array such that a data layout of the
processing clement processing said loop portion can be
shifted in [a particular] the direction of the data transfer each
fime data 1s processed, shifted data layout covering two
processing elements.

10. The program converting device according to claim 9,
wherein said setting [means] unir generates a code to return
the shifted data layout after processing said loop portion to
an original data layout.

11. A program converting device for use 1n an information
processing device for converting an input program into a
program to be executed 1n a parallel processor comprising a
plurality of processing elements and a communications
network, comprising:

a detecting [means for] unitr detecting in the input pro-
oram a loop portion 1n which optimization can be
realized using an overlap area; and

a setting [means for] unit converting the input program by
assigning an overlap area to a processing element
processing the loop portion and generating a code
based on which data in the overlap area is [calculated]
updated through calculations in multiple itterations
using only the data in the processing element and a
code passed on which the data in the overlap area 1s

updated through single direction data transfer, and for
outputting a converted program.

	Front Page
	Drawings
	Specification
	Claims

