(19) United States

(12) Reissued Patent
Nakajima

(10) Patent Number:
45) Date of Reissued Patent:

USOORE3&8270E

US RE38,270 E
Oct. 7, 2003

(54) MULTIPLE LEVEL UNDO/REDO

MECHANISM
(75) Inventor: Satoshi Nakajima, Bellevue, WA (US)

(73) Assignee: Microsoft Corporation, Redmond, WA
(US)

(21) Appl. No.: 09/376,933

(22) Filed: Aug. 18, 1999
Related U.S. Patent Documents
Reissue of:
(64) Patent No.: 5,659,747
Issued: Aug. 19, 1997
Appl. No.: 08/052,036
Filed: Apr. 22, 1993
(51) Int. CL e, GO6F 9/45
(52) US.CL ..o, 713/1; 709/320; 717/113;
345/763
(58) Field of Search 713/1; 709/320;
717/113; 345/763
(56) References Cited
U.S. PATENT DOCUMENTS
4,905,181 A * 2/1990 Gregorycccceeeeenennen, 709/100
5005421 A * 3/1992 Freund
5287501 A * 2/1994 LOMEt wevreveeeereerreennns 707/202
5481,710 A * 1/1996 Keane et al. 709/302
5,519,862 A * 5/1996 Schaefter et al. 395/701
5,530,864 A * 6/1996 Matheny et al. 709/302

OTHER PUBLICAITONS

Mohan et al., Aries—RRH: Restricted Repeating of History
in the Aries Transaction Recovery Method, 1991, p.

T18=727.7

Kurlander, David, Editable Graphical Histories, 1988, p.
127-134.*

Rosenberg, Jerry M., Dictionary of Computers, Information
Processing and Telecommunications, 2nd Ed., 1987, p. 434.

Microedge Inc., “Reference Manual SlickEdit”, 1992, p.
1-4,38-39,438,499-501.

Vitter, Jeffrey Scott, “US&R: A New Framework for Redo-
ing”, IEEE, vol. 1(4):, 1984, p. 39-52.

Wang et al., “An Event—Object Recovery Model For Object

Oriented User Interfaces”, 4th Annual Symposium On User
Interface Software & Technology, Nov. 1991, p. 107-115.

* cited by examiner

Primary Fxaminer—Kakali Chaki
Assistant Examiner—John Q. Chavis

(74) Attorney, Agent, or Firm—Workman, Nydegger &
Seeley

(57) ABSTRACT

A multiple-level undo/redo mechanism 1s provided in an
operating system and 1s available to application programs
run on the operating system. The dating system provides a
mechanism for keeping a log of user commands and pro-
viding a cursor to a position within the log. Each command
may be encapsulated 1nto an object that supports an 1nterface
for performing undo/redo operations. Similarly, the log may
be encapsulated into an object that supports operations that
facilitate a multiple-level undo/redo. A user may perform a
single undo/redo operation, multiple successive undo/redo
operations or complete undo/redo operations.

12 Claims, 6 Drawing Sheets

USER REQUESTS

THAT UNDO ALL
THE WAY

REVERSE ALL USER
COMMANDS FROM

CURRENT COMMAND
TO INITIAL COMMAND

MOVE CURSOR TO
POINT TO BEFORE
INITIAL COMMAND

96

98

100

US RE38,270 E

Sheet 1 of 6

Oct. 7, 2003

U.S. Patent

0}

0c

AV 1dSIQ
O3(HA

WILSAS
ONISSIO0Nd VLV

84

| bi4

9}

QYVOHAIN

WaLSAS

Ve
ONILYY3dO
A SAYH9O0Nd
NOILYOIddY
4! AUYOW3IN

U.S. Patent Oct. 7, 2003 Sheet 2 of 6 US RE38,270 E

COMMAND
ELEMENT 46
OBJECT VTABLE

s T
COMMAND 48¢ m
’ REDO 50b
‘ CODE
el
%

All the way
Last Applied

All the way
L ast Applied

U.S. Patent Oct. 7, 2003 Sheet 3 of 6 US RE38,270 E

USER ENTERS >
COMMAND
5¢

36

Yes | DELETE COMMANDS
ON LIST THAT ARE
BEFORE THE CURSOR

No

20

ADD ENTERED
COMMAND TO FRONT

OF THE LIST

MOVE CURSOR TO

POINT TO THE
FRONT OF THE LIST

(__RETRN
Fig. 4a

LIST 30 32
68 70 72
68 0 73
o) GO

Fig. 4c

U.S. Patent Oct. 7, 2003 Sheet 4 of 6 US RE38,270 E

ACTION LIST 30

32/_1

32 64
COMMAND a
COMMAND b
ACTION LIST 30
80 82 ., 84
FIRST UNDO

o) 5 T

Fig. b

U.S. Patent

USER REQUESTS
UNDO OPERATION

FOR MOST RECENT
COMMAND

CURRENT 15
REVERSED
CURSOR IS

DECREMENTED

(__RETWRN
Fig. da

USER REQUESTS

THAT UNDO ALL
THE WAY

REVERSE ALL USER
COMMANDS FROM

CURRENT COMMAND
TO INITIAL COMMAND

MOVE CURSOR TO
POINT TO BEFORE

INITIAL COMMAND

(__RETURN
Fig. 7a

Oct. 7, 2003

74

76

96

98

100

Sheet 5 of 6

86
USER REQUESTS
REDO OF MOST
RECENTLY UNDONE
COMMAND
86

COMMAND IN FRONT

OF CURSOR IS
PERFORMED

9¢
CURSOR IS
INCREMENTED

(__RETURN
Fig. 6a

108

USER REQUESTS

THAT REDO ALL
THE WAY

PERFORM ALL
COMMANDS ON THE
LIST THAT ARE IN
FRONT OF CURSOR

110

INCREMENT CURSOR
POSITION TO
POINT TO THE

FRONT OF THE UIST

112

US RE38,270 E

U.S. Patent Oct. 7, 2003 Sheet 6 of 6 US RE38,270 E

ACTION LIST 30

22 92 94

92 22 94

= | G-

Fig. 6b

LIST 30
102

32 102 104 106
UNDOALL l/

|

Fig. 7b

104 22 106

ACTION LIST 30

22 114 116 118
SR REE
114 116 32 118
REDOALL
| A

Fig. 8b
(Amended)

US RE38,270 E

1

MULTIPLE LEVEL UNDO/REDO
MECHANISM

Matter enclosed in heavy brackets [] appears in the
original patent but forms no part of this reissue specifi-
cation; matter printed in italics indicates the additions
made by reissue.

TECHNICAL FIELD

The present invention relates generally to data processing
systems and, more particularly, to a mechanism for provid-
ing a multiple level undo/redo capability 1n operating sys-
tems and application programs.

BACKGROUND OF THE INVENTION

A single-level undo mechanism 1s provided by software
packages, such as the Microsoft Word, version 5.0, word
processing package, which 1s sold by Microsoft Corporation
of Redmond, Washington. The single level undo mechanism
allows a user command to be undone (i.¢., the effects of the
sand are reversed) after the command has already been
performed. The undo command 1s typically performed by
selecting a menu 1tem that lists the undo command as an
option. The user 1s limited to a single level of undoing of
commands and, thus, can only reverse the most recently
executed command.

SUMMARY OF THE INVENTION

In accordance with a first aspect of the present invention,
a method 1s practiced 1n a data processing system having
memory means and at least one processor that 1s responsive
to user commands. In this method, a log of user commands
that were executed by the processor 1s stored 1n the memory
means. A first user command stored 1n a log 1s undone so as
to reverse the effect of the first user command. Subsequently,
a next user command stored 1n the log 1s undone so as to
reverse the effect of the next sequential user command.

In accordance with another aspect of the present
invention, a log of at least two user commands 1s stored 1n
the memory means. User commands stored in the log are
undone so as to reverse the effects of at least two user
commands. At least two of the undone user commands are
then redone so as to again execute those commands.

In accordance with a further aspect of the present
invention, a list of a plurality of user commands 1s stored in
the memory means 1n a sequence ranging from a selected
user command that has been executed by a processor to a
most recently executed user command. The effects of all of
the user commands stored 1n a sequence of the list are
undone so as to return the processor to reverse the effects of
the user commands 1n the sequence.

In accordance with still another aspect of the present
invention, a list of a plurality of user commands 1s stored in
the memory means. The list includes user commands that
have been undone. The user commands that have been

undone are again executed by the processor.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 1s a block diagram of a data processing system for
practicing a preferred embodiment of the present invention.

FIG. 2 1s a block diagram 1llustrating a command element
object that 1s used in the preferred embodiment of the
present mvention.

FIGS. 3a, 3b and 3c 1llustrate elements of a user interface
for implementing the multiple-level undo/redo mechanism
of the preferred embodiment of the present 1nvention.

10

15

20

25

30

35

40

45

50

55

60

65

2

FIG. 4a 1s a flowchart 1illustrating the steps performed
when a user enters a command 1n the preferred embodiment
of the present invention.

FIG. 4b 1s a diagram 1illustrating the state of the list of
command element objects after commands are added 1n the
preferred embodiment of the present invention.

FIG. 4¢ diagram 1llustrating the list of command elements
objects when a deletion of an element on the list 1s per-
formed 1n the preferred embodiment of the present inven-
tion.

FIG. 5a 1s a flowchart 1llustrating the steps performed 1n
an undo operation i1n the preferred embodiment of the
present 1nvention

FIG. 5b 1s a diagram 1illustrating a list of command
clement objects when undo operations are performed 1n the
preferred embodiment of the present invention.

FIG. 6a 1s a flowchart illustrating the steps performed
when a redo operation 1s performed in the preferred embodi-
ment of the present mnvention.

FIG. 6b 1s a diagram 1illustrating the list of command
clement objects when a redo operation 1s performed 1n the
preferred embodiment of the present invention.

FIG. 7a 1s a flowchart illustrating the steps performed
when an undo “All the Way” operation 1s performed in the

preferred embodiment of the present invention.

FIG. 7b 1s a diagram 1illustrating the list of command
clement objects when an undo “All the Way”™ operation 1s
performed 1n the preferred embodiment of the present inven-
tion.

FIG. 8a 1s a flowchart illustrating the steps performed
when a redo “All the Way” operation 1s performed 1n the
preferred embodiment of the present invention.

FIG. 8b 1s a diagram 1illustrating the list of command
clement objects when a redo “All the Way” operation 1s
performed 1n the preferred embodiment of the present inven-
tion.

DETAILED DESCRIPTION OF THE
INVENTION

The preferred embodiment of the present invention pro-
vides a mechanism for performing multiple-level undo/redo
operations 1n an application program. The mechanism keeps
a log of user commands and maintains a current position 1n
the log to monitor a current state of the application program.
The log 1s used by the mechanism to facilitate multiple-level
undo operations and multiple-level redo operations.

FIG. 1 shows a block diagram of a data processing system
10 suitable for implementing the preferred embodiment of
the present invention. The data processing system 10
includes a central processing unit (CPU) 12 and a memory
14. The memory 14 holds application programs 22, an
operating system 24 and other items. The data processing
system 10 also includes a keyboard 16, a mouse 18 and a
video display 20. The data processing system 10 shown in
FIG. 1 1s a conventional single processor system.
Nevertheless, it should be appreciated that the present inven-
fion may also be implemented 1n a distributed system or 1n
other environments.

The preferred embodiment of the present invention 1s
designed for use 1n an object-oriented programming envi-
ronment. For purposes of the discussion below, 1t 1s assumed
that the operating system 24 1s an object-oriented operating
system. Those skilled in the art will appreciate, however,
that the present invention 1s not limited to use 1n an object-
oriented operating system. Instead, it may also be 1mple-
mented 1n other embodiments.

US RE38,270 E

3

The object-oriented operating system 24 supports the use
of “objects” 1n the data processing system 10. An object may
be viewed as a combination of data members and, member
functions. The data members are attributes that are stored in
data structures, and the member functions are functions that
act upon these attributes. The notion of an object 1s exploited
in the multiple-level undo/redo mechanism of the preferred
embodiment of the present invention in that certain aspects
of this mechanism are implemented as objects.

An 1nterface 1s a group of schematically-related functions
that are organized into a named unit. Each interface may be
uniquely 1denftified by 1ts identifier. Interfaces have no
istantiation, that 1s an interface definition does not include
code for implementing the functions that are specified 1n the
interface. Interfaces specity a set of signatures for functions.
An object may “support” an interface. When an object
supports an 1nterface, the object provides code for the
function specified by the interface. The code supplied by the
object, however, must comply with the signatures specified
by the interface.

The multiple-level undo/redo mechanism of the preferred
embodiment of the present invention supports the ability for
an application program to maintain a command log of user
commands. The data held 1n the command log and functions
for maintaining the data are encapsulated 1into a command
log object. The command log object includes a list 30 (sce
FIG. 4b) of command element objects and a cursor 32. The
list 30 of command element objects 1s a sequential list of
command element objects specifying user commands. The
cursor 32 specidies a current position that corresponds with
the last applied (i.e., last exceed) command on the list 30 of
command element objects.

Each command entered by a user during the course of
execution of an application program 24 generates an asso-
clated command element object 40, like that shown 1n FIG.
2. The command element object 40 includes a field 44 that
specifles the nature of the command and a V-pointer 42. The
V-pointer 42 points to a V-table 46 (i.e., having a virtual
table such as found in the C++ programming language)
having entries for the operations that may be performed on
the command element object 40. These operations 1nclude
an undo operation, a redo operation and a merge operation,
for which respective entries 48a, 48b and 48c are provided.
Entries 48a, 48b and 48c point to sections of code 50a, 50b
and 50c for implementing their associated operations. The
undo operation undoes the command at the current cursor
position. The redo operation performs the next operation on
the list 30 (FIG. 4b). The merge operation merges command
log element objects, 1f possible.

The command log object does not need to know about the
implementation of the code 50a, 50b and 50c for imple-
menting operations on the command element objects 40. The
details of this code 50a, 50b and S0c are the concern of the
command element objects 40. As such, the command log
object can be implemented more easily since 1t does not need
to concern 1itself with such details.

The command log object and the command element
object 40 are created by the application program 22 (FIG. 1).
The operating system 24 provides a multi-level undo/redo
facility to support multiple undo/redo operations for the
application program. Part of this mechanism 1s a user
interface. The user interface displays buttons 51 and 53
(FIG. 3a) that may be activated to cause execution of undo
and redo commands, respectively. The undo button 51 and
the redo button 53 may be activated multiple times to
perform multiple undos or redos consecutively. The user 1s

10

15

20

25

30

35

40

45

50

55

60

65

4

not limited to undoing only a most recent command or
redoing a most recently undone command. A context menu
55 is provided for the undo button 51 when activated (see
FIG. 3b). A similar context menu 57 (FIG. 3¢) is provided
for the redo button. The context menus 55 (FIG. 3b) and 57
(FIG. 3c¢) provide two options: “Last Applied” and “All The
Way.” These options cause either only a single last applied
command to be undone/redone or the commands to be
undone/redone.

The four operations provided by the multiple-level undo/
redo mechanism of the preferred embodiment of the present
invention are perhaps best explained by way of example. As
such, examples will be provided below along with the steps
performed by the preferred embodiment for each of the
respective four operation types.

FIG. 4a 1s a flowchart illustrating the steps performed by
the preferred embodiment of the present invention when a
user enters a new command. FIG. 4a will be described 1
conjunction with the diagram of FIG. 4b. FIG. 4b depicts an
example of the list 30 of command element objects. Initially,
a user enters a command (step 52 in FIG. 4a). In the example
of FIG. 4b, the list 30 1s mitially empty. Suppose that the
user then enters command “a”. The multiple level undo/redo
mechanism of the preferred embodiment then checks
whether there are any commands on the list before the cursor
32 (step 54 in FIG. 4a). If there are no commands on the list
before the cursor 32, such as in the case shown 1n FIG. 4b,
the command is added to the front of the list 30 (step 58 in
FIG. 4a), and the cursor is moved to point to the front of the
list (step 60). Thus, as shown in FIG. 4b, after command “a”
is entered, an entry 64 (i.c., an entry for a command element
object for command “a”) is added to the front of the list 30
and the cursor 32 1s moved to point to entry 64. Suppose that
the user now enters another command “b”, (hence, repeating
step 52 of FIG. 4a). Steps 54, 58 and 60 of FIG. 4a are then
repeated so that an entry 66 (FIG. 4b) is added to the front
of the list 30 before the entry 64 for command “a”. Cursor
32 1s updated to point to entry 66 for command “b”.

In the above-described fashion, the list 30 of command
clement objects 1s built. In terms of the object model
described above, each time a user enters a command, an
instance of a command element object 40 (FIG. 2) 1s created;
the new command element object 1s appended to the front of
the list; and the cursor position 1s updated.

If 1n step 54 of FIG. 4a 1t 1s determined that there are
commands on the list 30 that are situated before the cursor
32, all the commands on the list that are before the cursor are
deleted (step 56 1n FIG. 4a). FIG. 4c shows an example of
such a deletion. Suppose that mitially list 30 of command
log elements includes entries 68, 70 and 72 for commands
“a”’, “b” and “c”, respectively, as shown 1n FIG. 4c. The
cursor 32 points to entry 70 for command “b”. Subsequently,
a user enters command “d”. In step 54 of FIG. 4a, 1t 1s
determined that entry 72 for command “c” 1s positioned
before the cursor on list 30. Hence, entry 72 1s deleted 1n step
56 of FIG. 4a. Further, an entry 73 for command “d” 1s added
to the front of the list 30 (see step 58 in FIG. 4a), and the

cursor 32 (FIG. 4c¢) 1s updated to point to entry 73 (see step
60 in FIG. 4a).

Once a user has built a list 30 of command element
objects, such as described above, the user may execute an
undo command. FIG. 5a 1s a flowchart of the steps per-
formed when an undo command 1s requested. FIG. 5b 1s a
diagram 1llustrating the state of the list 30 of command
clement objects after multiple undo commands are per-
formed on the list. The steps of FIG. Sa will be described in

US RE38,270 E

S

conjunction with the diagram of FIG. 5b. Imitially, a user
requests an undo operation by activating the undo button 51
(FIG. 3b) provided in the user interface. As was described
above, a context menu 535 1s displayed after the button 51 1s
activated and the context menu provides the user with the
option of undoing only the most recent command (i.e., the
“Last Applied” option). Suppose that the user selects the
“Last Applied” option on the context menu 55 (step 74 in
FIG. 5a). The command pointed to by the cursor 32 is
undone by executing code S0a (FIG. 2) that is provided in
the command element object (step 76) for undoing the
command. In addition, the cursor 32 1s decremented to point
to the next successive entry on the list 30 of command
clement objects. To perform multiple-level undo operations,
the user activates the undo button 51 multiple times to repeat
the above-described steps.

FIG. 5b shows an example of successive undo operations.
Suppose that imitially a list of command element objects
includes entries 80, 82 and 84 for commands “a”, “b” and
“c”, respectively. Further suppose that cursor 32 points to
entry 84. When a user subsequently requests an undo
operation, command “c” 1s undone and the cursor 32 1is
moved to point to entry 82 for command “b”. If the user
makes an additional undo operation request, command “b”

1s also undone, and the cursor 1s moved to point to entry 80
for command “a”.

A user may also request a single redo operation. FIG. 6a
1s a flowchart of the steps performed for a since redo
operation of a most recently undone command. The process
begins with a user requesting a redo operation of the most
recently undone command. The user activates the redo
button 53 (FIG. 3c) from the user interface and then chooses
the “Last Applied” option from the context menu 57 (step 86
in FIG. 6a). The command immediately in front of the
current cursor position on list 30 is then performed (step 88),
and the cursor is incremented (step 90). In terms of the
object model discussed above with reference to FIG. 2, the
redo code S50b 1s executed on the command element object
40 that was most recently undone. To perform multiple-level
redo operations, the user activates the redo button 53 mul-
tiple times to repeat the steps of FIG. 6a.

FIG. 6b shows an example of the effect of a redo com-
mand. Initially, a list 30 includes entries 92 and 94 for
commands “a” and “b”, respectively. Cursor 32 points to
entry 92 for command “a”. When the user enters a redo
command, command “b” 1s again performed and the cursor
32 1s incremented to point to entry 94 for command “b”.

The user has the additional option of undoing all com-
mands on the list 30 of command element objects. FIG. 7a
1s a flowchart of the steps performed for a undo “All the
Way” operation. Initially, a user requests that an undo “All
the Way” operation be performed (Step 96 in FIG. 7a). The
user requests such a command by activating the undo button
51 (FIG. 3b) and then selecting the “All the Way” option on
the context menu 55. All user commands from the current
command to the initial command are reversed (step 98 in
FIG. 7a). In addition, the cursor is moved to point to before
the initial command on list 30 (step 100).

FIG. 7b shows an example of the effect of an undo “All
the Way” operation. Initially, a list 30 of command element
objects 30 1ncludes entries 102, 104 and 106 for commands
“a”, “b” and “c”, respectively. The cursor 32 points to entry
106 for command “c”. After the user has requested the undo
“All the Way” operation, commands “c”, “b” and “a” are
sequentially undone, and the cursor 32 1s decremented to

point to before the first entry on the list 30.

5

10

15

20

25

30

35

40

45

50

55

60

65

6

A user may, likewise, request that the redo operation be
perform “All the Way” to redo all of the commands on the
list that are situated in front of the current cursor position.
FIG. 8a 1s a flowchart of the steps performed for such an
operation. Initially, the user requests that the redo “All the
Way” operation be performed (step 108 in FIG. 8a). As with
the other operations, the user selects the operation through
the user interface. In particular, the user activates the redo
button 53 and then selects the “All the Way”™ option from the
context menu 57 (FIG. 3c). After the selection has been
made, the commands that are positioned in front of the
cursor 32 on the list are performed (step 110 in FIG. 8a). In

addition, the cursor position 1s incremented to point to the
front of the list (step 112).

FIG. 8b shows an example that illustrates the effect of the
redo “All the Way” operation. Initially, a list 30 of command
clement objects 1ncludes entries 114, 116 and 118 for com-
mands “a”, “b” and “c”, respectively. The cursor 32 points
to entry 114 for command “a.” After the redo “All the Way”
operation 1s performed, commands “b” and “c” have been
sequentially executed, and the cursor position 1s 1ncre-
mented to point to entry 118 for command “c”.

While the present invention has been described with
reference to a preferred embodiment thereof, those skilled in
the art will, nevertheless, appreciate that various changes in
form and detail may be made without departing from the
present invention as defined by the appended claims.

I claim:

1. In a computer system having a video display and
running an operating system and an application program, a
method comprising the computer-implemented steps of:

providing a multiple level undo/redo facility 1n the oper-
ating system;

creating a command element object by the application
program for each associated command that 1s executed
in the application program, each command element
object including a pointer to a V-table that has at least
one entry that holds a pointer to code for undoing or
performing the command associated with the command
clement object;

linking the command element objects together in a
sequential list ordered according to when the associated
commands were executed;

encapsulating the sequential list of lined command ele-
ment objects 1n a command log object that 1s provided
by the application program;

with the undo/redo facility, displaying an activatable

undo/redo user interface element 1n a window on the
video display, wherein the window 1s provided by the
application program; and

1in response to a user activating the undo/redo facility, with

the undo/redo facility calling the code that 1s pointed to
by an entry in a V-table that 1s pointed to by a pointer
in a selected one of command element objects 1n the
sequential list to undo or redo the command associated
with the selected command element.

2. The method of claim 1 wherein the undo/redo user
interface element 1s an undo user interface element and the
entry in the V-table pointed to by the pointer 1n the selected
command element object holds a pointer to code for undoing
the command that 1s associated with the selected command
clement object.

3. The method of claim 1 wherein the undo/redo user
interface element 1s a redo user interface element and the
entry in the V-table pointed to by the pointer 1n the selected
command element object holds a pointer to code for per-

US RE38,270 E

7

forming the command that 1s associated with the selected
command element object.

4. In a computer system that has a video display and that
runs an operating system and an application program,
wherein the application program provides a command ele-
ment object for each associated command that 1s executed 1n
the application program and each command element object
including a pointer to a V-table that has at least one entry that
holds a pointer for undoing or redoing the command asso-
ciated with the command element object and wherein the
application program encapsulates a sequential list of the
command eclement objects that are linked and ordered
according to when the associated command were executed
in a command log object, a computer-readable storage
medium holding instructions for:

providing a multiple level undo/redo facility in the oper-
ating system;
with the undo/redo facility, displaying an activatable
undo/redo user interface element 1 a window on the
video display, where the window 1s provided by the
application program; and
In response to a user activating the undo/redo user inter-
face element, with the undo/redo facility calling the
code that 1s pointed to by the entry in the V-table
pointed to by a pointer 1 a selected one of command
clement objects in the sequential list to undo or redo the
assoclated command.
5. In a computer system having a video display and
running both an operating system and an application
program, a method comprising the steps of:

providing a multiple level undo/redo facility 1n the oper-

ating system;

displaying an activatable undo-all user interface element

by the undo/redo facility 1n a window provided by the
application program [or] on the video display and
which is opened when accessing the tnterface element
of the undo/redo facility;

where a user has caused multiple commands of the

application program to be executed undoing effects of
executing the commands, 1n response to the user acti-
vating the undo-all user interface element, by the
undo/redo facility calling code 1n the application pro-
oram for undoing the commands.

6. In a computer system having a video display and
running both an operating system and an application
program, a computer-readable storage medium holding
instructions for performing a method comprising the steps

of:

providing a multiple level undo/redo facility 1n the oper-
ating system;
displaying an activatable undo-all user interface element
by the undo/redo facility in a window provided by the
application program on the video display and which is
opened when accessing the interface element of the
undo/redo facility;
where a user has caused multiple commands of the
application program to be executed, undoing efiects of
executing the commands 1n response to the uses acti-
vating the undo-all user interface element, by the
undo/redo facility calling code 1n the application pro-
oram for undoing the commands.
7. In a computer system having a video display and
running both an operating system and an application
program, a method comprising the steps of:

providing a multiple level undo/redo facility 1n the oper-
ating system;

10

15

20

25

30

35

40

45

50

55

60

65

3

with the undo/redo facility, displaying an activatable
redo-all user 1nterface for causing all commands of the
application program, that have been undone to be again
executed, in a window provided by the application
program on the video display and which is opened
when accessing the interface element of the undo/redo
facility; and

where a user has undone multiple commands, executing

the undone commands 1n response to the user activating

the redo-all user interface element, by the undo/redo

facility calling code for performing the commands 1n

the application program.

8. In a computer system having a video display and
running both an operating system and an application
program, a computer-readable storage medium holding
instructions for performing a method comprising the steps

of:

providing a multiple level undo/redo facility 1n the oper-
ating system;

with the undo/redo facility, displaying an activatable
redo-all user interface for causing all commands of the
application program, that have been undone to be again
executed, n a window provided by the application
program on the video display and which is opened
when accessing the interface element of the undo/redo
facility; and

where a user has undone multiple commands, executing

the undone commands 1n response to the user activating,

the redo-all user interface element, by the undo/redo

facility calling code for performing the commands 1n

the application program.

9. In a computer system that has a display and that runs
an operating system and an application program, wherein
the application program provides a command element object
for each associated command that is executed in the appli-
cation program and wherein the operating system provides
a multiple level undo/redo facility, a computer-readable
storage medium on which are stored computer-executable
instructions for implementing within the application pro-
gram a method which is comprised of:

a step for creating in the application program a list of
command element objects which are sequentially
ordered corresponding to the order of the commands
executed n the application program, each command
element object in said list having associated with it a
means for selectively activating the undo/redo facility
in the operating system;

a step for accessing the undo/redo facility in order to
display an activatable undo/redo user interface element
in a window on the display, wherein the window is
provided by the application program; and

a step for using said interface element to select any
command element object in said list and in response to
said selection, the undo/redo facility undoing or redo-
ing as dirvected by a user either one or all the commands
for all command element objects in said list, as
selected.

10. In a computer system that has a display and that runs
an operating system and an application program, wherein
the application program provides a command element object
for each associated command that ts executed in the appli-
cation program and wherein the operating system provides
a multiple level undo/redo facility, a method comprised of:

a step for creating in the application program a list of
command element objects which are sequentially
ordered corresponding to the order of the commands

US RE38,270 E

9

executed in the application program, each command
element object in said list having associated with it a
means for selectively activating the undo/redo facility
in the operating system;

a step for accessing the undo/redo facility in order to
display an activatable undo/redo user interface element

in a window on the display, wherein the window is
provided by the application program; and

a step for using said interface element to select any
command element object in said list and in response to
said selection, the undo/redo facility undoing or redo-
ing as directed by a user either one or all the commands
for all command element objects in said list, as
selected.

11. In a computer system that has a display and that runs
an operating system and an application program, wherein
the application program provides a command element object
for each associated command that is executed in the appli-
cation program and wherein the operating system provides
a multiple level undo/redo facility, a computer-readable
storage medium on which are stored computer-executable
instructions for implementing within the application pro-
gram a method which is comprised of:

the step for creating in the application program a list of
command element objects which are sequentially
ordered corresponding to the order of the commands
executed in the application program, each command
element object in said list comprising a pointer o
computer-executable code for selectively undoing or
redoing the command associated with that command
element object;

the act of specifying a cursor postiion that corresponds 1o
one of the command element objects so that any com-
mand element objects associated with commands
executed in the application program prior o the time
for the command associated with the specified cursor
position are identified by virtue of the cursor position;

based on the specified cursor position, the act of deleting
from said [ist any command element objects that have
already been undone at the time a new command 1s
executed by the user in the application program, and
thereafter performing the act of appending to the front
of said list a new command element object for the newly
executed command in the application program, and
moving the cursor postiion to that newly appended
command element object;

a step for accessing the undo/redo facility in order to
display an activatable undo/redo user interface element

15

20

25

30

35

40

45

10

in a window on the display, wherein the window is
provided by the application program; and

a step for using said interface element to select any

command element object in said list and in response to
said selection, the undo/redo facility undoing or redo-
ing as directed by a user either one or all the commands
for all command element objects in said list, as
selected.

12. In a computer system that has a display and that runs
10 an operating system and an application program, wherein
the application program provides a command element object
for each associated command that is executed in the appli-
cation program and wherein the operating system provides
a multiple level undo/redo facility, a method comprised of;

the step for creating in the application program a list of

command element objects which are sequentially
ordered corresponding to the order of the commands
executed n the application program, each command
element object in said list comprising a pointer o
computer-executable code for selectively undoing or
redoing the command associated with that command
element object;

the act of specifying a cursor position that corresponds (o

one of the command element objects so that any com-
mand element objects associated with commands
executed in the application program prior to the time
for the command assoctated with the specified cursor
position are identified by virtue of the cursor position;

based on the specified cursor position, the act of deleting

4}

4}

from said list any command element objects that have
already been undone at the time a new command is
executed by the user in the application program, and
thereafter performing the act of appending to the front
of said list a new command element object for the newly
executed command in the application program and
moving the cursor position to that newly appended
command element object;

step for accessing the undo/redo facility in order to
display an activatable undo/redo user interface element
in a window on the display, wherein the window is
provided by the application program; and

step for using said interface element to select any
command element object in said list and in response to
said selection, the undo/redo facility undoing or redo-
ing as directed by a user either one or all commands for
all command element objects in said list, as selected.

UNITED STATES PATENT AND TRADEMARK OFFICE
CERTIFICATE OF CORRECTION

PATENT NO. :Re. 38,270 E Page 1 of 1
DATED . October 7, 2003
INVENTOR(S) : Satoshi Nakajima

It is certified that error appears in the above-identified patent and that said Letters Patent Is
hereby corrected as shown below:

Title page,
Item [57], ABSTRACT,

Line 3, after ““The” please change “dating” and 1nsert -- operating --

Signed and Sealed this

Seventeenth Day of August, 2004

o WD

JON W. DUDAS
Acting Director of the United States Patent and Trademark Office

	Front Page
	Drawings
	Specification
	Claims
	Corrections/Annotated Pages

