USOORE38104E

(19) United States
a2 Reissued Patent (10) Patent Number: US RE38,104 E

Gosling 45) Date of Reissued Patent:  Apr. 29, 2003
(54) METHOD AND APPARATUS FOR 5347632 A 9/1994 Filepp et al.
RESOLVING DATA REFERENCES IN 5428792 A 6/1995 Conner et al.

GENERATED CODE

(List continued on next page.)
(75) Inventor: James Gosling, Redwood City, CA OTHER PUBLICATIONS

US
(US) Adele Goldberg and David Robson, “Smalltalk—80—The

(73) Assignee: Sun Microsystems, Inc., Palo Alto, CA Language and 1ts Implementation”, Xerox Palo Alto
(US) Research Center, 1983 (reprinted with corrections, Jul.

1985) pp. 1-720.

(*) Notice: 2'11;1111 Eitent 1s subject to a terminal dis- (List continued on next page.)
Primary Fxaminer—Thomas M. Heckler
(21) Appl. No.: 09/261,970 (74) Artorney, Agent, or Firm—Finnegan, Henderson,
(22) Filed: Mar. 3, 1999 Farabow, Garrett & Dunner, L.L.P.
(57) ABSTRACT
Related U.S. Patent Documents
Reissue of: A hybrid compiler-interpreter comprising a compiler for
(64) Patent No.: 5,367,685 “compiling” source program code, and an interpreter for
[ssued: Nov. 22, 1994 interpreting the “compiled” code, 1s provided to a computer
Appl. No.: 07/994,655 system. The compiler comprises a code generator that gen-
Filed: Dec. 22, 1992 erates code 1n intermediate form with data references made
on a symbolic basis. The interpreter comprises a main
(51)  INte CL7 oo GO6F 9/45  Inierpretation routine, and two data reference handling
(52) US.Cl oo 717/140; 717/106; 717/136;  rouvtines, a dynamic field reference routine for handling

symbolic references, and a static field reference routine for
handling numeric references. The dynamic field reference
routine, when invoked, resolves a symbolic reference and
rewrites the symbolic reference 1nto a numeric reference.

717/139; 717/142; 717/146

(58) Field of Search ............................... 717/2, 5, 7, 8,
717/106-108, 114, 116, 146-147

(56) References Cited After re-writing, the dypamlc ﬁ(f:ld reference routine returns
to the main interpretation routine without advancing pro-
U.S. PATENT DOCUMENTS gram execution to the next instruction, thereby allowing the
4,636,940 A * 1/1987 Goodwin, JT. ..oo.oveeee..... 717/4  Tewnltten instruction with numeric reference to be reex-
4667200 A 5/1987 Goss et al. ecuted. The static field reference routine, when 1nvoked,
41667900 A * 5 11987 GosS et al. oo 248/610 obtain data for the program from a data object based on the
4686623 A * 8/1987 Wallace ..oooevververeeenen... 717/  numeric reference. After obtaining data, the static field
4729096 A * 3/1988 Larson ...c..ee.eeeeeeeeeuennn.. 717/5 reference routine advances program execution to the next
4,773,007 A * 9/1988 Kanada et al. ................. 717/9 instruction before returning to the interpretation routine. The
5,201,050 A *  4/1993 McKeeman et al. ........... 717/7 main interpretation routine selectively invokes the two data
2,230,050 A 7/1993 litsuka et al. .....coeone. 71977 reference handling routines depending on whether the data
5,276,881 A 1/1994  Chan et al. reference in an interaction in a symbolic or a numeric
5,280,613 A 1/1994 Chan et al. reference
5,307,492 A * 4/1994 Benson ........c.coeeevivininnnns 71777 '
5,313,614 A * 5/1994 Goettelmann et al. ......... 717/5
5,339.419 A 8/1994 Chan et al. 31 Claims, 5 Drawing Sheets
SOURCE
CODE — %%
14
LEXICAL 42
ANALYZER
& PARSER 54
TOKENIZED
.6 STATEMENTS
INTERMEDIATE
REPRESENTATION
BUILDER
56
INTERMEDIATE
48 REPRESENTATION
ANALYSER
p 58
ANNOTATED
INTERMEDIATE
50 REPRESENTATION
CODE INTERMEDIATE
GENERATION FORM OBJECT — %0

CODE



US RE38,104 E
Page 2

U.S. PATENT DOCUMENTS

5,442,771 A 8/1995 Filepp et al.

5,504,910 A 1/1997 Filepp et al.

5,613,117 A * 3/1997 Davidson et al. .............. 717/8
5,649,204 A 7/1997 Pickett

5,758,072 A 5/1998 Filepp et al.

5,836,014 A * 11/1998 Faiman, Jr. .................... 71777

OTHER PUBLICAITONS

Andrew Black, Norman Hutchinson, Eric Jul and Henry

Levy, “Daistribution and Abstract Types 1n Emerald”, Uni-
versity of Washington, Technical Report No. 85-08-05,

Aug. 1985, pp. 1-10.

Andrew Black, Norman Hutchinson, Eric Jul, and Henry
Levy, “Object Structure 1n the Emerald System”, University
of Washington, Technical Report 86—04-03, Apr. 1986, pp.
1-14.

Andrew Blaine Proudfoot, “Replects: data replication 1n the

Eden System”, Department of Computer Science, Univer-
sity of Washington, Technical Report No. TR—85-12-04,

Dec. 1985, pp. 1-156.

Andrew P. Black and Henry M. Levy, “A Language for
Distributed Programming”, Department of Computer Sci-

ence, Umniversity of Washington, Technical Report
86—02-03, Feb. 1986, p. 10.

Andrew P. Black, “Supporting Daistributed Applications:
Experience with Eden”, Department of Computer Science,
University of Washington, Technical Report 85—03—-02, Mar.
1985, pp. 1-21.

Andrew P. Black, “The Eden Programming Language”,
Department of Computer Science, FR-35, University of
Washington, Technical Report 85-09-01, Sep. 1985
(Revised, Dec. 1985), pp. 1-19.

Andrew P. Black, “The Eden Project: Overview and Expe-
riences’, Department of Computer Science, University of
Washington, EUUG, Autumn 86 Conference Proceedings,

Manchester, UK, Sep. 22-25 1986, pp. 177-189.

Andrew P. Black, Edward D. Lazowska, Jerre D. Noe and
Jan Sanislo, “The Eden Project: A Final Report”, Depart-

ment of Computer Science, University of Washington, Tech-
nical Report 86—11-01, Nov. 1986, pp. 1-28.

Calton Pu, “Replication and Nested Transactions 1n the Eden
Distributed System”, Doctoral Disseration, University of
Washington, Aug. 6, 1986, pp. 1-179 (1 page Vita).

Cara Holman and Guy Almes, “The Eden Shared Calendar

System”, Department of Computer Science, FR-35, Univer-
sity of Washington, Technical Report 85-05-02, Jun. 22,

1985, pp. 1-14.

Eric Jul, “Object Mobility 1n a Distributed Object—Oriented
System”, a Dissertation, Unmiversity of Washington, 1989,
pp. 1-154 (1 page Vita).

Eric Jul, Henry Levy, Norman Hutchinson, and Andrew
Black, “Fine—Grained Mobility 1n the Emerald System”,

University of Washington, ACM Transactions on Computer
Systems, vol. 6, No. 1, Feb. 1988, pp. 109-133.

Felix Samson Hsu, “Reimplementing Remote Procedure

Calls”, University of Washington, Thesis Mar. 22, 1985, pp.
1-106.

Guy Almes, Andrew Black, Carl Bunje and Douglas Wiebe,
“Edmas: Alocally Distributed Mail System”, Department of

Computer Science, University of Washington, Technical
Report 83—87-01, Jul. 7, 1983, Abstract & pp. 1-17.

Guy T. Almes, “Integration and Distribution 1n the Eden

System”, Department of Computer Science, University of
Washington, Technical Report 83—01-02, Jan. 19, 1983, pp.

1-18 & Abstract.

Guy T. Almes, “The Evolution of th Eden Invocation
Mechanism”™, Department of Computer Science, University
of Washington, Technical Report 83—01-03, Jan. 19, 1983,
pp. 1-14 & Abstract.

Guy T. Almes, Andrew P. Black, Edward D. Lazawska, and
Jerre D. Noe, “The Eden System: A Technical Review”,
Department of Computer Science, University of Washing-
ton, Technical Report 83—10-05, Oct. 1983, pp. 1-25.
Guy T. Almes, Michael J. Fischer, Hellmut Golde, Edward
D. Lazawska, Jerre D. Noe, “Research 1n Integrated Dis-
tributed Computing”, Department of Computer Science,
University of Washington, Oct. 1979, pp. 1-42.

Krasner et al., “Smalltalk—80: Bits of History, Words of
Advice”, 1983 Xerox Corporation, pp. 1-344.

Norman C. Hutchinson, “Emerald: An Object—Based Lan-
cuage for Distributed Programming”, a Dissertation, Uni-
versity of Washington, 1987, pp. 1-107.

Proceedings of the Eighth Symposium on Operating Sys-
tems Principles, Dec. 14-16, 1981, ACM, Special Interest
Group on Operating Systems, Association for Computing,
Machinery, vol. 15, No. 5, Dec. 1981, ACM Order No.
534810.

Wm. A. Wulf, “PQCC: A Machine—Relative Compiler Tech-
nology,” Carnegie—Mellon University, Pittsburgh, PA, Sep.
1980, pp. 1-22.

Inder—jeet S. Gujral, “Retargetable Code Generation for
ADA* Compilers”, SoftTech, Inc., Waltham, MA, Dec.,

1981, pp. 1-13.

Nor1 et al., “The Pascal <P> Compiler: Implementation
Notes”, Jul. 1976, pp. 1-53.

Glanville et al., “A New Method for Compiler Code Gen-

eration (Extended Abstract)”, Computer Science Division,
University of California, Berkeley, CA, pp. 231-240.

Colusa Software White Paper: “Ommniware Technical Over-
view”, Colusa Software, Inc., 1995, pp. 1-14.

Colusa Software White Paper: Omniware: A Universal Sub-
strate for Mobile Code: Colusa Software, Inc., pp. 1-13.
Ali—Reza Adl-Tabatabai et al., “Efficient and Language—

Independent Mobile Programs”™, Proceedings of PLDI 96,
ACM SIGPLAN 96 Conf. on Programming Language

Design and Implementation, May, 1996, pp. 1-10.

Lucco et al., “Omniware: A Universal Substrate for Web
Programming”, pp. 1-11.

Wahbe et al., “Efficient Software—Based Fault Isolation”,
Computer Science Division, University of California, Ber-
keley, CA, pp. 203-216.

Graham et al., “Adaptable Binary Programs™, 1995 Usenix
Technical Conference—lJan., 1995, New Orleans, LA, pp.
315-325.

Steven Lucco, “High—Performance Microkernel Systems”,
School of Computer Science, Carengiec Mellon University.
p. 1.

Sawdon et al., “A Preliminary Report on Software Prefetch-
ing 1n the Instruction Stream”, School of Computer Science,
Carnegic Mellon University, Pittsburgh, PA, pp. 1-7.
Bolosky, et al., “Operating System Directions for the Next
Millennium”™, Microsoft Research, Redmond, WA, pp. 1-7.
1995 Project Summaries: “Software System Support for

High Performance Multicomputing”, School of Computer
Science, Carnegie Mellon University, Jul. 1995, pp. 1-4.




US RE38,104 E
Page 3

Ernst et al., “Code Compression”, 1997, pp. 358-365.
Peter Deutsch et al., “Efficient Implementation of the Small-
talk—80 System”, 1983, pp. 297-302.

Engelstad et al.,, “A Dynamic C—Based Object—Oriented
System for UNIX”, IEEE Software, May, 1991, pp. 73-85.
Gerring, et al., “S—1 U-Code, A Umversal P-Code for the
S—1 Project (PAIL—-6)”, Stanford University, Computer Sci-
ence Department, Technical Note No. 159, Aug., 1979, pp.
1-7.

Gary McWilliams, “Digital’s Architectural Gamble”, Data-
mation, Mar., 1989, pp. 14-24.

“Architecture—Neutral Distribution Format”, Open Software
Foundation, Cambridge, MA, pp. 1-3.

Wolf et al., “Portable Compiler Eases Problems of Software
Migration”, System Design/Software, pp. 147-153.
Fischer et al., “Crafting a Compiler”, 1988, pp. 551-555,
632—-641.

Anklam et al., “Engineering a Compiler, VAX-11 Code
Generation and Optimization”, 1982 Daigital Equipment
Corporation, pp. 124-137.

Tanenbaum et al., “A Practical Tool Kit for Making Portable
Compilers”, Computing Practices, Communications of the
ACM, Sep., 1983, vol. 26, No. 9, pp. 654-660.

Almasi et al., “Highly Parallel Computing”, pp. 247-277.
Ann Sussman, “OSF Eyes Shrink—Wrap RF1”, Unix Today,
pp. 1, 43.

Evan Grossman, “OSF Adds Ingredients to Operating Sys-
tem”, PC Week, Mar. 27, 1989.

Sites et al., Universal P—Code Definition, Version 0.3,
Department of Electrical Engineering and Computer Sci-
ences, University of California at San Diego, Jul. 1979, pp.
5-9.

Goldberg et al., “Smalltalk—80: The Language and Its Imple-
mentation”, Addison—Wesley, Reading, MA, 1983, pp.
594-598.

Richard L. Sites and Daniel R. Perkins, “Universal P—Code
Definition, version (0.3),” Dept. of Electrical Engineering
and Computer Sciences, University of California at San
Diego, Jul., 1979, pp. 1-40.

Richard L. Sites et al., “Machine—Independent Pascal Opti-
mizer Project,” UCSD/CS-79/038, Nov. 1979, pp. 1-94.

Peter Nye, U-CODE: An Intermediate Language for Pascal
and Fortran (PAIL-8), Feb. 16, 1980, pp. 1-37-2.

Chung, Kin—Man and Yuen, Herbert, “A ‘“Tiny’ Pascal
Compiler: the P—Code Interpreter,” BYTE Publications,
Inc., Sep. 1978.

Chung, Kin—Man and Yuen, Herbert, “A ‘“Tiny’ Pascal
Compiler: Part 2: The P—Compiler,” BYTE Publications,
Inc., Oct. 1978.

Thompson, Ken, “Regular Expression Search Algorithm,”
Communications of the ACM, vol. II, No. 6, p. 149 et seq.,
Jun. 1968.

Mitchell, James G., Maybury, William, and Sweet, Richard,
Mesa Language Manual, Xerox Corporation.

McDaniel, Gene, “An Analysis of a Mesa Instruction Set,”
Xerox Corporation, May 1982.

Pier, Kenneth A., “A Retrospective on the Dorado, A High—

Performance Personal Computer,” Xerox Corporation, Aug.
1983.

Pier, Kenneth A., “A Retrospective on the Dorado, A High—
Performance Personal Computer,” IEEE Conference Pro-
ceedings, The 10th Annual International Symposium on

Computer Architecture, 1983.

Goldberg, Adele and Robson, David, “Smalltalk—=80: The
Language,” ParcPlace Systems and Xerox PARC, Addison—
Wesley Publishing Company, 1989, Chap. 21, pp. 417442,

Budd, Timothy, “A Little Smalltalk,” Oregon State Univer-
sity, Addison—Wesley Publishing Company, 1987, Chap. 13,
pp. 150-160, Chapter 14, pp. 161-175, Chapter 15, pp.
176—192.

Krasner, Glenn, “The Smalltalk—80 Virtual Machine” BYTE
Publications Inc., Aug. 1991, pp. 300-320.

Engelstad, Steve, et al., “A Dynamic C—Based Object—Ori-
ented System for Unix,” Software, May 1991, pp. 73-85.

Deutsch, L. Peter, et al., “Efficient Implementation of the
Smartalk—80 System,” Conference Record of the Eleventh

Annual ACM Symposium on Principles of Programming
Languages, Jan. 15-18, 1984, pp. 297-302.

* cited by examiner



U.S. Patent Apr. 29, 2003 Sheet 1 of 5 US RE38,104 E

INSTRUCTION
SEQUENCE

LOAD 2 I J
@

DATA
OBJECT

14

REFERENCE

LOADy SYMBOLIC

Figure 1B

Prior Art




U.S. Patent Apr. 29, 2003 Sheet 2 of 5 US RE38,104 E

30 28

INPUT/ -9
OUTPUT Vo -<6 STORAGES
DEVICES
CPU -22

MEMORY - 24

20

NETWORK - 32

Figure 2

APPLICATION

COMPILER -
INTERPRETER

OPERATING SYSTEM

IFigure 3



US RE38,104 E

Sheet 3 of 5

Apr. 29, 2003

U.S. Patent

C dungr g

JONJHISTY
89 P ECIK|
i
dd0O LOIfrd0

09 — LOALHO WO
ALVIAIWHILLNI

89
|

NOILVILNIASTIdTY
WHO4 44— 44— ALVIGINYALNI
LLVIGHNYALNI dALVLONNV

99
NOLLIAQV
¥9

05 —YOLVYINID 4A0D

J4d0O

NOLLVLNASHYd I

Esmgg

9S

NOLLVYINID
JdJ0O

0S

LLVIATNYLLNI
ﬁ_\ma<.pozz<
85 HASKTVNV
OLLNYINAS
NOLLVINJASTYdTH 8¥

J4a1ng
NOLLVINASTHITY

LLVIOIINHHALN]




U.S. Patent Apr. 29, 2003

12

BYTE

82 - CODE

Figure 6
BYTE CODE =
REFERENCE |- 86

88

88a { YES

MAIN:
INVOKE STATIC
FIELD REF
SFR: OBTAIN 96
DATA

94

SFR: CURRENT 98

INSTR = NEXT INSTR

. SFR/DFR:
RETURN TO MAIN |- 100

MAIN
INTERPRETATION
ROUTINE \

Sheet 4 of 5 US RE38,104 E

OPERATOR
IMPLEMENTATIONS

74

76

STATIC FIELD
REFERENCE (SFR)
DYNAMIC FIELD
REFERENCE (DFR)

78

80

MAIN: s3b MAIN: 90
STATICREF Rt INVOKE DYNAMIC
2 FIELD REF

DFR: REWRITE
SYMBOLIC REF
IN OBJECT

92




U.S. Patent Apr. 29, 2003 Sheet 5 of 5 US RE38,104 E

INSTRUCTION
SEQUENCE

SYMBOLIC
REFERENCE

REWRITTEN

AS NUMERIC
REFERENCE




US RE38,104 E

1

METHOD AND APPARATUS FOR
RESOLVING DATA REFERENCES IN
GENERATED CODE

Matter enclosed in heavy brackets [ ] appears in the
original patent but forms no part of this reissue specifi-
cation; matter printed in italics indicates the additions
made by reissue.

This 1s a continuation of reissue application Ser. No.
08/755,764, filed Nov. 21, 1996, now U.S. Pat. Re. No.

36,204, which 1s incorporated herein by reference.

BACKGROUND OF THE INVENTION

1. Field of the Invention

The present invention relates to the field of computer
systems, 1n particular, programming language compilers and
interpreters of these computer systems. More speciiically,
the present invention relates to resolving references in
compiler generated object code.

2. Background

The 1mplementation of modern programming languages,
including object oriented programming languages, are gen-
erally grouped mto two categories: compiled and inter-
preted.

In a compiled programming language, a computer pro-
gram (called a compiler) compiles the source program and
ogenerates executable code for a specific computer architec-
ture. References to data in the generated code are resolved
prior to execution based on the layout of the data objects that
the program deals with, thereby, allowing the executable
code to reference data by their locations. For example,
consider a program that deals with a point data object
containing two variables x and vy, representing the x and y
coordinates of a point, and further assume that the variables
x and y are assigned slots 1 and 2 respectively, 1 each
instance of the point data object. Thus, an instruction that
accesses or fetches y, such as the Load instruction 14
illustrated 1 FIG. 1, 1s resolved to reference the variable y
by the assigned slot 2 before the instruction sequence 1s
executed. Particular examples of programming language
compilers that generate code and resolve data references in
the manner described above include C and C++ compilers.

This “compiled” approach presents problems when a
program 1s constructed 1n pieces, which happens frequently
under object oriented programming. For example, a program
may be constructed from a library and a main program. If a
change 1s made to the library, such that the layout of one of
the data objects 1t implements 1s changed, then clients of that
library, like the main program, need to be recompiled.
Continuing the preceding example, 1f the point data object
had a new field added at the beginning called name, which
contains the name of the point, then the variables x and y
could be reassigned to slots 2 and 3. Existing programs
compiled assuming that the variables x and y and are 1n slots
1 and 2 will have to be recompiled for them to execute
correctly.

In an interpreted language, a computer program (called a
translator) translates the source statements of a program into
some Intermediate form, typically independent of any com-
puter 1nstruction set. References to data in the intermediate
form are not fully resolved before execution based on the
layout of the data objects that the program deals with.
Instead, references to data are made on a symbolic basis.
Thus, an 1nstruction that accesses or fetches y, such as the
Load instruction 14' illustrated in FIG. 1, references the

variable y by the symbolic name “y”. The program in

5

10

15

20

25

30

35

40

45

50

55

60

65

2

intermediate form 1s executed by another program (called an
interpreter) which scans through the code in intermediate
form, and performs the indicated actions. Each of the
symbolic references 1s resolved during execution each time

the 1nstruction comprising the symbolic reference 1s inter-
preted. A particular example of a programming language
interpreter that translates source code 1nto intermediate form

code and references data 1n the manner described above 1s
the BASIC interpreter.

The “interpreted” approach avoids the problems encoun-
tered with the “compiled” approach, when a program 1is
constructed 1n pieces. However, because of the extra level of
Interpretation at execution time, each time an 1nstruction
comprising a symbolic reference 1s interpreted, execution 1s
slowed significantly.

Thus, 1t 1s desirable 1f programming languages can be
implemented 1 a manner that provides the execution per-
formance of the “compiled” approach, and at the same time,
the flexibility of the “interpreted” approach for altering data
objects, without requiring the compiled programs to be
recompiled. As will be disclosed, the present invention
provides a method and apparatus for resolving data refer-
ences 1n compiler generated object code that achieves the
desired results.

SUMMARY OF THE INVENTION

A method and apparatus for generating executable code
and resolving data references in the generated code 1s
disclosed. The method and apparatus provides execution
performance substantially similar to the traditional compiled
approach, as well as the flexibility of altering data objects
like the traditional interpreted approach. The method and
apparatus has particular application to implementing object
oriented programming languages 1n computer systems.

Under the present invention, a hybrid compiler-interpreter
comprising a compiler for “compiling” source program
code, and an interpreter for interpreting the “compiled”
code, 1s provided to a computer system. The compiler
comprises a code generator that generates code 1n interme-
diate form with data references made on a symbolic basis.
The interpreter comprises a main interpretation routine, and
two data reference handling routines, a static field reference
routine for handling numeric references and a dynamic field
reference routine for handling symbolic references. The
dynamic field reference routine, when invoked, resolves a
symbolic reference and rewrites the symbolic reference 1nto
a numeric reference. After rewriting, the dynamic field
reference routine returns to the interpreter without advanc-
Ing program execution to the next instruction, thereby allow-
ing the rewritten instruction with numeric reference to be
reexecuted. The static field reference routine, when 1invoked,
obtain data for the program from a data object based on the
numeric reference. After obtaining data, the static field
reference routine advances program execution to the next
instruction before returning to the interpreter. The main
interpretation routine selectively invokes the two data ref-
erence handling routines depending on whether the data
reference 1n an 1instruction 1s a symbolic or a numeric
reference.

As a result, the “compiled” intermediate form object code
of a program achieves execution performance substantially
similar to that of the traditional compiled object code, and
yet 1t has the flexibility of not having to be recompiled when
the data objects it deals with are altered like that of the
traditional translated code, since data reference resolution 1s
performed at the first execution of a generated instruction
comprising a data reference.



US RE38,104 E

3
BRIEF DESCRIPTION OF THE DRAWINGS

The objects, features, and advantages of the present
invention will be apparent from the following detailed
description of the presently preferred and alternate embodi-
ments of the invention with references to the drawings 1n
which:

FIG. 1 shows the prior art compiled approach and the
prior art interpreted approach to resolving data reference.

FIG. 2 1illustrates an exemplary computer system 1ncor-
porated with the teachings of the present invention.

FIG. 3 illustrates the software elements of the exemplary
computer system of FIG. 2.

FIG. 4 illustrates one embodiment of the compiler of the
hybrid compiler-interpreter of the present invention.

FIG. § 1llustrates one embodiment of the code generator
of the compiler of FIG. 4.

FIG. 6 1llustrates one embodiment of the interpreter and
operator implementations of the hybrid compiler-interpreter
of the present 1nvention.

FIG. 7 illustrates the cooperative operation flows of the
main 1nterpretation routine, the static field reference routine
and the dynamic field reference routine of the present
invention.

FIG. 8 1llustrates an exemplary resolution and rewriting of
a data reference under the present invention.

DETAILED DESCRIPTION PRESENTLY
PREFERRED AND ALTERNATE
EMBODIMENTS

A method and apparatus for generating executable code
and resolving data references i the generated code 1s
disclosed. The method and apparatus provides execution
performance substantially similar to the traditional compiled
approach, as well as the tlexibility of altering data objects
like the traditional interpreted approach. The method and
apparatus has particular application to implementing object
oriented programming languages. In the following descrip-
fion for purposes of explanation, specific numbers, materials
and configurations are set forth in order to provide a thor-
ough understanding of the present invention. However, 1t
will be apparent to one skilled in the art that the present
invention may be practiced without the specific details. In
other instances, well known systems are shown 1n diagram-
matical or block diagram form in order not to obscure the
present ivention unnecessarily.

Referring now to FIGS. 2 and 3, two block diagrams
illustrating an exemplary computer system incorporated
with the teachings of the present invention are shown. As
shown 1n FIG. 2, the exemplary computer system 20 com-
prises a central processing unit (CPU) 22, a memory 24, and
an I/O module 26. Additionally, the exemplary computer
system 20 also comprises a number of 1nput/output devices
30 and a number of storage devices 28. The CPU 22 1s
coupled to the memory 24 and the I/O module 26. The
input/output devices 30, and the storage devices 28 are also

coupled to the I/O module 26. The I/O module 26 1n turn 1s
coupled to a network 32.

Except for the manner they are used to practice the present
invention, the CPU 22, the memory 24, the I/O module 26,
the mput/output devices 30, and the storage devices 28, are
intended to represent a broad category of these hardware
clements found 1n most computer systems. The constitutions
and basic functions of these elements are well known and
will not be further described here.

10

15

20

25

30

35

40

45

50

55

60

65

4

As shown 1n FIG. 3, the software elements of the exem-
plary computer system of FIG. 2 comprises an operating
system 36, a hybrid compiler-interpreter 38 incorporated
with the teachings of the present invention, and applications
compiled and interpreted using the hybrid compiler-
interpreter 38. The operating system 36 and t he applications
40 are intended to represent a broad categories of these
software elements found 1n many computer systems. The
constitutions and basic functions of these elements are also

well known and will not be described further. The hybrid
compiler-interpreter 38 will be described 1n further detail
below with references to the remaining figures.

Referring now to FIGS. 4 and 5, two block diagrams
illustrating the compiler of the hybrid compiler-interpreter
of the present invention are shown. Shown m FIG. 4 1s one
embodiment of the compiler 42 comprising a lexical ana-
lyzer and parser 44, an intermediate representation builder
46, a semantic analyzer 48, and a code generator 50. These
clements are sequentially coupled to each other. Together,
they transform program source code 52 into tokenized
statements 54, intermediate representations 356, annotated
intermediate representations 38, and ultimately intermediate
form code 60 with data references made on a symbolic basis.
The lexical analyzer and parser 44, the intermediate repre-
sentation builder 46, and the semantic analyzer 48, are
intended to represent a broad category of these elements
found 1 most compilers. The constitutions and basic func-
tions of these elements are well known and will not be
otherwise described further here. Similarly, a variety of well
known tokens, intermediate representations, annotations,
and intermediate forms may also be used to practice the
present 1nvention.

As shown 1n FIG. 5, the code generator S0 comprises a
main code generation routine 62, a number of complimen-
tary operator specific code generation routines for handling
the various operators, such as the ADD and the IF code
generation routines, 64 and 66, and a data reference handling
routine 68. Except for the fact that generated coded 60 are
in 1intermediate form and the data references in the generated
code are made on a symbolic basis, the main code generation
routine 62, the operator specific code generation routines,
¢.2. 64 and 66, and the data reference handling routine 68,
are 1ntended to represent a broad category of these elements
found 1n most compilers. The constitutions and basic func-
tions of these elements are well known and will not be
otherwise described further here.

For further descriptions on various parsers, intermediate
representation builders, semantic analyzers, and code
ogenerators, see A. V. Aho, R. Sethi, and J. D. Ullman,

Compilers Principles, Techniques and Tools. Addision-
Wesley, 1986, pp. 25-388, and 463-512.

Referring now to FIGS. 6 and 7, two block diagrams
illustrating one embodiment of the mterpreter of the hybrid
compiler-interpreter of the present invention and 1ts opera-
tion flow for handling data references 1s shown. As shown 1n
FIG. 6, the interpreter 70 comprises a main interpretation
routine 72, a number of complimentary operator speciiic
interpretations routines, such as the ADD and the IF inter-
pretation routines, 74 and 76, and two data reference inter-
pretation routines, a static field reference routine (SFR) and
a dynamic field reference routine (DFR), 78 and 80. The
main interpreter routine 72 receives the byte codes 82 of the
intermediate form object code as inputs, and interprets them,
invoking the operator specific interpretations routines, €.g.
74 and 76, and the data reference routines, 78 and 80, as
necessary. Except for the dynamic field reference routine 80,
and the manner 1n which the main interpretation routine 72



US RE38,104 E

S

and the state field reference routine 78 cooperates with the
dynamic field reference routine 80 to handle data references,
the main interpretation routine 72, the operator speciiic
interpretation routines, ¢.2. 74 and 76, and the static field
reference routine 78, are intended to represent a broad
category of these elements found in most compilers and
interpreters. The constitutions and basic functions of these
clements are well known and will not be otherwise described
further here.

As shown 1n FIG. 7, upon recerving a data reference byte
code, block 86, the main 1nterpretation routine determines 1t
the data reference 1s static, 1.e. numeric, or dynamic, 1.€.
symbolic, block 88. If the data reference 1s a symbolic
reference, branch 88b, the main interpretation routine
invokes the dynamic field reference routine, block 90. Upon
invocation, the dynamic field reference routine resolves the
symbolic reference, and rewrites the symbolic reference 1n
the mtermediate form object code as a numeric reference,
block 92. Upon rewriting the data reference in the object
code, the dynamic field reference routine returns to the main
interpretation routine, block 100, without advancing the
program counter. As a result, the instruction with the rewrit-
ten numeric data reference gets reexecuted again.

On the other hand, if the data reference 1s determined to
be a numeric reference, branch 88a, the main mterpretation
routine 1mmvokes the static field reference routine, block 94.
Upon 1invocation, the static field reference routine obtain the
data reference by the numeric reference, block 96. Upon
obtaining the data, the static field reference routine advances
the program counter, block 98, and returns to the main
interpretation routine, block 100.

Referring now to FIG. 8, a block diagram illustrating the
alteration and rewriting of data references under the present
mvention 1n further detail 1s shown. As 1llustrated, a data
referencing 1nstruction, such as the LOAD instruction 14",
1s mnitially generated with a symbolic reference, e.g. “y”.
Upon 1ts first mterpretation in execution, the data referenc-
ing 1nstruction, €.g. 14, 1s dynamically resolved and rewrit-
ten with a numeric reference, e.g. slot 2. Thus, except for the
first execution, the extra level of interpretation to resolve the
symbolic reference 1s no longer necessary. Therefore, under
the present invention, the “compiled” intermediate form
object code of a program achieves execution performance
substantially similar to that of the traditional compiled
object code, and yet 1t has the flexibility of not having to be
recompiled when the data objects 1t deals with are altered
like that of the traditional translated code, since data refer-
ence resolution 1s performed at the first execution of a

generated 1nstruction comprising a symbolic reference.

While the present mnvention has been described in terms
of presently preferred and alternate embodiments, those
skilled 1n the art will recognize that the invention 1s not
limited to the embodiments described. The method and
apparatus of the present invention can be practiced with
modification and alteration within the spirit and scope of the
appended claims. The description 1s thus to be regarded as
illustrative instead of limiting on the present 1invention.

What 1s claimed 1s:

[1. In a computer system comprising a program in source
code form, a method for generating executable code for said
program and resolving data references 1n said generated
code, said method comprising the steps of:

a) generating executable code in intermediate form for
said program 1n source code form with data references
being made 1n said generated code on a symbolic basis,
said generated code comprising a plurality of instruc-
tions of said computer system;

10

15

20

25

30

35

40

45

50

55

60

65

6

b) interpreting said instructions, one at a time, 1n accor-
dance to a program execution control;

¢) resolving said symbolic references to corresponding
numeric references, replacing said symbolic references
with their corresponding numeric references, and con-
tinuing 1nterpretation without advancing program
execution, as said symbolic references are encountered
while said instructions are being interpreted; and

d) obtaining data in accordance to said numeric
references, and continuing interpretation after advanc-
Ing program execution, as said numeric references are
encountered while said instruction are being inter-
preted;

said steps b) through d) being performed iteratively and

interleaving. ]

[2. The method as set forth in claim 1, wherein, said
program 1n source code form 1s implemented 1n source code
form of an object oriented programming language.]

[3. The method as set forth in claim 2, wherein said

programming language is C.]

[4. The method as set forth in claim 2, wherein, said
programming language is C++.]

[5. The method as set forth in claim 1, wherein, said
program execution control 1s a program counter said con-
tinuing interpretation in step c¢) 1s achieved by performing
said step b) after said c¢) without incrementing said program
counter; and

said continuing interpretation in said step d) is achieved
by performing said step b) after said d) after increment-
ing said program counter.]

[6. In a computer system comprising a program in source
code form, an apparatus for generating executable code for
said program and resolving data references 1n said generated
code, said apparatus comprising:

a) compilation means for receiving said program in source
code form and generating executable code 1n interme-
diate form for said program 1n source code form with
data references being made 1n said generated code on a
symbolic basis, said generated code comprising a plu-
rality of instructions of said computer system;

b) interpretation means for receiving said generated code
and interpreting said imstructions, one at a time;

¢) dynamic reference handling means coupled to said
interpretation means for resolving said symbolic refer-
ences to corresponding numeric references, replacing
saild symbolic references with their corresponding
numeric references, and continuing interpretation by
said interpretation means without advancing program
execution, as said symbolic references are encountered
while said instructions are being mterpreted by said
interpretation means; and

d) static reference handling means coupled to said inter-
pretation means for obtaining data in accordance to said
numeric references, and continuing interpretation by
said 1nterpretation means after advancing program
execution, as said numeric references are encountered
while said instruction are being interpreted by said
Interpretation means;

said interpretation means, said dynamic reference han-
dling means, and said static reference handling means
performing their corresponding functions iteratively
and interleavingly.}

[7. The apparatus as set forth in claim 6, wherein, said
program 1n source code form 1s implemented 1n source code
form of an object oriented programming language.]

[8. The apparatus as set forth in claim 7, wherein, said
programming language is C.]



US RE38,104 E

7

[9. The apparatus as set forth in claim 7, wherein, said
programming language is C++.]

[10. The apparatus as set forth in claim 6, wherein, and
program execution control is a program counter.]

11. An apparatus comprising.

a memory containing intermediate form object code con-
stituted by a set of instructions, certain of said instruc-
lions containing one or more symbolic references; and

a processor configured 1o execute satd INSIFUCHIONS COM-
taining one or more symbolic references by determining
a numerical reference corresponding to said symbolic
reference, storing said numerical references, and
obtaining data in accordance to said numerical refer-
ernces.

12. A computer-readable medium containing instructions
for controlling a data processing system fo perform a
method for interpreting intermediate form object code com-
prised of instructions, certain of said instructions containing
one or more symbolic references, said method comprising
the steps of:

interpreting said instructions in accordance with a pro-
gram execution control; and

resolving a symbolic reference in an instruction being
interpreted, said step of resolving said symbolic refer-
ence including the substeps of:
determining a numerical reference corresponding to
said symbolic reference, and
storing said numerical reference in a memory.

13. A computer-implemented method for executing
instructions, certain of said instructions containing one or
more symbolic references, said method comprising the steps
of:

resolving a symbolic reference in an instruction, said step

of resolving said symbolic reference including the sub-
steps of:

determining a numerical reference corresponding to said

symbolic reference, and

storing said numerical reference in a memory.

14. The method of claim 3, wherein said substep of storing
said numerical reference comprises the substep of replacing
said symbolic reference with said numerical reference.

15. The method of claim 3, wherein said step of resolving

said symbolic reference further comprises the substep of

executing said instruction containing said symbolic refer-
ence using the stored numerical reference.
16. The method of claim 3, wherein said step of resolving

said symbolic reference further comprises the substep of
advancing program execution control after said substep of

executing said instruction containing said symbolic refer-
ence.

17. In a computer system comprising a program, a method
for executing said program comprising the steps of:
receiving intermediate form object code for said program

with symbolic data references in certain instructions of

said intermediate form object code; and

10

15

20

25

30

35

40

45

50

converting the instructions of the intermediate form object 55

code having symbolic data references, said converting

step comprising the substeps of:

resolving said symbolic references to corresponding
numerical references,

storing said numerical references, and

obtaining data in accordance to said numerical refer-
ences.

18. A computer-implemented method for executing pro-

gram operations, each operation being comprised of a set of

instructions, certain of said instructions containing one or
more symbolic references, said method comprising the steps

of:

60

65

3

receiving a set of instructions reflecting an operation; and

performing the operation corresponding fo the received
set of instructions, wherein at least one of said symbolic
references 1s resolved by determining a numerical
reference corresponding to said symbolic reference,
storing said numerical reference, and obtaining data in
accordance to said stored numerical reference.

19. A memory for use in executing a program by a

processor, the memory comprising.

intermediate form code containing symbolic field refer-
ences associated with an intermediate representation of
source code for the program,

the intermediate representation having been generated by
lexically analyzing the source code and parsing output
of said lexical analysts, and

wherein the symbolic field references are resolved by
determining a numerical reference corresponding o
said symbolic reference, and storing said numerical
reference in a memory.

20. A computer-implemented method comprising:

receiving a program that comprises a set instructions
written in an intermediate form code;

replacing each instruction in the program with a symbolic
data reference with a new instruction containing a
numeric reference resulting from invocation of a
dynamic field reference routine to resolve the symbolic
data reference; and

executing the program by performing an operation in
accordarnce with each instruction or new instruction,
depending upon whether an instruction has been
replaced with a new instruction in accordance with the
replacing step.

21. A data processing system, COmprising:

a processor; and

a memory comprising a control program for causing the
processor to (1) recetve a program that comprises a set
instructions written in an intermediate form code, (ii)
replace each instruction in the program with a sym-
bolic data reference with a new instruction containing
a numeric reference resulting from invocation of a
dynamic field reference routine to resolve the symbolic
data reference, and (iii) execute the program by per-
forming an operation in accordance with each instruc-
lion or new instruction, depending upon whether an
instruction has been replaced with a new instruction in
accordance with the replacing step.

22. An apparatus comprising.

a memory containing a compiled program in intermediate
form object code constituted by a set of instructions, at
least one of the instructions containing a symbolic
reference; and

a processor coufigured to execute the instruction by
determining a numerical reference corresponding to
the symbolic reference, and performing an operation in
accordance with the instruction and data obtained in
accordance with the numerical reference without
recompiling the program or any portion thereof.

23. A computer-implemented method, comprising:

receiving a program with a set instructions written in an
intermediate form code;

analyzing each instruction of the program to determine
whether the instruction contains a symbolic reference
o a data object; and

executing the program, wherein when it was determined
that an instruction contains a symbolic reference, data



US RE38,104 E

9

from a storage location identified by a numeric refer-
ence correspoding to the symbolic reference is used
thereafter to perform an operation corresponding 1o
that instruction.
24. A computer-implemented method for executing a
program comprised of bytecodes, the method comprising:

determining immediately prior to execution whether a
bytecode of the program contains a symbolic data
reference;

when it is determined that the bytecode of the program
contains a symbolic data reference, invoking a dynamic
field reference routine to resolve the symbolic data
reference; and

execuling thereafter the bytecode using stored data
located using a numeric reference resulting from the
resolution of the symbolic reference.

25. A data processing system, COmMprising.

d Processor, and

a memory comprising a program comprised of bytecodes
and instructions for causing the processor o (i) deter-
mine immediately prior to execution of the program
whether a bytecode of the program contains a symbolic
data reference, (ii) when it is determined that the
bytecode of the program contains a symbolic data
reference, tnvoke a dynamic field reference routine to
resolve the symbolic data reference, and (iii) execute
thereafter the bytecode using stored data located using
a numeric reference resulting from the resolution of the
symbolic reference.

20. A computer program product containing instructions

for causing a computer to perform a method for execufing a
program comprised of bytecodes, the method comprising:

determining immediately prior to execution whether a
bytecode of the program contains a symbolic data
reference;

when it 1s determined that the byitecode of the program
contains a symbolic data reference, invoking a dynamic
field reference routine to resolve the symbolic data
reference; and

executing thereafter the bytecode using stored data
located using a numeric reference resulting from the
resolution of the symbolic reference.

27. A computer-implemented method comprising.

receiving a program with a set of original instructions
written tn an intermediate form code;

generating a set of new iustructions for the program that
coniain numeric references resulting from invocation of
a routine to resolve any symbolic data references in the
set of original instructions; and

executing the program using the set of new instructions.
28. A data processing system, COmMprising.

. Processor, and

a memory comprising a conirol program for causing the
processor to (i) receive a program with a set of original
instructions written in an intermediate form code, (ii)
generate a set of new instructions for the program that
coniain numeric references resulting from invocation of
a routine to resolve any symbolic data references in the
set of original instructions, and (iil) executing the
program using the set of new nstructions.

29. A computer program product containing instructions
for causing a computer to perform a method, the method
COMprising:

receiving a program with a set of original instructions
written in an intermediate form code;

10

15

20

25

30

35

40

45

55

60

65

10

generating a set of new instructions for the program that
coniain numeric references resulting from invocation of
a routine to resolve any symbolic data references in the
set of original instructions; and

executing the program using the set of new instructions.
30. A computer-implemented method comprising:

receiving a program that comprises a set instructions
written in an intermediate form code;

replacing each instruction in the program with a symbolic
data reference with a new instruction containing a
numeric reference resulting from invocation of a
dynamic field reference routine to resolve the symbolic
data reference; and

executing the program by performing an operation in
accordarnce with each instruction or new instruction,
depending upon whether an instruction has been
replaced with a new instruction in accordance with the
replacing step.

31. A data processing system, COmprising.

a processor; and

a memory comprising a control program for causing the
processor to (i) receive a program that comprises a set
instructions written in an intermediate form code, (ii)
replace each instruction in the program with a sym-
bolic data reference with a new instruction containing
a numeric reference resulting from invocation of a
dynamic field reference routing to resolve the symbolic
data reference, and (iii) execute the program by per-
forming an operation in accordance with each instruc-
lion or new iustruction, depending upon whether an
instruction has been replaced with a new instruction in
accordance with the replacing step.

32. A computer program product containing control

instructions for causing a computer to perform a method, the
method comprising.

receiving a program that comprises a set instructions
written in an intermediate form code;

replacing each instruction in the program with a symbolic
data reference with a new instruction containing a
numeric reference resulting from invocation of a
dynamic field reference routine to resolve the symbolic
data reference; and

executing the program by performing an operation in
accordarnce with each instruction or new instruction,
depending upon whether an instruction has been
replaced with a new instruction in accordance with the
replacing step.

33. A computer-implemented method, comprising:

receiving a program with a set instructions written in an
intermediate form code;

analyzing each instruction of the program to determine
whether the instruction contains a symbolic reference
o a data object; and

executing the program, wherein when it was determined
that an instruction contains a symbolic reference, data
from a storage location identified by a numeric refer-
ence corresponding to the symbolic reference is used
thereafter to perform an operation corresponding to
that instruction.

34. A data processing system, COMprising.

d Processor, and

a memory comprising a control program for causing the
processor to (i) receive a program with a set instruc-
fions written in an intermediate form code, (ii) analyze
each instruction of the program to determine whether



US RE38,104 E

11

the instruction contains a symbolic reference to a data
object, and (iit) execute the program, wherein when it
was determined that an instruction contains a symbolic
reference, data from a storage location ideniified by a
numeric reference corresponding to the symbolic ref-
erence is used thereafter to perform an operation
corresponding to that instruction.
35. A computer program product containing control
instructions for causing a computer to perform a method, the
method comprising.

receiving a program with a set instructions written in an
intermediate form code;

analyzing each instruction of the program to determine
whether the instruction contains a symbolic reference
fo a data object; and

executing the program, wherein when it was determined
that an instruction contains a symbolic reference, data
from a storage location identified by a numeric refer-
ence corresponding to the symbolic reference is used
thereafter to perform an operation corresponding o
that instruction.

36. A computer-implemented method for executing a

program comprised of bytecodes, the method comprising.:

determining whether a bytecode of the program contains
a symbolic reference;

when it is determined that the bytecode contains a sym-
bolic reference, invoking a dynamic field reference
routine to resolve the symbolic reference; and

performing an operation identified by the bytecode there-
after using data from a storage location identified by a
numeric reference resulting from the mmvocation of the
dynamic field reference roufine.

37. A data processing system, COmMprising.

ad Pprocessor, and

a memory comprising a program comprised of bytecodes
and instructions for causing the processor to (i) deter-
mine whether a bytecode of the program contains a
symbolic reference, (ii) when it is determined that the
bytecode contains a symbolic reference, invoke a
dynamic field reference routine to resolve the symbolic
reference, and (iit) perform an operation identified by
the bytecode thereafter using data from a storage
location identified by a numeric reference resulting
from the invocation of the dynamic field reference
routine.

38. A computer program product containing instructions

for causing a computer to perform a method for executing a
program comprised of bytecodes, the method comprising.

10

15

20

25

30

35

40

45

12

determining whether a bytecode of the program contains
a symbolic reference;

when 1t is determined that the bytecode contains a sym-
bolic reference, invoking a dynamic field reference
routine to resolve the symbolic reference; and

performing an operation identified by the bytecode
therafter using data from a storage location identified
by a numeric reference resuliing from the invocation of
the dynamic field reference routine.

39. A computer-implemented method comprising:

receiving a program formed of instructions written in an
intermediate form code compiled from source code;

analyzing each instruction to determine whether it con-
tains a symbolic field reference; and

executing the program by performing an operation iden-
lified by each instruction, wherein data from a storage
location identified by a numeric reference is thereafter
used for the operation when the instruction contains a
symbolic field reference, the numeric reference having
been resolved from the symbolic field reference.

40. A data processing system, COMprising.

d Processor, and

a memory comprising a control program for causing the
processor to (i) receive a program formed of instruc-
lions wrilten in an tntermediate form code compiled
from source code, (ii) analyze each instruction to
determine whether it contains a symbolic field
reference, and (iii) execute the program by performing
an operation identified by each instruction, wherein
data from a storage location identified by a numeric
reference is thereafter used for the operation when the
instruction contains a symbolic field reference, the
numeric reference having been resolved from the sym-
bolic field reference.

41. A computer program product containing control

instructions for causing a computer to perform a method, the
method comprising.

receiving a program formed of instructions written in an
intermediate form code compiled from source code;

analyzing each instruction to determine whether it con-
tains a symbolic field reference; and

executing the program by performing an operaition iden-
lified by each instruction, wherein data from a storage
location identified by a numeric reference is used
thereafter for the operation when the instruction con-
tains a symbolic field reference, the numeric reference
having been resolved from the symbolic field reference.



UNITED STATES PATENT AND TRADEMARK OFFICE
CERTIFICATE OF CORRECTION

PATENT NO. :RE 38,104 E Page 1 of 2

DATED

. April 29, 2003

INVENTOR(S) : James Gosling

It is certified that error appears in the above-identified patent and that said Letters Patent Is
hereby corrected as shown below:

Title Page,

Item (57), ABSTRACT,
Line 24, please replace "interaction in" with -- instruction 18 --.

Column 6.

Line 135, please replace "interleaving" with -- interleavingly --.
Line 18, after "wherein", please insert a comma.

Line 23, after "counter”, please insert a semicolon.

Line 25, please replace "said ¢)" with -- said step ¢) --.

Column 7.

Lines 3-4, please replace "and program execution" with -- said program execution --.
Lines 38, 41 and 45, please replace " 3" with -- 13 --.

Column 8,

Lines 20-33, delete the claim 1n its entirety and insert therefore:

--20. A computer-implemented method for executing a compiled program containing

instructions in an intermediate form code, at least one of the instructions containing a symbolic

reference, said method comprising the steps of:

resolving the symbolic reference in the instruction by determining a numerical

reference corresponding to the symbolic reference; and

performing an operation in accordance with the instruction and data obtained in

accordance with the numerical reference without recompiling the program or any portion

thereof.--.

Lines 34-477, delete the claim 1n 1ts entirety and insert therefore:

--21. A memory encoded with a compiled program, the memory comprising:

intermediate form code containing symbolic field references associated with an
intermediate representation of source code for the program,

the intermediate vepresentation having been generated by lexically analyzing the
source code and parsing output of said lexical analysis,

such that when the program is executed by a processor each symbolic field
reference is resolved by determining a numerical reference corresponding to the symbolic field
reference and data is obtained in accordance with the numerical reference without reco;ﬂpiling

the program or any portion thereof.--.



UNITED STATES PATENT AND TRADEMARK OFFICE
CERTIFICATE OF CORRECTION

PATENT NO. :RE 38,104 E Page 2 of 2
DATED . April 29, 2003
INVENTOR(S) : James Gosling

It is certified that error appears in the above-identified patent and that said Letters Patent Is
hereby corrected as shown below:

Column 8, line 60 - Column 9, lin¢ 4,
Delete the claim 1n its entirety and insert therefore:

-- 23. A computer-readable medium containing instructions for controlling a data
processing system to perform a method for interpreting a compiled program in intermediate
form object code comprised of instructions, at least one of the instructions containing a symbolic
reference, said method comprising the steps of:

resolving the symbolic reference in the instruction by determining a numerical

reference corresponding to the symbolic reference; and

performing an operation in accordance with the instruction and data obtained in

accordance with the numerical reference without recompiling the program or any portion

thereof. --.

Column 10,
Lines 7, 23-24, 37, 50 and 65-66, please replace "a set instructions" with -- a set of

instructions --.
Line 28, please replace "routing" with -- routine --.

Column 11,
Line 11, please replace "a set instructions" with -- a set of instructions --.

Column 12,
Line 7, please replace "therafter" with -- thereafter --.

Signed and Sealed this

Sixteenth Day of September, 2003

JAMES E. ROGAN
Director of the United States Patent and Trademark Office



USOORE38104C]1

12 EX PARTE REEXAMINATION CERTIFICATE (10151st)

United States Patent
Gosling

US RE38.104 C1
*May 9, 2014

(10) Number:
45) Certificate Issued:

(54) METHOD AND APPARATUS FOR
RESOLVING DATA REFERENCES IN

GENERATED CODE
(76) Inventor: James Gosling, Redwood City, CA (US)

Reexamination Request:
No. 90/011,490, Feb. 15, 2011

Reexamination Certificate for:

Patent No.: Re. 38,104
Issued: Apr. 29, 2003
Appl. No.: 09/261.970
Filed: Mar. 3, 1999

Certificate of Correction 1ssued Sep. 16, 2003

(*) Notice:  This patent 1s subject to a terminal dis-

claimer.

Related U.S. Patent Documents

Reissue of:

(64) Patent No.: 5,367,685
Issued: Nov. 22, 1994
Appl. No.: 07/994,655
Filed: Dec. 22, 1992

Related U.S. Application Data

(63) Continuation of application No. 08/7535,764, filed on
Nov. 21, 1996, now Pat. No. Re. 36,204, which 1s an
application for the reissue of Pat. No. 5,367,685.

(51) Int. CL
GOGF 9/445 (2006.01)
(52) U.S.CL
USPC ........... 717/140; 717/106; 717/136; 717/139:

717/142;717/146

SOURCE

(38) Field of Classification Search
USPC e 713/1
See application file for complete search history.

(56) References Cited

To view the complete listing of prior art documents cited

during the proceeding for Reexamination Control Number
90/011,490, please refer to the USPTO’s public Patent

Application Information Retrieval (PAIR) system under the
Display References tab.

Primary Examiner — Eric B Kiss

(57) ABSTRACT

A hybrid compiler-interpreter comprising a compiler for
“compiling” source program code, and an interpreter for
interpreting the “compiled” code, 1s provided to a computer
system. The compiler comprises a code generator that gener-
ates code 1n intermediate form with data references made on
a symbolic basis. The interpreter comprises a main interpre-
tation routine, and two data reference handling routines, a
dynamic field reference routine for handling symbolic refer-
ences, and a static field reference routine for handling
numeric references. The dynamic field reference routine,
when 1nvoked, resolves a symbolic reference and rewrites the
symbolic reference into a numeric reference. After re-writing,
the dynamic field reference routine returns to the main inter-
pretation routine without advancing program execution to the
next instruction, thereby allowing the rewritten instruction
with numeric reference to be reexecuted. The static field
reference routine, when invoked, obtain data for the program
from a data object based on the numeric reference. After
obtaining data, the static field reference routine advances
program execution to the next instruction before returning to
the interpretation routine. The main interpretation routine
selectively mvokes the two data reference handling routines
depending on whether the data reference 1n an 1nstruction is a
symbolic or a numeric reference.

CODE — 22

44

LEXICAL 42
ANALYZER
~ &PARSER 54

46

/
TOKENIZED

STATEMENTS

INTERMEDIATE
REPRESENTATION
BUILDER o

_ INTERMEDIATE
48 REPRESENTATION
SEMANTIC
ANALYSER 53
ANNOTATED
INTERMEDIATE
50 REPRESENTATION
INTERMEDIATE
CODE FORM OBJECT — 90

GENERATION

CODE



US RE38,104 C1
1
EX PARTE
REEXAMINATION CERTIFICATE

ISSUED UNDER 35 U.S.C. 307

THE PATENT IS HEREBY AMENDED AS
INDICATED BELOW.

T
7]
Z,

AS A RESULT OF REEXAMINATION, Il HAS B
DETERMINED THAT: 10

Claims 1-10 were previously cancelled.

Claims 11-41 are cancelled.

G x e Gx ex



	Front Page
	Drawings
	Specification
	Claims
	Corrections/Annotated Pages
	Reexam Certificate

