USOORE37980E

(19) United States
a2 Reissued Patent (10) Patent Number: US RE37,980 E

Elkhoury et al. 45) Date of Reissued Patent: Feb. 4, 2003

(54) BUS-TO-BUS BRIDGE IN COMPUTER 5,813,036 A * 9/1998 Ghosh et al. 711/146

SYSTEM, WITH FAST BURST MEMORY 6,148,359 A * 11/2000 Elkhoury et al. 710/129
RANGE

* cited by examiner

(75) Inventors: Bassam Elkhoury, Longmont, CO Primary Examiner—Glenn A. Auve

(US); ChI‘lStO.phEI' J . Pettey, Houston, (74) Attorney, Agent, or Firm—Sharp, Comfort & Merrett,
TX (US); Dwight Riley, Houston, TX PC
(US); Thomas R. Seeman, Tomball,
TX (US); Brian S. Hausauer, Spring, (57) ABSTRACT
TX (US)
A computer system has a processor bus under control of the
(73) Assignee: Compaq Computer Corporation, microprocessor 1tself, and this bus communicates with main
Houston, TX (US) memory, providing high-performance access for most cache
i1l operations. In addition, the system includes one or more
_ expansion buses, preferably of the PCI type in the example
(21) - Appl. No.: 09/706,883 embodiment. A host-to-PCI bridge 1s used for coupling the
(22) Filed: Nov. 3, 2000 processor bus to the expansion bus. Other buses may be
coupled to the PCI bus via PCI-to-(E) ISA bridges, for
Related U.S. Patent Documents example. The host-to-PCI bridge contains queues for posted
Reissue of: writes and delayed read requests. All transactions are queued
(64) Patent No.: 5,835,741 going through the bridge, upstream or downstream. The
Issued: Nov. 10, 1998 system bus 1s superpipelined, in that transactions overlap. A
Appl. No.: 08/777,597 fast burst transactions are allowed between the bridge and
Filed: Dec. 31, 1996 main memory, 1.€., requests which can be satisfied without
(51) Int. CL7 ..o GO6k 13/00 deffa I"ring or retrying are applied fo the system bus without
waiting to get a response from the target. A range of
(52) US. Cl o, 710/310, 710/35 addresses (e.g.! SYSIZ@II] memory addresses) is defined to be

(58) Field of Search 710/126, 127, a fast burst range, and any address in this range is treated
7107128, 129, 107, 109, 35, 310, 306; 711/146, differently compared to addresses outside the range. The

147 bridge 1s programmed, by configuration cycles, to establish

this fast burst range, within which 1t 1s known that an

L USQBLK. . _B0BK |

(56) References Cited out-of-order response will not be received. When a transac-
US PATENT DOCUMENTS tion re:flchgs ;1 brLdge jgterfa(::e frI)El. thi Pgl blés, and 1t 1s
recognized that the address 1S within the Tast burst range,
5,535,363 A * 7/1996 PHACE wooooovsivsicnsne T11/147 then the fast burst mode is allowed, and write or read
gﬁgigﬁggj :) % gg; gayekdet E:I'l """""""" ;gﬁ gg requests can be issued without waiting for the snoop phase,
,644, amada et al. 10/1 : :
5,664,124 A * 9/1997 Katz et al. 710315 Stoee there is no possibility of defer or retry.
5,694556 A * 12/1997 Neal et al. 710/128
5,717,894 A * 2/1998 VIVIO .ccoviviviiiiiinininnnnnn. 710/35 13 Claims, 8 Drawing Sheets
- T T s B
97 47 | 57 ;
N . T AN -
: J — S :
| 1 UsSDCO — —— DSDCQ ;L. |
: N B 7 75 |
: iE : 4] | :
| .| usoca |, o | pbseca |, |
15~d] | RAM\ | /W 20
; 60 | 50 |
I o 59 - 19 I |
pg [—] .] Pl
& 4:1::; NTERFACE [Lo o P nreRrace L<~I—_I_> Pl
BUS { 43 51 l : : 1 51 44 : BUS
N /
| | usewa | I i [osewa | |
! RAM i o i RAM |
| 62 L 57 |
: — | ‘ :
| | USDRQ |< . S DSORQ [T, |
l - Bl # f
| e _dd E
i 55 I:I:IHE’*I 4571 ™46 54"’#I*I":Iﬂ 55 |
- | ARBITER g i E <3 A ARBITER [L— -
] |
' i

r
I
[
|
i
|
l
|
!
I
I
|
I
I
i
I
I
|
I
|
I
|
I
I
I
I
|
I
[
I
I
!
i
!
{
!
i
1
1
]
!
1
1
1
1
l
|
I
I
1
I

U.S. Patent Feb. 4, 2003 Sheet 1 of 8 US RE37,980 E

CPUT | PG . P6 PG
1~ t==2 | |9 | | | PROCESSOR | | PROCESSOR | | PROCESSOR
| |
B 12 13
~150
l ~15¢
t PROCESSOR BUS t t Y
16~ MEMORY . BRIDGE BRIDGE
CONTROLLER | PROCESSOR BUS PROCESSOR BUS |18
T0 PCl BUS 10 PCl BUS
17~ MAIN SYSTEM
MEMORY (DRAM)
PCLBUS |,
oy
\
PC]-TO-PCl SCS NETWORK
40-"1 BRIDGE CONT ADAPTER ™37
20
PCl BUS NETWORK
< 26 RESOURCE | |
_ 39
NFTWORK |
20 RESOURCE 39 20b 2/00
PCl BUS)
\ T S_ AD
t ‘ b [e—=c/8e
< L—_}\
VIDEO PCl BUS T0 IL—T‘ e
32-"] CONTROLLER EISA/ISA BRIDGE 25 204

8042 FLASH ROM | NVRAMI
31

27 28

. £
riG. T 261 KB/MOUSE | 30 FLOR | [SER POR]

US RE37,980 E
o\,
S
o

o
-
-
X
-+
-~
b
i —
2 CNH
| Jd
e
-
=
2 -
- 0¢
o
&
3

U.S. Patent

oToweosn o — -
| ¢g ny L
_ u71184Y AN
_ _ —
~ *\.mﬁ vm/ﬁﬁnﬁ% "o
. c/ .
| —
o omgm:'#_ .
_
_
| N
_ 29
| AV
| OMdSH
_ S
2 19 87
JOVAYIINI JOVAYIINI
17 OMdShH gd
66 w@
AV
D2ASN
e
8G
D2ASN
17
. | :T,._L e

dienil bl Sl B W DS s D nbelk nEhG ShihE aeall Seieel el wERL LA P WUE EEE AW NN SN SIS DD S DD DD S S D S T B G B G B A T ey s s ol ki A A G s SR e

S(14
9d

Gl

U.S. Patent Feb. 4, 2003 Sheet 3 of 8 US RE37,980 E

LT T2 T3 T4 TS5 T6 17 18 19 IO Ti1 T12 T3

l630)f ——— X
DRDY# L /
P6 BUS READ
rlG. 3a

m 12 13 14 15 T6 17 18 19 710 717

W U W—— S— . ™ I E—— ——
HITMA !_E'l S
e
o [T h T T
0 .
DBSY# \1/

Po BUS WRITE

FIG. 36

US RE37,980 E

Sheet 4 of 8

Feb. 4, 2003

U.S. Patent

[v\

A& Il

v4d 433d4S 1iN3d - SN 9d

—

US RE37,980 E

Sheet 5 of 8

Feb. 4, 2003

U.S. Patent

P& Old

1ldM d44dS TINd = SNE 9d

Sheet 6 of 8

US RE37,980 E

& OlA
NOILOVSNWYL 43#¥3430 SNg 9d
Ad3Y (3343430 ISNOSS3Y (1344333
N | | ;
IW|I_||I|I1| o AQYQ

™\
N

NN Cm = #l0-¢9]a

\

N #ASEQ

HE V,II

;
/777///6/
= =
=
== N,

)

'

i

:

,_/ZLzr’V/ L
|
77

/////,'/

Feb. 4, 2003
|
|
|
¢
T
/lr//// I{/
///IH
ll

L (1S3ND3Y)

|
7

fsqav

L
I
<

- LIIIIIS

U.S. Patent
L
M

US RE37,980 E

Sheet 7 of 8

Feb. 4, 2003

U.S. Patent

il e le— "l — — — b i —— — — — — L — — — — — — — — — — — — S Sap— A e Fr == —— —

I S S .

W h
O EE
— e R (R — _WHDU — - —_— — .
o =
L)
4
E o t
Te m Lot Lo 9 =)
i A e I e <Aoot
Lo AHN
S Z 1
-
—
d--
)
o
> @D | -
B =
N
m_u ﬂ_u n_.,
ol ki) - =t = <t e
! L) < Lol > >— —J —
- = m - - Lo =
<L . Qz o 98, (D
ry” ¢ — — >
i =

PCl BUS READ

FIG. 3f

U.S. Patent Feb. 4, 2003 Sheet 8 of 8 US RE37,980 E

] . 3 4 D | 6
S AVAVAS i
| n A~
FRAMES \ : / i et

| 1 |
| | | |
_ " DA DATA \ N
e) 69 G
| | | |
| | | |

/8t BUs \/ BYTE \/ BYTE \/ BYTE \ ™
CMD /\ENABLES /\ ENABLES /\ ENABLES /W _J
=

I

|

— | |

RDY# 0 | -

—_ | |
w A |
TRDY} /‘1 . [
| |

"\

— 5\ | TRANSFERS /E—

! | I

| l

|

|

oNTf! |

| |

| | |

PCl BUS WRITE

FIG. 3q

US RE37,980 E

1

BUS-TO-BUS BRIDGE IN COMPUTER
SYSTEM, WITH FAST BURST MEMORY
RANGE

Matter enclosed in heavy brackets [] appears in the
original patent but forms no part of this reissue specifi-
cation; matter printed in italics indicates the additions
made by reissue.

BACKGROUND OF THE INVENTION

This invention relates to computer systems, and more
particularly to a memory access protocol for a computer
system bus which uses a bridge between a processor bus and
a standardized system bus.

Computer systems of the PC type usually employ a
so-called expansion bus to handle various data transfers and
transactions related to I/O and disk access. The expansion
bus 1s separate from the system bus or from the bus to which
the processor 1s connected, but 1s coupled to the system bus
by a bridge circuit.

For some time, all PC’s employed the ISA (Industry
Standard Architecture) expansion bus, which was an 8-MHz,
16-bit device (actually clocked at 8.33 MHz). Using two
cycles of the bus clock to complete a transfer, the theoretical
maximum transfer rate was 8.33 MBytes/sec. Next, the
EISA (Extension to ISA) bus was widely used, this being a
32-bit bus clocked at S8MHz, allowing burst transfers at one
per clock cycle, so the theoretical maximum was 1ncreased
to 33-MBytes/sec. As performance requirements increased,
with faster processors and memory, and increased video
bandwidth needs, a high performance bus standard was a
necessity. Several standards were proposed, including a
Micro Channel architecture which was a 10-MHz, 32-bit
bus, allowing 40-MByte/sec, as well as an enhanced Micro
Channel using a 64-bit data width and 64-bit data streaming,
theoretically permitting 80-t0-160 MByte/sec transfer. The
requirements 1mposed by use of video and graphics transfer
on networks, however, necessitate even faster transfer rates.
One approach was the VESA (Video Electronics Standards
Association) bus which was a 33 MHz, 32-bit local bus
standard specifically for a 486 processor, providing a theo-
retical maximum transier rate of 132-MByte/sec for burst, or
66-MByte/sec for non-burst; the 486 had limited burst
transfer capability. The VESA bus was a short-term solution
as higher-performance processors, €.g., the Intel PS and Pé6
or Pentium and Pentium Pro processors, became the stan-
dard.

The PCI (Peripheral Component Interconnect) bus was
proposed by Intel as a longer-term solution to the expansion
bus standard, particularly to address the burst transfer 1ssue.
The original PCI bus standard has been upgraded several
times, with the current standard being Revision 2.1, avail-
able from a trade association group referred to as PCI
Special Interest Group, P.O. Box 14070, Portland, Oreg.
97214. The PCI Specification, Rev. 2.1, 1s incorporated
herein by reference. Construction of computer systems using
the PCI bus, and the PCI bus 1itself, are described 1n many
publications, including “PCI System Architecture,” 3rd Ed.,
by Shanley et al, published by Addison-Wesley Pub. Co.,
also incorporated herein by reference. The PCI bus provides
for 32-bit or 64-bit transfers at 33-or 66-MHz; 1t can be
populated with adapters requiring fast access to each other
and/or with system memory, and that can be accessed by the
host processor at speeds approaching that of the processor’s
native bus speed. A 64-bit, 66-MHz PCI bus has a theoretical

maximum transfer rate of 528-MByte/sec. All read and write

10

15

20

25

30

35

40

45

50

55

60

65

2

transfers over the bus can be burst transfers. The length of
the burst can be negotiated between initiator and target
devices, and can be any length.

System and component manufacturers have implemented
PCI bus interfaces in various ways. For example, Intel
Corporation manufactures and sells a PCI Bridge device
under the part number 82450GX, which 1s a single-chip

host-to-PCI bridge, allowing CPU-to-PCI and PCI-to-CPU
transactions, and permitting up to four P6 processors and
two PCI bridges to be operated on a system bus. Another
example 1s offered by VLSI Technology, Inc., 1s a PCI
chipset under the part number VL82C59x SuperCore, pro-
viding logic for designing a Pentium based system that uses
both PCI and ISA buses. The chipset mcludes a bridge
between the host bus and the PCI bus, a bridge between the
PCI bus and the ISA bus, an a PCI bus arbiter. Posted
memory write buflers are provided in both bridges, and
provision 1s made for Pentium’s pipelined bus cycles and
burst transactions.

The PENTIUM PRO processor, commercially available
from Intel Corporation, uses a processor bus structure as
defined 1n the specification for this device, particularly as set
forth 1n the publication “Pentium Pro Family Developer’s
Manual” Vols. 1-3, Intel Corp., 1996, available from
McGraw-Hill, and incorporated herein by reference; this
manual 1s also available from Intel by accessing <http://
www.intel.com>.

The P6 bus 1s “super pipelined” in that the groups of
signals on the bus which define a given transaction are
interleaved with similar signals which define a subsequent
fransaction. One transaction does not need to complete
before another 1s mitiated. There are multiple phases of a
transaction on the P6 bus, and each phase 1s a subset of
signals on the bus, but these phases or stages overlap one
another. An address for request #1 1s put out on the bus, and
addresses for requests #2 and #3 go out before the result for
#1 comes back. A target of a bus transaction sends back an
encoded “response” that says what the target 1s going to do,
rather than sending the data itself, usually. The response can
be a “retry,” or that the target 1s sending the data
immediately, or that it 1s latching a unique ID and 1t will
come back on the bus later and send the data when it 1s
available (a split transaction). Thus, the data completion
phases can be out-of-order, for these retry or deferred
responses. The preferred mode of operation, often, 1s to send
bursts of data, rather than reads or writes of one 64-bit
quadword. For example, 1f the bridge receives a series of
posted writes, these are all posted, and there are a limited
number of buffers in the queues of the bridge. In the
example, when the address for cache line #1 1s put on the
bus, preferably the address for cache line #2 immediately
follows, but 1if the request for cache line #1 is retried, then
the ordering rules are violated; the rules dictate that #1 has
to complete before #2, and 1f the address for #2 1s put out on
the bus and 1t completes 1n order, 1ts too late, since a retry
already 1s out for #1. To guarantee ordering, 1t would be
necessary to put out address #1, wait until it 1s known that
#1 1s not retried or deferred, then put out address #2, etc.
This would destroy the benefits of superpipelining on the P6
bus. Now, main memory can usually be accessed 1n the clock
periods allowed on the P6 bus without deferring or retrying;
no out of order responses are needed. To the extent that most
fransactions on the P6 bus are to system memory, it 1s a
penalty to put out the address and the ADS#, wait around for
the snoop phase (e.g., six clocks), then put out the next
address for a burst; 1t 1s known, by the nature of the requests
to system memory, that these transactions will complete in

US RE37,980 E

3

order. It 1s for this reason that the fast burst memory range
1s employed, as will be explained.

SUMMARY OF THE INVENTION

It 1s therefore one object of the present invention to
provide an improved way of handling fast burst transactions
on a bus in a computer system.

It 1s another object of the present invention to provide an
improved computer system having enhanced performance
when making accesses to devices on an expansion bus, using,
a bridge between a processor bus and an expansion bus.

It 1s a further object of the present invention to provide an
improved bridge circuit for connecting a processor bus to an
expansion bus, particularly one allowing fast burst transac-
tions.

The above as well as additional objects, features, and

advantages of the present invention will become apparent 1n
the following detailed written description.

According to one embodiment of the invention, a com-
puter system has a processor bus under control of the
microprocessor itself, and this bus communicates with main
memory, providing high-performance access for most cache
i1l operations. In addition, the system includes one or more
expansion buses, preferably of the PCI type in the example
embodiment. A host-to-PCI bridge 1s used for coupling the
processor bus to the expansion bus. Other buses may be
coupled to the PCI bus via PCI-to-(E)ISA bridges, for
example. The host-to-PCI bridge contains queues for posted
writes and delayed read requests. All transactions are queued
cgoing through the bridge, upstream or downstream. The
system bus 1s superpipelined, 1n that transactions overlap.
According to a feature of the mvention, provision 1s made
for fast burst transactions, 1.€., read requests which can be
satisfied without deferring or retrying are applied to the
system bus without waiting for the snoop phase. A range of
addresses (e.g.,system memory addresses) is defined to be a
fast burst range, and any address in this range 1s treated
differently compared to addresses outside the range. The
bridge 1s programmed, by configuration cycles, to establish
this fast burst range, within which it 1s known that an
out-of-order response will not be received. Because 1t 1s
known there will be no out-of-order responses, the mitiator
(processor) can send out a burst of eight write transactions
1in quick succession, knowing that all will complete 1n order.
The range values are stored in configuration registers in the
bridge, written at the time the machine 1s turned on; the boot
up includes interrogating the main memory to see what its
range 1S, then that range 1s programmed into the bridge.
Thereafter, when a transaction reaches the bridge interface
from the expansion bus, and 1t 1s recognized that the address
1s within the range, then the fast burst mode 1s allowed, and
write addresses are allowed to follow one another without
the usual delay.

BRIEF DESCRIPTION OF THE DRAWINGS

The novel features believed characteristic of the invention
are set forth 1n the appended claims. The mvention itself
however, as well as a preferred mode of use, further objects
and advantages thereof, will best be understood by reference
to the following detailed description of an 1illustrative
embodiment when read 1n conjunction with the accompa-
nying drawings, wherein:

FIG. 1 1s an electrical diagram 1n block form of computer
system 1n which a delayed transaction protocol may be
implemented according to an embodiment of the invention;

10

15

20

25

30

35

40

45

50

55

60

65

4

FIG. 2 15 an electrical diagram in block form of a bridge
circuit for use 1 the system of FIG. 1, according to one
embodiment; and

FIGS. 3a—3g are timing diagrams showing events occur-
ring on the buses 1n the system of FIG. 1.

DETAILED DESCRIPTION OF PREFERRED
EMBODIMENT

Referring to FIG. 1, a computer system 10 1s shown which
may use features of the 1nvention, according to one embodi-
ment. The system includes multiple processors 11, 12, 13
and 14 1n this example, although the 1mprovements may be
used 1n a single processor environment. The processors are
of the type manufactured and sold by Intel Corporation
under the trade name PENTIUM PRO, although the proces-
sors are also referred to as “P6” devices. The structure and
operation of these processors 11, 12, 13, and 14 are
described 1n detail 1in the above-mentioned Intel
publications, as well as 1n numerous other publications. The
processors are connected to a processor bus 15 which 1s
oenerally of the structure specified by the processor
specification, 1n this case a Pentium Pro specification. The
bus 15 operates at a submultiple of the processor clock, so
if the processors are 166 MHz or 200 MHz devices, for
example, then the bus 15 1s operated based on some multiple
of the base clock rate. The main memory 1s shown connected
to the processor bus 15, and includes a memory controller 16
and DRAM memory 17. The processors 11, 12, 3, and 14
cach have a level-two cache 1.2 as a separate chip within the
same package as the CPU chip itself, and of course the CPU
chips have level-one L1 data and instruction caches included
on-chip.

According to the invention, a bridge 18 or 19 1s provided
between the processor bus 15 and a PCI bus 20 or 21. Two
bridges 18 and 19 are shown, although 1t 1s understood that
many systems would require only one, and other systems
may use more than two. In one example, up to four of the
bridges may be used. The reason for using more than one
bridge 1s to increase the potential data throughput. A PCI
bus, as mentioned above, 1s a standardized bus structure that
1s built according to a specification agreed upon by a number
of equipment manufacturers so that cards for disk
controllers, video controllers, modems, network cards, and
the like can be made 1n a standard configuration, rather than
having to be customized for each system manufacturer. One
of the bridges 18 or 19 is the primary bridge, and the
remaining bridges (if any) are designated secondary bridges.
The primary bridge 18 in this example carries traffic for the
“legacy” devices such as (E)ISA bus, 8259 interrupt
controller, VGA graphics, IDE hard disk controller, etc. The
secondary bridge 19 does not usually incorporate any PC
legacy items.

All traffic between devices on the concurrent PCI buses 20
and 21 and the system memory 17 must traverse the pro-
cessor bus 15. Peer-to-peer transactions are allowed between
a master and target device on the same PCI bus 20 or 21;
these are called “standard” peer-to-peer transactions. Trans-
actions between a master on one PCI bus and a target device
on another PCI bus must traverse the processor bus 15, and
these are “traversing’ transactions; memory and I/O reads
and writes are allowed 1n this case but not locked cycles and
some other special events.

In an example embodiment as seen 1n FIG. 1. PC legacy
devices are coupled to the PCI bus 20 by an (E)ISA bridge
23 to an EISA/ISA bus 24. Attached to the bus 24 are

components such as a controller 25 (e.g., an 8042) for

US RE37,980 E

S

keyboard and mouse mputs 26 flash ROM 27, NVRAM 28,
and a controller 29 for floppy drive 30 and serial/parallel
ports 31. A video controller 32 for a monitor 33 1s also
connected to the bus 20. On the other PCI bus 21, connected
by bridge 19 to the processor bus 15, are other resources

such as a SCSI disk controller 34 for hard disk resources 35
and 36, and a network adapter 37. A network 38 1s accessed
by the adapter 37, and a large number of other stations
(computer systems) 39 are coupled to the network. Thus,
transactions on the buses 15, 20, and 21 may originate 1n or
be directed to another station or server 39 on the network 38.
The embodiment of FIG. 1 1s that of a server, rather than a
standalone computer system, but the bridge features can be
used as well 1n a workstation or standalone desktop com-
puter. The controllers such as 32, 34, and 37 would usually
be cards fitted mto PCI bus slots on the motherboard. If
additional slots are needed, a PCI-to-PCI bridge 40 may be
placed on the PCI bus 21 to access another PCI bus 41; this
would not provide additional bandwidth, but would allow
more adapter cards to be added. Various other server
resources can be connected to the PCI buses 20, 21, and 41,
using commercially-available controller cards, such as
CD-ROM drives, tape drives, modems, connections to ISDN
lines for internet access, etc.

The processor bus 15 contains a number of standard
signal or data lines as defined 1n the specification for the
PENTIUM PRO or P6 processor, mentioned above. In
addition, certain special signals are included for the unique
operation of the bridges 18 and 19, as will be described. The
bus 15 contains thirty-three address lines 154, sixty-four
data lines 15b, and a number of control lines 15¢. Most of
the control lines are not material here and will not be
referred to; also, data and address signals have parity lines
assoclated with them which will not be treated here. The
control signals of interest here are described, and 1include the
address strobe ADS#, data ready DRDY#, lock LOCK#,
data busy DBSY#, defer DEFER#, request command REQ
[4:0]#(five lines), response status RS[2:0#, etc.

The PCI bus 20 (or 21) also contains a number of standard
signal and data lines as defined 1n the PCI specification. This
bus 1s a multiplexed address/data type, and contains sixty-
four AD lines 204, eight command/byte-enable lines 205,
and a number of control lines 20c¢ as will be described. The
definition of the control lines of interest here 1s given 1n
Appendix B, including frame FRAME#, initiator ready
IRDY#, lock P__LOCKH#, target ready TRDY#, STOP#, etc.
In addition, there are PCI arbiter signals 204, also described
in Appendix B, including request REQx#, grant P_ GNTx#,
MEMACKH#, efc.

Referring to FIG. 2, the bridge circuit 18 (or 19) is shown
in more detail. This bridge includes an interface circuit 43
serving to acquire data and signals from the processor bus 15
and to drive the processor bus with signals and data. An
interface 44 serves to drive the PCI bus 20 and to acquire

signals and data from the PCI bus. Internally, the bridge 1s
divided into an upstream queue block 45 (US QBLK) and a

downstream queue block 46 (DS QBLK). The term down-
stream means any transaction going from the processor bus
15 to the PCI bus 20, and the term upstream means any
transaction going from the PCI bus back toward the proces-
sor bus 15. The bridge interfaces on the upstream side with
the processor bus 15 which operates at a bus speed related
to the processor clock rate which 1s, for example, 133 MHz,
166 MHz, or 200 MHz for Pentium Pro processors, whereas
it interfaces on the downstream side with the PCI bus which
operates at 33 or 66 MHz. Thus, one function of the bridge
18 is that of a buffer between asynchronous buses, and buses

10

15

20

25

30

35

40

45

50

55

60

65

6

which differ 1n address/data presentation, 1.€., the processor
bus 15 has separate address and data lines, whereas the PCI
bus uses multiplexed address and data lines. To accomplish
these translations, all bus transactions are buffered in

FIFO’s.

For transactions traversing the bridge 18, all memory
writes are posted writes and all reads are split transactions.
A memory write transaction initiated by a processor device
on the processor bus 15 1s posted to the interface 43 of FIG.
2 and the processor goes on with 1nstruction execution as if
the write had been completed. A read requested by a
processor 11-14 1s not implemented at once, due to mis-
match 1n the speed of operation of all of the data storage
devices (except for caches) compared to the processor speed,
so the reads are all treated as split transactions in some
manner. An internal bus 47 conveys processor bus write
transactions or read data from the interface 43 to a down-
stream delayed completion queue DSDCQ 48 and a RAM
49 for this queue, or to a downstream posted write queue S0
and a RAM 51 for this queue. Read requests going down-
strecam are stored 1n a downstream delayed request queue
DSDRQ 52. An arbiter 53 monitors all pending downstream
posted writes and read requests via valid bits on lines 54 1n
the downstream queues and schedules which one will be
allowed to execute next on the PCI bus according to the read
and write ordering rules set forth i the PCI bus speciiica-
tion. Commands to the mterface 44 from the arbiter 53 are
on lines 55.

The components of upstream queue block 45 are similar
to those of the downstream queue block 46, 1.e., the bridge
18 1s essentially symmetrical for downstream and upstream
fransactions. A memory write transaction initiated by a
device on the processor bus 20 1s posted to the PCI interface
44 of FIG. 2 and the master device proceeds as if the write
had been completed. A read requested by a device on the PCI
bus 20 1s not implemented at once by a target device on the
processor bus 15, so these reads are again treated as delayed
transactions. An internal bus 57 conveys PCI bus write
fransactions or read data from the interface 44 to an
upstream delayed completion queue USDCQ 58 and a RAM
59 for this queue, or to an upstream posted write queue 60
and a RAM 61 for this queue. Read requests going upstream
are stored 1n an upstream delayed request queue USDRQ 62.
An arbiter 63 monitors all pending upstream posted writes
and read requests via valid bits on lines 64 1n the upstream
queues and schedules which one will be allowed to execute
next on the processor bus according to the read and write
ordering rules set forth 1n the PCI bus specification. Com-
mands to the interface 43 from the arbiter 63 are on lines 635.

The structure and functions of the FIFO buflfers or queues
in the bridge 18 will now be described. Each buffer in a
delayed request queue, 1.e., DSDRQ 52 or USDRQ 62,
stores a delayed request that 1s waiting for execution, and
this delayed request consists of a command field, an address
field, a write data field (not needed if this is a read request),
and a valid bit. The upstream USDRQ 62 holds requests
originating from masters on the PCI bus and directed to
targets on the processor bus 15 and has eight buffers (in an
example embodiment), corresponding one-to-one with eight
buffers 1n the downstream delayed completion queue
DSDCQ 48. The downstream delayed request queue
DSDRQ 52 holds requests originating on the processor bus
15 and directed to targets on the PCI bus 20 and has four
buflers, corresponding one-to-one with four buifers in the
upstream delayed completion queue USDCQ 58. The
DSDRQ 52 1s loaded with a request from the interface 43 via
bus 72 and the USDCQ 58. Similarly, the USDRQ 62 1s

US RE37,980 E

7

loaded from interface 44 via bus 73 and DSDCQ 48. The
reason for going through the DCQ logic 1s to check to see 1t
a read request 1s a repeat of a request previously made. Thus,
a read request from the bus 15 1s latched into the interface
43 1n response to an ADS#, capturing an address, a read
command, byte enables, etc. This mnformation 1s applied to

the USDCQ 38 via lines 74, where 1t 1s compared with all
enqueued prior downstream read requests; 1f 1t 1s a duplicate,
this new request 1s discarded if the data i1s not available to
satisty the request, but 1f 1t 1s not a duplicate, the information
1s forwarded to the DSDRQ 52 via bus 72. The same
mechanism 1s used for upstream read requests; information
defining the request 1s latched 1nto interface 44 from bus 20,
forwarded to DSDCQ 48 via lines 75, and if not a duplicate
of an enqueued request 1t 1s forwarded to USDRQ 62 via bus
73.

The delayed completion queues each include a control
block 48 or 58 and a dual port RAM 49 or §9. Each bufler
in a DCQ stores completion status and read data for one
delayed request. When a delayable request 1s sent from one
of the mterfaces 43 or 44 to the queue block 45 or 46, the
first step 1s to check within the DCQ 48 or 58 to see 1if a
buffer for this same request has already been allocated. The
address and the commands and byte enables are checked
against the eight buffers in DCQ 48 or 58. If not a match,
then a buffer is allocated (if one is available) the request is
delayed (or deferred for the bus 15), and the request is
forwarded to the DRQ 52 or 62 1n the opposite side via lines
72 or 73. This request 1s run on the opposite bus, under
control of the arbiter 53 or 63, and the completion status and
data are forwarded back to the DCQ 48 or 58 via bus 47 or
57. After status/data are placed 1n the allocated buffer 1n the
DCQ 1n this manner, this buffer 1s not valid until ordering
rules are satisfied; e€.g., a read cannot be completed until
previous writes are completed. When a delayable request
“matches” a DCQ buffer and the requested data 1s valid, then
the request cycle 1s ready for immediate completion.

The downstream DCQ 48 stores status/read data for
PCI-to-host delayed requests, and the upstream DCQ 58
stores status/read data for Host-to-PCI delayed or deferred
requests. The upstream and downstream operation is slightly
different 1n this regard. The bridge control circuitry causes
prefetch of data into the DSDCQ butifers 48 on behalf of the
master, attempting to stream data with zero wait states after
the delayed request completes. DSDCQ butilers are kept
coherent with the host bus 15 via snooping, which allows the
buffers to be discarded as seldom as possible. Requests
cgoing the other direction are not subjected to prefetching,
however, since many PCI memory regions have “read side
effects”(e.g., stacks and FIFO’s) so the bridge never
prefetches data into these buffers on behalf of the master,
and USDCQ buffers are flushed as soon as their associated
deferred reply completes.

The posted write queues each contain a control block 50
or 60 and a dual port RAM memory 51 or 61, with each one
of the buffers 1in these RAMSs storing command and data for
one write. Only memory writes are posted, 1.e., writes to I/0O
space are not posted. Because memory writes tlow through
dedicated queues within the bridge, they cannot be blocked
be delayed requests that precede them; this 1s a requirement
of the PCI specification. Each of the four buifers in DSPWQ
50, 51 stores 32-Bytes of data plus commands for a host-
to-PCI write; this 1s a cache line the bridge might receive a
cacheline-sized write 1f the system has a PCI video card that

supports the P6 USWC memory type. The four builers in the
DSPWQ 50, 51 provide a total data storage of 128-bytes.

Each of the four buffers in USPWQ 60, 61 stores 256-Bytes

10

15

20

25

30

35

40

45

50

55

60

65

3

of data plus commands for a PCI-to-host write; this 1s eight
cache lines (total data storage=1-KByte). Burst memory
writes that are longer than eight cache lines can cascade
continuously from one buffer to the next in the USPWQ.
Often, an entire page (e.g., 4-KB) i1s written from disk to
maln memory 1n a virtual memory system that 1s switching
between tasks; for this reason, the bridge has more capacity

for bulk upstream memory writes than for downstream.

The arbiters 53 and 63 control event ordering 1n the
QBLKs 45 and 46. These arbiters make certain that any
transaction 1n the DRQ 52 or 62 1s not attempted until posted
writes that preceded 1t are flushed, and that no datum in a
DRQ 1s marked valid until posted writes that arrived 1n the

QBLK ahead of 1t are flushed.

Referring to FIG. 3a, the data and control signal protocol
on the bus 15 1s defined by the processors 11-14, which 1n
the example are Intel “Pentium Pro” devices. The processors
11-14 have a bus interface circuit within each chip which
provides the bus arbitration and snoop functions for the bus
15. A P6 bus cycle includes six phases: an arbitration phase,
a request phase, an error phase, a snoop phase, a response
phase, and a data phase. A simple read cycle where data 1s
immediately available (i.e., a read from main memory 17) is
illustrated 1n FIG. 3a. This read 1s initiated by first acquiring
the bus; a bus request 1s asserted on the BREQn# line during
T1; if no other processors having a higher priority (using a
rotating scheme) assert their BREQn#, a grant is assumed
and an address strobe signal ADS# 1s asserted in T2 for one
clock only. The address, byte enables and command signals
are asserted on the A# lines, beginning at the same time as
ADS#, and continuing during two cycles, T3 and T4, 1.¢., the
asserted information 1s multiplexed onto the A# lines 1n two
cycles. During the first of these, the address 1s applied, and
during the second, the byte enables and the commands are
applied. The error phase 1s a parity check on the address bits,
and 1f a parity error 1s detected an AERR# signal 1s asserted
during T35, and the transaction aborts. The snoop phase
occurs during T7; if the address asserted during T3 matches
the tag of any of the L2 cache lines and 1s modified, or any
other resource on bus 15 for which coherency 1s maintained,
a modified HITM# signal 1s asserted during 17, and a
writeback must be executed before the transaction proceeds.
That 1s, if the processor 11 attempts to read a location in
main memory 17 which 1s cached and modified at that time
in the .2 cache of processor 12, the read 1s not allowed to
proceed until a writeback of the line from L2 of processor 12
to memory 17 1s completed, so the read 1s delayed. Assum-
ing that no parity error or snoop hit occurs, the transaction
enters the response phase during T9. On lines RS[2:0#, a
response code 1s asserted during T9; the response code
indicates “normal data,” “retry,” “deferred,” etc., depending
on when the data 1s going to be available 1n response to the
read request. Assuming the data 1s immediately available,
the response code 1s “normal data” and the data itself is
asserted on data lines D[63:0 [# during T9 and T12 (the data
phase); usually a read request to main memory is for a cache
line, 32-bytes, so the cache line data appears on the data
lines during four cycles, 8-bytes each cycle, as shown. The
data bus busy line DBSY# 1s sampled before data 1s asserted,
and 1f free then the responding agent asserts DBSY# itself
during T9-T11 to hold the bus, and asserts data ready on the
DRDY# line to indicate that valid data 1s being applied to the
data lines.

Several read requests can be pending on the bus 15 at the
same time. That 1s, another request can be asserted by any
agent which is granted the bus (the same processor, or by a
different processor), during TS, indicated by dotted lines for

US RE37,980 E

9

the ADS# signal, and the same sequence of error, snoop,
response, and data phases would play out 1n the same order,
as discussed. Up to eight transactions can be pending on the
bus 15 at one time. The transactions complete in order unless
they are split with a deferred response. Transactions that
receive a deferred response may complete out of order.

A simple write transaction on the P6 bus 15 is illustrated
in FIG. 3b. As 1n a read transaction, after being granted the
bus, 1n T3 the 1nitiator asserts ADS# and asserts the REQa(Q#
(command and B/E’s). TRDY# is asserted three clocks later
m 1T6. TRDY# 1s active and DBSY# 1s inactive 1n T8, so data
transfer can begin in T9; DRDY# 1s asserted at this time. The
initiator drives data onto the data bus D[63:0]# during T9.

Aburst or full-speed read transaction 1s illustrated i FIG.
3c. Back-to-back read data transfers from the same agent
with no wait states. Note that the request for transaction-4 1s
being driven onto the bus while data for transaction-1 1s just
completing 1 110, illustrating the overlapping of several
transactions. DBSY# 1s asserted for transaction-1 in T7 and
remains asserted until T10. Snoop results indicate no
implicit writeback data transfers so TRDY# 1s not asserted.

Likewise, a burst or full-speed write transaction with no
wait states and no implicit writebacks 1s 1llustrated 1n FIG.
3d. TRDY# for transaction-2 can be driven the cycle after
RS[2:0# is driven. In T11, the target samples TRDY# active
and DBSY# mactive and accepts data transfer starting in
T12. Because the snoop results for transaction-2 have been
observed 1n T9, the target 1s free to drive the response 1n T12.

A deferred read transaction 1s illustrated in FIG. 3a. This
1s a split transaction, meaning the request 1s put out on the
bus, then at some time later the target initiates occur on the
bus 1n the 1intervening time. Agents use the deferred response
mechanism of the P6 bus when an operation has signifi-
cantly greater latency than the normal in-order response.
During the request phase on the P6 bus 15, an agent can
assert Defer Enable DEN# to indicate 1f the transaction can
be given a deferred response. If DEN# 1s 1nactive, the
fransaction cannot receive a deferred response; some trans-
actions must always be 1ssued with DEN# 1nactive, ¢.g.,
bus-locked transactions, deferred replies, writebacks. When
DEN# 1s inactive, the transaction may be completed m-order
or it may be retried, but 1t cannot be deferred. A deferred
fransaction 1s signalled by asserting DEFER# during the
snoop phase followed by a deferred response 1n the response
phase. On a deferred response, the response agent must latch
the deferred ID, DID|[7:0]#, issued during the request phase,
and after the response agent completes the original request,
it must 1ssue a matching deferred-reply bus transaction,
using the deferred ID as the address 1n the reply transaction’s
request phase. The deferred ID 1s eight bits transferred on
pins Ab[23:16] in the second clock of the original transac-
fion’s request phase.

Aread transaction on the PCI bus 20 (or 21) is illustrated
in FIG. 3f. It 1s assumed that the bus master has already
arbitrated for and been granted access to the bus. The bus

master must then wait for the bus to become 1dle, which 1s
done by sampling FRAME# and IRDY# on the rising edge

of each clock (along with GNT#); when both are sampled
deasserted, the bus 1s 1dle and a transaction can be 1nitiated

by the bus master. At start of clock T1, the initiator asserts

FRAME#, indicating that the transaction has begun and that
a valid start address and command are on the bus. FRAME#

must remain asserted unfil the 1nitiator 1s ready to complete
the last data phase.

When the initiator asserts FRAME#, 1t also drives the start
address onto the AD bus and the transaction type onto the

10

15

20

25

30

35

40

45

50

55

60

65

10

Command/Byte Enable lines, C/BE[3:0}#. A turn-around
cycle (i.e., a dead cycle) 1s required on all signals that may
be driven by more than one PCI bus agent, to avoid
collisions.

At the start of clock T2, the initiator ceases driving the AD
bus, allowing the target to take control of the AD bus to drive
the first requested data 1tem back to the 1nitiator. Also at the

start of clock T2, the initiator ceases to drive the command
onto the C/BE lines and uses them to indicate the bytes to be
transferred in the currently addressed doubleword (typically,
all bytes are asserted during a read). The initiator also asserts
IRDY# during T2 to indicate it 1s ready to receive the first
data 1tem from the target. The mitiator asserts IRDY# sand
deasserts FRAME# simultancously to indicate that 1t 1s
ready to complete the last data phase (TS in FIG. 3f). During
clock T3, the target asserts DEVSEL# to indicate that it
recognized 1ts address and will participate in the transaction,
and begins to drive the first data item onto the AD bus while
it asserts TRDY# to indicate the presence of the requested
data. When the 1nitiator sees TRDY# asserted 1n T3 1t reads
the first data 1tem from the bus. The 1nitiator keeps IRDY#
asserted upon entry into the second data phase in T4, and
does not deassert FRAME#, indicating 1t 1s ready to accept
the second data i1tem. In a multiple-data phase transaction
(e.g., a burst), the target latches the start address into an
address counter, and increments this address to generate the
subsequent addresses.

A write transaction on the PCI bus 20 (or 21) is illustrated
in FIG. 3g. At start of clock T1, the write initiator asserts
FRAME#, indicating that the transaction has begun and that
a valid start address and command are on the bus. FRAME#
remains asserted until the 1nitiator 1s ready to complete the
last data phase. When the 1nitiator asserts FRAME#, 1t also
drives the start address onto the AD bus and the transaction
type onto the C/BE[3:0]# lines. In clock T2, the initiator
switches to driving the AD bus with the data to be written;
no turn-around cycle 1s needed since the 1nitiator continues
to drive the bus 1tself. The 1nitiator also asserts IRDY# 1n T2
to 1ndicate the presence of data on the bus. FRAME# 1s not
deasserted until the last data phase. During clock T2, the
target decodes the address and command and asserts
DEVSEL# to claim the transaction, and asserts TRDY# to

indicate readiness to accept the first data item.

The system bus 15 1s superpipelined, 1n that transactions
overlap. According to a feature of the mnvention, provision 1s
made for fast burst transactions, 1.e., read or write requests
which can be satisfied without deferring or retrying are
applied to the system bus 15 without waiting for the snoop
phase. A range of addresses (e.g., system memory 17
addresses) 1s defined to be a fast burst range, and any address
in this range 1s treated differently compared to addresses
outside the range. The bridge 18 or 19 is programmed, by
conilguration cycles, to establish this fast burst range, within
which 1t 1s known that an out-of-order response will not be
received. Because 1t 1s known there will be no out-of-order
responses, the initiator (PCI agent) can send out a burst of
eight write transactions 1n quick succession, knowing that all
will complete 1n order. The range values are stored in
conilguration registers in the bridge 18 or 19, written at the
time the system 10 1s turned on; the boot up includes
interrogating the main memory 17 or 1ts controller 16 to sce
what 1ts range 1s, then that range 1s programmed into the
interface 43 of the bridge. Thereafter, when a PCI-to-main
memory transaction reaches the bridge interface 43, and 1t 1s
recognized that the address 1s within the range, then the fast
burst mode 1s allowed, and write addresses are allowed to
follow one another without the usual delay.

US RE37,980 E

11

In one embodiment, the fast burst region 1s defined to be
region from 1-MByte to the Top of Memory. The properties
of the fast burst region are that any memory transaction to
this region will be guaranteed to never be retried or deferred.
With this guarantee, the bridge 18 or 19 can 1ssue multi-
cachline accesses to this region every three clocks without
having to wait for the snoop phase, knowing that these
fransactions will never be retried or deferred. Multi-
transactions will only be 1ssued 1n this fast burst region
without waiting for the snoop phase 1f a “fast burst memory
mode enable” bit 1s set 1n an address decode modes register
in the bridge.

While the invention has been particularly shown and
described with reference to a preferred embodiment, 1t will
be understood by those skilled 1n the art that various changes
in form and detail may be made therein without departing
from the spirit and scope of the mnvention.

What 1s claimed 1s:

1. A method of operating a computer system of the type
having a CPU with a system bus coupled to the CPU, a main
memory coupled to said system bus, and having an expan-
sion bus coupled to the system bus by a bridge, comprising
the steps of:

initiating by said CPU a transaction on said system bus
directed to a device coupled to said expansion bus, said
transaction being initiated by a request being applied to
said system bus by said CPU, followed by a snoop
phase and a response phase

defining a range of main memory addresses to which
fransactions are completed tn order without being
deferred or retried;

initiating at least first and second transactions on said
system bus directed to said range of main memory
addresses, said transactions being initiated by a first
request being applied to said system bus, followed
immediately by a second request, without waiting for a
snoop phase.

2. A method according to claim 1 wherein said expansion
bus 1s a standardized “PCI” bus.

3. A method according to claim 2 wherein said CPU 1s a
microprocessor of the “Pentium Pro” type.

4. A method according to claim 1 including the step of
designating [a] said range of memory as a fast burst memory
region [and initiating a pair of] fo which transactions may be
addressed consecutively and completed in order, without
waiting for a snoop phase[, when said first transaction is
addressed to said range] between said memory transactions.

10

15

20

25

30

35

40

45

12

5. A method according to claim 4 wherein said fast burst
memory region includes the range of addresses of said main
memory above 1 Megabyte.

6. A method according to claim 1 wherein said CPU
initiated transactions may include a retry or deferred
responsefand said first transaction may not include a retry or
deferred response].

7. A computer system, comprising;:

a CPU;

a system bus coupled to the CPU;
a main memory coupled to said system bus;
an expansion bus coupled to the system bus by a bridge;

a signal path element of said system bus for initiating by
said CPU a transaction on said system bus directed to
a device coupled to said expansion bus, said transaction
being 1nitiated by a request being applied to said system
bus by said CPU, followed by a snoop phase;

said signal path element also providing for initiating af

least first and second transactions on said system bus
directed to a defined range of addresses of said main
memory fo which transactions are completed in order
without being deferred or retried, said first transaction
being 1nitiated by a first request being applied to said
system bus, followed immediately by a second request,
without waiting for a snoop phase.

8. A system according to claim 7 wherein said defined
range of addresses comprises a fast burst memory range 1s
defined by information stored in said bridge and said path
clement adapted to begin said second transaction without
waiting for said snoop phase of said first transaction when
said first transaction 1s directed to said defined range of
addresses.

9. A system according to claim 8 wherein said first and
second transactions are initiated by said bridge.

10. A system according to claim 7 wherein said expansion
bus 1s a standardized “PCI” bus.

11. A system according to claim 10 wherein said CPU 1s
a microprocessor of the “Pentium Pro” type.

12. A system according to claim 7, wherein said defined
range of addresses includes the range of addresses of said
main memory above 1 Megabyte.

13. A system according to claim 7, wherein said defined
range of addresses of said main memory comprises a fast
burst memory range to which successive ransactions may
be addressed and completed in order without waiting for
snoop phases between said memory transactions.

	Front Page
	Drawings
	Specification
	Claims

