(19)

United States
Reissued Patent

USOORE37722E

(12) (10) Patent Number: US RE37,722 E
Burnard et al. 45) Date of Reissued Patent: May 28, 2002
(54) OBJECT-ORIENTED SYSTEM FOR THE 5,125,091 A * 6/1992 Staas, Jr. et al. 709/101
TRANSPARENT TRANSLATION AMONG 5,133,075 A * 7/1992 Risch .ovvvvevevvennnnne, 707/201
LOCALES OF LOCALE-DEPENDENT 5,136,705 A * §/1992 Stubbs et al. 714/27
5,151,987 A * 9/1992 Abraham et al. 714/20
APPLICATION PROGRAMS 5,181,162 A * 1/1993 Smith et al. 707/530
(75) TInventors: David J. Burnard, Forest Grove, OR 5,204,945 A * 4/1993 Sakaibara et al. 395/134
_ 5,243,519 A * 9/1993 Andrews et al. 704/8
(US); Thomas H. Taylor, Redmond, 5265202 A * 11/1993 Krueger et al. 305/345
WA (US) 5300555 A * 5/1994 Akins et al. ...ooooo...... 395/330
5313636 A * 5/1994 Noble et al.cvevevevn... 707/1
(73) Assignee: Object Technology Licensing Corp., T / o /
Cupertino, CA (US) (List continued on next page.)
(*) Notice: 3'11;1111 E?tent 1s subject to a terminal dis Primary Examiner—Dennis M. Butler
' (74) Attorney, Agent, or Firm—Morgan & Finnegan, LLP
(21) Appl. No.: 09/273,804 (57) ABSTRACT
(22) Filed: Mar. 17, 1999 User interface objects are stored in a user interface object
Related U.S. Patent Documents archive which 1s a database physically located 1n the shared
Reissue of: o library of an associated application program. In order to
(64) Pateﬁt No - 5613.122 facilitate “localization”, or preparation of an application
Tesued:) N![ar !18 1997 developed 1n one language for use 1n an “area” or a locale
Appl N o - 08 /339 1’01 which uses another language, the user interface objects are
Filed: Nov 121 1004 stored in a hierarchical locale tree within the archive. All
| S objects are stored 1n the base or root of the hierarchy, but
. only those objects which require a translation are stored 1n
(51) Int. Cl./ o, GO6F 9/44 an area associated with a more SpeCiﬁC locale. At ruIl‘[iI]:]e, a
| | _ complete collection of objects 1s assembled by starting at the
(52) UISI Cll --------------------------- 717/1} 345/326} 7094?%}]? deSired locale and proceeding up the hierarChy level_by_
_ level. Translated objects at lower levels of the hierarchy
(58) Field of SearCl'-l R 7 17/1, 2, 3, 5, “averride” those at hlgher levels so that the most Complete
71777, 10; 707/102; 7007175 345/326; 709/321 translations of each object are obtained during this search.
(56) References Cited The user mterface objects which are stored 1n an archive are
actually created via a predefined “constructor” program,
U.S. PATENT DOCUMENTS and, 1n order to allow newly-created user interface objects to
4495491 A * 1/1985 PoStl ..oovvvrirvrererrnrnn 345/157 ~ usc the predesigned constructor program, cach user interface
4821220 A * 4/1989 DUISDErg .eoevveveveeerennn.. 364/578 object 1s contained 1n a special “escort” object that interfaces
4885717 A * 12/1989 Beck et al.uenn......... 395/704 with the constructor program. Both the user interface object
4,891,630 A * 1/1990 Friedman et al. 345/156 and the escort object are stored at the appropriate locale 1n
4,953,080 A * 81990 Dysart et al. the archive, but when an archived object is requested, the
5,041,992 A : 8/1991 Cunningham et al. 395/135 related escort object is queried and streams out the attributes
g 5828’332 i) 13? gg ;3/[01111? ettali """""" 36&2{;;/81% of the enclosed Ul object. The escort object itself remains in
,060, 1 Morris et al. -
5075848 A * 12/1991 Lai et al. the archive.
5,093914 A * 3/1992 Coplien et al. 395/704
5,119475 A * 6/1992 Smith et al. 345/353 39 Claims, 36 Drawing Sheets
_i| root] German Q GERMANY
/" OBJECT1 2]
OBJECT 2 AUSTRIA
20 { b _[J Al L] taiane
_ OBJECT 5

1 SPANISH l | SPAIN
3] MEXICO

J ENGLISH ;_ BRITAIN |
OBIECT 4 . |
318 NEW ZEALAND |
OBJECT 3 = _
’ —i| AUSTRALIA =

302 | CANADA

? USA
 M—
OBJECT 4
306 e
‘I " 316 /
304 _/
310

Jos —

— OBJECT 1

| waLES

SCOTLAND

ENGLAND

| EASTERN TIME ZONE
' PACIFIC TIME ZONE

OBJECT 5

1 CENTRAL TIME ZONE
1 HONOLULU TIME ZONE

MOUNTAIN TIME ZONE

US RE37,722 E

Page 2
U.S. PATENT DOCUMENTS 5,325,533 A * 6/1994 Mclnerney et al. 395/701

S31570% A * 5/1994 Mathenv ef al 395/507 5,327,529 A * 7/1994 Fults et al. 345/335
5;3:~55709 A+ 5/1094 Alston B.er " ::11 """""" v 5,339,390 A * 8/1994 Robertson et al. 305/342
5’3j“7’741 A * 5/1994 Schwai]ke: e 5'95/703 5,551,055 A * §/1996 Matheny et al. 710/62

o T T T T e e 5,596,702 A * 1/1997 Stucka et al. 395/340
5321,841 A * 6/1994 FEastetal. 709/304 5850548 A * 12/1998 Williams 395/701
5325481 A * 6/1994 Huntcocvvvivvvvnnnen.. 395/347 UTem T T T m e e e
5,325,522 A * 6/1994 Vauhnccooevveiinnl. 707/1
5,325,524 A * 6/1994 Black et al. 707/10 * cited by examiner

US RE37,722 E

Sheet 1 of 36

May 28, 2002

U.S. Patent

bIT

L 4415/4

TvddHdNad

=d
\\

SY3IANA 3D1A1Q W31SAS NILVYIdO

901

0t1

61
IAA!

AV ot

G38YHS
9¢C1

3OVH01S Y1va
e S
AUVHEIT QIYVHS
JUYMQAQUYH

300J NOLLONYLSNIOWDIW

14U

NOLLYDITddY NOLLYOIddV

(44!

0et

811

491

OL1

801

(01

U.S. Patent May 28, 2002 Sheet 2 of 36 US RE37,722 E

N
~
= S
=
I] I I . N)

204
224

Help
220
222
NV L)
206

202

WINDOW

208

200 —/

216
212

US RE37,722 E

Sheet 3 of 36

May 28, 2002

U.S. Patent

INOZ IWLL NIVINNOW ||

INOZ IWIL NINTONOH _.'
INOZ IWIL TVHLINTD _I-

mcm_ao
Em
:um_ao L
INOZ W1 JH1vd [/
INOZ IWIL NY3LSVE ||

ANVION]

UNV1100$
S3TYM

80¢
- VE 7715/
boE
0 _
vDargo | /908
vsn _H
vavnw | ch
VITVHLISNY _ﬂ _
£ 173180
anvivazman [b 17300 St
NIVLIYE _ﬂ HSITON3
0JIX3k @ull_
NIVdS _W_, HSINVdS
_ § 173190
owviveL ([¢ 17ario
- F Dargg
ANVIWYID NVIW43D 1004 i

0it

U.S. Patent May 28, 2002 Sheet 4 of 36 US RE37,722 E

TArchiveModel 0
Dictionary of Locales «_390
Key = Locale—13091
Value = Array of TEscort odel:.}s92 /' 382
Locale

References to Escort Models

e
387
TEscortModel
384
TODbjectEscort

Actual object RE

FIGURE 3B

U.S. Patent May 28, 2002 Sheet 5 of 36 US RE37,722 E

400

APPLICATION PROGRAM

402
404
I 406
l 408

ARCHIVE DATA

410

SHARED LIBRARY

FIGURE 4A

U.S. Patent May 28, 2002 Sheet 6 of 36 US RE37,722 E

WRITE CLASS NAME | 43¢
INTO DATA STREAM

WRITE SHARED
LIBRARY CLASS

NAME INTO DATA
STREAM.

460

U F 9l=

W
OUT METHOD, TO ?65
RITE OBJECT'S DATA

INTO DATA STREAM.
READ CLASS NAME
FROM DATASTREAM.

READ SHARED LIBRAR
CLASS NAME FROM

DATA STREAM.

70

CREATE INSTANCE OF

DESIRED CLASS NAME From| 480
SHARED LIBRARY

CALL STREAM-IN METHOD OF THE NEW

OBJECT, TO READ THE OBJECT'S DATA
FROM THE DATA STREAM.

FIGURE 4B 490

U.S. Patent May 28, 2002 Sheet 7 of 36 US RE37,722 E

506

504

OBJECT

FIGURE 5

500
502

CONSTRUCTOR

U.S. Patent May 28, 2002 Sheet 8 of 36 US RE37,722 E

ROOT

N
604 602
606
USA

DEFAULT BUTTON
608

U.S. Patent May 28, 2002 Sheet 9 of 36 US RE37,722 E

700

iewEscort Object

702 TView Object

CheckBoxEscort Object

TCheckBox Object

704

AN
708

706
710

TStandardTextEscort Object

TStandardText Object 712
714

-
FlG. 7

US RE37,722 E

Sheet 10 of 36

May 28, 2002

U.S. Patent

GETTVREIGT)Y]

Ve F¥119/4

018

¥08

48:

()meag
1o3e)motydery |

lopadsujy

(Mozeymydeigydopy
10jepmatydernyug
(Jop3palqognsasn

()J1031p333e31)

(Ymelq
SS€]) MaN

808

0ju] 195/139

MILARAIPAY | tmwmpﬁ_wu.ﬂumm._ﬂ._

()103einoryderydopy
1ojejmiydesniu
(J1oupapalqoqnsesn
(J10atp333821)

(Jmeig
HoIsINRIqOjedydesn)

(18

Ho03s3PaIqol

008

US RE37,722 E

Sheet 11 of 36

May 28, 2002

U.S. Patent

13]Uds3I410)IPIH0IST |

88

88 F¥119/4

19]U3Sa1dIIMIINIdH0IST |

1opadsupioypapunog)

lopadsujpunog|

A4k

|]suediopadsu)y

0¢8

19]U3SAIJI0NPIU0IST |

19)udsaldiopadsujporsy|

S8

(A%:

19]U9sa1gU0Is] |

19JU3SAIJIANPIY |

9¢8

I9juasaldionpimoisyy

¥i8

U.S. Patent May 28, 2002 Sheet 12 of 36 US RE37,722 E

A roor
900

OBJECT 1
OBJECT 2
OBJECT 3
OBJECT 4
OBJECT 5
_/@ ENGLISH
902
OBJECT 4
OBJECT §
_/@ USA
204 OBJECT 4
‘/@ PACIFIC TIME ZONE
906 OBJECT 1
OBJECT 4
OBJECT 5

EASTERN TIME ZONE

U.S. Patent May 28, 2002 Sheet 13 of 36 US RE37,722 E

US RE37,722 E

Sheet 14 of 36

May 28, 2002

U.S. Patent

LI Hd1DI4

10)1p3 bojeig ,pul4,

U.S. Patent May 28, 2002 Sheet 15 of 36 US RE37,722 E

1200

CONSTRUCTOR PROGRAM

1202

CONSTRUCTOR
DOCUMENT

1204

CONVERSION
PROCESS

FIGURE 12

1206

U.S. Patent May 28, 2002 Sheet 16 of 36 US RE37,722 E

\\\

B
N\~
.

)\
.

\///////
\\\\\\\

rl Hd4NoNId

¢l Hd1DIA

llllllllllllllll
lllllllllllllll

-
.

OPUIM

o1 HYNDOI]

\\\\\\\\\\\\\\\\\&

U.S. Patent May 28, 2002 Sheet 20 of 36 US RE37,722 E

Action: “Controls Panel"

1700

Selector View

1710”

® Controls O Borders

O lcons O Colors

Dictionary of
Palette Views

1720"

“Controls Panel"—1760

“lcons Panel” 1730
‘Borders Panel"——1740

“Color Panel"—1750

FIGURE 17A

U.S. Patent May 28, 2002 Sheet 21 of 36 US RE37,722 E

START: COPY TSELECTORVIEW FROM ARCHIVE &
DISPLAY IT. INITIALIZE EMPTY DICTIONARY.

ARCHIVE = COPYARCHIVE{KPALETTEARCHIVENAME)

1760

1762 JUSER CLICKS
RADIO BUTTON
1764
TSELECTORVIEW::HANDLE
BOOLEAN ACTION RECEIVES ACTION

176€

CALL TSELECTORVIEW::SHOWPANEL WITH
MESSAGE=ACTION.GETMESSAGE()

1770
NEWVIEW =
DICTIONARY.VALUEAT(MESSAGE);

1772
YES

1774 NO

TARCHIVEENVELOPE<TSIMPLEVIEW>ENV(ARCHIVE);
NEWVIEW = ENV.COPYOBJECT(TTEXT(MESSAGE));

177€
NO

FIGURE 17B

1778

YES

ORPHANCHILD(PREVIOUSVIEW):
ADOPTCHILD{NEWVIEW)

178G

DICTIONARY.ADDKEYVALUEPAIR
(TTOKEN(MESSAGE),
TVIEWHANDLE(NEWVIEW))

U.S. Patent May 28, 2002 Sheet 22 of 36 US RE37,722 E

@\1 300
1810 USER CLICKS IN
TPALETTEVIEW PANEL
TPALETTEVIEW ITERATES
TO NEXT SUBVIEW

SUBVIEW
CONTAIN
CLICK POINT?

YES

NO

1840

DRAW THE CLICKED VIEW INTO A
GRAPHIC:

TINDEXEDIMAGE"* IMAGE = NEW (...);

VIEW->DRAW(IMAGE->GETGRAFPORT());

1845

CREATE A SCRAP ITEM: 1850
TSCRAPITEM® SCRAPITEM =
NEW TSCRAPITEMON<TVIEW>(VIEW,
OFFSET);

CREATE A DRAG-AND-DROP ITEM:
TDRAGANDDROPITEM* DRAGITEM = 860

EW TDRAGANDDROPITEM(SCRAPITEM):

START A DRAGGING INTERACTOR: ~{__ oo
STARTINTERACTOR(NEW TINTERACTOR
(DRAGITEM, IMAGE));

FIGURE 18

U.S. Patent May 28, 2002 Sheet 23 of 36 US RE37,722 E

1920 1900 1910
Menui Menut Menut
Menu?2 Menu2 Dialog1
Menu3 Menu3
Dialog French
icont Canada
Menu?2
Dialog1
Engiish
Menu1 Dialog1
Menu2
Menu3
Dialog1

Locale: France

Menu1 Menu2 Menu3 Dialog1 lcon1
France French French France Root

FIGURE 20

U.S. Patent May 28, 2002 Sheet 24 of 36 US RE37,722 E

Locale: French Canada

Menu1 Menu?2 Menu3d Dialog? lcon
French French Canada French French Canada Root

FIGURE 21

Locale: USA
Menu1 Menu2 Menu3 Dialog1 lcon
English English English USA Root

FIGURE 22

U.S. Patent May 28, 2002 Sheet 25 of 36 US RE37,722 E

EXPORT ARCHIVE COMMAND |51,
FILE = NEW TFILESTREAM | 2310

2320

ARCHIVEMODEL NO
COUNT >0
YES
2330
| = ARCHIVEMODEL
ITERATOR
2340

C = LFIRST

2350
@ YES
NO

2350
C.EXPORT(FILE) (FIG. 24)

260 2370

FIGURE 23

U.S. Patent May 28, 2002 Sheet 26 of 36 US RE37,722 E

EXPORT TARCHIVEMODEL 2400
PARAMETER: FILE

FSCORT = GETESCORT()

LOCALE = ESCORT.GETLOCALE() 2410
TYPE = ESCORT.GETTYPE();
NAME = ESCORT.GETNAME();

WRITE ESCORT LOCALE, NAME, | 4420
AND TYPE TO FILE

2430

ESCORT.EXPORT(FILE)
[FIG. 25]

FIGURE 24

U.S. Patent May 28, 2002 Sheet 27 of 36 US RE37,722 E
XPORT TOBJECTESCORT) 4200
PARAMETER: FILE
WRITE STREAMED VERSION OF) _
OBJECT TO FILE 2510

2520

M = TCONTIGUOUSGROWINGSTREAM
2530
M.FLATTEN(THIS)
2540
WRITE M AS HEX DATA TO FILE
WRITE TEXT VERSION OF 2550
OBJECT TO FILE
2560
WRITE BOUNDS OF OBJECT TO FILE

2570
WRITE COLOR OF OBJECT TO FILE
IF THERE ARE SUBOBJECTS, EXPORT) 4280
THEM TO FILE

FIGURE 25

U.S. Patent May 28, 2002 Sheet 28 of 36 US RE37,722 E

IMPORT ARCHIVE COMMAND | 2600

FILE = OPEN IMPORT FILE | 2610
IMPORTER = TIMPORTPARSER | 2620

IMPORTER.PARSEFILE(FILE) 2630
[SEE FIGURE 27]

FIGURE 26

3000
TOBJECTESCORT.IMPORT(PARSER)

BOUNDS = PARSER.GETBOUNDS() |3010
3020
OBJECT.SETBOUNDS(BOUNDS)
COLOR = PARSER.GETCOLOR() {3030
OBJECT.SETCOLOR(COLOR) | 3040

FIGURE 30

U.S. Patent May 28, 2002 Sheet 29 of 36 US RE37,722 E

TIMPORTPARSER.PARSEFILE(FILE)

TOKEN = GETTOKEN(FILE)

Y

2700

2710

2730

YES
READ LOCALE NAME
STRING

TOKEN == “LOCALE"

NO

TOKEN == “ESCORT"
NO

YES

2750

READ THE ESCORT TYPE READ THE

ESCORT NAME PRINT OUT A STATUS
MESSAGE

TOKEN = GETTOKEN(FILE)

2760

FIGURE 27

U.S. Patent May 28, 2002 Sheet 30 of 36 US RE37,722 E

2769
2780

READ HEX DUMP

INTO MEMORY
STREAM “M”

TOKEN ==
“STROBJ”

YES

NO
ESCORTMODEL = 2800
CREATENEWESCORT|
2810
TOKEN = GETTOKEN(FILE)

2830

ESCORTMODEL.|

MPORT(FILE,
THIS)
TOKEN == YES | [SEE FIGURE 29]
‘TEXTOBJECT
» A

2850

2840
NO YES
2799 DONE IMPORTING

FIGURE 28

U.S. Patent May 28, 2002 Sheet 31 of 36 US RE37,722 E

TESCORTMODEL.IMPORT(FILE, PARSER)

2900

ESCORT = GETESCORT 2910
RESURRECT OBJECT FROM 2990
MEMORY STREAM

NO EXCEPTION EXCEPTION IS THROWN
OCCURS
2930
READ TOKENS FROM FILE
SKIPPING PAST THE TEXT ?Sséggféta;ggg](mﬂssﬂ)
SECTION OF THE OBJECT

2940

EXIT FUNCTION 2950

FIGURE 29

U.S. Patent May 28, 2002 Sheet 32 of 36 US RE37,722 E

INTERNALDRAW
PARAMETERS:
CLIPPORT,
ORIGINAL PORT,
COMBINEDCLIPAREA

3100

VIEWBOUNDS =
BOUNDSOFTHISVIEW() 3110

NEWCLIPPORT =
CLIPPINGGRAFPORT(CLIPPORT, 3120
VIEWBOUNDS)

NEWCOMBINEDCLIPAREA = INTERSECTION OF
COMBINEDCLIPAREA AND VIEWBOUNDS 3130

INVERTEDCLIPAREA = INFINITE SIZED
AREA SUBTRACTING 3140

NEWCOMBINEDCLIPAREA

INVERTEDCLIPPORT =
CLIPPINGGRAFPORT 3150
(INVERTEDCLIPAREA)

@ FIGURE 31

U.S. Patent May 28, 2002 Sheet 33 of 36 US RE37,722 E
V = FOR EACH SUB VIEW OF | 3210
THIS VIEW

NO MORE VIEWS

SUBVIEWBOUNDS = 3220
V.BOUNDSI)

TRANSLATEDPORT =
TRANSLATEDPORT(NEWCLIPP | 3230
ORT, SUBVIEWBOUNDS)

NVERTEDTRANSLATEDPORT =
RANSLATEDPORT(INVERTEDCL | 3240
IPPORT, SUBVIEWBOUNDS)

V.DRAW(TRANSLATEDPORT) | 3250

V.DRAWCLIPPED 260
(INVERTEDTRANSLATEDPORT)

" ~NAI DIRAW{INFW »

PORT, ORIGINALPORT. 3270
NEWCOMBINEDCLIPAREA) A

FIGURE 32

U.S. Patent May 28, 2002 Sheet 34 of 36 US RE37,722 E

3310

3300 YES
VIEWERTYPE = £DITOR

NO
3320

ESCORT = GETESCORT()

3330

3340

NO
VIEWERTYPE = INSPECTOR
3350
CREATE SUB VIEWER
FIGURE 33

3360 3394
YES | ACTIVATE EXITING
VIEWER
NO

3370

PRESENTER = CREATE NEW
PRESENTER BASED ON ESCORT
TYPE [FIGURE 34]

GRAPH EDIT?

YES

3380

ADOPTSUBPRESENTER(PRESENTER)

3390

PRESENTER.OPENWINDOW()

3392

SAVE WINDOW REFERENCE

U.S. Patent May 28, 2002 Sheet 35 of 36 US RE37,722 E

3400
CREATEPRESENTER
FIGURE 34 PARAMETER: TYPE
3410
TEST TYPE
PREVIEWER
3420 =DITOR INSPECTOR
SRESENT PRESENTER =
ENTER = CREATEEDITORPR
CREATEEDITORPRESENTER ESENTER
[SEE FIG. 35] [SEE FIG. 35]
PRESENTER = 5450
CREATEEDITORPRESENTER
[SEE FIG. 35]

3440

\ RETURN PRESENTER

3450

U.S. Patent May 28, 2002 Sheet 36 of 36 US RE37,722 E

CREATEEDITORPRESENTER
PARAMETER: CLASSNAME

OBJECTINFO = LOOKUPOBUJECT
IN-SCHEMA FiLE

3500

3510

3530

THROW AN
EXCEPTION

YES

OBJECTINFO = NIL?

N

3540

0
CLASSNAME =
OBJECTINFO.GETCLASSNAME()
3550
LIBRARYNAME =
OBJECTINFO.GETLIBRARYNAME()

3560
PRESENTER = CREATENEWOBJECT
(CLASSNAME, LIBRARYNAME)
3570 FIGURE 35

RETURN PRESENTER

US RE37,722 E

1

OBJECT-ORIENTED SYSTEM FOR THE
TRANSPARENT TRANSLATION AMONG
LOCALES OF LOCALE-DEPENDENT
APPLICATION PROGRAMS

Matter enclosed in heavy brackets [] appears in the
original patent but forms no part of this reissue specifi-
cation; matter printed in italics indicates the additions
made by reissue.

Portions of this patent application contain materials that
are subject to copyright protection. The copyright owner has
no objection to the facsimile reproduction by anyone of the
patent document, or the patent disclosure, as 1t appears 1n the
Patent and Trademark Office. All other rights are expressly
reserved.

FIELD OF THE INVENTION

This invention relates generally to improvements 1n com-
puter systems and, more particularly, to operating system
software for managing user interface objects 1n a windows-
oriented graphical user interface.

BACKGROUND OF THE INVENTION

One of the most important aspects of a modern computing
system 1s the interface between the human user and the
machine. The earliest and most popular type of interface was
text based; a user communicated with the machine by typing
text characters on a keyboard and the machine communi-
cated with the user by displaying text characters on a display
screen. More recently, graphic user mnterfaces have become
popular in which the machine communicates with the user
by displaying graphics, including text and pictures, on a
display screen and the user communicates with the machine
both by typing 1n text-based commands and by manipulating,
the displayed pictures with the pointing device, such as a
Mmouse.

Many modern computer systems operate with a graphic
user 1nterface called a “window environment” 1in which the
main user interface object 1s the “window”. In a typical
window environment, the graphical display portrayed by the
display screen 1s arranged to resemble the surface of an
clectronic “desktop” and each application program running
on the computer i1s represented as one or more electronic
“paper sheets” displayed 1n rectangular regions of the screen
called “windows”.

Each rectangular region generally displays information
which 1s generated by the associated application program
and there may be several window regions simultaneously
present on the desktop with each window region represent-
ing information generated by different application programs.
An application program presents mmformation to the user
through each window by drawing or “painting” 1mages,
graphics or text within the window region. The user, 1n turn,
communicates with the application both by “pointing” at
objects 1n the window region with a cursor which 1s con-
trolled by a pointing device and manipulating or moving the
objects and also by typing information into the keyboard.
The window regions may also be moved around on the
display screen and changed 1n size and appearance so that
the user can arrange the desktop in a convenient manner.

There may be several types of windows associated with
cach application program—these windows include the main
window, which 1s always present, and other windows such
as “pop-up” windows which appear 1n response to a specific
user or program action. Pop-up windows include a type of
window called a “dialog” box which 1s a type of pop-up

10

15

20

25

30

35

40

45

50

55

60

65

2

window that appears on the screen for a short duration of
time and accomplishes a specific task, such as obtaining a
file name or performing a selection. Simple applications
may 1nclude only the main window, while complicated
applications may use tens and ever hundreds of pop-up
windows and dialog boxes. There are also windows, called
palettes and panels that are always on the screen and utilized
in conjunction with the main window. They typically float
above the main window {facilitating easy access to
commands, colors or direct manipulation elements.

The windows, 1n turn, include other user interface objects
such as, scroll bars which can be used to move or change the
portion of the window which is displayed and menu systems
that allow a user to select various commands and actions. In
addition, window environments also typically provide “stan-
dard” user mterface objects called “controls” which can be
displayed in the windows and manipulated by the user. The
standard objects allow all of the application programs which
run with a given GUI to have the same “look and feel” and,
thus, user learning time 1s generally reduced.

The standard objects can mnclude push buttons which are
oenerally rectangular areas of the window which are ren-
dered to appear as a “three-dimensional” button. The push-
button has built-in behavior which 1s controlled by the
window system to change the screen appearance of the
button so that the button appears to be “pushed in” when the
button display area 1s selected. Other selection displays
include “checkboxes” which can display a check mark or
other 1ndicia to indicate a selection and “radio buttons™
which are a set of check boxes 1n which selection of one box
deselects the other boxes in the set.

Other standard user interface objects include objects
which display items. These displays include text display
arcas and graphics display areas. The text display areas may
include a simple line of text which displays text but cannot
be edited. More complicated displays include list boxes
which display a scrollable list of either graphical or text
items and drop-down list boxes which appear as a single line
but expand to a list when a predefined area 1s selected. With
list boxes and drop-down lists the user may be able to select
items as well as manipulate the displays. Still more com-
plicated display areas include edit areas which are rectan-
ogular areas that allow the user to edit text using predefined
commands. Some window environments allow the users to
design their own controls which may be combinations of

existing controls or entirely new controls with custom
behaviors.

The graphic display arecas can include user-designed bit
map graphics, icons and customer user graphics.

In most windows systems, the overall behavior and
appearance of the aforementioned windows and controls are
determined by the portion of the operating system known as
a “graphical user interface” (GUI) or the “graphical device
interface” (GDI). Instead of an application program drawing
and controlling the user interface, object, the GUI system
actually renders the interface object on the display screen
and controls appearance changes due to user selection
movement and manipulation. User manipulations of the
object are communicated to the application program by
messages that are sent from the GUI to the application
program and the application program controls the interface
objects by sending messages to the GUI.

Even though an application program does not actually
control drawing of the interface objects, the application
program must initially specily parameters such as the size,
position and appearance attributes (such as colors) for each

US RE37,722 E

3

user 1mterface object to the GUI so that the object can be
initially rendered in the desired position with the proper
appearance. In many windows environments, the user inter-
face object parameters are stored in a “resource” file 1n
which each user interface object 1s assigned an identifier and
assoclated with a list of parameters for that object. During
the normal application program development cycle, after the
application program 1s written and compiled, the resource
file 1s also compiled and the resource object file 1s “bound”
to the object file of the application program. Thereafter,
during the operation of the application program, a user
interface object 1s drawn on the screen by making a function
call to the GUI and including the resource file 1dentifier as
a parameter 1 the function call. The GUI then reads the
resource flle and extracts the necessary parameters to render
the 1nterface object.

The structure and format of the resource file are fixed by
the GUI and 1t 1s possible for an application program
developer to directly compose and edit the resource file.
However, direct composition and editing of the file 1s
extremely tedious since each interface object generally has
many separate parameters, all of which must be imncluded to
properly render the object. In addition i1t i1s often very
difficult to position the objects with respect to each other and
compose and entire screen display simply by looking at the
parameter lists for each object.

Accordingly, user interface objects are generally designed
by means of a “resource editor” program. This latter pro-
ogram uses the contents of a resource file to generate displays
of the user interface objects contained therein which dis-
plays appear on the display screen in the same manner as
they would appear when drawn by the GUI as the applica-
fion program 1s actually being run. The application program
developer can manipulate the object displays and, 1n
response, the resource editor program edits the resource file
parameters to insure that the user interface objects will
appear properly when drawn by the GUI

While the resource editor approach works well with small
to medium size projects, for large projects it becomes a
bottleneck. A large development project may have hundreds,
or even thousands, of user interface objects. In addition,
many programmers may simultaneously be working on parts
of a project or several different projects which, although
separate, share user interface objects. If a single resource file
1s used for the entire project, then the normal development
cycle of compile, link, test and debug results 1n the resource
file being compiled over and over or worse, results in
developers having to wait for the file to be free. If several
smaller resource files are used, then some method must be
used to 1nsure that duplicated interface objects are kept up to
date and that everyone 1s using the latest versions.

Further, the resource file/editor approach 1s not flexible. In
particular, the resource editor 1s designed to work with a
predefined set of user interface objects. If a new user
interface object 1s designed, then the resource editor must be
rewritten to accommodate this new object. Consequently,
the conventional resource editor approach 1s a poor choice in
flexible development environments such as object-oriented
development environments which are designed to be easily
extensible.

In addition, the traditional resource file/editor approach 1s
not easily adaptable to multi-lingual environments where the
text appearing 1n the user interface must be translated nto a
local language to allow the program to work in foreign
countries. The normal manner of handling this problem 1s to
consolidate all text strings in a separate “string table”.

10

15

20

25

30

35

40

45

50

55

60

65

4

Rather than coding a text string directly 1nto program code,
the corresponding text 1s inserted as an entry in the string
table along with an 1dentifier. The application program code
uses the identifier to retrieve the appropriate string at run-
time from the string table and the string 1s then displayed.
Since most of the text 1s located 1n a single table, the task of
translating the text into a local language 1s greatly stmplified.

The string table approach suffers from the same problems
as the resource file. First, a single string table becomes a
bottleneck during the normal development cycles. Second,
multiple string tables must be coordinated to avoid different
text strings from being associated with the same interface
object. In addition, although conventional string tables con-
tain most of the text information for a development project,
a significant amount of text still becomes embedded directly
into the program. This latter text includes menu headings
and menu option lines, text found on button faces, and
miscellaneous text displays. Accordingly, the job of trans-
lating an application program mto a new language still
remains a tedious and time-consuming job. This remains
true even if the text portions of some of the user interface
objects have already been translated, since the remainder of
the text must still be found and translated.

Accordingly, it 1s an object of the present invention to
provide a user 1nterface object archiving system which can
manage user objects to 1nsure consistency between various
sections of a project or various projects which utilize com-
mon objects.

It 1s another object of the present invention to provide a
user interface object archiving system which can easily
accommodate newly-designed user interface objects without
requiring a rewrite of the object editor.

It 1s still a further object of the present invention to
provide a user interface archiving system which facilitates
the translation of the text 1n an application to an alternative

language.
SUMMARY OF THE INVENTION

The foregoing problems are overcome and the foregoing,
objects are achieved 1n one illustrative embodiment of the
invention in which user mterface objects are stored 1n a user
interface object archive which 1s a database physically
located 1n the shared library of an associated application
program. In order to facilitate “localization”, or preparation
of an application developed 1n one language for use 1n an
“areca” or a locale which uses another language, the user
interface objects are stored 1n a hierarchical locale tree
within the archive. As the tree proceeds away from the root
locale the locales become more-and-more speciiic as to
language. All objects are stored in the base or root of the
hierarchy, but only those objects which require a translation
are stored 1n an area associated with a more specific locale.
At runtime, a complete collection of objects 1s assembled by
starting at the desired locale and proceeding up the hierarchy
level-by-level. Translated objects at lower levels of the
hierarchy “override” those at higher levels so that the most
complete translations of each object are obtained during this
scarch.

The user 1nterface objects which are stored 1n an archive
are actually created via a separate “constructor” program
which 1s used by application developers to edit standard user
interface objects and to create new user mnterface object. In
order to allow newly-created user interface objects to use the
predesigned constructor program, each user mterface object
1s contained 1n a special “escort” object that actually inter-
faces with the constructor program. The user interface object

US RE37,722 E

S

1s stored at the appropriate locale m the archive, while the
escort object 1s not saved. However, when an archived object
1s requested, the related escort object 1s queried and streams
out the attributes of the enclosed Ul object. The escort object
itself remains 1n the archive. Therefore, functions and vari-
able 1nstances which are necessarily included in the escort
object which allow it to interact with the constructor pro-

oram do not end up 1n the application program.

BRIEF DESCRIPTION OF THE DRAWINGS

The above and further advantages of the invention may be
better understood by referring to the following description in
conjunction with the accompanying drawings, in which:

FIG. 1 1s a schematic block diagram of a prior art
computer system showing the relationship of the application
program to the operating system and the display drivers and
the location of the shared libraries;

FIG. 2 1s a schematic diagram of a conventional screen
display generated by user interface objects 1n a windowing
environment;

FIG. 3A1s a schematic diagram of a locale tree 1llustrating,
the manner 1n which user interface objects are stored 1n an
archive;

FIG. 3B 1s a block diagram of a TArchiveModel in
accordance with a preferred embodiment of the invention;

FIG. 4A 1s a simplified schematic block diagram 1llus-
frating how an application program retrieves user interface
objects from an archive;

FIG. 4B 1s a flowchart in accordance with a preferred
embodiment of flattening and resurrecting an object.

FIG. 5 1s a simplified block schematic diagram 1llustrating
how a constructor program interfaces with user interface
objects via escort objects to allow editing of the user
interface objects;

FIG. 6 1s a stmplified block diagram showing a portion of
the locale tree shown 1n FIG. 3A illustrating the manner of
storing user interface objects at each locale;

FIG. 7 1s a simplified block diagram showing a portion of
the locale tree shown 1n FIG. 3A illustrating the manner of
encapsulating each user interface object 1n an associated
escort object;

FIGS. 8A and 8B are class hierarchy diagrams 1llustrating,
the base class, subclasses and associated classes involved 1n
a preferred embodiment of the constructor program,;

FIG. 9 1s the screen display of a presentation editor
illustrating the manipulation of the components that com-
prise the presentation;

FIG. 10 shows an 1llustrative screen display of an inspec-
tor used to inspect an User Interface (UI) object;

FIG. 11 shows a screen display generated by a Ul object
editor;

FIG. 12 1s a stylized block diagram 1llustrating the steps
involved 1n creating a new archive using the constructor
program;

FIG. 13 1s a display of a clipped control;

FIG. 14 1s an illustration of a plurality of windows in
accordance with preferred embodiment;

FIG. 15 1s an illustration of multiple overlapping windows
in accordance with a preferred embodiment;

FIG. 16 1s an 1illustration of clipping of multiple overlap-
ping windows 1n accordance with a preferred embodiment;

FIGS. 17A and 17B are an 1llustration of a parts palette in
accordance with a preferred embodiment of the invention

10

15

20

25

30

35

40

45

50

55

60

65

6

and a flowchart of the detailed logic associated with parts
palette processing 1n accordance with a preferred embodi-
ment,

FIG. 18 1s a flowchart detailing additional logic of parts
palette processing in accordance with a preferred embodi-
ment,

FIG. 19 1s an illustration of a display of locale hierarchy
in accordance with preferred embodiment; and

FIGS. 20-22 are illustrations of an alternative display of
locales 1n accordance with a preferred embodiment;

FIGS. 23-25 are detailed flowcharts of export logic 1n
accordance with a preferred embodiment;

FIGS. 26-30 are detailed flowcharts of import logic 1n
accordance with a preferred embodiment;

FIGS. 31-32 are detailed flowcharts of clipping logic 1n
accordance with a preferred embodiment; and

FIGS. 3335 are flowcharts setting forth the detailed logic
of a pluggable viewer 1n accordance with a preferred
embodiment.

DETAILED DESCRIPTION OF A PREFERRED
EMBODIMENT OF THE INVENTION

The invention 1s preferably practiced in the context of an
operating system resident on a personal computer such as
the IBM PS/2 or Apple Macintosh computer. A representa-
tive hardware environment 1s depicted mm FIG. 1, which
illustrates, 1n a highly schematic fashion, a typical hardware
conilguration of a computer system 100 on which construc-
tor program and the user interface object archives (not
shown) of the present invention reside. Computer system
100 1s comprised of hardware components 112 which
include random access memory 114 and central processing
unit (CPU) 118. It should be noted that, although central
processing unit 118 is shown as a single block representing
a single processor, 1t may actually comprise multiple pro-
cessors operating 1n parallel.

Computer system 100 also includes a number of input/
output and peripheral devices illustrated along the bottom of
the figure. These devices include a representative input
device 122 which may comprise a keyboard, mouse,
trackball, lightpen or other conventional input device.
Device 122 1s coupled for bi-directional information trans-
mission to hardware components 112 as illustrated sche-
matically by arrow 120. A data storage device 126 1s also
shown coupled to hardware components 112, via arrow 124.
Data storage device 126 may comprise a conventional hard
disk or a removable-media disk (such as a floppy disk.) Such
a drive typically operates with a removable or a non-
removable medium schematically represented by box 129.

Shared libraries 128 and their associated shared library
archive 127 are stored on medium 129 1n which the con-
structor program and the user interface archives of the
present mnvention are stored. During the normal operation of
computer system 100, the shared libraries 128 located on the
storage medium 129 are transferred, via data storage device

126, (as indicated schematically by arrow 124) to RAM 114
as 1llustrated schematically as shared libraries 116.

A display device 132 1s generally provided which may be
a CRT monitor, an LCD flat panel, an electroluminescent or
other visual display which 1s capable of displaying graphical
information. Display 132 is also coupled to hardware com-
ponents 112 as 1illustrated schematically be arrow 130.
Computer system 100 may also include additional
peripherals, such as printers, which are schematically illus-
trated by box 136. These peripherals are also coupled to
hardware components 112 as indicated by arrow 134.

US RE37,722 E

7

Computer system 100 also includes an operating system
108 and a plurality of device drivers 106. The operating
system 108 and the device drivers 106 imterface with the
hardware components 112 by means of well-known micro-
instruction code 110 1n a conventional manner. Device
drivers 106 may also interact directly with the operating
system 108.

Application programs are shown schematically as boxes
102 and 104. Although only two application programs are
shown, obviously more programs may be running simulta-
neously. Programs 102 and 104 may interact directly with
the operating system 108 but may alternatively interact
directly with the device drivers 106. By means of operating
system 108 and microinstruction code 110, programs 102
and 104 coordinate and control the operation of the hard-
ware components 112 and the peripheral devices.

Operating system 108 represents a substantially full-
function operating system such as the aforementioned Apple
System/7' operating system. Operating system 108 includes
a graphical user interface (GUI) which operates in a win-
dowing environment. As such, a user running application
programs 102 or 104 will iteract with each program by
manipulating a set of graphical displays which are generally
rendered on the display 132 by a corresponding set of user
interface (UI) objects as will hereinafter be described in
detail.

In accordance with the principles of the invention, appli-
cation programs 102 and 104 obtain the UI objects which
ogenerate the program displays from the shared library 116 by
accessing a Ul object archive located therein. The Ul objects
are designed by a program developer with the use of a
special “constructor” program during program development
of the application programs 102 and 104 and stored 1n the
archives. At runtime, the Ul object information 1s retrieved
from the archives and transferred from the shared libraries
116, with 1ts associated shared library archive 117, into the
application programs 102 and 104 in order to generate
graphics on display 132.

In a preferred embodiment, the mnvention 1s implemented
in a C++ programming language using object-oriented pro-
cramming techniques. C++ 1s a compiled language, that is,
programs are written 1n a human-readable script and this
script 1s then provided to another program called a compiler
which generates a machine-readable numeric code that can
be loaded into, and directly executed by, a computer. As
described below, the C++ language has certain characteris-
tics which allow a software developer to easily use programs
written by others while still providing a great deal of control
over the reuse of programs to prevent their destruction or
improper use. The C++ language 1s well-known and many
articles and texts are available which describe the language
in detail. In addition, C++ compilers are commercially
available from several vendors including Borland
International, Inc. and Microsoit Corporation. Accordingly,
for reasons of clarity, the details of the C++ language and the

operation of the C++ compiler will not be discussed further
in detail herein.

As will be understood by those skilled 1n the art, Object-
Oriented Programming (OOP) techniques involve the
definition, creation, use and destruction of “objects”. These
objects are software entities comprising data elements and
routines, or member functions, which manipulate the data
clements. The data and related functions are treated by the
software as an enfity and can be created, used and deleted as
if they were a single item. Together, the data and functions
enable objects to model virtually any real-world entity in

10

15

20

25

30

35

40

45

50

55

60

65

3

terms of its characteristics, which can be represented by the
data elements, and 1ts behavior, which can be represented by
its data manipulation functions. In this way, objects can
model concrete things like people and computers, and they
can also model abstract concepts like numbers or geometri-
cal designs.

Objects are defined by creating “classes” which are not
objects themselves, but which act as templates that mstruct
the compiler how to construct the actual object. A class may,

for example, specity the number and type of data variables
and the steps mnvolved 1n the functions which manipulate the
data. An object 1s actually created 1n the program by means
of a special function called a constructor which uses the
corresponding class definition and additional information,
such as arguments provided during object creation, to con-
struct the object. Likewise objects are destroyed by a special
function called a destructor. Objects may be used by using
their data and invoking their functions.

The principle benefits of object-oriented programming,
techniques arise out of three basic principles; encapsulation,
polymorphism and inheritance. More specifically, objects
can be designed to hide, or encapsulate, all, or a portion of,
the internal data structure and the internal functions. More
particularly, during program design, a program developer
can define objects 1n which all or some of the data variables
and all or some of the related functions are considered
“private” or for use only by the object itself. Other data or
functions can be declared “public” or available for use by
other programs. Access to the private variables by other
programs can be controlled by defining public functions for
an object which access the object’s private data. The public
functions form a controlled and consistent interface between
the private data and the “outside” world. Any attempt to
write program code which directly accesses the private
variables causes the compiler to generate an error during
program compilation which error stops the compilation
process and prevents the program from being run.

Polymorphism 1s a concept which allows objects and
functions which have the same overall format, but which
work with different data, to function differently in order to
produce consistent results. For example, an addition func-
tion may be defined as variable A plus variable B (A+B) and
this same format can be used whether the A and B are
numbers, characters or dollars and cents. However, the
actual program code which performs the addition may differ
widely depending on the type of variables that comprise A
and B. Polymorphism allows three separate function defi-
nitions to be written, one for each type of variable (numbers,
characters and dollars). After the functions have been
defined, a program can later refer to the addition function by
its common format (A+B) and, during compilation, the C++
compiler will determine which of the three functions is
actually being used by examining the variable types. The
compiler will then substitute the proper function code.
Polymorphism allows similar functions which produce
analogous results to be “grouped” in the program source
code to produce a more logical and clear program tlow.

The third principle which underlies object-oriented pro-
cramming 1s inheritance, which allows program developers
to easily reuse pre-existing programs and to avoid creating
software from scratch. The principle of inheritance allows a
software developer to declare classes (and the objects which
are later created from them) as related. Specifically, classes
may be designated as subclasses of other base classes. A
subclass “inherits” and has access to all of the public
functions of its base classes just as if these function appeared
in the subclass. Alternatively, a subclass can override some

US RE37,722 E

9

or all of 1ts 1nherited functions or may modify some or all of
its inherited functions merely by defining a new function
with the same form (overriding or modification does not
alter the function 1n the base class, but merely modifies the
use of the function in the subclass). The creation of a new
subclass which has some of the functionality (with selective
modification) of another class allows software developers to
casily customize existing code to meet their particular needs.

Although object-oriented programming offers significant
improvements over other programming concepts, program
development still requires significant outlays of time and
cfiort, especially 1f no pre-existing software programs are
available for modification. Consequently, a prior art
approach has been to provide a program developer with a set
of pre-defined, 1nterconnected classes which create a set of
objects and additional miscellaneous routines that are all
directed to performing commonly-encountered tasks 1n a
particular environment. Such pre-defined classes and librar-
ies are typically called “application frameworks™ and essen-
fially provide a pre-fabricated structure for a working appli-

cation.

For example, an application framework for a user inter-
face might provide a set of pre-defined GUI objects which
create windows, scroll bars, menus, etc. and provide the
support and “default” behavior for these graphic interface
objects. Since application frameworks are based on object-
oriented techniques, the pre-defined classes can be used as
base classes and the built-in default behavior can be inher-
ited by developer-defined subclasses and either modified or
overridden to allow developers to extend the framework and
create customized solutions 1n a particular area of expertise.
This object-oriented approach provides a major advantage
over traditional programming since the programmer 1s not
changing the original program, but rather extending the
capabilities of the original program. In addition, developers
are not blindly working through layers of code because the
framework provides architectural guidance and modeling
and, at the same time, frees the developers to supply specific
actions unique to the problem domain.

There are many kinds of application frameworks
available, depending on the level of the system 1mnvolved and
the kind of problem to be solved. The types of frameworks
range from high-level application frameworks that assist in
developing a user interface, to lower-level frameworks that
provide basic system software services such as
communications, printing, file systems support, graphics,
ctc. Commercial examples of application frameworks
include MacApp (Apple), Bedrock (Symantec), OWL
(Borland), NeXT Step App Kit (NeXT), and Smalltalk-80
MVC (ParcPlace). These application frameworks include a
set of standard objects which create windows, scroll bars,
menus, etc., each with its own pre-defined behavior. Gen-
crally each of the objects 1s associated with a screen display
which the object can render in response to a call of one of
its member functions.

While the application framework approach utilizes all the
principles of encapsulation, polymorphism, and inheritance
in the object layer, and 1s a substantial 1mprovement over
other programming techniques, there are difficulties which
arise. These difficulties are caused by the fact that it 1s easy
for developers to reuse their own objects, but 1t 1s difficult for
the developers to use objects generated by other programs.
Further, application frameworks generally consist of one or
more object “layers” on top of a monolithic operating
system and even with the flexibility of the object layer, 1t 1s
still often necessary to directly interact with the underlying
operating system by means of awkward procedural calls.

10

15

20

25

30

35

40

45

50

55

60

65

10

In the same way that an application framework provides
the developer with prefab functionality for an application
program, a system framework, such as that imncluded 1n a
preferred embodiment, can provide a prefab functionality
for system level services which developers can modily or
override to create customized solutions, thereby avoiding
the awkward procedural calls necessary with the prior art
application frameworks programs. For example, consider a
display framework which could provide the foundation for
creating and manipulating windows and Ul objects dis-
played within the windows to display information generated
by an application program. An application software devel-
oper who needed these capabilities would ordinarily have to
write specific routines to provide them. To do this with a
framework, the developer only needs to supply the charac-
teristics and behavior of the finished display, while the
framework provides the actual routines which perform the
tasks. In addition, the framework supplies a set of pre-
defined objects and a mechanism to modify these objects
and create new ones.

A preferred embodiment takes the concept of frameworks
and applies it throughout the entire software system, includ-
ing the application programs and the operating system. For
the commercial or corporate developer, systems integrator,
or OEM, this means all of the advantages that have been
illustrated for a framework such as MacApp can be lever-
aged not only at the application level for such things as text
and user 1nterfaces, but also at the system level, for services
such as printing, graphics, multi-media, file systems, I/0,
testing, etc.

FIG. 2 shows an 1llustrative screen display generated by
a typical application program which uses a GUI that, 1n turn,
uses user interface (UI) objects. When such a program is
used 1 a windowing environment, the application main area
1s generated by one of the Ul objects. The enclosed rectan-
oular area 1s defined by borders and 1s called a “window™ or
“view” 200. This window is normally called the “main” or
“pop-up” window because 1t iitially appears when the
application begins to run, and, in accordance with normal
windowing operation, the main window can be moved and
resized 1 a conventional manner. The window usually
includes a title bar 202 and a menu bar 204. The menu bar
allows access to a number of pull-down menu palettes that
are operated 1 a well-known manner and allow the user to
operate various file, editing and other commands.

Within the main window, the area remaining after exclud-
ing the title bar, the menu bar and the borders 1s called the
“client” area and constitutes the area that can be modified by
an application program, such as a drawing program. A client
arca may enclose additional windows called “child” win-
dows that are associated with the main window. In this case
the main window 1s called a “parent” window 1n relation to
the child windows. Each child window may also have one or
more child windows associated with it for which it 1s a
parent window and so on.

Most application programs further sub-divide the client
arca 1nto a number of child windows. These typically
include a document window 206, a “toolbar” or “palette”
window 212, and, 1n some cases, a control window 218. The
document window 206 which may be equipped with hori-
zontal and wvertical scroll bars, 208 and 210, that allow
objects 1n the document window to be moved on the screen.
As used herein, the term “document” means a file which
may contain text, graphics or both. The document window
206 may be further sub-divided into child windows which,
in accordance with normal windowing operation, may over-
lap each other. At any given time usually only one of the

US RE37,722 E

11

child windows 1s active or has imput “focus”. Only the
window which has input focus responds to 1mnput actions and

commands. Such windows are schematically shown as child
windows 220, 222 and 224.

The toolbar/palette window usually contains a number of >

iconic 1mages, such as icons 214 and 216, which are used as
a convenient way to 1nitiate certain, often-used routines. For
example, 1con 214 may be selected to initiate a drawing
routine which draws a box on the screen, whereas icon 216
might represent a drawing routine that draws a circle on the
screen. The operation of such toolbars and palettes 1s gen-
erally well-known and will not be described further herein.

Some main windows also contain a control window 218,
which may contain additional menus, push buttons,
checkboxes, radio buttons or other control elements that
allow further routines to be run. Such controls are generally
selected by means of a mouse or other input device. In any
case, each of the element graphical displays generated on the
screen 1s created by a corresponding user interface object.
The mechanism used to create the screen display by the user
interface object depends on the operating system. In some
GUI operating systems, the screen displays are controlled by
a screen or window manager and the control displays are
created by the user interface objects by calling an appropri-
ate screen manager function. Other operating systems allow
objects to draw their own screen displays (in an area
specified by the screen manager). In this latter case the
screen display 1s drawn by calling a member function of the
assoclated user interface object.

In accordance with the principles of the present invention,
the Ul objects which generate the screen displays can be
created 1n advance by the use of a special “constructor”
program. The constructor program 1s itself object-oriented
and extensible so that it can create and edit both existing UI
objects and Ul objects created by a program developer. Ul
objects created or edited with the constructor program are
stored 1n an archive file and can be retrieved at runtime to
ogenerate the appropriate screen displays.

The Archive File

The archive file which stores the Ul objects 1s associated
with a shared library and hidden from users in the shared
library’s file group. Objects are retrieved from the archive by
“name” and the name of an object stored 1n an archive can
be any text string. Accordingly, the object names of objects
which will be used by an application program are coded 1nto
the program during program development. Since the names
are compiled 1nto the application program code that accesses
the archived objects, the archived objects are treated as
“static” data and are bundled into the shared library asso-
ciated with the application program code.

Each UI object archive has a client interface. This allows
the archive and the Ul objects 1n the archive to be shared by
several program developers or development teams. The
client interface prevents one development team from chang-
ing an object 1 an archive, thereby leaving all of the other
teams (using the same archived object) in an inconsistent
state. In addition, normally, most Ul objects are not accessed
directly from an archive by an application program, but
instead, are accessed through a high-level application pro-
cramming interface. For example, an application program
which 1nteracts with a scanner would never request the
scanner’s conflguration dialog box from the associated
archive. Instead, the program would access the scanner
configuration dialog box through a method in a scanner
object associated with the scanner.

10

15

20

25

30

35

40

45

50

55

60

65

12

Archive Locale Trees

In order to facilitate “localization”, or preparation of an
application developed 1 one language for use 1n an “area”
or a locale which uses another language, and 1n accordance
with the principles of the present invention, the Ul objects
arc stored 1 a special framework within the archive.
Normally, localization of an application would require a
translation of text strings embedded within the object.
However, not all objects include text strings and, thus, not all
objects need to be translated. Nevertheless, in prior art
systems 1t 1s common to include a complete set of UI objects
for each localized program, resulting, in some cases, In
many duplicated objects residing 1n storage. According to
one aspect of the present invention, only those objects which
require a translation are stored 1n an area associated with a
particular locale and objects which do not need a translation
are stored 1n a different locale. At runtime the complete
collection of objects 1s assembled to form the program
display.

More particularly, the UI objects are stored i a “locales”™
hierarchy. An illustrative hierarchy is illustrated in FIG. 3A
and provides specialized locales for language, dialect,
country, and region. Although one particular hierarchical
organization 1s shown 1n FIG. 3A, other organizations will
be apparent within the scope of the present invention. At the
start of the illustrated hierarchy 1s a locale 300 called
“Root.” The “Root” locale 300 contains a complete set of
archived objects 320 (illustratively designated as Object
1-Object §) and 1s the place where a programmer initially
stores a set of objects created during program creation. The
embedded strings in these root objects 320 may be m any
language—French or Spanish, or English, or whatever—
depending on where the application program that created
and used the objects was 1nitially developed.

The next level of the illustrative hierarchy might be
language locales 302. The language locales 302 only contain
objects that need to be localized for that particular language.
For example, the only objects stored 1n the “English” locale
would be copies of objects 1 the root locale 300 which
contain text that had to be translated into English, which
might occur, for example, if the corresponding object in the
root locale 300 contained embedded text that was not in
English. The objects 1n the English locale would then be the
same as the objects 1n the root locale with the exception that
embedded text would be translated into English. The locale
hierarchy 1s arranged so that objects in each locale level
down the hierarchy from the root locale 300 which need to
be changed for that locale “override” the corresponding
objects 1n a higher level.

The “overriding” operation means that whatever locale 1s
chosen 1n the hierarchy, there 1s a complete set of archived
objects visible to the user, but some of the objects are stored
in the chosen locale while others (which do not require
translation) are stored at higher levels of the locale hierar-
chy. The overriding operation also means that new objects
(such as a new dialog or string) can only be created in the
root locale. At any other locale, objects can be created only
if they’re “overriding” objects (an object of the same name
and class must first exist in a higher locale level or the root
locale).

Objects with the same name may exist in one or more
locales, but one locale 1s designated as the “current” locale.
Normally, when a program requests an object from an
archive, the archive will return a copy of the object for the
current system locale, but a program may also request an
object from a specified locale. When such a request 1s made,

US RE37,722 E

13

the archive will search for the object 1n the specified locale
first (if a locale is not specified, then the current locale will
be searched), and if a copy of the object with the proper text
translation 1s not found, then the archive will search 1n the
next higher level and so on, up the hierarchy until an object
with the closest translation i1s found or the root locale 1s
scarched. For example, an object with embedded English
text might be sought and found, but the English text might
not be 1n the dialect which is sought). The root locale 300

exists so that each sub-locale doesn’t have to have a com-
plete and duplicate set of every object used by the program.

Referring to FIG. 3A, the 1illustrative locale hierarchy
begins at the root locale 300 and includes a “language™ level
302, a “country” level 304 and a “regional” level 308.
Assume that a application program which requires five user
interface objects (Object 1-Object 5) was originally written
in Chinese. In accordance with the operation described
above, the five objects are stored in the archive 1n the root
locale 300 with embedded text in Chinese. However, of
these five objects, only object 4 and object 5 actually include
embedded text, the remainder of the objects contain generic
oraphics. Next, assume that the application must be trans-
lated for use i1n the Pacific Time Zone 310 of the regional
level 308 and requests the five objects from the Pacific Time
Zone 310. The archive examines the locale 310 and deter-
mines that Objects 1 and § are present 1n the locale having
been translated for the Pacific Time Zone. The archive then
moves to the next higher level (the country level 304)
looking for Objects 2, 3 and 4 which were not found 1n the

Pacific Time Zone locale 310.

The Pacific Time Zone locale 310 1s a lower level of the
USA country locale 306. In this latter locale, a translated
version of Object 4 1s located and added to the collection of
objects retrieved by the archive. Since Objects 2 and 3 still
have not been found, the next locale level i1s examined (the
language level 302). In the English locale (from which the
USA locale descends) Objects 4 and § are located. However,
since Object 4 has been found at a lower level (USA locale),
the lower level version overrides the object version found at
the English locale level. Finally, the remaining Object 2 1s
retrieved from the root locale (this object is generic and
needs no translation). Thus, a complete set of objects is
retrieved for each application program which 1s localized,
but object duplication 1s greatly reduced.

The locale tree structure used in an archive can be a
conventional tree structure of the type found 1n many
existing application frameworks. There are three different
mechanisms for storing objects in a tree structure: 1) escorts
stored in the Constructor document, 2) objects stored in the
archive viewer tree, and 3) actual objects stored in the
archive file on disk.

FIG. 3B 1s a block diagram of a TArchiveModel in
accordance with a preferred embodiment of the invention.
The Constructor document contains a TArchiveModel 380,
a subclass of TModel, the standard storage model of a TAL
application. The TArchiveModel implements the locale tree
with a TDictionary. The dictionary contains a sparse repre-
sentation of the locale hierarchy 381. If an object exists in
some locale 382, there 1s an 1tem 1n the dictionary for the
locale the object lives in. Empty locales are not stored 1n the
dictionary 390. The key for retrieving 1tems 1n the dictionary
1s a TLocale shown at label 391. The values stored 1n the
dictionary are TArrays 392. Each eclement 1n the array 1s a
TDocumentComponentReference 383. The reference even-
tually points to a subclass of a TEscortModel 384. The escort
model contains one or more escorts. For example, the
TEscortModel 384 contains a hierarchy of TViewEscorts

10

15

20

25

30

35

40

45

50

55

60

65

14

(TObjectEscort 385) exactly matching the view hierarchy
being edited. Each escort 385 has a pointer to the actual

object 386.

The archive tree viewer (TArchive'lree Viewer) is a dis-
play class used for examining the contents of the Construc-
tor document, or TArchiveModel. The TArchiveTreeViewer
1s based on an actual tree class. Each node 1n the tree 1s a
TLocaleLabel that represents every locale 1in the Taligent
locale hierarchy (not just the sparse locale hierarchy stored
in the TArchiveModel). Each TLocaleLabel also holds ref-
erences to each of the escort models stored 1n the locale. It
uses these references to display the escort’s name and to
allow the user to directly manipulate the escort. The user can
interact with the label to rename it, drag 1t to another locale
to localize the object, cut and paste, etc. The tree and each
label can be expanded and collapsed to show and hide
information.

Constructor Locale Gallery

The Constructor Locale Gallery provides a view of all
objects available 1n a particular locale 1n an archive. The
view obeys archive locale searching rules and shows objects
defined 1n one locale as well as those visible 1n parent
locales. Therefore the view allows the developer to see the
complete set of objects available for a particular locale.

Archive Structure

Archives store named objects 1n a hierarchy. The objects
stored are typically user interface elements or other items
that may need to be customized for different languages or
nationalities. As an example, FIG. 19 1llustrates a typical
archive hierarchy containing menus, dialogs and icons. The
locales are arranged 1n a tree, starting at the “Root” locale.
The hierarchy retlects the relationships among languages
and places, so the “French” locale 1900 1s the parent of both

“France” and “French Canada” 1910.

Objects are stored 1n locales according to how much they
have been customized. Completely generic objects that
apply everywhere are stored 1n the Root locale 1920. Objects
specific to a place are stored 1n that place’s locale. When a
program reads an object from the archive, for example when
displaying a menu, it asks the archive for an object of a
particular name for a particular locale. The archive searches
the speciiied locale, returning the object if 1t 1s found. If not,
the archive searches the parent locale for the named object,
and continues searching all the way up to the Root locale 1f
necessary. So, 1n the above example if my current locale
were France and my program asked the archive for an object
named “Menul”, the object stored in the France locale
would be returned. If 1t asked for an object named “Menu2”,
the object stored 1 the French locale would be returned. It
it asked for an object named “Iconl”, the object stored 1n the
Root locale would be returned.

The Constructor Locale Gallery

The Constructor Locale Gallery shows all the objects
available to a program for a given locale. It 1n effect,
“flattens” the locale hierarchy by merging the list of objects
available 1 one locale with those 1n the ancestor locales, and
climinating duplicates. This view 1s useful to developers
because 1t shows succinctly what objects will be associated
with what names for the locale, and 1t also shows where the
objects will be found.

The locale view 1s a completely new way of representing,
information for national language processing. Other systems

US RE37,722 E

15

show flattened hierarchies of objects, e.g. C++ browsers
show 1nherited functions of a class. However, no other
system organizes user 1nterface objects into a hierarchically
structured archive, and therefore there are no other systems
that display flattened views of such objects. Also, a preferred
embodiment displays visual representations of the objects,
whereas other systems tend to display only names.

FIGS. 20-22 illustrate examples of locale gallery views
for the three rightmost locales 1n the archive shown in FIG.
19. In these figures, the squares 2000 display thumbnails, 1..
reduced size renditions, of menus, dialogs, etc. Each thumb-
nail 1s labeled by the object name and the name of the locale
containing the object. Note that the number of objects and
their names 1s the same for all locales, but the thumbnails
and the containing locale names can be different.

There are many display possibilities for the objects 1n the
locale gallery. We have implemented two so far: 1) thumb-
nails of graphics objects, such as menus, dialogs and pic-
tures; and 2) text strings, displayed in their associated styles
and sizes. The thumbnails are the most general and can
display all types of objects 1n the same view, as 1n the above
example. If we constrain a gallery to show only one type of
object, e€.g. strings, we can display the objects in a form
specific to their type.

The actual archive (TArchive) stored on disk and typically
associated with a shared library 1s based on a
THeterogeneousDiskDictionaryOf<TArchiveKey>. Each
TArchiveKey consists of two parts: a text name or key, and
a locale. Objects of every locale are all mixed together 1n the
disk dictionary. Because of the way the objects are accessed,
the structure of the archive appears as a tree structure to
external users. Objects 1n an archive are typically accessed
through a templatized TArchiveEnvelope<>. The archive
envelope provides a type-safe mechanism for retrieving,
replacing, and storing objects 1in an archive. When an archive
envelope 1s asked to retrieve an object from a specific locale,
it performs the following steps:

(1) Get
(2) Get
(3) Using the text key passed into the envelope, look in the

archive’s dictionary for an object with a TArchiveKey
made up of the text key and the search locale.

the root locale

the locale specified 1n the envelope to search

(4) If the object is found, copy it and return it to the caller.

(5) If the object is not found and the search locale is the
same as the root locale, throw an exception that says
that the object wasn’t found.

(6) Otherwise, put the parent locale of the search locale
into the search locale.

(7) Goto step (3).

Accessing the Archive File

FIG. 4 1s a stylized block diagram which 1llustrates how
an application program actually accesses the archive objects.
In FIG. 4, application program 400 obtains access to archive
data 410 (comprising archived objects) by means of a
“TArchive” object 406. The interaction between the appli-
cation program 400 and the TArchive object 406 1s 1llus-
trated schematically by arrow 402. The TArchive object 406,
in turn, interacts with the archive data 410 as indicated
schematically by arrow 408. The TArchive object 1s 1nstan-
fiated from the class TArchive and provides an interface
through which the archived objects can be directly accessed
by an application program. In order to use a TArchive object,
a program developer creates an instance of the TArchive
class 1n his application program code. The application

10

15

20

25

30

35

40

45

50

55

60

65

16

program then can retrieve Ul objects that were previously
created with the constructor program (a process that will
hereinafter be described in detail) and stored in the archive.
An application program determines which archive to utilize
by calling TArchive::CopyArchiveForSharedLibrary. This
call mterrogates the address of the caller on the CPU stack
and utilizes the returned address to determine which shared
library called the archive code. Once the shared library name
1s determined, the archive file name 1s accessible and the
archive 1s opened.

As previously mentioned, the TArchive object provides a
shared read-only access path to archived objects that it
contains, but does not represent the stored data. Thus, a
TArchive object can be created and destroyed without any
cifect on the archived objects which are accessed through the
TArchive object. Since archives are actually part of a shared
library, a TArchive object can be instantiated from the
TArchive class using only the name of the shared library as
a parameter 1 the constructor.

FIG. 4B 1s a flowchart in accordance with a preferred
embodiment of flattening and resurrecting an object. To
flatten an object, processing commences at function block
450 where the class name for a particular object that 1s to be
flattened 1s written into the data stream. Then, the shared
library class name 1s written into the data stream as shown
in function block 460. Thereafter, the object stream-out
method 1s called to write the object’s data into the data
strcam. To resurrect an object, processing commences at
function block 470 where an application reads the name of
the class from the data stream, then at function block 475,
the application reads the name of the shared library of the
class from the data stream, creates an mstance of the desired
class from the desired shared library by name as shown at
function block 480, and calls the stream-in method of the
new object to read the object’s data 1n from the data stream
as shown 1n function block 490.

To create an instance of a desired class from a shared
library by name, a library 1s loaded after an application has
already started utilizing the techniques presented in U.S. Pat.
No. 5,369,766 to Taligent, Inc. Then, a constructor function
name 1S synthesized from the name of the class, and the
classes default constructor function 1s invoked utilizing the
techniques presented in U.S. Pat. No. 5,369,766 to Taligent,
Inc., which results 1n the creation of a new object of the
desired type.

Once a TArchive object has been instantiated, a copy of
an 1ndividual object 1n the archive 1s retrieved via a member
function 1n the TArchive object. In accordance with the
description of the locale hierarchy above, a request for an
object 1 a specilic locale can return either the localized
object requested or a less speciiic version of the object which
1s found 1n another local located at a higher locale level. The
TArchive object generally has two member functions which
can be used by an application program: CreateArchive
(shared library) and Clone ArchiveObject(name, locale). The
first of these functions i1s used to create an instance of a
TArchive object which creates an access path to or “opens”
the archive 1n the specified shared library and returns a
pointer to the created object.

Once the TArchive object has been created, the
CloneArchiveObject(name, locale) member function can be
called to retrieve objects by name and locale from an open
archive. The retrieved object 1s streamed out of the archive
to the application program where 1t can be used to generate
displays.

The Constructor Program

The Ul objects which are stored 1n an archive are actually
created via a separate “constructor” program which 1s used

US RE37,722 E

17

by application developers to edit standard Ul objects and to
create new Ul objects. In order to meet the goal of providing
a fully extensible program that 1s capable of handling any
type of newly-created Ul object, it 1s necessary for the
constructor program to have no built-in knowledge about the
internal construction of the objects that 1t 1s creating and
manipulating. If no such built-in knowledge 1s coded mnto the
constructor program, when an new object 1s created 1t will
not be necessary to rewrite the constructor program code to
handle the new object.

There are several methods of accomplishing the goal of
full extensibility. One method 1s to create a special “con-
structor class” and make all Ul objects descend from this
class so that all UI objects are “constructible”. For example,
the special constructor class might have a specific protocol
for sizing objects, moving them, editing them, drawing
handles around their frames, drawing certain kinds of visual
feedback and putting the object into “special” states (the
“special” states would allow the constructor program to
make objects respond differently to events that the objects
would normally respond. For example, clicking on a button
in one state would select the button 1nstead of pushing the
button as normally occurs). These special states allow the
objects to be edited rather than to act as they would 1n an
actual operating program.

The problem with this latter approach 1s that a newly-
created Ul object could only be easily used with a prede-
signed constructor program 1f 1t descended from the special
constructor class. Since many existing objects, such as text
strings and sounds currently did not descend from this class
and could not easily be made to descend from this special
class, 1t would be necessary to wrap these objects with
another object that was “constructible” and store the com-
bined object 1n an archive. In addition, in a further problem
1s that the “constructible” objects had to include extra
functions and 1nstance variables so that they could be used
with the constructor program. These extra functions and
variables then would be retrieved from the archive along
with the object and take up space 1n the application program
space even though they would never be used by the appli-
cation program.

Interfacing the Constructor Program with Archive
Files

Accordingly, 1n accordance with the a preferred embodi-
ment of the mvention, instead of creating Ul objects which
are themselves “constructible”, each Ul object 1s contained
in a special “escort” object. The escort objects are construct-
ible and are the objects that actually interface with the
constructor program. Thus, when an object 1s created by the
constructor program, an escort object unique to the Ul object
1s also created. Both the UI object and the escort object are
stored at the appropriate locale 1n the constructor document.
The Ul element 1s ultimately stored at the appropriate locale
in the archive.

When the object 1s to be edited, the constructor program
interfaces with the escort object. This latter relationship 1s
shown 1n FIG. §. In particular, constructor program 3500
interacts with an escort object 504 as mdicated schemati-
cally by arrow 502. Escort object 504, in turn, wraps the
actual Ul object 506 and passes translated commands to the
Ul object. In accordance with the escort object approach, the
constructor program does not manipulate the actual screen
display generated by an object. Instead, the constructor
program manipulates the escort. As the screen manipulation
1s progressing, the attributes which are apparent on the

10

15

20

25

30

35

40

45

50

55

60

65

138

oraphical representation of the object on the screen are
transferred into the object itself by the escort object. When
the escort 1s invoked, 1t defers the drawing to the escorted
object’s method. Therefore, any changes made to the escort
are 1immediately visible.

In accordance with the principles of the invention, when
an archived object 1s requested, the related escort object 1s
queried and streams out the attributes of the UI object. The
escort object itself remains 1n the archive. Therefore, func-
tions and variable instances which are necessarily included
in the escort object which allow it to interact with the
constructor program do not end up 1n the application pro-
oram. Each Ul object must be associated with its own unique
escort object. While “standard” escort objects are included
in the constructor program for “standard” UI objects, any Ul
object that 1s created by a program developer must also have
an associated escort object. The developer may or may not
have to create a new escort object. If the developer-created
UI object has new protocol (not inherited from the UI
object’s base class) that the developer wants users to be able
to mspect and modity, a custom escort must be developed.
Otherwise, the developer can simply use the base-class
escort object.

FIGS. 6 and 7 1llustrate a portion of the locale tree shown
in FIG. 3A illustrating various Ul objects which are stored
at specific locale levels. As an 1illustration, the screen dis-
plays which are generated by the objects as they would
appear 1 a program are 1illustrated in FIG. 6. A schematic
representation of the underlying escort objects that are
stored 1n each locale level are shown 1n FIG. 7. In particular,
FIG. 6 shows an expanded view of the root locale 604 and
the USA locale 606. Root local 604 contains two objects: a
view object 602, which essentially comprises colored win-
dow and 1s depicted as a shaded rectangle, and a checkbox

object 600. The USA locale includes a text string 608
containing the text “DEFAULT BUTTON”.

FIG. 7 shows the underlying organization of the construc-
tor utilizing escort objects for the Ul objects shown 1n FIG.
6. In particular, in FIG. 7, the root locale 708 contains two
escort objects: a TViewEscortObject and a TCheckBox-
EscortObject which are associated with the two Ul objects
illustrated 1n FIG. 6. The screen display 602 1s created by a
TViewObject 700 which 1s escorted by the TViewEscortO-
bject 702. The checkbox screen display 600 1s a subview of
the view 602 and, accordingly, it 1s contained a subobject.
This subobject 1s shown as a TCheckBoxObject 706 which
1s escorted by a TCheckBoxEscortObject 704. In a similar
manner, the text string 608 i1s created by a TStandardTex-
tObject 714 located 1in the USA local 710 and the TStan-

dardTextObject 1s contained within a T'StandardTextEscor-
tObject 712.

The actual arrangement of the data in the data storage
would appear essentially as set forth below. It should be
noted that this data storage mapping 1s for illustrative
purposes only corresponds to the Ul and escort objects
shown 1n FIGS. 6 and 7. For other views and escort objects,
alternative data structures would be stored 1n archive.

FIGS. 23-25 are detailed flowcharts of export logic 1n
accordance with a preferred embodiment. Processing com-
mences 1n FIG. 23 at label 2300 where an export archive
command 1s detected by the system. The first step 1n the
processing 1s to open a lile for the export processing as
shown 1n function block 2310. Then at decision block 2320
a test 1s performed to determine 1f there are any objects to
export. If not, then processing 1s done and control 1s passed
to terminal 2370. If there are objects to export, then an

US RE37,722 E

19

iterator 18 set as shown 1n function block 2330, the first
object 1s extracted at function block 2340, and a test 1is
performed at decision block 2350 to determine 1f the object
1s equal to a nil value. If so, then processing 1s complete and
control 1s passed to terminal 2370. If the object exists, then
at function block 2350, an export record 1s written to the file
in accordance with the detailed logic presented in FIG. 24,
the count 1s 1terated and control 1s passed to decision block
2350 to test and process the next record.

FIG. 24 presents the detailed logic associated with creat-
ing export records 1n accordance with a preferred embodi-
ment. Processing commences at terminal 2400 where an
archive record model 1s subclassed from TArchiveModel.
Then, at function block 2410, the record fields are
mstantiated, the record 1s written to the file as shown 1n

function block 2420, and the escort file 1s written as shown
in function block 2430 and detailed in FIG. 25.

FIG. 25 presents the detailed logic associated with
streaming a file out to an escort file 1n accordance with a
preferred embodiment. Processing commences at terminal
2500, where the command to export the record to the escort
file 1s encountered. Then, the streamed version of an object
1s written to the file as shown i1n function block 2510, a
temporary variable M 1s equated to the contiguous streamed
version of the object 1n function block 2520, the temporary
variable M 1s flattened 1n function block 2530, written as hex
data to a storage medium as shown 1n function block 2540,
written as a text version to the file as shown 1n function block
2550, the bounds of the object are written to the file as
shown 1n function block 2560, the color of the object is
written as shown 1n function block 2570, and if there are
subobjects, they are exported to the file in the same manner
as the objects as shown 1n function block 2580.

The importing of objects from an archive 1s performed in
a similar manner as shown in FIGS. 26-30 which are
detailed flowcharts of import logic 1n accordance with a
preferred embodiment. Processing in FIG. 26 commences at
terminal 2600 where an import archive command 1s {first
encountered. Encountering the command immediately
results 1n an 1mport file being opened as shown 1n function
block 2610, instantiation of an importer as shown in function
block 2620 and parsing the file as shown 1n function block
2630 and detailed 1n FIG. 27.

FIG. 27 presents the detailed logic associated with parsing,
an 1mport file 1 accordance with a preferred embodiment.
Processing commences at terminal 2700 where a file to be
imported 1s presented for processing. First, the file 1is
scanned to 1dentify the first token as shown 1n function block
2710 and an 1mmediate test 1s performed at decision block
2720 to determine 1f the token 1s a Locale. If 1t 1s, then the
string 1s parsed to determine the locale name as shown 1n
function block 2730 and control 1s passed to function block
2710 to get the next token which should correspond to the
named. If the token 1s not Locale, then a test 1s performed at
decision block 2740 to determine 1f the token 1s an Escort.
If not, then control 1s returned to function block 2710 to get
the next token. If the token 1s an escort, then the escort type
and name 1s read, a status message displayed and the next
token 1s obtained as shown in function block 2760. Then
control passes to FIG. 28 via terminal 2769.

FIG. 28 continues the detailed logic associated with
parsing an 1mport file in accordance with a preferred
embodiment. Processing commences when control 1s passed
via terminal 2769 to decision block 2770 to test for a
streamed object. If the object 1s streamed, then a temporary
variable M 1s utilized for storing the hex dump retrieved

10

15

20

25

30

35

40

45

50

55

60

65

20

from the file and control 1s passed to function block 2800. It
the token does not indicate a streamed object at decision
block 2770, then control 1s passed directly to function block
2800 to mstantiate a new escort, the next token 1s obtained

at Tunction block 2810 and a test 1s performed at decision
block 2820 to determine 1f a textobject 1s being imported. If
so, then the text object 1s 1imported as shown in function
block 2830 and detailed 1n FIG. 29. Then, control passes to
decision block 2840 to determine if the end of the file has
been reached. If so, then processing 1s done, and control
passes to terminal 2850. If not, then control passes via
terminal 2799 to function block 2710 to process the next
token.

FIG. 29 1s a flowchart of the detailed processing associ-
ated with processing a text object 1n accordance with a
preferred embodiment. Processing commences at terminal
2900 when a text object 1s encountered. Then, at function
block 2910, an escort object 1s 1nstantiated, the text object 1s
resurrected from the memory stream and if no exception 1s
thrown, then tokens are processed from the file after the text
section of the object and processing 1s terminated at terminal
2950. If an exception 1s detected when the object 1s resur-
rected at function block 2920, then the object 1s imported 1n
accordance with the logic presented in FIG. 30 as shown at
function block 2940, and processing 1s completed at termi-

nal 2950.

FIG. 30 1s a flowchart of the logic associated with
importing objects 1 accordance with a preferred embodi-
ment. Processing commences at terminal 3000 where an
object import command 1s detected. Then, at function block
3010, the object’s bounds are 1nitialized, the object’s bounds
are set at function block 3020, the color 1s obtamned at
function block 3030 and the object’s color 1s set at function
block 3040. When, importing an object from the text portion
of the import file, a generic object of the type specified by
the 1mport data 1s created. Next, the various attributes are
read from the import file (such as bounds, color, checked or
not checked, enabled or disabled, etc.) and applied to the
newly created object. FIGS. 31-32 are detailed tlowcharts of
import and export logic in accordance with a preferred
embodiment.

Import Export Analogy

Other systems support exporting resource data as text,
Macintosh has Rez/Derez. None, however, supports two
different representations of each object 1n the exported file.
Here’s a corny analogy of the way Constructor’s export/
import works:

A backpacker 1s leaving on a long trek. He’d like to take
along “real” food, but he knows that would be too bulky and
heavy. As a compromise, he takes along many packages of
freeze dried food. Being smart, and wanting to prepare
himself for any contingency or emergency, he decides to
take along printed recipes for all the freeze dried food
packets. If his freeze dried food gets destroyed or lost, he’ll
still be able to survive on his recipes even though it will be
more work to prepare the food and the food might not be
exactly what he expected.

When Constructor exports an object and 1ts escort, 1t
writes a “freeze dried” version of the object to the text file.
The exporter also writes a textual description of the object
for emergency purposes. On 1mport, Constructor tries to
reconstitute the freeze dried object. If that proves
impossible, because something 1n the system has changed
that renders the freeze dried object obsolete. Constructor
will create a new object from the text “recipe” saved in the
text file.

Locale Root
Escort TViewEscort “My ColorView” {

21

US RE37,722 E

hex { 5
Tit7717ca7d7a717d7d7a77¢732512532
ft7717ca7d7a7t7d7d7a7 7732512532
Tit7717ca7d7a717d7d7a77¢732512532
ft7717ca7d7a7t7d7d7a7 7732512532
771 7ca7d7a7t7d7d7a77¢732512532
} 10
Object TView {
100.. 100 //position
10.. 10.. 20.. 20. /fbounds
6..7. .8 //RGB color bundle
SubEscort TCheckBoxEscort {
hex { 15
771 7ca7d7a7t7d7d7a77e732512532
{771 7ca7d7a7t7d7d7a77e732512532
771 7ca7d7a7t7d7d7a77e732512532
TE7717ca7d7a7t7d7d 7277732512532
771 7ca7d7a7t7d7d7a77e732512532
j 20
Object TCheckBox {
100.. 100 //position
10.. 10.. 20.. 20. /fbounds
“CHECK ME” /flabel
“ //action message
h
I 25
h
h
Locale USA
EscortTStandardTextEscort “Label String” {
hex {
fTit7717ca7d7a7t7d7d7a77¢732512532 30
7 717ca7d7a7t7d7d7a7 7732512532
fft7717ca7d7a7t7d7d7a77¢732512532
7 717ca7d7a7t7d7d7a7 7732512532
fft7717ca7d7a7t7d7d7a77¢732512532
h
Object T'StandardText { 35
“DEFAULI BUTTON”
h
h
As shown above, each user interface object as enclosed 1n 40
an escort object actually consists of set of data.
Consequently, the set of data which represents the user
interface object can be cut and pasted 1nto other documents
just like any other data such as, text data, spreadsheet data
or graphic data. The characterization of the user interface 45
clements as “data” means that a program developer can
create a dialog box (for example) using the constructor
program, paste the data representing the dialog box 1nto an
¢-mail message or a word processing document and send the
document to another developer. The latter developer can 50
then copy the dialog box data out of the incoming document
and paste the data into an actual programming project. Thus,
the program code written by a first developer can easily be
transported to another program.
55
Constructor Program Components
As previously mentioned, objects and escort objects are
created and edited by means of a “constructor” program. The
main components of the constructor program are viewer 60
objects, mspector objects and editor objects. Each of these
components are used to either view or edit an archived Ul
object. The constructor program does not have 1its own
built-in viewers and editors. Instead a viewer object 1s
associated with an escort. There are also several viewers for 65

examining archives. A text file 1s utilized for mapping
objects and escorts to viewers. The file dynamically modifies

22

the editor utilized for a particular object without recompiling
any code. This architecture facilitates the exchange of edi-
tors without requiring access to the Constructor source code.
When a developer wishes to view the archive, the construc-
tor program utilizes the routines in the associated viewer
object. Similarly, when a developer wishes to view an
object, an mspector or an editor designed to interface with
the object 1s used to mspect or edit the object. In this manner,
the constructor program can be easily extended to operate
with newly-designed UI objects by simply developing new
inspectors and editors for these objects and registering them
in a configuration file.

FIG. 8 1s a stylized class diagram which indicates the
main classes used by the constructor program to view, create
and edit objects and their associated escort objects. Three
base classes are provided that allow the constructor program
to view and edit the contents of an archive. The first of these
classes 1s the TArchiveView class 802 which provides a
oraphical view of the contents of an archive model. In
particular, there may be several alternative ways of viewing
the Ul object data that 1s included in the archive. One archive
view appears as a locale tree diagram similar to that shown
in FIG. 3A. However, there are also alternative views which
have the same graphical appearance, but may include, for
example, a view by object name, a view by object type, a
view by locale or a view by creation or modification date etc.
These alternative views of the archive data are managed by
the TArchiveView class. The TLocaleViewer provides a
“cataloging” view by type of the objects in an archive.

An additional archive view 1s called a presentation view
and appears as a list of archive locale levels as shown 1n FIG.
9. The listed locale levels comprise the root locale 900, the
English locale 902, the USA locale 904 and the Pacific Time
Zone locale 906. Other locales may be present but are not
shown. Objects 1included 1n each locale level are listed.

The archive views and presentations generated by the
TArchiveTree Viewer and TLocale Viewer object only let a
developer view the contents of an archive. In order to view
or modity an archived object, another mechanism must be
used. Two mechanisms are provided for moditying archived
objects: editors and inspectors. An editor generates an edit-
able screen display of an archived object. In some cases, the
editor display may look similar to the archive presentation
display. This 1s especially true for archived objects that
contain other archived objects. For example, a type of object
known as a presentation object, for example, contains other
user 1nterface objects that make up the presentation.
Therefore, a presentation editor would generate a display
that allowed a user to see and manipulate the objects
contained 1n the presentation as illustrated mn FIG. 10. In
FIG. 10, presentation editor 1000 displays three icons: a
dialog icon 1002, a document icon 1004 and a view icon
1006. The editor 1000 allows the three components repre-

sented by the 1cons to be added or deleted from the presen-
tation.

In addition, to the presentation editor described above,
additional object editors will be provided which are direct
manipulation editors. Editors may also be nested. For
example, a user could select the “Find Dialog” item 1n FIG.
10 and open another editor; a dialog editor (which generates
the display as shown in FIG. 11) to edit the “Find Dialog”
item. A preferred embodiment of the subject invention
provides support for View Editor functions including views,
windows and dialogs like that described above. A menu
editor 1s also provided with support for inspectors which
generate menu items, graphics, views, labels, shiders, text
controls, push buttons, scrolling views, text items, check
boxes and radio buttons.

US RE37,722 E

23

Another mechanism for editing objects 1n the constructor
program 1s called an i1nspector. An inspector appears like a
modeless dialog box or control panel which contains a list of
an archived objects attributes and variables. The list 1s
arranged so that the attributes and variables can be edited,
but the object’s screen display does not appear on the screen
during the editing procedure. Inspectors are used because
some attributes of an object are more easily manipulated
through a “dialog box type” interface than by direct manipu-
lation. An mspector may hierarchically display the internal
construction of a Ul object at each level of the class
hierarchy. The developer can show or hide the portion of the
inspector that deals with each level in the class hierarchy.
This hierarchical approach to inspectors allows the construc-
tor program to assemble 1nspectors on the fly. Moreover, the
creator of a new constructible class only has to build the
portion of an inspector that deals with his class.

Two additional base classes denoted as TInspector 804
and TObjectView 806 are also provided to create the editors
and 1nspectors. The TInspector class provides a dialog box
style interface for displaying and editing the UI object
attributes. The TObjectEditor class 806 provides a direct
manipulation editor for changing objects 1n an archive.

As previously mentioned, the UI object actual screen
display 1s not manipulated by the editor object, but instead
a “stand-in” display which looks like the UI objects screen
display 1s edited. The TGraphiculator class 812 1s used to
instantiate objects which provide the graphical appearance
for the archived Ul objects as they appear in a direct
manipulation editor crated by the TObjectEditor class 806.
The TGraphiculator class contains member functions for
moving, sizing and dragging the generated screen display.
These member functions are called by the editor during the
editing process. The TGraphiculator class also contains the
important member function Draw() which is called when-
ever the graphiculator’s appearance needs to be redrawn. In
general, the Draw() method of a TGraphiculator object is
implemented by calling the Draw() method of the associ-
ated escort object which, in turn, calls the Draw() method
of the escorted object.

INSPECTOR AND EDITOR INTERNALS

Inspectors

An 1nspector 1s created from a TEscortlnspectorPresenter
832 which 1s a Presentation Framework subclass. A user
initiates some action (double-click an escort, or a menu
command) to open an inspector on an object. TEscortIn-
spectorPresenter 1s told to create a main view. This routine
creates a new TlInspector, passing it the escort to 1nspect.
Then the TEscortlnspectorPresenter creates an empty deque
of TInspectorPanels and passes that deque to the escort’s
BuildInspectorPanelList function. The escort’s BuildInspec-
torPanellist function crease an TInspectorPanel and adds it
to the deque and then calls 1ts base class BuildInspectorPan-
clList function. In this manner, a deque of 1nspector panels
1s created from most specific down to most generic for any
orven escort. The panels, each individually collapsible, are
organized in a vertical fashion in a window.

Each inspector panel has controls to modily attributes of
the escorted object. The inspector panels are actually built
with Constructor and read on-the-fly from an archive. Click-
ing on controls 1n the mnspector sends actions to the 1nspec-
tor. The action 1s caught, the changed control interrogated,
and the appropriate function in the escort is called. The
escort changes the actual value 1n the object and sends out

10

15

20

25

30

35

40

45

50

55

60

65

24

notification. Other inspectors and editors looking at the same
escort or object are notified and update their state and visual
display accordingly.

Editors

An editor 1s created from a TEscortEditorPresenter 834.
Every escort that supports a graphical editor must subclass
TEscortEditorPresenter to override the HandleCreateMain-
View function. HandleCreateMainView 1s responsible for
creating the appropriate editor and returning it to the pre-
sentation framework. TViewEditorPresenter, for example,
creates a TViewEditorCanvas for editing views, dialogs, and
windows.

Viewers

Viewers are used to look and play with a live copy of the
object being edited. Previewers are created from the
TEscortPreviewerPresenter 836 class and its subclasses. A
preview of an escort 1s made by asking the escort to return
a real copy of the object 1t 1s escorting. The object 1s placed
in a content view 1nside of a window and displayed on the
screen. An optional Action Debugger window 1s displayed.
The action debugger catches actions sent from Ul elements
in the previewer window. That way, users can see if the
actions they assigned to Ul elements are actually working.

Dynamic and Pluggable Viewer Instantiation

™

Constructor supports a number of different viewers for
editing, examining, and previewing the objects created with
Constructor. Unlike other similar programs that have a fixed
number of viewers, Constructor has a dynamic and plug-
cgable viewer Iframework for associating viewers with
objects. This dynamic instantiate-on-the-fly viewer frame-
work gives Constructor extra flexibility and expandabaility.
Constructor can be extended to handle new objects simply
by editing a single file. Different viewers can be replaced 1n
a similar fashion.

Constructor supports three types of viewers for any given
object (Ul object, sound, etc.): inspector, editor, and pre-
viewer. An mspector 1s a viewer that allows a user to see and
modify the attributes of an object (i.e. color, size, label, etc.).
An 1nspector has a dialog-type mterface. An editor 1s a
viewer that allows WYSIWYG direct manipulation editing,
of an object. Instead of typing 1n the bounds of a button, for
example, resize the button by dragging the corner of a button
that you can see on the screen. To change the color of an
object 1n an editor viewer, you simply drag a color and drop
it on the object. A previewer 1s a viewer for examining an
actual instance of an object. For example, Constructor has a
dialog editor for putting together a dialog. If a user wants to
“try out” the dialog before using 1t in a program, he can open
a previewer on the dialog. The previewer will create an
instantiation of the dialog and allow the user to push the
buttons, click on controls, etc.

Other Ul builders support variants of these viewers. What
makes Constructor unique, however, 1s the fact that the
viewers are not hardwired to any associated Ul object. For
example, Constructor currently supports an editor, inspector,
and previewer for menus. Our system lets a programmer
write a better menu editor and install 1t 1 Constructor
without changing a line of Constructor’s code. Constructor
uses an assoclated “schema” file that maps objects to editors.
For any given base Ul object that Constructor supports, the
schema file has an entry for each editor, inspector, and
previewer that contains the name of the class and the name
of the shared library. When ever Constructor has to open a

US RE37,722 E

25

viewer on an object, 1t consults this file and dynamically
instantiates the correct viewer for the object. This table-
driven scheme allows easy replacement of any viewer for
any object. A sample file 1n accordance with a preferred
embodiment 1s presented below.

#

Each escort has 15 associated items:

#

English-style object name

Name root used to look up objects, e.g. 1cons, in Constructor’s
archive.

ClassName

SharedLibOfClassName - put VOID if you want the escort

to create the

object, otherwise, Constructor will create the
the object with the object’s empty constructor and have
the escort adopt 1it.

BEscortlype

SharedLibOtEscortType

EscortModelType

SharedLibOfEscortModel Type

EscortEditorPresenterType

SharedLibOfEscortEditorPresenterTypell
EscortlnspectorPresenterlype

SharedLibOfEscortInspectorPresenterType
EscortPreviewerPresenterType

SharedLibOtEscortPreviewerPresenterType
BaseClassEditor

#

“View”

View

TView

VOID

TViewEscort

ViewPlugInConstructorLib
TViewEscortModel
ViewPlugInConstructorLib
TViewEditorPresenter

ViewPlugInHighlLib
TEscortInspectorPresenter

ConstructorLib
TViewEditorPreviewerPresenter
ViewPlugInConstructorLib

TView

“lext”

r_

I'ext

T Text
VOID

T TextEscort

.

I'extPlugInConstructorlib
TEscortModel

ConstructorLib
TEscortEditorPresenter
ConstructorLib
TEscortInspectorPresenter
ConstructorLib
TViewEditorPreviewerPresenter

ViewPlugInConstructorLib
Tlext

The detailed logic associated with a pluggable viewer in
accordance with a preferred embodiment 1s presented 1n
FIG. 33. Processing commences at decision block 3300
where a test 1s performed to determine if a default pluggable
viewer 1s required. If so, then the viewertype 1s set equal to
editor as shown 1n function block 3310 and control passes to
function block 3320. If the default viewer 1s not required,
then control passes directly to function block 3320 where an
escort object 1s instantiated. Then, a test 1s performed at
decision block 3330 to determine if a graph edit view 1is
required. If not, then the viewer type 1s defined to be an
inspector and control passes to terminal 3350 where a sub
viewer 15 created. Then a test 1s performed at decision block
3360 to determine 1f there 1s already an existing viewer of
the appropriate type. If so, then at function block 3394 the

10

15

20

25

30

35

40

45

50

55

60

65

26

existing viewer 1s activated and control exits through ter-
minal 3396. If there 1s no existing viewer detected at
decision block 3360, then control passes to function block
3370 to create a new presenter based on the escort type, a
subpresenter 1s adopted 1n function block 3380, a presenter
1s opened 1n function block 3390, the window reference 1s
saved for later processing, and control exits via terminal

3396.

FIG. 34 1s a detailed flowchart of the logic associated with
creating various presenters 1n accordance with a preferred
embodiment. Processing commences when a create pre-
senter command 1s encountered at terminal 3400 and 1mme-
diately passes to a test to determine 1f an editor i1s to be
created, 1n which case, control passes via function block
3420 to FIG. 35 to create an editor presenter, and control 1s
returned via terminal 3450. If an 1nspector is to be created,
then control 1s passed to function block 3440 to create an
editor presenter, then control 1s returned via terminal 3450.
If a previewer presenter 1s required, then control 1s passed to
function block 3430 to service the request and return control
via terminal 3450.

FIG. 35 1s a detailed flowchart of the logic associated with
creating a presenter for editing 1n accordance with a pre-
ferred embodiment. Processing commences at terminal 3500
and 1mmediately the object passed via the classname 1s
identified in the schema file as shown 1n function block
3510. Then, a test 1s performed at decision block 3520 to
determine 1f the object information 1s equal to nil. If so, then
an exception 1s thrown at function block 3530, and control
1s returned via terminal 3570. If the object information 1s not
nil, then the classname 1s initialized at function block 3540,
the libraryname 1s 1nitialized at function block 3550, and a
presenter 1s instantiated based on the classname and the
libraryname as shown 1n function block 3560 and control is
returned via terminal 3570.

Interfacing a New UI Object with the Constructor
Program

Constructor can support any new Ul object, based on
TView, without having to modify Constructor at all. Since
all Ul elements descend from TView and Constructor can
handle any TView object that obeys a few simple rules,
Constructor can handle new Ul objects by default. Every
inspector 1 Constructor has a panel at the very bottom
called “Information.” The information panel contains modi-
fication and creation dates and two text fields for entering a
class and library name. If a developer creates a new Ul
clement, 1t can be 1mmediate used by creating a TView
object and updating these two text fields by typing in the
class name of the new Ul element and the name of the shared
library that implements the class. At that point, Constructor
will convert the escorted TView object into the new UI
clement. The only disadvantage of this approach is that new
attributes of the Ul element cannot be modified by the
TView mspector. If a developer wants to create an mnspector
that allows the user to modity the state of the UI element
(check some field, name some label, etc.), he will have to
subclass Constructor classes, create an escort, and build a
custom 1nspector.

Depending upon the class of the object the user creates
and wants to use 1n Constructor, he may or may not have to
write a custom editor. Anew Ul element, for example, won’t
require the user to write an editor since Constructor already
provides a view editor that can manipulate any view object.

Constructor supports the editing of views and any of their
subclasses, menus, and text. For example, suppose a devel-

US RE37,722 E

27

oper wanted Constructor to fully support the editing and
inspecting of sounds, there are several classes that he’d have

to override. First of all, the developer would create a
subclassed object escort:
TGraphicalEscortFor<TSound>824. The developer would
use Constructor to design and layout an inspector for
manipulating sounds. He’d create an inspector panel sub-
class called TSoundInspector 822. The developer would
override TSoundEscort’s BuildInspectorPanellList function
to add the TSoundEditorInspector 823 the panel list. Two
new presenter classes would be also have to be created.
TSoundEditorPresenter 826 would be the presenter that
created the actual sound editor. TSoundPreviewerPresenter
836 would be the presenter that might play the sound when
the user previews what he’s edited.

Interfacing a New Ul Object with the Constructor
Program

In order to create a new Ul object which 1s compatible
with the constructor program, it 1s necessary to subclass
some of the base classes 1llustrated 1n FIG. 8. In particular,
the TInspector 804 and TObjectView 806 base classes and
the TGraphiculator helper class must be subclassed with the
member functions overridden so that the new object can be
cdited. However, the new object must also have a new escort
class created. This new escort class 1s created by subclassing
the base escort classes provided 1n the constructor program.

More speciiically, the starting escort class 1s the TAb-
stractEscort class 800 which 1s an abstract base class that
contains protocol common to all escort objects. In particular,
class 800 contains a member function, GetArchive(), which
can be used to locate an archive that contains the given
escort object. When the GetArchive() method is called it
causes the archive to search each level until the given escort
object 1s found.

Descending from the TAbstractEscort class 1s the TOb-
jectEscort class 808. As previously mentioned escort objects
enclose the actual Ul objects and provide, among other
things: a unmique ID for selectability, a common protocol
across all the objects, a storage location for basic data
associated with the enclosed object (such as the name, icon,
class and modification data etc.) and access to editor pro-
orams which can be used to edit the object. The TObject-
Escort class also includes a number of “getter” and “setter”
member functions which allow the stored information about
the enclosed object to be obtained including the name, the
locale, the escorted object class name, the escorted object
shared library, the version, various descriptions, and the
creation and modification dates. The escorted instance of the
escorted object can be accessed via a GetEscortedObject()
member function. Additional member functions are pro-
vided to create 1nspectors and editors that allow the escorted

object to be viewed and edited, as will hereinafter be
described.

The TObjectEscort class 1s the abstract base class from
which all concrete escort object classes descend.
Consequently, program developers who create new classes
of Ul objects and who wish to use these objects in construc-
tor archives need to subclass the TObjectEscort class to
provide access methods to match the unique protocol of the
new class. Therefore, when a developer makes changes to
such an new object using an editor, the editor calls the
methods of the associated escort object to manipulate the
“real” object. For example, 1f the user changes the size of a
button 1n an editor, the editor will cause the escort object to
resize itself; the escort object will, 1n turn, tell the real object
to resize 1itself.

10

15

20

25

30

35

40

45

50

55

60

65

23

Another abstract base class, the TGraphicalObjectEscort
class 812 descends from the TObjectEscort base class. The
TGraphicalObjectEscort class 1s the base class from which
escorts for graphical objects descend. These objects might
include, for example, scrollbars, buttons and other graphical
objects. In addition to the protocol inherited from the base
class TObjectEscort, the TGraphicalObjectEscort class sup-
ports direct manipulation graphical editors which allow a
developer to view the object while 1t 1s being edited. The
TGraphicalObjectEscort class contains a number of member
functions including a Draw() function which is called to the
cause the escorted object to draw itself onto the screen.
Typically, the Draw() function is executed by making a call
to the corresponding “draw”™ function of the escorted object
causing the escorted object to draw itself on the screen (this
latter “draw” function has been previously described with
respect to Ul objects.) Another member function in the
TGraphicalObjectEscortObject is a CreateEditor() member
function which creates an editor program that can be used to
directly manipulate the archived object.

Still another member <function 1s the
UseSubObjectEditor() member function. This method con-
trols whether or not subobjects are edited using their own
direct manipulation editors or whether an inspector should
be used. For example, the subobjects of a TViewObject are
subviews which, because of their relationship in the view
hierarchy, can only be changed by an inspector. The subob-
jects of a presentation object however include menus,
palettes, views and windows and these can be edited sepa-
rately with a direct manipulation editor.

The remaining two member functions are the
InitGraphiculator() function and the AdoptGraphiculator()
function. These functions generate a screen display. As
previously mentioned, editors and 1nspectors do not actually
manipulate the screen displays created by the escorted
objects, but mstead manipulate screen objects which look
like the screen displays of the escorted object. The
[nitGraphiculator() and AdoptGraphiculator() member
functions create and associate a “graphiculator” object with
a particular escort object. The graphiculator object, 1 turn,
creates the screen display that 1s manipulated by the editor.

As shown 1n FIG. 8, if a newly-created object must be
compatible with the constructor program, then a new escort
object class must also be created. As shown schematically by
box 814, this new escort class has the same basic member
functions as the TGraphicalObjectEscort class. These mem-
ber functions include the Draw() function, the
CreateEditor() function, the UseSubObjectEditor() func-
tion and the InitGraphiculator() and AdoptGraphiculator()
functions as previously described.

Constructing an Archive File

An archive 1s actually constructed utilizing the construc-
tor program to construct an mtermediate constructor docu-
ment which contains UI object data as discussed above. This
document 1s then converted by a conversion or “extrusion”
process to produce a binary archive file. This process 1s
illustrated 1n the schematic flowchart shown 1n FIG. 12. In
particular, the constructor program shown as box 1200
ogenerates Ul object data which 1s stored in a constructor
document 1202. Document 1202 1s a standard document
which can be edited, cut and pasted etc. After construction
of document 1202 1s complete, it 1s converted via a conver-
sion process 1204 known as “extrusion” process which
saves the document as a binary file which constitutes the

archive file 1206.

US RE37,722 E

29

Extrusion or Saving an Archive

The function SaveArchive in TArchiveModel 1s the main
routine that saves the contents of the Constructor document
into an archive. After prompting the user for an archive
name, a writeable archive 1s created. Then, an archive model
iterator 1s created. Using the iterator, every escort model 1s
extracted from the archive model. Each escort model
executes the command “CommitModelToArchive.” The
CommitModelToArchive function of an escort model gets
the escort from the escort model and asks the escort to
“Create ArchiveReadyObject”. CreateArchiveReadyObject
returns a copy of the escorted object. The escorted objects
are passed to a TArchiveEnvelope and written directly to the

archive.

View Editor: Showing Clipped View Hierarchies

Constructors’s view editor 1s used for assembling view
hierarchies and dialog panels. In Taligent’s view system,
subviews are clipped to their parent view. For example, 1t a
button 1s centered on the right border of a view so that 1t 1s
halfway 1n the view and haltway outside, only the half of the
button 1nside the view will be visible as shown i FIG. 13.

Although clipping 1s essential for a production view
system, 1t can cause confusion for a user during dialog
creation 1 a direct manipulation user interface builder
program. A user interface builder program allows a user to
ographically design windows, dialogs, and view hierarchies.
By choosing various User Interface (UI) elements from a
menu or palette, a user can build a window or dialog that can
be used from another program. Building a dialog with a user
interface builder 1s much easier than programmatically
building a dialog. Getting all the positions and sizes of Ul
objects correct from a programming point of view 1s very
tedious. On the other hand, drageing an actual button and
placing it in the correct position on the screen 1s very easy.

If a user interface builder program uses the host view
system to draw the Ul a user 1s assembling, non-intuitive
results can occur. Suppose, for example, that a user resizes
a view that contains a button (item 6 of FIG. 15). If the view
being resized no longer encloses the button, the button
completely disappears as shown 1n FIG. 16. To prevent users
from “losing” buttons (and views), a preferred embodiment
of the mvention shows the clipped portions of views 1n a
dimmed fashion (instead of clipping the view). Users can
move Ul 1items out of views and dialogs, while they rear-
range the contents, and not lose those 1tems as shown 1n FIG.
14. On the other hand, a Ul builder tool does no view
clipping at all, the what-you-see-1s-what-you-get benefit of
the tool 1s lost. Another benefit of a preferred embodiment
1s that subviews can be made larger than their parent view
and 1t 1s still possible to manipulate the subview. Other Ul
builders make this operation ditficult.

A preferred embodiment presents views 1n a back-to-front
order, starting with the root view.

FIGS. 31 and 32 are detailed flowcharts corresponding to
the logic associated with drawing clipped and non-clipped
views. Pseudo code for drawing the views 1s also presented
below as an alternative source of logic presentation. Pro-
cessing commences at terminal 3100 where the internal
parameters are 1nitialized. Then, at function block 3110, the
viewbounds are 1nitialized, at 3102 the newclip port 1s
mitialized, at function block 3130 the new combined area 1s
calculated to include the intersection of the combined clip
arca and the view boundary, at function block 3140, the
inverted clip area 1s calculated and finally, before transfer-
ring control via terminal 3200, the inverted clip port area 1s

calculated at function block 3150.

10

15

20

25

30

35

40

45

50

55

60

65

30

FIG. 32 presents additional logic via a flowchart on the
processing of clipped and non-clipped views 1n accordance
with a preferred embodiment of the invention. Processing
commences at function block 3210 where a loop processes
cach view, corresponding to each window on the display, to
present each view 1n the correct format. The first step 1n the
loop 1s to set the subviewbounds as shown 1n function block

3220. Then, a translated port 1s calculate 1n function block
3230, an mnverted translated port 1s determined at function

block 3240, tunction block 3250 draws the translated port,

the port 1s clipped in function block 3260, and the combined
arca 1s drawn at function block 3270 before control 1s passed
back to function block 3210 to perform the next loop
iteration.

Internally, each object thinks 1ts top left bounds are 0,0. In
order to get the object to draw itself on the screen at the
correct location, the program could either “translate” the
object to the correct place, or simply use a translated port.
GrafPorts are used as a fundamental drawing object. A
TranslatedGrafPort 1s a grafport subclass that has an asso-
clated translation matrix. By associating a translation matrix
with a grafport, an object drawn by the translated port may
“think™ 1t’s being rendered at 0,0, when 1n reality, 1t’s being
rendered at the translated position. The view clipping algo-
rithm uses this feature to draw all of the views in their

correct positions on the screen.

Pseudo Code for Drawing Clipped and Non-Clipped Views

DrawViewHierarchy(GrafPort) {
// The variable “combinedClipArea” cumulatively keeps track of
// the clipping area. Each view drawn will be clipped to this area
// As the view hierarchy 1s traversed, the “combinedClipArea™ gets
// smaller and smaller as each subview 1is clipped to its parent’s
bounds.
// The combinedClipArea variable starts out “wide open.”
Area combinedClipArea = infinite sized area;
// Draw the root view with no clipping at all
RootView-<Draw(GrafPort);
// Now draw the root view’s subviews
RootView-<InternalDraw({GrafPort, GrafPort, combinedClipArea);
h
View::InternalDraw(clipPort, originalPort, combinedClipArea) {
// InternalDraw() is a recursive procedure that draws a view’s
// subviews.
// Get the bounds of this view in its parent’s coordinates
viewBounds = BoundsOfThisView();
// “newClipPort” 1s a GrafPort that clips any drawing to my parent’s
// bounds intersected with this view’s bounds.
newClipPort = cumulative clipping GratfPort made
up of clipPort and viewBounds;
// “newCombinedClipArea™ is an area of my parent’s drawing bounds
// intersected with this view’s bounds.
newCombinedClipArea = intersection of combinedClipArea and
viewBounds;
// “invertedClipArea” 1s an infinitely sized area minus the area that
// this subview can draw in. In other words, 1t’s the area that
// will normally get clipped.
invertedClipArea = infinite sized area subtracting
newCombinedClipArea;
invertedClipPort = clipping GrafPort based on invertedClipArea;
for each subView in this View {
subviewBounds = BoundsOfSubview();
translatedPort = newClipPort translated by the top/left
coordinates of subviewBounds;
inverted TranslatedPort = invertedClipPort translated by the
top/left coordinates of subviewBounds;
{// Draw the subview normally. Any parts of the subview
extending
// outside of hte translatedPort will be clipped.
subview->Draw(translatedPort);
// Now tell the subview to draw the clipped portion of itself.
// Now parts of the subview that are normally clipped will get

US RE37,722 E

31

-continued

Pseudo Code for Drawing Clipped and Non-Clipped Views

// drawn and parts that normally get drawn will get clipped.

subview ->DrawClipped(invertedTranslatedPort);

// Recursively tell the subview to draw all of its subviews.

subview->InternalDraw(newClipPort, originalPort,
newCombinedClipArea);

h

View::Draw(GrafPort) {
Draws the view normally
h

View::DrawClipped(GrafPort) {
bounds = BoundsOfView();

Draw the bounds using GrafPort and a light gray color;

h

User-Extensible Parts Palette

Constructor utilizes a parts palette containing reusable
controls and other Ul elements that a user can drag and drop
into a document. Furthermore, the palette 1s built utilizing
tools 1 accordance with a preferred embodiment. Thus, a
user can open the palette document and edit 1t to add custom
Ul elements. This feature provides a quick way to build a
collection of views, dialogs, controls, etc. and utilize them 1n
preparing new applications. FIG. 17A 1s an illustration of a
parts palette 1n accordance with a preferred embodiment of
the mmvention. An action control panel 1s presented at 1700
with various selector views 1710. A dictionary of palette
views 1s presented at 1720, including a Control Panel 1760,
Icons Panel 1730, Borders Panel 1740 and Color Panel
1750. Any of the palette views can be activated by selecting
the corresponding selector view 1710 from the Controls
Panel 1700. A TPalette View—Control Panel 1760 contains
subviews 1710 that correspond to each of the controls
provided by the system—a push button, a check box, eftc.
Similarly, there 1s a view containing icons named “Icon
Panel” 1730, and a view containing borders and decorations
named “Border Palette” 1740. The fourth view 1s a TSelec-
torView named “Selector” containing 3 radio buttons; a
button labeled “Controls” that sends the action “Control
Panel” 1700; a button labeled “Icons™ that sends “Icon
Panel” 1730; and a button labeled “Borders” that sends
“Border Palette” 1740. The four views live in an archive
named Palette Archive. When the palette 1s launched, 1t looks
for a view named Selector 1n the PaletteArchive, and 1ni-
tializes and displays it. Control from that point proceeds as

shown 1n FIG. 17B.

Processing commences 1in FIG. 17B at terminal 1760
where a selectorview object 1s copied from an archive and
displayed on the display. Then, at terminal 1762, 1n response
to a user pressing a radio button, control 1s passed to a
selector view as shown 1n function block 1764, a call 1s
placed to display the panel associated with the radio button
as shown 1n function block 1766, a flag 1s set with the
corresponding new view identifier as shown in function
block 1770, a test 1s performed at decision block 1772 to
determine 1f the flag 1s equated to the nil value. If the flag 1s
not nil, then control passes to function block 1778. However,
if the flag 1s nil, then the archive 1s updated with the new
view fetched from the archive as shown in function block
1774 and another test 1s performed at decision block 1776 to
determine 1f the updated flag 1s set equal to the nil value. It
the flag 1s nil, then control passes to terminal 1762 to await
the next radio button selection. If the flag 1s not nil, then the
previous view and new view are adopted as shown in
function block 1778, the dictionary 1s updated 1n function

10

15

20

25

30

35

40

45

50

55

60

65

32

block 1780 and control 1s passed to terminal 1762 to await
the next radio button selection.

The palette architecture consists of an archive and two
important view classes. Each panel of the palette 15 a
TControlsPalette View, which contains controls as subviews.
Using Constructor a user can open the view and edit the
contents and layout of the controls. (Note that any view
subclass may be placed on the panel by entering its name
and shared library into a generic view’s inspector.) When the
panel 1s instantiated, 1t acts as a palette—it intercepts mouse
clicks, and 1f the user has clicked on a subview, 1t puts the
view 1n a scrap item wrapper and begins a drag-and-drop
interaction on 1t as illustrated in FIG. 18.

FIG. 18 1illustrates the detailed logic utilized by a cus-
tomizable parts palette 1n accordance with a preferred
embodiment. Processing commences as terminal 1800 and
immediately proceeds to mput block 1810 where the system
detects a user selection 1n a paletteview panel. When a user
selects a panel, then 1 function block 1820, the next
subview 1s mnvoked utilizing the selected panel as an input.
A test 1s performed next in decision block 1830 to determine
if the selected subview contains a click point. If no click
point 1s detected, then control passes to decision block 1840
to determine 1f any more views exist. If no more views exist,
then control passes to 1nput block 1810 to await the next user
selection. However, 1f more views are 1dentified at decision
block 1840, then control passes to function block 1820 to
iterate to the next subview. If a subview contained a click
box at decision block 1830, then the clicked view 1s drawn
as shown 1n function block 1845, a scrap item 1s created as
shown 1n function block 1850, a drag-and-drop item 1is
created at function block 1860, a dragging interactor is
started at function block 1870 and control i1s passed to
function block 1810 to await the next selected panel.

A user can create any number of palette views containing
custom controls or even complete view hierarchies, such as
dialogs, for reuse. Each panel is assigned a name (a token),
which 1s the archive key for retrieving the panel. Panels are
then written to the palette archive.

Another view 1s a TSelectorView, whose purpose 1s to
respond to boolean actions by showing and hiding panels.
The user populates the selector view with boolean controls,
such as radio buttons, each corresponding to a different parts
panel. A user can create and layout the selector buttons using
Constructor. Each button has a user-readable name, such as
“Controls,” and an action message whose name 1s the same
as the name of the panel to be retrieved, such as “Controls
Panel.” The selector also maintains a dictionary cache that
maps names (tokens) to view handles. Initially, this dictio-
nary 1s empty. When a panel 1s loaded from the archive, a
dictionary entry 1s added, associated the panel’s name with
its view handle.

When a selector receives a boolean event, 1t looks at the
message token, then does two things. (1) It searches its
internal dictionary for the token. If an entry 1s found, the
associated panel i1s displayed. Otherwise, (2) the selector
looks up the panel 1n 1ts archive, using the message token as
the key. It the panel 1s found, 1t 1s displayed and added to the
dictionary. Using Constructor, a user extends the palettes by:
(1) creating a new panel (control palette view) and adding
subviews representing custom controls and views; (2) giving
the panel a unique name; (3) adding to the archive’s selector
view a boolean control whose action message 1s the name of
the panel; and (4) saving the archive. The new panel and
controls are available as soon as the palette accesses its
archive.

US RE37,722 E

33

While the imnvention 1s described i terms of preferred
embodiments 1n a speciiic system environment, those skilled
in the art will recognize that the invention can be practiced,
with modification, 1n other and different hardware and
software environments within the spirit and scope of the
appended claims.

Having thus described our invention, what we claim as
new, and desire to secure by Letters Patent 1s:

1. A localized user interface object archive system for use
in a computer system having a storage means for translating
a first application program which includes language specific
to a first locale to a second application program includes
language specific to a second locale under control of a

program developer, the archive system comprising:

means controlled by the developer for creating a hierar-
chical locale tree 1n the storage means, the locale tree
having a root locale and at least one other locale level
representing the second locale;

means controlled by the developer for creating, in the root
locale, a first plurality of user interface objects, each of
which mcludes language specific to the first locale;

means controlled by the developer for creating, 1n the root
locale, a second plurality of user interface objects, each
of which does not include language specific to the first
locale;

means controlled by the developer for storing the second
plurality of user interface objects 1n the other locale
level; and

means controlled by the second application program for
traversing the locale tree starting at the other locale
level and proceeding to the root locale, the traversing
means assembling a set of user interface objects from
the user interface objects 1n the other locale level and
user interface objects 1n the root locale that are not
located 1n the other locale level.

2. Alocalized user interface object archive system accord-
ing to claim 1 wherein the storage means comprises a shared
library and the locale tree creation means comprises means
for creating a hierarchical locale tree associated with the
shared library.

3. Alocalized user interface object archive system accord-
ing to claim 1 further including means controlled by the
developer for creating an archive viewer object from a
predefined object class template and [the] @ shared library,
the archive viewer object displaying the hierarchical locale
tree stored 1n the shared library.

4. Alocalized user interface object archive system accord-
ing to claim 1 wherein the traversing means operates during
runtime of the second application program.

5. Alocalized user mterface object archive system accord-
ing to claim 1 wherein the traversing means comprises
means for retrieving copies of user interface objects from the
user 1nterface objects stored 1n the other locale level and
copies of user interface objects 1n the root locale that are not
located 1n the other locale level.

6. A user interface object archive system for use 1n a
computer system having a display and storage means for
franslating a first application program which generates
screen displays on the display which include language
specific to a first locale to a second application program
which generates screen displays on the display which
include language specific to a second locale, the archive
system comprising:

means for creating a first plurality of user interface

objects, each of which generates a screen display
including language specific to the first locale on the
display screen;

10

15

20

25

30

35

40

45

50

55

60

65

34

means for creating a second plurality of user interface
objects, each of which generates a screen display which
does not 1nclude language specific to the first locale on
the display screen;

means for creating a hierarchical locale tree 1n the storage
means, the locale tree having a root locale and at least
one other locale level representing the second locale;

means for storing the first plurality of user interface

objects 1n the root locale;

means for storing the second plurality of user interface

objects 1n the root locale and 1n the other locale level;
and

means for traversing the locale tree starting at the other

locale level and proceeding to the root locale, the
fraversing means assembling a set of user interface
objects from the user interface objects 1n the other
locale level and user 1nterface objects 1n the root locale
that are not located 1n the other locale level.

7. A user imterface object archive system according to
claim 6 wherein the storage means comprises a shared
library and the locale tree creation means comprises means
for creating a hierarchical locale tree associated with the
shared library.

8. A user imterface object archive system according to
claim 6 further including means for creating an archive
viewer object from a predefined object class template and
[the] a shared library, the archive viewer object displaying
the hierarchical locale tree stored in the shared library.

9. A user interface object archive system according to
claim 8 wherein the archive viewer object comprises means
for displaying the hierarchical locale tree 1n a first format
and means for displaying the hierarchical locale tree 1n a
second format.

10. A user interface object archive system according to
claim 6 wherein the traversing means operates during runt-

ime of the second application program.

11. A user interface object archive system according to
claim 6 wherein the traversing means comprises means for
retrieving copies of user interface objects from the user

interface objects stored 1n the other locale level and copies
of user interface objects 1n the root locale that are not located
in the other locale level.

12. A method for use 1n a computer system having a
storage means for translating a first application program
which includes language speciiic to a first locale to a second
application program includes language specific to a second
locale under control of a program developer, the method
comprising the steps of:

A. creating a hierarchical locale tree in the storage means,
the locale tree having a root locale and at least one other
locale level representing the second locale;

B. creating, in the root locale, a first plurality of user
interface objects, each of which includes language
specific to the first locale;

C. creating, 1n the root locale, a second plurality of user
interface objects, each of which does not include lan-
cguage specific to the first locale;

D. storing the second plurality of user interface objects 1n
the other locale level; and

E. traversing the locale tree starting at the other locale
level and proceeding to the root locale in order to
assemble a set of user interface objects from the user
interface objects in the other locale level and user
interface objects 1n the root locale that are not located
in the other locale level.

13. A method according to claim 12 wherein the storage

means comprises a shared library and step A comprises the
step of:

US RE37,722 E

35

Al. creating a hierarchical locale tree associated with the
shared library.
14. A method according to claim 12 further comprising
the step of:

F. creating an archive viewer object from a predefined
object class template and the shared library, the archive
viewer object displaying the hierarchical locale tree
stored 1n the shared library.

15. A method according to claim 12 wherein step D

comprises the step of:

D1. operating the traversing means during runtime of the
second application program.
16. A method according to claim 12 wherein step D
comprises the steps of:

D2. retrieving copies of user interface objects from the
user 1nterface objects stored 1n the other locale level;
and

D3. retrieving copies of user interface objects in the root
locale that are not located 1n the other locale level.

17. A method for use 1n a computer system having a
display and storage means for translating a first application
program which generates screen displays on the display
which mnclude language specific to a first locale to a second
application program which generates screen displays on the
display which include language specific to a second locale,
the method comprising the steps of:

A. creating a first plurality of user interface objects, each
of which generates a screen display including language
specific to the first locale on the display screen;

B. creating a second plurality of user interface objects,
cach of which generates a screen display which does
not mclude language specific to the first locale on the
display screen;

C. creating a hierarchical locale tree 1n the storage means,
the locale tree having a root locale and at least one other
locale level representing the second locale;

D. storing the first plurality of user interface objects in the
root locale;

E. storing the second plurality of user interface objects in
the root locale and in the other locale level; and

F. traversing the locale tree starting at the other locale
level and proceeding to the root locale, the traversing
means assembling a set of user interface objects from
the user interface objects 1 the other locale level and
user interface objects 1n the root locale that are not
located 1n the other locale level.

18. A method according to claim 17 wherein the storage

means comprises a shared library and wheremn step C
comprises the step of:

C1. creating a hierarchical locale tree associated with the
shared library.
19. A method according to claim 17 further comprising
the step of:

G. creating an archive viewer object from a predefined
object class template and the shared library, the archive
viewer object displaying the hierarchical locale tree
stored associated with the shared library.

20. A method according to claim 19 wherein step G

comprises the steps of:

G1. displaying the hierarchical locale tree 1 a first format;
and

G2. displaying the hierarchical locale tree 1n a second
format.
21. A method according to claim 17 wherein step F
comprises the step of:

10

15

20

25

30

35

40

45

50

55

60

65

36

F1. operating the traversing means during runtime of the
second application program.
22. A method according to claim 17 wheremn step F
comprises the steps of:

F2. retrieving copies of user interface objects from the
user interface objects stored i1n the other locale level;
and

F3. retrieving copies of user interface objects 1n the root
locale that are not located 1n the other locale level.

23. A computer program product for enabling a computer
system having a storage means to translate a first applica-
flion program, which includes language specific to a first
locale, into a second application program including lan-
guage spectfic to a second locale, the computer program
product including a computer-useable means for storing
therein computer-readable code comprising:

program code for creating, in the storage means, a
hierarchical locale tree having a root locale and
another locale level represeniting the second locale;

program code for creating, wn the root locale, a first
plurality of user interface objects each including lan-

guage specific to the first locale;

program code for creating, in the root locale, a second
plurality of user interface objects each excluding lan-
guage spectfic to the first locale;

program code for storing the second plurality of user
interface objects in the other locale level; and

program code for traversing the hierarchical locale tree
starting at the other locale level and proceeding to the
root locale to assemble, from the user interface objects
in the other locale level and those in the root locale, a
set of user interface objects that are absent from the
other locale level.

24. The computer program product of claim 23 wherein
the storage means comprises a shared library, further com-
prising:

program code for creafing a hierarchical locale tree

associated with the shared library.

25. The computer program product of claim 23 further
COMprising:

program code for creating, from a predefined object class

template and a shared library, an archive viewer object
for displaying the hierarchical locale tree associated

with the shared library.
20. The computer program product of claim 23 wherein:

the program code for traversing the hierarchical locale
tree 1s executed during the second application program
runtime.
27. The computer program product of claim 23 further
COMprising:
program code for retrieving, from the other locale level,
copies of the user interface objects; and

program code for retrieving, from the root locale, copies
of the user interface objects that are not located in the
other locale level.

28. A computer program product for enabling a computer
system having a display screen and storage means 1o trans-
late a first application program that generates, on the
display screen, images including language specific to a first
locale, into a second application program that generates, on
the display screen, images including language specific to a
second locale, the computer program product including a
computer-useable means for storing therein compuier-
readable code comprising:

program code for creating a first plurality of user inter-
face objects each for generating, on the display screen,
an image including language specific to the first locale;

US RE37,722 E

37

program code for creating a second plurality of user
interface objects each for generating, on the display
screen, an image excluding language specific to the
first locale;

program code for creafing, in the storage means, da
hierarchical locale tree having a root locale and
another locale level represeniing the second locale;

program code for storing the first plurality of user inter-
face objects in the root locale;

program code for storing the second plurality of user
interface objects n the root locale and in the other
locale level; and

program code for traversing the hierarchical locale tree
starting at the other locale level and proceeding to the
root locale to assemble, from the user interface objects
in the other locale level and those in the root locale, a
set of user interface objects that are absent from the
other locale level
29. The computer program product of claim 28 wherein
the storage means comprises a shared library, further com-
prising:
program code for creating a hierarchical locale tree
assoctated with the shared library.
30. The computer program product of claim 28 further
COMprising:
program code for creating, from a predefined object class
template and a shared library, an archive viewer object
for displaying the hierarchical locale tree associated
with the shared library.
31. The computer program product of claim 30 further
COMPTISING.
program code for displaying the hierarchical locale tree
in a first format; and

program code for displaying the hierarchical locale tree
in a second format.
32. The computer program product of claim 28 wherein.:

the program code for traversing the hierarchical locale
iree 1s executed during the second application program
runtime.
33. The computer program product of claim 28 further
COMprising:
program code for retrieving, from the other locale level,
copies of the user interface objects; and

program code for retrieving, from the root locale, copies
of the user interface objects that are not located in the
other locale level
34. A method for enabling application program transla-
tion among locales by a computer having memory, a display
screen and an operating system, comprising the steps of:

(a) providing class libraries for storage in the computer
memory from which
(1) a first user interface object may be instantiated to
cause the display on the display screen of an image
including language specific to a first locale, and

10

15

20

25

30

35

40

45

50

55

33

(2) a second user interface object may be instantiated
to cause the display on the display screen of an
image including language specific to a second
locale; and

(b) providing a run-time environment (o

(1) support the instantiation of the first and second user
interface objects,

(2) support the creation of a hierarchical locale tree
having a root locale and another locale level repre-
senting the second locale,

(3) support the storing of a plurality of the first user
interface objects in the root locale;

(4) support the storing of a plurality of the second user
interface objects in the root locale and in the other
locale level; and

(5) support the traverse of the hierarchical locale tree
starting at the other locale level and proceeding to
the root locale to assemble, from the user interface
objects in the other locale level and those in the root
locale, a set of user interface objects that are absent
from the other locale level.

35. The method of claim 34 wherein the computer memory
comprises a shared library, and the runtime environment
further supports:

creating a hierarchical locale tree associated with the
shared library.
36. The method of claim 34 wherein the class libraries
further comprise.

an archive viewer class from which an archive viewer
object may be instantiated for displaying the hierar-
chical locale tree associated with the shared library.
37. The method of claim 36 wherein the class libraries
further comprise:

an archive viewer class from which a first archive viewer
object may be instantiated for displaying the hierar-
chical locale tree in a first formai; and

an archive viewer class from which a second archive
viewer object may be instantiated for displaying the
hierarchical locale tree in a second format.
38. The method of claim 34 wherein the runtime environ-
ment further supports.

traversing the hierarchical locale tree during the second
application program runtime.
39. The method of claim 34 wherein the runtime environ-
ment further supports:

retrieving, from the other locale level, copies of the user
interface objects; and

retrieving, from the root locale, copies of the user nter-
face objects that are not located in the other locale
level.

	Front Page
	Drawings
	Specification
	Claims

