USOORE37601E
(19) United States
(12) Reissued Patent (10) Patent Number: US RE37,601 E
Kastridge et al. 45) Date of Reissued Patent: Mar. 19, 2002
(54) METHOD AND SYSTEM FOR OTHER PUBLICATIONS
EZN(;:PI;E;%(E %Tl;Aﬁ :%TE ZERO BACKRUY Running MS-DOS by Van Wolverton ©1989 by Microsoft

Press, pp. 160-162 and 421-424.*

(75) Inventors: Lawrence Elwood Eastridge; Robert

: * cited by examiner
Frederic Kern, both of Tucson; James

Mitchell Ratliff, Benson, all of AZ Primary Examiner—Albert Decady
(US) Assistant Examiner—David Ton
(74) Attorney, Agent, or Firm—Manny W. Schecter;
(73) Assignee: International Business Machines Bracewell & Patterson, L.L.P.
Corporation, Armonk, NY (US) (57) ABSTRACT
(21) Appl. No.: 08/559,509 Backup copying of designated datasets representing a first

selected point 1n time consistency may be performed 1n a
data processing system on an attached storage subsystem
concurrent with data processing system application execu-
tion by first suspending application execution only long

(22) Filed: Nov. 15, 1995

Related U.S. Patent Documents

Reissue of: . .

(64) Patent No.. 5,263,154 enough to form a lotglcal-to-physwal address concordance,
[ssued: Nov. 16. 1993 and thereafter physically backing up the da.tagets on the
Appl. No.. 07/871 56 6 storage subsystem on a scheduled or opportunistic basis. An
Filed: Apr. 2;) 1907 indication of each update to a selected portion of the

| ST designated datasets which occurs after the first selected point

(51) Int. CL7 .o GO6F 11/00 in time 1s stored and application initiated updates to unco-

(52) U.S. Cl oo 714/6; 711/100 pied designated datasets are first bulfered. Thereafter, side-

(58) Field of Searchcccco......... 395/425, 182.04, liles are made of the affected datasets, or portions thereot,

395/182.13; 364/268.1, 268.3: 714/6; 711/162, the updates are then written through to the storage
114. 100 subsystem, and the sidefiles written to an alternate storage
? location 1 backup copy order, as controlled by the address
(56) References Cited concordance. At a subsequent point in time only those
portions of the designated datasets which have been updated
U.S. PATENT DOCUMENTS after the first selected period and time are copied, utilizing
5,051,887 A * 9/1991 Berger et al. 711/162 ~ an identical technique.
5155835 A * 10/1992 Belsanocoeeena.. 711/114
5,276,860 A * 1/1994 Fortier et al.coeeeunn.nn... 714/6 10 Claims, 4 Drawing Sheets

MERGED QUTPUT

OTHER
APPLICATIONS

b3

INDIRECT DIRECT NORMAL
—-READ -= READ ~= APPLICATION
- ALTERNATE-S ¢ - UPDATES
B
A
PRE-UPDATE 30 65
TRACKS - [—5 |
- E
| ¢ J
b
c A / 3 o
e A
N K I |
A S] E
I_ 3 S
— 4
.......... 5
; INCREMENTAL
7 T4 COPY
— PROCESS

CLARK ET AL

.'

US RE37,601 E

'\

CPU
H
CHANNEL
V7

Sheet 1 of 4

Mar. 19, 2002

CPU

CHAN

U.S. Patent

L |
LE
s
ILE
ﬁ......v.{..v
53
-— -
ol)
”Dl

)

—

9
1
I

I
l

LUl
USP 5,824,563

29
F'Lg] DASD

Prior Art

DASD

INITIATED

(=
ad L
b e
ad e
.-ILI-II_.._

==
O
L A

1 41

INITIATED

4]

51

—~=—APPLICATION I PROCESSING

43

49

US RE37,601 E

Sheet 2 of 4

Mar. 19, 2002

U.S. Patent

6 g . MERGED OUTPUT

OTHER
APPLICATIONS

\

HOST

N =

> Ll
o —d
Ol
= Sy
—E ~
) —

b/

bJ

INDIRECT
—-READ --

US RE37,601 E

Sheet 3 of 4

Mar. 19, 2002

U.S. Patent

START

U™
O

87

89

I

125

US RE37,601 E

INCREMENTAL

r

Sheet 4 of 4

PROCESS
UPDATL

Mar. 19, 2002

STARIT

—

U.S. Patent

PROCESS
UPDATE

129

123

l

2

UNCOPIED

=y)
e
g

US RE37,601 E

1

METHOD AND SYSTEM FOR
INCREMENTAL TIME ZERO BACKUP
COPYING OF DATA

Matter enclosed in heavy brackets [] appears in the
original patent but forms no part of this reissue specifi-
cation; matter printed in italics indicates the additions
made by reissue.

CROSS-REFERENCE TO RELATED
APPLICATION

The present application 1s related to U.S. patent applica-
tion Ser. No. 07/781,044, entitled Method and Means for
Time Zero Backup Copying of Data, filed Oct. 18, 1991, and
assigned to the assignee herein named. The contents of the
cross-reference United States Patent Application are hereby
incorporated herein by reference thereto.

BACKGROUND OF THE INVENTION

1. Technical Field:

This invention relates in general to methods and systems
for maintaining continued availability of datasets 1in external
storage assoclated with accessing data processing systems,
and 1n particular the present invention relates to backup
copying of records 1 external storage concurrent with a
dramatically shortened suspension of data processing sys-
tem application execution occasioned by such copying. Still
more particularly, the present invention relates to a method
and system for incremental backup copying of records 1n a
data processing system which minimizes still further the
suspension of data processing system application execution
during such copying.

2. Description of the Related Art:

A modern data processing system must be prepared to
recover, not only from corruptions of stored data which
occur as a result of noise bursts, software bugs, media
defects, and write path errors, but also from global events,
such as data processing system power failure. The most
common technique of ensuring the continued availability of
data within a data processing system 1s to create one or more
copies of selected datasets within a data processing system
and store those copies 1n a nonvolatile environment. This
so-called “backup” process occurs within state-of-the-art
external storage systems in modern data processing systems.

Backup policies are implemented as a matter of schedul-
ing. Backup policies have a space and time dimension which
1s exemplified by a range of datasets and by the frequency
of backup occurrence. A FULL backup requires the backup
of an enfire range of a dataset, whether individual portions
of that dataset have been updated or not. An INCREMEN-
TAL backup copies only that portion of the dataset which
has been updated since a previous backup, either full or
incremental. The backup copy thus created represents a
consistent view of the data within the dataset as of the time
the copy was created.

Of course, those skilled 1n the art will appreciate that as
a result of the process described above, the higher the
backup frequency, the more accurately the backup copy will
mirror the current state of data within a dataset. In view of
the large volumes of data maintained within a typical
state-of-the-art data processing system backing up that data
1s not a trivial operation. Thus, the opportunity cost of
backing up data within a dataset may be quite high on a large
multiprocessing, multiprogramming facility, relative to
other types of processing.

5

10

15

20

25

30

35

40

45

50

55

60

65

2

Applications executed within a data processing system are
typically executed in either a batch (streamed) or interactive
(transactional) mode. In a batch mode, usually one applica-
tion at a time executes within interruption. Interactive mode
1s characterized by interrupt driven multiplicity of applica-
fions or transactions.

When a data processing system 1s 1n the process of
backing up data 1n either a streamed or batch mode system,
cach process, task or application within the data processing
system 1s aflected. That 1s, the processes supporting
streamed or batch mode operations are suspended for the
duration of the copying. Those skilled 1n the art will recog-
nize that this event i1s typically referred to as a “backup
window.” In contrast to batch mode operations, log based or
fransaction management applications are processed 1n the
interactive mode. Such transaction management applica-
tions eliminate the “backup window” by concurrently updat-
ing an on-line dataset and logging the change. However, this
type of backup copying results 1n a consistency described as
“fuzzy.” That 1s, the backup copy 1s not a precise “snapshot”
of the state of a dataset/data base at a single point 1n time.
Rather, a log comprises an event file requiring further
processing against the database.

A co-pending U.S. patent application Ser. No. 07/385,
647, filed Jul. 25, 1989, entitled A Computer Based Method
For Dataset Copying Using an Incremental Backup Policy,
illustrates backup 1n a batch mode system utilizing a modi-
fied incremental policy. A modified incremental policy cop-
ies only new data or data updates since the last backup. It
should be noted that execution of applications within the
data processing system are suspended during copying 1n this
system.

As described above, to establish a prior point of consis-
tency 1 a log based system, 1t 1s necessary to “repeat
history” by replaying the log from the last check point over
the datasets or database of interest. The distinction between
batch mode and log based backup 1s that the backup copy 1s
consistent and speaks as of the time of its last recordation,
whereas the log and database mode require further process-
ing 1n the event of a fault, in order to exhibit a point 1n time
consistency.

U.S. Pat. No. 4,507,751, Gawlick et al., entitled Method
and Apparatus for Logging Journal Data Using a Write
Ahead Dataset, 1ssued Mar. 25, 1985, exemplifies a trans-
action management system wherein all transactions are
recorded on a log on a write-ahead dataset basis. As
described within this patent, a unit of work 1s first recorded
on the backup medium (log) and then written to its external
storage address.

Co-pending U.S. patent application Ser. No. 07/524,206,
filed May 16, 1990, entitled Method and Apparatus for
Executing Critical Disk Access Commands, teaches the
performance of media maintenance on selected portions of
a tracked cyclic operable magnetic media concurrent with
active access to other portions of the storage media. The
method described therein requires the phased movement of
customer data between a target track to an alternate track,
diversion of all concurrent access requests to the alternate
track or tracks and the completion of maintenance and copy
back from the alternate to the target track.

Requests and interrupts which occur prior to executing
track-to-track customer data movement result 1n the restart-
ing of the process. Otherwise, requests and interrupts occur-
ring during execution of the data movement view a DEVICE
BUSY state. This typically causes a requeucing of the
request.

US RE37,601 E

3

It should therefore be apparent that a need exists for a
method and system whereby the maximum availability of
application execution within a data processing system 1s
maintained while creating backup copies which exhibit a
consistent view of data within an associated database, as of
a specific time.

SUMMARY OF THE INVENTION

It 1s therefore one object of the present invention to
provide an improved method and system for maintaining,
continued availability of datasets in external storage asso-
clated with accessing data processing systems.

It 1s another object of the present invention to provide an
improved method and system for backup copying of records
in external storage concurrent with a dramatically shortened
suspension of data processing system application execution
occasioned by such copying.

It 1s yet another object of the present invention to provide
an 1mproved method and system for incremental backup
copying of records 1n a data processing system which
minimizes, still further the suspension of data processing
system application execution during such copying, as well
as the actual amount of data which must be backed up.

The foregoing objects are achieved as 1s now described.
Backup copying of designated datasets representing a first
selected point 1in time consistency may be performed 1n a

data processing system on an attached storage subsystem
concurrent with data processing system application execu-
fion by first suspending application execution only long
enough to form a logical-to-physical address concordance,
and thereafter physically backing up the datasets on the
storage subsystem on a scheduled or opportunistic basis. An
indication of each update to a selected portion of the
designated datasets which occurs after the first selected point
in time 1s stored and application 1nitiated updates to unco-
pied designated datasets are first buifered. Thereafter, side-
files are made of the affected datasets, or portions thereof,
the updates are then written through to the storage
subsystem, and the sidefiles written to an alternate storage
location 1 backup copy order, as controlled by the address
concordance. At a subsequent point in time only those
portions of the designated datasets which have been updated
after the first selected period and time are copied, utilizing
an 1dentical technmque.

BRIEF DESCRIPTION OF THE DRAWING

The novel features believed characteristic of the invention
are set forth m the appended claims. The invention itself
however, as well as a preferred mode of use, further objects
and advantages thereof, will best be understood by reference
to the following detailed description of an 1illustrative
embodiment when read 1n conjunction with the accompa-
nying drawings, wherein:

FIG. 1 depicts a typical multiprocessing, multiprogram-
ming environment according to the prior art where executing
processors and applications randomly or sequentially access
data from external storage;

FIGS. 2A-2C depict time line 1llustrations of the backup
window 1n a batch or streaming process 1n the prior art, in
a time zero backup system and in an incremental time zero
backup system, respectively;

FIG. 3 illustrates a conceptual flow of an incremental time
zero backup copy 1n accordance with the method and system
of the present invention;

FIG. 4 1s a high level logic flowchart illustrating initial-
ization of an incremental time zero backup copy 1n accor-
dance with the method and system of the present invention;
and

10

15

20

25

30

35

40

45

50

55

60

65

4

FIG. § 1s a high level logic flowchart illustrating incre-
mental backup copying 1n accordance with the method and
system of the present invention.

DETAILED DESCRIPTION OF PREFERRED
EMBODIMENT

With reference now to the figures and 1n particular with
reference to FIG. 1, there 1s depicted a multiprocessing,
multiprogramming data processing system according to the
prior art. Such systems typically mclude a plurality of
processors 1 and 3 which access external storage units 21,
23, 25, 27, and 29 over redundant channel demand/response
interfaces 5, 7 and 9.

The 1llustrated embodiment 1n FIG. 1 may be provided 1n
which each processor within the data processing system 1s
implemented utilizing an IBM/360 or 370 architected pro-
cessor type having, as an example, an IBM MVS operating
system. An IBM/360 architected processor 1s fully described
in Amdahl et al., U.S. Pat. No. 3,400,371, entitled Data
Processing System, 1ssued on Sep. 3, 1968. A conifiguration
in which multiple processors share access to external storage
units 1s set forth in Luiz et al., U.S. Pat. No. 4,207,609,
enfitled Path Independent Device Reservation and Recon-

nection 1 a Multi-CPU and Shared Device Access System,
1ssued Jan. 10, 1980.

The MVS operating system 1s also described in IBM
Publication GC28-1150, entitled MVS/Extended Architec-
ture System Programming Library; System Macros and
Facilities, Vol. 1. Details of standard MVS or other operating
system services, such as local lock management, subsystem
invocation by interrupt or monitor, and the posting and
waiting of tasks 1s omitted. These operating systems services
are believed to be well known to those having skill in this
art.

Still referring to FIG. 1, as described in Luiz et al., a
processor process may establish a path to externally stored
data 1n an IBM System 370 or similar system through an
MVS or other known operating system by invoking a
START 1/0, transferring control to a channel subsystem
which reserves a path to the data over which transfers are
made. Typically, executing applications have data depen-
dencies and may briefly suspend operations until a fetch or
update has been completed. During such a transfer, the path
1s locked until the transfer 1s completed.

Referring now to FIGS. 2A-2C, there are depicted time
lines 1llustrating the backup window 1n a batch or streaming
process 1n the prior art, 1n a time zero backup system and 1n
an incremental time zero backup system respectively. As
illustrated at FIG. 2A, multiple backup operations have
occurred, as mndicated at backup windows 41 and 43. Appli-
cation processing 1s typically suspended or shut down just
prior to each backup window and this suspension will persist
until the backup process has been completed. Termination of
the backup window signifies completion of the backup
process and commitment. By “completion” what 1s meant 1s
that all data that was to have been copied was 1n fact read
from the source. By “commitment” what 1s meant 1s that all
data to be copied was 1n fact written to an alternate storage
location.

Referring now to FIG. 2B, backup windows for a time
zero backup copy system are depicted. As described 1n detail
within the copending cross-referenced patent application,
cach backup window 45 and 47 still requires the suspension
or termination of application processing; however, the sus-
pension or termination occurs only for a very short period of
time. As described in the cross-referenced application, the

US RE37,601 E

S

fime zero backup method begins, effectively freezing data
within the datasets to be backed up at that point 1n time.
Thereafter, a bit map 1s created 1dentifying each track within
the datasets to be backed up and after creation of that bat
map, the copy 1s said to be “logically complete.” The
committed state, or “physically complete” state will not
occur unftil some time later. However, at the “logically
complete” point 1n time, the data 1s completely usable by
applications within the data processing system. The time
during which application processing 1s suspended 1n such a
system 1s generally 1n the low subsecond range; however,
those skilled 1n the art will appreciate that the amount of
time required to create a bit map to the data to be copied will
depend upon the amount of data within the datasets.

™

Of course, those skilled 1n the art will appreciate that if the
time zero backup process terminates abnormally between
the pomnt of logical completion and the point of physical
completion, the backup copy 1s no longer useful and the
process must be restarted. In this respect, the time zero
backup process 1s vulnerable 1n a manner very similar to that
of backup systems in the prior art. That 1s, all backup
operations must be rerun 1if the process terminates abnor-
mally prior to completion.

Referring now to FIG. 2C, the incremental time zero
backup copying process 1s depicted. As above, an 1nitial
backup window 49 exists which requires a temporary sus-
pension or termination of application processing; however,
in a manner which will be explained 1n greater detail herein,
updates to the dataset which occur after the initial backup
copy has begun are tracked utilizing an alternate bit map of
the designated dataset. Thereafter, only those tracks within
the designated dataset which have been altered are copied
during a subsequent incremental copy session. Since the
creation of a bit map identifying those tracks within the
dataset which have been updated since a previous full copy
has been completed occurs during the update process, appli-
cation processing need not be suspended until the next time
a full copy 1s desired. In this manner, suspension or inter-
ruption of application processing 1s substantially reduced.

With reference now to FIG. 3, there 1s depicted a con-
ceptual flow of the creation of an incremental time zero
backup copy 1 accordance with the method and system of
the present invention. As illustrated, an incremental time
zero backup copy of data within a tracked cyclic storage
device 61 may be created. As those skilled 1n the art will
appreciate, data stored within such a device 1s typically
organized into records and datasets. The real address of data
within external storage 1s generally expressed in terms of
Direct Access Storage Device (DASD) volumes, cylinders
and tracks. The virtual address of such data 1s generally
couched 1n terms of base addresses and offsets and/or extents
from such base addresses.

Further, a record may be of the count-key-data format. A
record may occupy one or more units of real storage. A
“dataset” 1s a logical collection of multiple records which
may be stored on contiguous units of real storage or which
may be dispersed. Therefore, those skilled 1 the art will
appreciate that 1f backup copies are created at the dataset
level 1t will be necessary to perform multiple sorts to form
inverted 1ndices 1nto real storage. For purposes of explana-
tion of this mvention, backup processing will be described
as managed both at the resource manager level within a data
processing system and at the storage control unit level.

As described above, each processor typically includes an
operating system which includes a resource manager com-
ponent. Typically, an IBM System 370 type processor run-

10

15

20

25

30

35

40

45

50

55

60

65

6

ning under the MVS operating system will include a
resource manager of the data facilities dataset services

(DFDSS) type which is described in U.S. Pat. No. 4,855,
907, Ferro et al., 1ssued Aug. 8, 1989, entitled Method for
Moving VSAM Base Clusters While Maintaining Alternate
Indices Into the Cluster. DFDSS 1s also described in IBM
Publication GC26-4388, entitled Data Facility Dataset Ser-
vices: User’s Guide. Thus, a resource manager 63 1s utilized
in conjunction with a storage control unit 65 to create an
incremental backup copy of designated datasets stored
within tracked cyclic storage device 61.

As will be described below, the backup copy process
includes an initialization period during which datasets are
sorted, one or more bit maps are created and logical comple-
tion of the bit map 1s signaled to the invoking process at the
processor. The listed or i1dentified datasets are then sorted
according to access path elements down to DASD track
oranularity. Next, bit maps are constructed which correlate
the dataset and the access path insofar as any one of them 1s
included or excluded from a given copy session. Lastly,
storage manager 63 signals logical completion, indicating
that updates will be processed against the dataset only after
a short delay until such time as physical completion occurs.

Following initialization, storage manager 63 begins read-
ing the tracks of data which have been requested. While a
COpy session 1s active, each storage control unit monitors all
updates to the dataset. If an update 1s received from another
application 67, storage control unit 65 will execute a pre-
determined algorithm to process that update, as described
below.

In a time zero backup copy system a determination 1s first
made as to whether or not the update attempted by appli-
cation 67 1s for a volume which 1s not within the current
copy session. If the volume 1s not within the current copy
session, the update completes normally. Alternately, if the
update 1s for a volume which 1s part of the copy session, the
primary session bit map 1s checked to see if that track 1s
protected. If the corresponding bit within the bit map 1s off,
indicating the track is not currently within a copy session,
the update completes normally. However, if the track is
protected (the corresponding bit within the bit map is on) the
track 1 question 1s part of the copy session and has not as
yet been read by the storage manager 63. In such a case,
storage control unit 65 temporarily buffers the update and
writes a copy of the affected track from tracked cyclic
storage device 61 1nto a memory within storage control unit
65. Thereafter, the update 1s permitted to complete.

Thus, as illustrated 1n FIG. 3, an update initiated by
application 67 may be processed through storage control
unit 65 to update data at tracks 3 and 5 within tracked cyclic
storage unit 61. Prior to permitting the update to occur,
tracks 3 and 5 are written as sidefiles to a memory within
storage control unit 65 and thereafter, the update 1s permaitted
to complete. The primary bit map 1s then altered to indicate
that the copies of tracks 3 and 5, as those tracks existed at
the time a backup copy was requested, are no longer within
the tracked cyclic storage device 61 but now reside within a
memory within storage control unit 635.

A merged copy, representing the designated dataset as of
the time a backup copy was requested, 1s then created at
reference numeral 69, by copying non-updated tracks
directly from tracked cyclic storage device 61 through
resource manager 63, or by indirectly copying those tracks
from tracked cyclic storage device 61 to a temporary host
sidefile 71, while may be created within the expanded
memory store of a host processor. Additionally, tracks within

US RE37,601 E

7

the dataset which have been written to sidefiles within a
memory 1n storage control unit 65 prior to completion of an
update may also be indirectly read from the memory within
storage control unit 65 to the temporary host sidefile 71.
Those skilled 1n the art will appreciate that in this manner a
copy of a designated dataset may be created from unaltered
tracks within tracked cyclic storage device 61, from updated
tracks stored within memory of storage control unit 65 and
thereafter transferred to temporary host sidefile 71, wherein
these portions of the designated dataset may be merged in
backup copy order, utilizing the bit map which was created

at the time the backup copy was initiated.

Referring now to FIG. 4, there 1s depicted a high level
logic flowchart which 1llustrates the initialization of a pro-
cess for creating an incremental time zero backup copy, 1n
accordance with the method and system of the present
invention. As 1illustrated, this process starts at block 81 and
thereafter passes to block 83 which 1llustrates the beginning
of the 1mitialization process. Thereatfter, the process passes to
block 85 which depicts the sorting of the datasets by access
path, down to DASD track granularity. This sorting process
will, necessarily, resolve an 1dentification of the DASD
volumes within which the datasets reside and the identifi-
cation of the storage control units to which those volumes
belong.

Next, as depicted at block 87, a session 1dentification 1s
established between each processor and the relevant external
storage control units. The session 1dentification 1s preferably
unique across all storage control units, in order that multiple
processors will not interfere with each others” backup copy
processes. Thereafter, as 1llustrated at block 89, a primary
session bit map 1s established which may be utilized, as set
forth 1n detail herein and within the cross-reference patent
application, to mdicate whether or not a particular track 1s
part of the present copy session. Thereafter, as depicted at
block 91, the “logically complete” signal i1s sent to the
invoking process, indicating that application processing may
continue; however, slight delays 1n updates will occur until
such time as the backup copy 1s physically complete.

With reference now to FIG. §, there 1s depicted a high
level logic flowchart which 1illustrates the incremental
backup copying of a dataset in accordance with the method
and system of the present invention. As illustrated, the
process begins at block 99 and thercafter passes to block
101. Block 101 depicts the beginning of the reading of a
backup copy. The process then passes to block 103 which
1llustrates a determination of whether or not the backup copy
1s to be a “FULL” copy or a “INCREMENTAL” copy. As
described above, a FULL copy 1s a copy of each element
within a designated dataset, regardless of whether or not the
data within the dataset has been previously altered. An
INCREMENTAL copy 1s a copy which only includes those
portions of the dataset which have been updated or altered
since the previous backup copy occurred.

Still referring to block 103, 1n the event a FULL copy 1s
to be created, the process passes to block 107 which depicts
the establishment of an alternate session bit map. As will be
described 1n greater detail herein, an alternate session bit
map 1s utilized to track alterations or updates to portions of
the designated dataset which occur after the initiation of a
previous backup copy, such that an INCREMENTAL copy
of only those portions of the dataset which have been altered
may be created at a subsequent time. Alternately, 1n the event
an INCREMENTAL copy 1s to be created, the process
passes from block 103 to block 105, which illustrates the
changing of the designation of the alternate session bit map
to that of the primary session bit map, and the process then

10

15

20

25

30

35

40

45

50

55

60

65

3

passes to block 107, which again 1llustrates the establish-
ment of an alternate session bit map.

Thus, upon the initiation of a FULL backup copy, an
alternate session bit map 1s created to track changes to the
dataset which occur after the mitiation of the full copy.
Thereafter, if an INCREMENTAL copy 1s to be created, the
previously established alternate session bit map 1s utilized as
the primary session bit map and a new alternate session bit
map 1s created to permit the system to track changes to the
data within the dataset which occur after the initiation of the

INCREMENTAL copy.

Next, block 109 1llustrates a determination of whether or
not an update has occurred. In the event no update has
occurred, the process merely 1terates until such time as an
update does occur. In the event an update has occurred, the
process passes to block 111. Block 111 1illustrates a deter-
mination of whether or not the update initiated by an
application within the data processing system 1s an update
against a portion of the time zero dataset. If not, the process
merely passes to block 113 and the update 1s processed 1n a
user transparent fashion. However, 1n the event the update 1s

against a portion of the time zero dataset, the process passes
to block 1135.

Block 115 illustrates a determination of whether or not the
update 1s against a copied or uncopied portion of the time
zero dataset. That 1s, an update to a portion of data within the
dataset which has been copied to the backup copy and 1is
therefore physically complete, or a portion which has not yet
been copied to the backup copy. If the portion of the dataset
against which the update 1s initiated has already been copied
to the backup copy, the process passes to block 117 which
illustrates the marking of the alternate session bit map, to
indicate that this portion of the dataset has been altered since
the previous backup copy was imitiated. Thereafter, the
process passes to block 113 which 1llustrate the processing
of the update. Again, the process then passes from block 113
to block 109, to await the occurrence of the next update.

Referring again to block 115, m the event the update
against the time zero dataset 1s mitiated against a portion of
the time zero dataset which has not yet been copied to the
backup copy, the process passes to block 119. Block 119
illustrates the temporary buffering of the update and the
copying of the affected portion of the time zero dataset to a
sidefile within memory within the storage control unit (see
FIG. 3). Thereafter, the process passes to block 121, which
illustrates the marking of the alternate session bit map to
indicate that an update has occurred with respect to this
portion of the dataset since the initiation of the previous
backup copy.

Next, the process passes to block 123, which 1llustrates
the marking of the primary session bit map, indicating to the
resource manager that this portion of the dataset has been
updated within the external storage subsystem and that the
time zero copy of this portion of the dataset 1s now either
within cache memory within storage control unit 65 or
within temporary host sidefile 71 which 1s utilized to prevent
overflow of data within the cache memory within storage

control unit 65 (see FIG. 3).

After marking the primary session bit map, the process
passes to block 125 which illustrates the processing of that
update. Thereafter, the process passes to block 127 which
depicts a determination of whether or not the sidefile thresh-
old within the cache memory of storage control unit 65 has
been exceeded. It so, the process passes to block 129, which
illustrates the generation of an attention signal, indicating
that sidefiles within the storage control unit are ready to be

US RE37,601 E

9

copied by the processor. Of course, those skilled in the art
will appreciate that a failure to copy data from the cache
memory within storage control unit 65 may result in the
corruption of the backup copy if that memory 1s overwritten.
Referring again to block 127, in the event the sidefile
threshold has not been exceeded, the process returns again
to block 109 to await the occurrence of the next update.

The asynchronous copying of sidefile data from a cache
memory within storage control unit 65 to a temporary host
sidefile, or to the merged backup copy, 1s described 1n detail
within the cross-referenced patent application, as well as the

process by which merged copies are created which 1ncor-
porate data read directly from tracked cyclic storage unit 61,
data within cache memory within storage control unit 65
and/or data within temporary host sidefile 71.

Thus, upon reference to the foregoing those skilled 1n the
art will appreciate that by mnitiating a time zero backup copy
the suspension of application execution which normally
accompanies a backup copy session 1s substantially reduced
by the expedient of creating a bit map identifying each
portion of data within the designated dataset to be updated
and thereafter releasing the dataset for application execu-
tion. Portions of the designated dataset within the external
storage subsystem are then copied on an opportunistic or
scheduled basis and attempted updates to the data contained
therein are deferred temporarily, until such time as the
original data, as 1t existed as of the time of the backup copy,
may be written to a sidefile for mclusion within the com-
pleted backup copy. Thereafter, the updates are written to the
data within the external storage subsystem.

The method and system of the present invention may be
utilized to create an alternate bit map which 1s automatically
established each time an update occurs or the system begins
reading a backup copy. This alternate bit map 1s then utilized
to track alterations to the data which occurs after the initial
backup copy 1s created and, at subsequent backup points,
this bit map 1s utilized to facilitate the copying of only those
portions of the designated dataset which have been updated
since the previous backup copy was created. At the 1nitiation
of a subsequent INCREMENTAL copy, this alternate bit
map becomes the primary bit map and another alternate bat
map 1s created to track alterations or updates which occur to
the data after the INCREMENTAL copy 1s 1nitiated. In this
manner, the termination or suspension of application execu-
tion within a data processing system during backup copying
1s substantially eliminated. For example, those skilled 1n the
art will appreciate that sidefiles of affected tracks generated
as a result of an update prior to physical completion may be
stored within a cyclic tracked storage device at an unusual
location, rather than in memory within the storage control
unit, as depicted 1n the illustrated embodiment.

While the invention has been particularly shown and
described with reference to a preferred embodiment, 1t will
be understood by those skilled 1n the art that various changes
in form and detail may be made therein without departing
from the spirit and scope of the mvention.

We claim:

1. A method m a data processing system for incremental
backup copying of designated datasets stored within one or
more storage subsystems coupled to said data processing
system during application execution within said data pro-
cessing system, said method comprising the steps of:

suspending application execution within said data pro-
cessing system at a first point 1n time, forming a dataset
logical-to-physical storage system address concor-
dance for said designated datasets and resuming appli-
cation execution thereafter:;

5

10

15

20

25

30

35

40

45

50

55

60

65

10

physically backing up said designated datasets within said
one or more storage subsystems on a scheduled or
opportunistic basis by copying said designated datasets
from said one storage subsystems to alternate storage
subsystem locations;

storing an 1ndication of each application initiated update

to said designated datasets which occurs after said first
point in time;

processing at said one or more storage subsystems any

application 1nitiated updates to uncopied designated
datasets by buffering said updates, writing sidefiles of
said designated datasets or portions thereof affected by
said updates, writing said updates to said one or more
storage subsystems, and copying on a scheduled or
opportunistic basis said sidefiles to said alternate stor-
age subsystem location 1n conjunction with said copied
designated datasets from said one more storage sub-
systems 1n an order defined by said address concor-
dance; and

creating an incremental backup copy of said designated

datasets at a designated time subsequent to said {first
point 1n time by copying only those designated datasets
or portions thereof updated after said first point in time.

2. The method 1n a data processing system for incremental
backup copying of designated datasets stored within one or
more storage subsystems coupled to said data processing
system according to claim 1, wherein said step of creating an
incremental backup copy of said designated datasets com-
prises the steps of:

forming a second dataset logical-to-physical storage sys-

tem address concordance at said designated time for
cach designated dataset or portion thereof updated after
said first point in time;

physically backing up said designated datasets updated

after said first point 1n time on a scheduled or oppor-
tunistic basis by copying said designated datasets
updated after said first point in time from said one or
more storage subsystems to alternate storage subsystem
locations; and

processing at said one more storage subsystems any

application 1nitiated updates to uncopied designated
datasets previously updated after said first point in time
by buffering said updates, writing sidefiles of said
designated datasets of portions thereof affected by said
updates, writing said updates to said one or more
storage subsystems, and copying on a scheduled or
opportunistic basis said sidefiles to said alternate stor-
age location 1 conjunction with said copied designated
datasets 1n an order defined by said second address
concordance.

3. A method 1n a data processing system for incremental
backup copying of designated datasets stored within one or
more tracked cyclic storage devices coupled to said data
processing system during application execution within said

data processing system, said method comprising the steps

of:

suspending application execution within said data pro-
cessing system at a first point 1n time 1n response to a
request for a backup copy of at least one dataset stored
within said one or more tracked cyclic storage devices;

forming a dataset and device track concordance for said at
least one dataset and signaling said data processing
system of the completion thereof;

resuming application execution within said data process-
Ing system 1n response to said completion signal;

copying said at least one dataset from said one or more
tracked cyclic storage devices on a scheduled or oppor-
tunistic basis to an alternate storage subsystem;

US RE37,601 E

11

storing an 1ndication of each application mitiated update
to any portion of said at least one dataset which occurs
after said first point 1n time;

processing application initiated updates to uncopied por-
tions of said at least one dataset by buffering said
updates, writing sidefiles of said affected portions of
said at least one dataset, writing said updates to said

one or more tracked cyclic storage devices and copying
said sidefiles to said alternate storage location; and

creating an incremental backup copy of said at least one
dataset at a designated time subsequent to said {first
point 1n time by copying to said alternate storage
system location only those portions of said at least one
dataset which have been updated after said first point 1n
time.

4. A data processing system for performing incremental
backup copying of designated datasets stored within one or
more storage subsystems coupled to said data processing
subsystem during application execution within said data
processing system, said data processing system comprising:

means for suspending application execution within said
data processing system at a {irst point 1n time;

means for forming a dataset logical-to-physical storage
system address concordance for said designated
datasets at said first point 1n time;

means for resuming application execution thereafter;

means for physically backing up said designated datasets
within said one or more storage subsystems on a
scheduled or opportunistic basis by copying said des-
ignated datasets from said one storage subsystems to
alternate storage subsystem locations;

means for storing an mdication of each application 1niti-
ated update to said designated datasets which occurs
after said first point 1n time;

means for processing at said one or more storage sub-

systems any application initiated updates to uncopied

designated datasets by buffering said updates, writing

sidedfiles of said designated datasets or portions thereot
alfected by said updates, writing said updates to said
one or more storage subsystems, and copying on a
scheduled or opportunistic basis said sidefiles to said
alternate storage subsystem location in conjunction
with said copied designated datasets from said one
more storage subsystems in an order defined by said
address concordance; and

means for creating an incremental backup copy of said
designated datasets at a designated time subsequent to
said first point 1in time by copying only those designated
datasets or portions thereof updated after said first point
in time.

5. A storage control unit having a cache memory for
permitting incremental backup copying of designated
datasets stored within a storage subsystem associated there-
with by a data processing system coupled thereto, said
storage control unit comprising:

means for forming a dataset logical-to-physical storage
address concordance for said designated datasets
within said storage subsystem at a first point in time;

means for permitting copying of said designated datasets
within said stored designated datasets on a scheduled or
opportunistic basis by said data processing system;

means for storing an mndication of each update to a portion
of said designated datasets which occurs after said first
point in time;

means for processing updates to uncopied portions of said
designated datasets by buffering said updates, writing

5

10

15

20

25

30

35

40

45

50

55

60

65

12

sidefiles of said uncopied portions of said designated
datasets affected by said updates within said cache
memory and writing said updates into said associated
storage subsystems;

means for permitting copying of said sidefiles by said data
processing system; and

means for permitting selective copying at a designated
time after said first point in time of said portions of said
designated datasets updated after said first point 1n
fime.

6. A computer program product for use in a data pro-
cessing system for incremental backup copyving of desig-
nated datasets stored within one or more data storage
subsystems coupled to the data processing system during
application execution within the data processing system,
said computer program prodiuct comprising:

compuiter usable code means for suspending application
execution within said data processing system at a first
point n time, forming a dataset logical-to-physical
storage system address concordance for said desig-
nated datasets and resuming application execution

thereafter;

computer usable code means for physically backing up
said designated datasets within said one or more stor-
age subsystems on a scheduled or opportunistic basis
by copyving said designated datasets from said one
storage subsystems to alternate storage subsystem
locations;

computer usable code means for storing an indication of
each application initiated update to said designated
datasets which occurs after said first point in time;

compuiter usable code means for processing at said one or
more storage subsystems any application initiated
updates to uncopied designated datasets by buffering
satd updates, writing sidefiles of said designated
datasets or portions thereof affected by said updates,
writing said updates to said one or more storage
subsystems, and copying on a scheduled or opportu-
nistic basis said sidefiles to said alternate storage
subsystem location in conjunction with said copied
designated datasets from said one more storage sub-
systems in an order defined by said address concor-
dance; and

compuiter usable code means for creating an incremenial
backup copy of said designated datasets at a desig-
nated time subsequent to said first point in time by
copying only those designated datasets or portions
thereof updated after said first point in time.
7. The computer program product for use in a data
processing system for incremental backup copying of des-
ignated datasets stored within one or more storage sub-
systems coupled to said data processing system according to
claim 0, wherein said step code means of creating an
incremental backup copy of said designated datasets com-
prises.
compuiter usable code means for forming a second dataset
logical-to-physical storage system address concor-
dance at said designated time for each designated
dataset or portion thereof updated after said first point
In fime;

computer usable code means for physically backing up
said designated datasets updated after said first point
in time on a scheduled or opportunistic basis by
copyving said designated datasets updated after said
first point 1n time from said one or more storage
subsystems to alternate storage subsystem locations;
and

US RE37,601 E

13

comptuter usable code means for processing at said one
more storage subsystems any application inifiated
updates to uncopied designated datasets previously
updated after said first point in time by buffering said
updates, writing sidefiles of said designated datasets of s
portions thereof affected by said updates, writing said
updates to said one or more storage subsystems, and
copying on a scheduled or opportunistic basis said
sidefiles to said alternate storage location in conjunc-
tion with said copied designated datasets in an order
defined by said second address concordance.

8. A computer program product for use in a data pro-
cessing system for incremental backup copyving of desig-
nated datasets stored within one or more tracked cyclic
storage devices coupled to the data processing system
during application execution within the data processing 1°
system, said compuiter program product Comprising.

computer usable code means for suspending application
execution within said data processing system at a first
point in time in response to a request for a backup copy
of at least one dataset stored within said one or more 20
tracked cyclic storage devices;

computer usable code means for forming a dataser and
device track concordance for said at least one dataset
and signaling said data processing system of the
completion thereof; 25

computer usable code means for resuming application
execution within said data processing system in
response to said completion signal,;

comptiter usable code means for copying said at least one
dataset from said one or more tracked cyclic storage
devices on a scheduled or opportunistic basts fo an
alternate storage subsystem;

computer usable code means for storing an indication of
each application initiated update to any portion of satd
at least one dataset which occurs after said first point
in fime;

compuiter usable code means for processing application
initiated updates to uncopied portions of said at least
one dataset by buffering said updates, writing sidefiles
of said affected portions of said at least one datasei,
writing said updates to said one or more tracked cyclic
storage devices and copying said sidefiles to said
alternate storage location; and

computer usable code means for creating an incremental
backup copy of said at least one datasert at a designated
lime subsequent to said first point in fime by copying (o
said alternate storage system location only those por-
tions of said at least one dataset which have been
updated after said first point in time.

9. A computer program product for performing incremen-
tal backup copying of designated datasets stored within one
or more storage subsystems coupled to a data processing
subsystem during application execution within a data pro-
cessing system, satd computer program prodict COmprising.

comptiter usable code means for suspending application
execution within said data processing system at a first
point in fime;

computer usable code means for forming a dataset
logical-to-physical storage system address concor- ¢,
dance for said designated datasets at said first point in
iime,

10

30

35

40

45

50

55

14

computer usable code means for resuming application
execution thereafter;

computer usable code means for physically backing up
said designated datasets within said one or more Stor-
age subsystems on a scheduled or opportunistic basts
by copying said designated datasets from said one
storage subsystems to alternate storage subsystem
locations;

compuiter usable code means for storing an indication of
each application itiated update to said designated
datasets which occurs after said first point in time;

compuiter usable code means for processing at said one or
more storage subsystems any application initiated
updates to uncopied designated datasets by buffering
satd updates, writing sidefiles of said designated
datasets or portions thereof affected by said updates,
writing said updates to said one or more storage
subsystems, and copying on a scheduled or opportu-
nistic basis said sidefiles to said alternate storage
subsystem location in conjunction with said copied
designated datasets from said one more storage sub-
systems tn an order defined by said address concor-
dance; and

computer usable means for creating an incremental
backup copy of said designated datasets at a desig-
nated time subsequent to said first point in time by
copying only those designated datasets or portions
thereof updated after said first point in time.

10. A computer program product for permitting incremen-

tal backup copying of designated datasets stored within a
storage subsystem with a data processing system, said
computer program product comprising.

computer usable code means for forming a dataset
logical-to-physical storage address concordance for
said designated datasets within said storage subsystem
at a first point in time;

compuiter usable code means for permitiing copying of
said designated datasets within said stored designated

datasets on a scheduled or opportunistic basts by said
data processing system;

computer usable code means for storing an indication of
each update to a portion of said designated datasets
which occurs after said first point in fime;

computer usable code means for processing updates to
uncopied portions of said designated datasets by bulf-
ering said updates, writing sidefiles of said uncopied
portions of said designated datasets affected by said
updates within said cache memory and writing satd
updates into said associated storage subsystems;

compuiter usable code means for permitiing copying of
said sidefiles by said data processing system; and

computer usable code means for permitiing selective
copying at a designated time after said first point in
ime of said portions of said designated datasets
updated after said first point in fime.

	Front Page
	Drawings
	Specification
	Claims

