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(57) ABSTRACT

A heuristic processor incorporates a digital arithmetic unit
arranged to compute the squared norm of each member of a
training data set with respect to each member of a set of
centers, and to transform the squared norms 1n accordance
with a nonlinear function to produce training ¢ vectors. A
systolic array arranged for QR decomposition and least
mean squares processing forms combinations of the ele-
ments of each ¢ vector to provide a fit to corresponding
training answers. The form of combination 1s then employed
with like-transformed to provide estimates of unknown
result. The processor 1s applicable to provide estimated
results for problems which are nonlinear and for which
explicit mathematical formalisms are unknown.
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1
HEURISTIC PROCESSOR

Matter enclosed in heavy brackets [ ] appears in the
original patent but forms no part of this reissue specifi-
cation; matter printed in italics indicates the additions
made by reissue.

BACKGROUND OF THE INVENTION

1. Field of the Invention

This mvention relates to an heuristic processor, 1.€. a
digital processor designed to estimate unknown results by an
empirical self-learning approach based on knowledge of
prior results.

2. Discussion of Prior Art

Heuristic digital processors an not known per se in the
prior art although there has been considerable interest in the
field for many years. Such a processor 1s required to address
problems for which no explicit mathematical formalism
exists to permit emulation by an array of digital arithmetic
circuits. A typical problem i1s the recognition of human
speech, where 1t 1s required to deduce an 1implied message
from speech which 1s subject to distortion by noise and the
personal characteristics of the speaker. In such a problem, it
will be known that a particular set of sound sequences will
correspond to a set of messages, but the mathematical
relationship between any sound sequence and the related
message will be unknown. Under these circumstances, there
1s no direct method of discerning an unknown message from
a new sound sequence.

The approach to solving problems lacking known math-
ematical formalisms has in the past involved use of a general
purpose computer programmed 1n accordance with a self-
learning algorithm. One form of algorithm 1s the so-called
linear perception model. This model employs what may be
referred to as training information from which the computer
“learns”, and on the basis of which 1t subsequently predicts.
The information comprises “training data” sets and “training
answer~ sets to which the training data sets respectively
correspond 1n accordance with the unknown transformation.
The linear perception model mvolves forming differently
welghted linear combinations of the trainming data values in
a set to form an output result set. The result set 1s then
compared with the corresponding training answer set to
produce error values. The model can be envisaged as a layer
of input nodes broadcasting data via varying strength
(weighted) connections to a layer of summing output nodes.
The model incorporates an algorithm to operate on the error
values and provide corrected weighting parameters which (it
is hoped) reduce the error values. This procedure is carried
out for each of the training data and corresponding training
answer set, after which the error values should become small
indicating convergence.

At this point data for which there are no known answers
are mput to the computer, which generates predicted results
on the basis of the weighting scheme 1t has built up during
the training procedure. It can be shown mathematically that
this approach 1s valid and yields convergent results for
problems where the unknown transformation 1s linear. The
approach 1s described 1n Chapter 8 of “Parallel Distributed
Processing Vol. 1: Foundations”, pages 318-322, D. E.
Rumelhart, J. L. McClelland, MIT Press 1986.

For problems 1involving unknown nonlinear
transformations, the linear perception model produce results
which are quite wrong. A convenient test for such a model
1s the EX-OR problem, 1.¢. that of producing an output map
of a logical exclusive-OR function. The linear perception
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model has been shown to be entirely mnappropriate for the
EX-OR problem because the latter 1s known to be nonlinear.
In general, nonlinecar problems are considerably more
important than linear problems.

In an attempt to treat nonlinear problems, the linear
perception model has been modified to introduce non-linear
transformations and at least one additional layer of nodes
referred to as a hidden layer. This provides the nonlinear
multilayer perception model. It may be considered as a layer
of input nodes broadcasting data via varying strength
(weighted) connections to a layer of internal or “hidden”
summing nodes, the hidden nodes 1n turn broadcasting their
sums to a layer of output nodes via varying strength con-
nections once more. (More complex versions may incorpo-
rate a plurality of successive hidden layers.) Nonlinear
transformations may be performed at any one or more
layers. A typical transformation mvolves computing the
hyperbolic tangent of the input to a layer. Apart from these
one or more transformations, the procedure 1s similar to the
linear equivalent. Errors between training results and train-
ing answers are employed to recompute weighting factors
applied to 1nputs to the hidden and output layers of the
perception. The disadvantages of the nonlinear perception
approach are that there 1s no guarantee that convergence 1s
obtainable, and that where convergence 1s obtainable that 1t
will occur 1n a reasonable length of computer time. The
computer programme may well converge on a false mini-
mum remote from a realistic solution to the weight deter-
mination problem. Moreover, convergence takes an unpre-
dictable length of computer time, anything from minutes to
many hours. It may be necessary to pass many thousands of
training data sets through the computer model.

SUMMARY OF THE INVENTION

It 1s an object of the invention to provide an heuristic
ProCessor.

The present mvention provides an heuristic processor

including;:

(1) transforming means arranged to produce a respective
training ¢ vector from each member of a training data
set on the basis of a set of centres, each element of a ¢
vector consisting of a nonlinear transformation of the
norm of the displacement of the associated training data
set member from a respective centre set member

(2) processing means arranged to combine training ¢
vector elements 1n a manner producing a {it to a set of
training answers, and

(3) means for generating result estimate values each
consisting of a combination of the eclements of a
respective ¢ vector produced from test data, each
combination being at least equivalent to a summation
of vector elements weighted 1n accordance with the
training {it.

The mvention provides the advantage that it constitutes a
processing device capable of providing estimated results for
nonlinear problems. In a preferred embodiment, the process-
Ing means 1s arranged to carry out least squares fitting to
training answers. In this form, it produces convergence to
the best result available having regard to the choice of
nonlinear transformation and set of centres.

The processing means preferably comprises a network of
processing cells; the cells are connected to form rows and
columns and have functions appropriate to carry out QR
decomposition of a ¢ matrix having rows comprising input
training data ¢ vector. The network 1s also arranged to rotate
input training answers as through each extended the training
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data ¢ vector to which 1t corresponds, 1n this form, the
network comprises boundary cells constituting an array
diagonal and providing initial row elements. The rows also
contain numbers of 1nternal cells diminishing by one per row
down the array such that the lowermost boundary cell 1s
assoclated with one internal cell per dimension of the
fraining answer set. This provides a triangular array of
columns including or consisting of boundary cells together
with at least one column of internal cells. The boundary and
internal cells have nearest neighbour (row and column
interconnection, and the boundary cells are connected
together 1n series along the array diagonal. Rotation param-
cters are evaluated by boundary cells from data mnput from
above, and are passed along rows for use by internal cells to
rotate 1nput data. First row boundary and internal cells
receive respective elements of each ¢ vector extended by a
corresponding training answer and subsequent rows receive
rotated versions thereof via array column interconnections.
The triangular array receives mput of ¢ vector elements and
the associlated internal cell column or columns receive
fraimning answer elements. Each boundary or internal cell
computes and stores a respective updated decomposition
matrix element in the process of producing or applying
rotation parameters. The systolic array may include one
multiplier cell per dimension of the training answer set, the
multiplier cells being arranged to multiply rotated training
answers by cumulatively multiplied cosine rotation param-
eters of their square-root free equivalents computed from ¢
vector elements to which each respective training answer
corresponds. The multiplier cells provide error values 1ndi-
cating least squares fitting accuracy.

The processing means may include switching means for
switching between a training mode of operation and a test
mode. The switching means provides means for generating
result estimate values. In the training mode, boundary and
internal cells respectively generate and apply rotation
parameters and update their stored elements as aforesaid. In
the test mode, stored element update 1s suppressed, and
training data ¢ vector input 1s replaced by input of like
transformed test data, and training answer 1nput 1s replaces
by zero. The processing means then provides result esti-
mates consisting of test data ¢ vector elements combined 1n
a like manner to that which fitted training data ¢ vector
clements to training answers.

The transforming means may comprise a digital arith-
metic unit arranged to subtract training data vector elements
form each of a series of corresponding centre vector
clements, to square and add the resulting differences to
provide sums arising from each data vector centre vector
pair; and to transform the sums in accordance with a
nonlinear function to provide ¢ vector elements.

BRIEF DESCRIPTION OF THE DRAWINGS

Embodiments of the mnvention will now be described, by
way of example only, with reference to the accompanying,
drawings, in which:

FIG. 1 1s a block diagram of an heuristic processor of the
mvention;

FIG. 2 provides processing functions for cells of the FIG.
1 processor;

FIG. 3 1s a more detailed block diagram of a digital
arithmetic unit of the FIG. 1 processor;

FIG. 4 1s a simplified schematic drawing of the FIG. 1
processor 1llustrating throughput timing;

FIG. § 1s a schematic drawing of an extended version of
a heuristic processor of the mvention;
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FIGS. 6, 7 and 8 1llustrate parts of FIG. § in more detail;
and

FIG. 9 1llustrates a processor for use with weighting data
obtained 1n a FIG. § device.

DETAILED DISCUSSION OF PREFERRED
EMBODIMENTS

Referring to FIG. 1, there 1s shown an heuristic processor
of the invention indicated generally by 10. The processor 10
incorporates eight arithmetic units P arranged in two rows
and four columns and designated P, to P,,, P,(1=1 or 2,j=1
to 4) indicating the ith row, jth column unit. Absence of
indices 17 indicates any or all units P. The units P have three
mputs 1, 2 and 3 and one output 0. In the following
descrlptlon P, k(k—O 1, 2 or 3) will indicate the correspond-
ing output or input of unit P,. The units P are each arranged
to compute the square of the difference between sixteen-bit
signals at inputs P' and P*, and to add the square to a
twenty-bit signal at input P°. The twenty-bit result is stored
in a latch (not shown) within each unit P, which is clocked
by a data clock indicated by a A symbol to transfer it to
output at P°. The units P will be described in more detail
later.

The processor 10 has multibit mterconnection buses of
sixteen, twenty or thirty-two bits (as individually required),
cach being indicated by a cloudy spaced pair of lines such
as 12. The processor 10 also has single-bit connections such
as 14 indicated by single how. These connections are unref-
erenced for the most part to reduce illustration complexity.

The third inputs P, *(j=1 to 4) of the second row units Pz;
are connected to the outputs P,"° ; of respectlve first row units
P The first row units’ third inputs P are connected to zero
as indicated, and are 1n fact redundant in the present
example. The redundant structure 1s illustrated to indicate
capability of extension to any number of rows required for
particular problems.

The first row arithmetic units P,, to P,, have second
Inputs Plf(j=1 to 4) connected to respective points of a first
chain of data latches DL11 to DIL.14 connected to a first data
input D11. Each of the first row units P,, to P,, receive

signals from the respective points on a first chain of data
latches DLL11 to DLL14 connected to a first data input D11.

Each of the first row units P, to P,, receives signals from
the respective centre and data latches above and to its left,
i.e. unit P,; recerves input from latches CL1j and DLI1j.

Similarly, the second row arithmetic units have first and
second 1nputs sz-l and sz(j=1 to 4)connected via chains of
centre and data latches CL21 to CL24 and DL20 to DL24 to
second centre and data mnputs C12 and D12 respectively. As
compared to the first row, the second row data latch chain
includes an extra latch DL20.

The centre and data latches CL11 to CL24 and DL20 to
DI.24 are sixteen-bit devices, and are clocked by centre and
data clocks indicated by and A symbols respectively.
Generally, the jth centre and data latches 1n the ith row, 1.¢.
latches CLij; and DLy, provide signals for subtraction in
arithmetic unit P;. The additional second row data latch
DIL.20 1s provided to apply a temporal skew to 1input data, as
will be described later.

The second row arithmetic unit outputs P,.° to P,,° are

connected to respective read only memories (ROW LUTI to
LUT4. The memories LUT1 to LUT4 awe look-up tables

arranged to output a negative exponent exp(-A/10) in
response to an input address A. Each accepts a twenty-bit
input 1n fixed binary point format and provides a thirty-two
bit output 1n floating point format. The output incorporates
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an eight-bit exponent and a twenty-four bit mantissa, 1n
accordance with the ANSI-IEEE-754-1985 standard.

The look-up tables LUT1 to LUT4 provide first input
signals (of thirty-two bits) to respective AND gates Al to
A4. A further AND gate AY1 receives a thirty-two bit first
input from a further memory LUTY1. This memory converts
a sixteen-bit address imput 1n fixed point format to the
atoresaid thirty-two bit floating point output format of like
magnitude. The LUTY1 1s connected to a training answer
input YI1 via a chain of seven sixteen-bit latches YL11 to
YL17. (Other examples of the invention may incorporate
additional training answer inputs YI2, Y13 . . . with asso-
ciated latch chains YL21 ... YL31 ..., and gates AY2 . .
., hence the use of the redundant digit 1 in YI1 etc.)

The processor 10 includes a one-bit signal validity input
SVI connected to a signal validity output SVO via a chain
of twelve one-bit validity latches VL1 to VL12. It also has
a signal status mput SSI connected to a signal status output
SSO via a further chain of twelve one-bit status latches SLL1
to SL12. The validity and status latches VL1 to VLL12 and
SL1 to SL12 are clocked by the data clock A. The chain of
validity latches supplies one-bit second mputs to the AND
cgates Al to A4; 1.e. the output from the 1th validity latch VLi
is connected to AND gate Ai-2(1=3 to 6). Outputs from the
seventh validity and status latches VL7 and SL7 are fed as
one-bit mputs to an output enable AND gate AE1, which
furnishes a one-bit second input signal to AND gate AY1.

Each of the latch chains YL11 to YL17, CL11 to CL14,
DL11 to DL14, CL21 to CL24, DL20 to DL24, VL1 to
VL12 and SL1 to SL12 may be implemented as a shift
register. Each such shift register would then require only one
clock 1nput signal. “D” type edge trigeered registers are
suitable for this purpose.

For ease of subsequent reference, elements previously
defined, other than 1nputs YI1 to SSI, and latches DI20,

VL1, VL2, SL.1 SL.2, VL8 to VL12 and SL8 to S12 and
outputs SVO and SSO are defined as forming a ¢ processor
16 indicated within chain lines.

The AND gates Al to A4 of the ® processor 16 provide
thirty-two bit floating point inputs to a QR decomposition
processor 18 mdicated within a triangle of chain lines. The
AND gate AY1 provides like input to a least squares
minimisation (LSM) processor column 20 indicated within
a rectangle of chain lines and to which the QR processor 18
1s connected.

The QR processor 18 and the LSM processor 20 collec-
tively comprise boundary cells B, to B,, internal cells I,
to I, and a multiplier Cell M., arranged 1n rows and
columns with nearest-neighbour (row and column) intercon-
nections which are single-bit. The reference scheme 1s that
processing cell X, (X=B, I or M, 1j=1 to 5) 1s the jth cell in
the ith row. The first four rows to 5) is the jth cell in the ith
row. The first rows begin with a boundary cell B, (i=1 to 4),
and mclude numbers of internal cells I,, etc diminishing 1n
number from four to one by one per row. Boundary cells B,
to B, terminate the second to fourth columns. The fifth row
contains the multiplier cell M., only. The cells are all

clocked by the data clock A.

The boundary cells B,; to B,, are interconnected via
single-bit lines forming a diagonal of the QR processor.
Each of the boundary cells incorporates a diagonal output
delay provision, 1.€. an internal memory stage indicated by
a circle segment contiguous with the relevant cell. This
provides the equivalent of a one clock cycle diagonal output
delay. The boundary, internal and multiplier cells B, I and M,
are transputer type IMS T800 manufactured by Inmos Litd,
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6

a British company. They communicate to one another via
single-bit links which transmit data in thirty-two bit floating
point format of the kind previously mentioned. Each thirty-
two bit data value 1s transmitter serially along the relevant
link at a bit rate of 20 MHz governed by a respective clock
within each cell (not shown). The transputers incorporate
internal memories, and may also read from and write to
external memory via thirty-two bit buses. In the present
example, the first row transputers, 1.€. boundary and internal
cells B, to B, <, have external memory read connections to
AND gates Al to AY1. The multiplexer cell M., has an
external memory write connection to an output QO01. The
first boundary cell receives a one-bit mnput from the output
of the third status latch SIL.3, and the multiplier cell M.

receives a similar input from the output of the twelfth status
latch SLL12.

The boundary, mternal and multiplier cells have differing
references and outlines to indicate differing processing func-
tions. The latter are illustrated in FIG. 2. Each of the
boundary, internal and multiplier cells carries out the respec-
tive operation set out 1n FIG. 2 on each data clock cycle
under the control of a respective internally stored transputer
programme.

The boundary cells B,, to B, are programmed such that,
on activation by the, data clock A, they mput a value 0 from
above left an a value ¢ from above. Each of them stores a
respective quantity r computed on a preceding cycle and
originally zero, and it produces an updated value r' of r by
computing

F=F+0¢° (1.1)

Having computed its respective r' each boundary cell cal-
culates a sine-like rotation parameter s from

s=0G/r" (1.2)

It then outputs s and ¢, the latter now designated ¢, and, on
the next clock cycle, these pass horizontally to the right to
the respective neighbouring internal cell in the same row.
The cell also outputs a stored value o' as ¢' diagonally below
right, and replaces o' 1n store by a new value 1n accordance
with

&'=dr/#" (1.3)
Equation (1.3) 1s equivalent to delaying output of o' by one
additional clock cycle. The cell also replaces its stored value
r by r'. If the right hand side of equation (1.2) or (1.3)
produces division by zero, the left hand side is set to zero.

The first row boundary cell B, 1s programmed to receive
slightly different input formats as compared to otherwise
similar Cells B, to B,,,. It receives a one-bit upper left input
0 of 0 or 1 via a serial input line, but reads the value ham
LUT1 as through from an external memory in thirty-two bit
parallel floating point format It communicates with neigh-
bouring cells I,, and B,, 1n a bit serial manner. Boundary
calls B, to B,, are programmed to receive bit-serial thirty-
two bit inputs. All boundary cells B,, generate bit-serial
outputs, horizontal outputs s and ¢ being provided as sixty-
four successive bits comprising two thirty-two bit values
cach having eight exponent bits and twenty-four mantissa
bits as previously mentioned. The output 6" requires only
thirty-two bits.

Internal cells 1n we second to fourth columns of the QR
processor 18, 1.¢. cells I, where 1=2, 3 or 4, have stored
clements k and operate on vertical inputs ¢ to produce
outputs ¢'. Fifth column internal cells I.. have 1dentical
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processing functions, but their stored elements are desig-
nated u and their vertical inputs and outputs are designated
y and y. All internal cells receive horizontal input of s and
¢ from respective left hand neighbour cells, and subse-
quently pass them on the next data clock cycle to right hand
neighbours where available. Fifth column internal cells I
have unconnected right hand outputs in this example.

The processing fraction of the internal cells are as fol-
lows:

=4-k, or y'=y-gu (2.1
k'=k+5Q', or u'=u+5y’ (2.2)
k=K', or u=u' (2.3)

In other words, each internal cell computes a vertical
output ¢' or y' by subtracting the product of its stored
element k or u (originally zero) with a left hand inputs ¢
from 1ts vertical mput ¢ or y. It then updates 1its stored
clement k or u by substituting the sum of its previous stored
clement with the product of its vertical output and its second
left hand input s. These operations occur every data clock
cycle. First row 1nternal cells I, to I, receive thirty-two bit
parallel (external memory read) inputs from above, but all
other internal cell mputs and outputs are bit serial as
previously described for boundary cells.

The multiplier cell M. receives serial thirty-two bit
inputs vy and ¢ from above and above left respectively,
together with a single bit input ¢ from above right (output of
status latch SLL11). When ¢=1, the multiplier’s vertical
output € 1s 0y, the product of its two inputs. When 0=0, the
output E 1s the vertical input y. The multiplier M. provides
its output in thirty-two bit parallel floating point format
(external memory write) at Q01. These operations occur in
response to the data clock A every clock cycle. The multi-
plier cell M4 1s required only for determining error values
when o=1. It 1s not required when 0=0, and may be omitted
in applications of the mvention not requiring error calcula-
tion.

The transputers employed in the QR and LSM programs
18 and 20 are well-known commercially available devices.
Their programming to carry out the processing functions set
out above 1s elementary, and will not be described.

Referring now also to FIG. 3, the structure of each of the
processing cells P 1s shown 1n more detail. The first and
second sixteen-bit inputs P* and P~ are connected to an adder
array 30, the connection being made via an mnverter array 32
in the can of the second input P*. The adder array 30 has a
carry input C. connected to a supply voltage V__ corre-
sponding to logic 1. The combination of inversion of all
sixteen bits of the P~ signal at 32 and addition of 1 to its least
significant bit by virtue of C, =1 has the effect of converting
the signal at P~ to its two’s complement. The addition of the
P~ signal to the two’s complement of the P~ signal corre-
sponds to subtraction. The resulting difference 1s fed to a
squarer 34, which produces a squared difference signal for
output to a second adder array 36. The second adder array 36
adds the squared difference to the third input signal at P°,
and the resulting output sum 1s stored 1n a latch array 38
clocked by the data clock A.

The 1nverter array 32 consist of three type number
741.S04 devices. The adder may 30 incorporates four type
number 74L.5293 four-bit adders. The squarer 34 consists of
two type number MSL27512 64K by 8 bit programmed
read-only memories (PROMS). They accept a sixteen-bit
address 1nput, and each provides an eight bit output.
Collectively, they output the sixteen most significant bits of
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a thirty-two bit number equal to the square of their common
input address. In, effect, the lower sixteen bits of the square
are 1gnored to reduce the amount of processing circuitry
required. The second adder array 36 consists of five type
number 741.5293 adders 1n parallel. It adds the sixteen bat
output of the squarer 34 to a twenty-bit signal from input P~
to provide a twenty-bit output to the latch array 38, Each
arithmetic unit P in a column adds a sixteen bit number from
the squarer 34 to the sum of similar squared results arising
from the preceding members of the column. The purpose of
employing twenty-bit input to and output from the second
adder array 36 1s to provide for the size of the accumulating,
sum to grow.

The latch array 38 consists of three eight-bit latches type
741.S273, the upper half of one of the latches not being used.
This provides twenty latched bits for output at P°. The
lowermost arithmetic units 1n each column, P,, to P,, have
sixteen bit outputs formed by leaving unconnected the four
least significant output bits of their respective latch arrays
38. A detailed drawing of an arithmetic unit P will therefore
not be given since 1ts design 1s straightforward.

The overall mode of operation of the processor 10 will
now be described. Initially, the centre clock O 1s operated in
synchronism with application of four successive centre
clements to each of the centre mputs CI1 and CI2, one
clement being input on each centre clock cycle. The first
centre 1nput CI1 receives the sequence of centre elements
C,i» Czq5 C-; and c¢,,, whereas the second centre 1nput
receives the sequence of centre elements ¢,,, C,, C,, and
c,,. I'hese are clocked by the centre clock I into the centre
latch chains CL11 to CLL14 and CL21 to CL.24 respectively
on four successive clock cycles. The centre clock then stops.
This provides for centre element C;; to be stored on centre
latch CL;;, 1.c. The centre element location corresponds to
the inverse of the element’s indices. Elements ¢, and c,, are
the elements of an ith two-dimensional vector ¢, locating
the ith centre (i=1 to 4). The elements c;; and c;, are stored
in adjacent arithmetic units P,; and P,; (i=1 to 4) in the first
and second rows of the ® processor 16. Consequently, each
vertical pair or column of arithmetic units P becomes
assoclated with a respective centre vector having two ele-
ments.

To mitialise other parts of the processor 10, the data clock
A 1s operated and the signal validity input SVI 1s held at logic
0 for twelve clock cycles. During this interval, and also for

a subsequent internal to be described later, the signal status
mput SSI A held at logic 1. The SVI logic 0 input causes the
one-bit mputs of AND gates Al to A4 and AY1 to be
switched to 0 on successive clock cycles; 1.e. The one bit
mput to Al 1s O after three clock cycles, that to A2 after four
and so on up to that to AY1 after seven clock cycles. In
consequence, the outputs from these AND gates switch to O
in succession, and the first row of processing cells B, to I
of the QR/LSM processor 18/20 receive successive zero
inputs. By inspection, 1t will be seen that any signal path
through the QR/LSM processor 18/20 via the jth first row
cell to the output Q01 requires (10-j) data clock cycles,
boundary cells having a diagonal delay of two clock cycles
but a lateral delay of one clock cycle. The jth first row cell
is however connected via AND gate A, to the validity input
SVI via (2+)) latches SL1 to SL2+j. In consequence, and

irrespective of the signal path through the QR/LSM proces-
sor 18/20, after (10-7)+(2+7)=12 clock cycles, the effect of

zero 1nputs to the processor 18/20 have reached the output

QO01. From equations (1.1) to (1.3) and (2.1) to (2.3), since
stored elements r, kK and u are initially zero, aid vertical
inputs to first row cells B, to I,< become zero 1n sequence,
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stored elements r, k and u remain zero and cell outputs are
set to zero 1n the QR/LSM processor 18/20. The Q01 output
signal 1s therefore zero after twelve data clock cycles, and
the signals at signals validity and status outputs SVO and
SSO are 0 and 1 respectively.

The next phase of operation of the processor 10 1s referred
to as the training phase. The signal at validity input SVI 1s
switched to logic 1, whereas that at status input SSI remains
at logic 1. On N successive data clock cycles immediately
following the twelve 1inmitialisation cycles previously
mentioned, N successive training data vectors X, X, . . . Xy
are Input data inputs DI1 and DI2. Each vector x, (n=1 to N)
has two scalar elements X, , and x,_, which are mnput DI1 and
DI2 respectively; 1.e. element x . 1s mput to DIi. This
corresponds to serial vector mput 1n an element parallel
manner. In synchronism with input of each training data
vector X, , a respective tfraining answer vy, 1s mput at YI1,
cach y,_ bemg a scalar quantity 1n the present example.
Referring now also to FIG. 4, a greatly simplified version of
the FIG. 1 processor 10 1s shown to 1illustrate timing of
operation. On the thirteenth data clock cycle, 1.e. The first
data clock cycle after imitialisation, the first training answer
y, 1s clocked 1nto the Y latch chain to undergo seven data
clock cycles (7t) of delay before emerging from the @
processor 16. At the same time, the first element x,, of the
first training data vector X, 1s clocked into data latch DL11
and presented to the first row, first column arithmetic unit
input P.,*. Here it undergoes subtraction of the first element
C11 of the first centre vector <1+ 11€ T€sUlt of subtraction 1s squared
within unit P,,, and the square is added to the signal at the
third input P,,> (zero in this case). On the next data clock
cycle, the second element x,., of the first training data vector
1s input to unit P, ,, having being delayed relative to x,, input
by data latch DL20. On this clock cycle, the result of the
subtract-square-add operation 1 unit P,, 1s clocked out of
P,.” and appears at the input P,,”. Consequently the second
row, {irst column arithmetic unit P,, subtracts ¢, from X,
squares the result and adds 1t to the similar result involving
X,; and c,; output from P,;. On the subsequent (fifteenth)
data clock cycle, the output clocked from arithmetic unit P,
is therefore (X;;—-C;1) +(X;2—C1-)". This is equal to the
square of the distance D,, 1n a Euclidean two-dimensional
space between points represented by vectors X, and c,; 1.e.

D,, 1s given by

(3)

where || . . . || represents the Euclidean norm. (The invention
1s, however, not restricted to use of the Fuclidean norm,
provided that the quantity employed 1s equivalent to a
distance.)

The value D,,” is applied to the input of LUTI1, which
responds by outputting the corresponding negative exponent
exp (-D,,°/10). The exponent is referred to as an element
®,,; 1t 15 g1ven by:

D112=[K11_‘311]24‘[3’5712_'312]2=‘‘31_E1H2

¢‘11=EXP[_D112/ 1U]=EXP[_HE1—E1HE/ 10] (4)

On the fourteenth to sixteenth data clock cycles, compu-
tations similar to those described above 1nvolving x,/c, take
place 1n second column arithmetic units P,, and P,,.
Moreover, a computation involving x, and ¢, takes place 1

first column units P,, and P,,. These produce ¢,, and ¢,,
from LUT1 and LUT2 respectively, where

12=EXP[_D122/ 1 U]=EXP[_H§1_EEHQ/ 10] (5)

and

¢21=EXP[_D212/ 1 U]=EXP[_H§2_E1H2/ 10]
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This procedure continues as successive training data
vectors X pass horizontally across the @ processor 16 each
o1ving rise to four respective values ¢, , to ¢, , output from
LUT1 to LUT4 respectively on four successive data clock
cycles. In general, the element ¢, 1s output from the mth
column (LUTm) of the ® processor 16 on the (n+m  13)th
data clock cycle. Of these, the first twelve data clock cycles
formed the imitialisation interval. Consequently, AND gate
Al receives ¢,, on the fifteenth data clock cycle in synchro-
nism with 1nput of logic 1 from the third validity latch VL3.
This transfers ¢, to the vertical input of boundary cell B,;.
Similarly, as the logic 1 signal passes along the validity latch
chain, ¢,, to ¢,, reach internal cells I,, to I, via AND gates
A2 to A4 on data clock cycles sixteen to eighteen. The logic
1 signal reaches AND gates AE1 and AY1 on the nineteenth
data clock cycle, by which time the first training answer vy,
has reached AND gate AY1 after a day of delay of seven
clock cycles 1n latches YLL11 etc. This results in input of y,
to the first internal cell I, of the LSM processor 20.

To summarise, data clock cycles fifteen to nineteen cor-
respond to mput of ¢,, to ¢,, and y, to the QR/LSM
processor 18/20. In general ¢_, to ¢, and y_ are input to the
processor 18/20 on data clock cycles (n+14) to (n+18). This
provides for what 1s referred to 1n the art of systolic array
processors as a temporally skewed imput to the processor
18/20; 1.e. mput of ¢,,; leads mput of ¢, ;. ; by one clock
cycle, and 1nput of ¢, , has a like lead over mput y,. This
input timing 1s 1illustrated 1n FIG. 4. Each set of four
elements ¢, , to ¢, , (n=1,2, ... N)is treated as a transformed
vector ¢, , and arises from the nth training data vector x . The
QR/LSM processor 18/20 consequently receives mput of
successive transformed vectors ¢, and associated training
answers y, with a temporal skew of one data clock cycle per
clement or per first row cell B,, to I, .. Each training answer
y appears as an extension or extra element or dimension of
its corresponding ¢, .

The QR/LSM processor 18/20 1s of known kind. One
mode of operation 1s described in British Patent No. GB
2,151,378B and U.S. Pat. No. 4,727,503. This first mode
corresponds to the present training mode where 6=1 for the
first boundary cell B,, and o=1 for the multiplier cell M...
Its operation in a second mode to be described later (d=0=0)
1s disclosed by J. G. McWhirter and T. J. Shepard 1n “A
Systolic Array for Linearly Constrained Least-Squares
Problems”, Proc. SPIE, Vol. 696, Advanced Algorithms and
Architectures for Signal Processing (1986). Its operation
will therefore be given in brief only. The processing func-
tions for the boundary and internal cells B, to B, and I,
to I, set out in FIG. 2 are 1n accordance with a
Givens’square-root free rotation algorithm. They provide for
the QR processor 18 to execute a QR decomposition of
successive temporally skewed input vectors ¢,, (n=1 to N).
The decomposition results in the input matrix P(N)
(consisting of row ¢, to ¢,,) being triangularised by rotation,
and providing parameters of the form s and ¢ which operate
on y, to y,- as though the latter constituted an extra column
of ®(N); s is related to the sine of the angle through which
@ 1s rotated. Rotation algorithms for triangularising matrices
are well known, and may involve the computation of square-
roots or be of the square-root free variety. They are described

in the foregoing prior art, and also by W. Givens in J. Soc.
Ind. Appl. Math. 6, 2650 (1958) and W. M. Gentleman in

J. Inst. Maths. Applics. 12, pp 329-336 (1973). In the
computationally more onerous rotation algorithms involving
square-roots, the traingular matrix R (into which the matrix
® is rotated) has matrix elements r stored on individual
boundary and internal cells and updated each clock cycle. It
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computes explicit sine and cosine rotation parameters. In the
more convenient square-root free variety, R 1s not computed
explicitly. It 1s treated as a product of a diagonal matrix and
a triangular matrix, the squares of the elements of the
diagonal matrix being stored on boundary cells and the
clements of the triangular matrix being stored on internal
cells and updated each clock cycle 1n both cases. Even
though R 1s not computed explicitly, this form of processing
1s also referred to as QR decomposition. In the present
example, square-root Ifree processing functions are
employed as set out 1n FIG. 2. However, rotation algorithms
are equivalent, and choice of an individual algorithm does
not affect the computation other than possibly as regards
degree of accuracy.

GB 2,151,378B and U.S. Pat. No. 4,727,503 referred to
above prove 1n detail that input of successive temporally
skewed vectors ¢, . .. ¢, ... ¢ and scalars y, ...y, .

v to a QR/LSM array of the kind 18/20 produces from the
multiplier cell Mp. - least squares residuals e, ... €, ... ¢y,
the general value €, being given by

e, =0, w(n)+y, (7)

where the symbol T indicates the transpose of a column
vector ¢, to a row vector ¢, '; w(n) is at least squares weight
vector arising from iputs ¢, to ¢,. The residuals ¢ are
produced by the multiplier cell M. by multiplying its two
inputs 6 and y together, since 1n the training mode o 1nput
from the eleventh status latch SLL11 1s equal to 1.

The vector w(n) 1s not in fact computed explicitly. The
QR/LSM processor 18/20 produces ¢, by a route which
avolds this.

Each value ¢ 18 a least squares residual arising from a
suitable weight vector w(n) operating on ¢,,, and computed
such that the expression

1

2, 1w +y ]

1=1

has a minimum value. In effect, the implicit weight vector
w(n) is arranged to vary until the weighted linear combina-
tion ¢.’w(n) is as nearly possible of equal magnitude and
opposite sign to y,, averaged from 1=1 to n. The residual
¢, then expresses the remaining error or degree of mismatch
still existing after this process has been carried out on at least
squares basis.

The training mode of operation 1s carried out until the Nth
fraining data vector X,, and training answer v, have passed
ito the @ processor 16. Twelve data clock cycles after input
of x,, and y,; at DI1/DI2 and YI1, the corresponding residual

¢, 1s output at Q01 from the multiplier cell M. and given
by

(8)

The weight vector w(N) is that arising from all ¢, to @y,
which respectively correspond to x, to X, Although as has
been said w(IN) is not computed explicitly, the operation of
the QR/LSM processor 18/20 provides residuals e, to ¢,; as
if 1t had been computed; 1.e. the boundary and internal cells
B,,toB,, and I, to I, compute stored matrix elements and
generate and apply rotation parameters respectively (as set
out in FIG. 2) to implement transformations providing
residuals equivalent to those which would arise from an
explicit computation of w(n) in each case n=1 to N.

After input of ¢,,, (corresponding to x,, and c,) to the first
boundary cell B,,, this cell’s stored element r has been

EFQNTE(N)"'YN
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computed over all first column elements ¢,, to ¢4 to the
matrix @. This occurs on the (N+15)th data clock cycle. One
clock cycle later, the stored element k of internal cell I,
becomes updated. One further clock cycle later, the elements
of cells B,, and I,; become updated. Consequently, what
may be termed a wave-front passes through the QR/LSM
processor 18/20 producing final update of the stored ele-
ments r and k or u in the respective cells. This will not be
described in detail, since temporally skewed systolic array

11 known.

operation and timing 1s wel

On the data clock cycle following input of X, and y,; to
inputs DI1/DI2 and Y11, the inputs to the ® processor 16 are
switched to the test mode of operation. In this mode, test
data values are substituted for training data values, and
provision 1s made to suppress update of elements stored in
the QR/LSM processor 18/20 1n a temporally skewed man-
ner. The test data values are z,, (m=1 to M); these have
clements z_, and z_ . which replace elements x,_, and x ,
data mputs DI1 and DI2 respectively. Training answer input
Y11 receives zero mputs throughout the test mode. Test data
vectors z, become transformed in the ® processor 16 to
vectors Q(z), cach transtormed data vector becomes
extended by a zero element because YI1=0, corresponding
to absence of a training answer. The signal validity input SVI
remains at logic 1, but the signal status input SSI 1s switched
to logic 0. This also forces zeros into AND gate AY1 seven
clock cycles later, so 1t 1s 1n fact unnecessary to set YI1 to
ZETO.

On the data clock cycle after boundary cell B, received
O, 1t TECEIVES §,,(2), 1.€. the element arising from process-
ing of z, 1n the first column of the ® processor 16. This clock
cycle 1s three cycles later than the switching of status input
SSI from 1 to 0. Consequently, the first boundary cell B,
recerves 0=0 from the third status latch SL.3. This has the
effect of suppressing update of the cell’s stored element r,
since ' is computed from r+8¢>, and provides for s=d¢/r' to
be equal to zero. Once clock cycle later, when s=0 reaches
internal cell I,, in synchronism with input of ¢(z), update of
k stored within that cell is suppressed since k'=k+s¢'. Stored
clement update suppression passes as a wave-front along the
rows and down the boundary diagonal of the QR/LSM
processor 18/20. Each cell experiences update suppression
in synchronism with input of elements ¢,,(z) to ¢,,(z) (cells
B, to I,,), 0 (cell I,5), or inputs derived therefrom in the
case of cells below the first row.

In consequence of update suppression, each vector ¢, (z)
(m=1 to M) produced from a respective z_ becomes pro-
cessed at boundary and internal cells operating non-
adaptively. The cells implement a transformation equivalent
to weighting with the final version w(N) of the weight
vector. On the data clock cycle following computation of the
last residual e,, by the multiplier M., the input o from the
cleventh status latch SLL11 becomes logic 0. The multiplier
M., consequently outputs its vertical input without multi-
plication by 0. Under these circumstances, with each ¢(z)
vector extended by a zero element, 1t 1s shown 1n the patents
previously referred to that the output E, of the multiplier cell
M. 1s given by

=0, (2)w(N) )
On subsequent data clock cycles E,, E; . . . E,, are output

by the multiplier M. 1n sequence, the general expression
being,
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E,, =0, @)w(N) (10)

Equation (10) may be rewritten as

E,, =

1

4 (11)
Drmi (2)W; (N)
-1

Equations (10) and (11) show that E 1s derived by
transforming z, to ¢, (z) as a nonlinear function (Gaussian)
extending from four origins or centres ¢, to ¢,, and then
forming a linear combination of sum of ¢(z) elements
weighted with the elements w,(IN) to w,(N) of a weight
vector w(N) obtained from a (least squares) fit of like-
transformed data X, to known answers v, .

The processor 10 consequently produces estimates E_ of
unknown results on the basis of a model obtained by {itting,
tranformed training data to training answers. Strictly
speaking, the estimates E_ are produced with opposite sign
to y,,, as shown by comparison by Equations (8) and (10).

Since the processor 10 incorporates a nonlinear
transformation, it 1s suitable for nonlinear problems.
Furthermore, the processor 10 i1s guaranteed to produce
convergence to a unique set of solutions or estimates E,_ that
1s the best obtainable on the basis of any particular choice of
nonlinear function, positioning of centres ¢, to ¢, and
number and accuracy of training data and answer sefs.
Convergence of the model occurs 1 a fixed time, 1.€. the
latency of the processor 10 (twelve data clock cycles) plus
the number of training data/answer sets.

Referring now to Table 1, there are shown the validity and
status output signals and the output signal at Q01 to which
they correspond. the Q01 output 1s meaningless 1f SVO 1s at
logic 0. If SVO 1s at logic 1, Q01 provides errors ¢, or

estimates (results) E,, according to whether SVO 1is at logic
1 or O.

TABLE 1
SVO SSO
Q01 (validity) (status)
meaningless 0 0 or 1
Error e, 1 1
estimate E_, 1 0

In practice the processor 10 1s operated i1n the training
mode until an error value e 1s obtained which 1s sufficiently
small to indicate an accurate fit of transformed training data
fo training answers has been obtained. If ¢, does not become
sufliciently small as n increases, it means that the training
data and/or answers are maccurate, the centres ¢, to ¢, are
too few or poorly chosen, or the nonlinear function
(Gaussian in the preceding example) is appropriate. Whene,,
becomes sufficiently small, the processor 10 may be used
provide estimates E__ from test data. It should not however
be assumed from this that the error values €, monotonically
fall to some low level irrespective of mnput data. In fact, error
values are obtained by the processor 10 1n the course of
fitting or weighting the elements of successive ¢ vectors.
This requires four weighting coeflicients or elements as
indicated 1n Equation 11. No least squares {it can arise until
a problem 1s overdetermined by having more data values
than determinable coeflicients. In consequence, no error
value arises until after a start-up period ends, 1.e. until after
five transformed vectors ¢,, ¢, etc have been input to the
QR/LSM processor 18/20 and have given rise to an output
at Q01 eight clock cycles later. The error value ¢, 1s
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therefore zero for the first four transformed vectors ¢, to ¢,
and becomes non-zero for ¢. and subsequent terms.
Mathematically, 1t 1s an “a posteriori residual”. It indicates
the least squares error obtained between the most recent data
vector and a model computed over all data vectors including
the most recent. “Most recent” 1n this sense means the latest
data vector which has given rise to an output at Q01. In other
words, the a posterioriresidual e, 1s the error between ¢, and
the model computed from ¢, to ¢ .

In the course of the training mode, the QR/LSM processor
18/20 builds up a model 1n terms of R matrix elements stored
on 1ndividual cells. If during training but after start-up the
error values €, becomes appreciably larger 1 response to
inupt data vectors, 1t means that the model 1s changing
significantly to accommodate new mformation. This might
arise 1f the traming procedure mtroduced data relating to a
previously unexamined region. If so, more data on such a
region should be used 1n training to allow the model to adapt
to accommodate it.

The processor 10 may be employed to output another
form of residual or error value, the “a priori residual”. A
feature of the processing functions illustrated i FIG. 2 1s
that the output of the lowermost internal cell I, 1s the a
prior1 residual, this being a consequence of the square root
free rotation algorithm employed. It can be shown that this
residual 1s the error obtained between ¢, and a model
computed from ¢, to ¢, _,; 1.€., the model 1s computed over
all but the most recent value before the error between that
value and the model 1s determined.

The processor 10 has been described as operating on
two-dimensional data, employing four two-dimensional
centres and producing one-dimensional estimates E_ 1n the
basis of one-dimensional training answers. It may be
referred to as a 2/4/1 device. It 1s exemplified 1n this form
because 1t 1s then suitable for modelling the EX-OR
problem, for which the linear perceptron approach 1s inap-
propriate. It 1s however by no means restricted to a 2/4/1
structure, as will now be described.

Referring now to FIGS. 5 to 8, in which elements equiva-
lent to those previously described are like or similarly
referenced, there 1s shown a simplified representation of a
processor 10 of the mnvention 1n J/K/L form; 1.€. the input
space (data vectors X or z) is J-dimensional, there are K
centres and the answer or output space (vectors y or E) is
[-dimensional. Chain lines and dots appear in FIG. § to
indicate structure not 1llustrated explicitly.

The J/K/L processor 10 has J data inputs DI1 to DI1J, the
jth data iput DI (j=1 to J) being connected to the @
processor 16 via (j—1) data latches indicated collectively by
a triangle 50. The latch array 50 provides a temporal 1nput
skew across the elements X, to x,_, of input data vectors
such as x_. The array 50 1s the higher dimensional equivalent
of the single latch DIL20.

There are L mputs YI1 to YIL for elements y,_, toy , of
fraining answer vectors y,, and the 1th input YI1 (1=1 to L)
is connected to the ® processor 16 via (1-1) latches col-
lectively forming a triangle 52. Signals from each of the
inputs YI1 to YIL undergo delays of (J+K+1)t within the ®
processor 16, where T 1s a data clock cycle.

Status and validity inputs SSI and SVI are connected via
J latches to the ® processor 16, as opposed to two 1n the
carlier example.

The processor 16 has a J by K array of arithmetic units P,
to P,.- each of the kind previously described. Each column
of arithmetic units has a respective AND gate, so there are
K AND gates Al to AK each with neighbouring status and
validity latches (not shown). Similarly, signals from inputs
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YI1 to YIL pass to respective AND gates AY1 to AYL with
associated enabling AND gates AE1 to AEL (not shown).
The general Y signal AND gate AY1 (1=1 to L) is illustrated
inset 1 FIG. 6. Its enabling gate AE1 receives input signals
from the (J+K+1)th status and validity latches as shown.

The QR and LSM processors are expanded to K by K and
K by L arrays respectively. The first boundary cell B,
receives a O input from the (J+1)th status latch SLIJ+1 (now
shown) within the processor 16. The single LSM column in
the FIG. 1 example now becomes an array of like columns.
Data tflow 1s along rows and columns of the combined
QR/LSM processor as previously described. FIG. 7 1s an
illustration of part of FIG. § shown in more detail. It shows
the first two multiplier cells Mg, ; z,1, Mgy 1 x10, together
with mternal cells I 4, ¢, Ix .- above them and lowermost
boundary cell B, to their left. All cell processing functions
are as previously described with reference to FIG. 2; 1.e.
rotation parameters, s, ¢, are passed along the rows of the
extended LSM processor 20. Input values y are employed to
compute y' for output down respective columns, and, during
training mode, are used to update u. Each multiplier cell
passes on 1nput values o to a respective neighbouring
multiplier cell (where applicable). During training mode, it
multiplies 1ts vertical input by 0 to produce an output below.
During test mode, the vertical input provides an output
directly. Each of the cells type B, I, M operates under the
control of the data clock A as before. The additional LSM
columns operate progressively later in time. To accommo-
date this, the 1th multiplier cell My, ., receives a o input
from the (J+2K+1)th status latch (1=1 to L) as illustrated in
FIG. 8. Consequently, the multiplier cells switch from output
of error elements to estimate elements 1n succession along
their now. To provide for simultaneous output from the LSM
processor 20, a third array of latches 54 1s employed to
implement temporal deskewing. The latch array 54 provides
for the 1th multiplier cell My, ; . ,t0 be connected to its
respective output Q01 by (LL-1) latches. Status and validity
outputs SSO and SVO are connected to corresponding
inputs SSI and SVI by respective chains of (J4+2K+L+1)

latches, of which the last 1s shown 1n each case.

The latch arrays 50, 52 and 54 provide for simultaneous
input of elements of each vector (x,y or z) to the ® processor
16, and for simultancous output of errors and estimates
which are now vectors ¢ and E.

The FIG. 5 processor 10 demonstrates applicability of the
invention to complex problems. In many cases, the number
of parameters required to model a system, 1.€. the number of
clements per input vector x or z, may be unknown.
Moreover, the number of expansion centres ¢, etc necessary
may be unknown. Under these circumstances, increasing
numbers of centre and input parameters may be employed to
achieve acceptably small error values during training. In
other words, training 1s carried out with a selected number
of centres and parameters. If this yields poor error values,
the number of centres and/or the number of parameters 1s
increased. The processor may also be tested by inserting test
data z for which there are known answers but which are not

employed 1n training. The estimate vectors E may then be
compared with the known answers to which they should
correspond.
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The equivalent of equations (10) and (11) for the J/K/L
processor of FIG. § are as follows:

(12)

E, =¢ (2W(N)

L (13)
= Z bt (2Wi (N)

Equations (12) and (13) demonstrate that the weight vector

w(N) of equations (10) and (11) has become a weight matrix
W(N) having column equivalent to individual weight vec-

tors and matrix elements W, (IN).

As has been said, the QR/LSM processor 18/20 does not
compute the weight vector or matrix explicitly. It 1s however
possible to extract either of these. By inspection of equations
(11) and (13), if a ¢* vector having one unit element and all
other elements equal to zero 1s input to the processor 18/20
when update 1s suppressed, its output will provide a weight
element (equation (11)) or a set of weight elements (equation
(13)). Referring to equation (11), successive input vectors ¢*
of (1,0,0,0), (0,0,1,0) and (0,0,0,1) are input to the processor
18/20. (Means for achieving this are elementary and will not
be described.) This provides elements w,(N) to w,(N) of the
welght vector w(IN) on successive clock cycles. Similarly,
from equation (13), the FIG. § device (receiving like inputs)
produces successive rows W ;(N) to W, (N), W,,(N) to
W,,(N), etc of the weight matrix W(N) on successive
cycles, W(N) having K rows and L columns. Consequently,
the form of the weight may be extracted explicitly.

Explicit extraction of the weight leads to a further
embodiment of the invention illustrated mm FIG. 9. This
shows a @ processor 16 providing ¢ _(z) vector elements ¢, .
to ¢, , to two adders 60 and 62 via respective weighting
multiplier arrays 64 and 66 having multiplier cells 64, to 64,
and 66, to 66,. The multiplier cells are arranged to multiply
their respective inputs by respective weilghting coeflicients.
Each multiplier array implements multiplication of the row
vector ¢, ' (z) by a respective column W,,, to W, (n=1 or 2)
of the weight matrix W(N) having two rows and four
columns. The matrix 1s determined by the extraction proce-
dure previously described. The adders 60 and 62 conse-
quently provide sums of ¢, (z) vector elements weighted in
accordance with the least squares fit determined 1n a training,
procedure. These are therefore the elements E_, and E_, of
a result estimate vector. This may clearly be extended to
generation of result estimate vectors with any number of
clements. In consequence, provided that a weight vector or
matrix has been determined 1n a training/extraction
procedure, the result may be employed elsewhere on a
simplified device as shown 1n FIG. 9. This 1s beneficial for
problems requiring very large training procedures, but
which do not require updating or training. For such
problems, a processor 10 may be employed to determine the
welghting scheme, and the results may then be loaded 1nto
any number of devices of the kind shown 1n FIG. 9 for use
in text mode.

The processor 10 has been described as employing fixed
point arithmetic in the ® processor 16 and tloating point
arithmetic 1n the QR/LSM processor 18/20. Fixed point
arithmetic devices have the advantage of cheapness and
operating speed. Their disadvantage 1s that of variable
percentage accuracy, 1n that accuracy reduces as number
value falls; i.e. the sixteen bit number 1 . .. 1 (all 1s) with
an uncertain least significant bit (Isb) 1id £0.0008% accurate.
However, the number O . . . 01 (fifteen Os, one 1) would be
+50% accurate if the Isb 1s uncertain. However, the nonlin-
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ear function exp(-D?/10) employed in look-up tables LUT1
etc 1s very slowly varying when D 1s small. Consequently,
increasing inaccuracy with reduction 1in D 1s counteracted by
increasing insensifivity of the exponent to change 1n D. It 1s
however advisable to employ floating point arithmetic
devices 1 the QR/LSM processor 18/20, since here fixed
point 1naccuracy may become serious.

The foregoing description has shown how the processor
of the mvention 1s trained to produce a nonlinear transfor-
mation of a training data set x,_ with respect to a set of
centres or spatial origins ¢, , and subsequently by QR
decompositions 1t carries out operations mathematically
equivalent to forming linear combinations (weighting) of the
elements ¢,; of each vector ¢, so that the resulting weighted

sum given by:

Z Pijwi(1)

J

1s as nearly as possible equal to —y; on a least squares error
minimisation basis. When 1n test mode the QR/LSM pro-
cessor update 1s suppressed, 1€ when the processor state 1s
frozen, 1t can be tested with data for which there are known
comparison answers not employed 1n training. It 1s then used
with test data for which there are no known answers.
However, 1t 1s not always necessary to perform initialisation
and training of the processor 10. For example, it 1s possible
o carry out a large training procedure on one processor 10,
establish the validity of its operation, and then subsequently
load the QR/LSM section of other processors 10 with the
stored elements r, k and u obtained elsewhere. This provides
for a plurality of single (frozen) mode processors to operate
in test mode on the basis of the training of a different device.
It 1s advantageous for situations requiring long training data
sets but caparatively short test data sets.

In other circumstances, 1t 1s an advantage to employ a
processor of the invention which i1s switchable between
fraining and test modes because it allows retraining; i€ 1t 1s
possible to revert back to a tramning mode after a test
sequence and input further training data. The effect of the
original training procedure may be removed by initialising
the processor with zero inputs as previously described. Its
cffect may alternatively be retained and merely augmented
by input by further training data. This has a potential
disadvantage i1n that each successive training data vector
may have progressively less effect. For example, after say
one thousand training data vectors have been input, the
boundary cell stored element r may be very little changed by
updating with addition of the one thousand and first 6,1)2 (see
FIG. 2). To make the QR/LSM processor 18/20 preferen-
fially sensitive to more recent data, what 1s referred to as a
“forget factor” [ 1s mntroduced. The factor [ 1s known 1 the
field of QR decomposition processing. To implement this,
the boundary cell functions given in equations (1.1) and
(1.3) are ammended as follows:

Toplr+d,”
&'=p*6r/r’

where, during the test phase, =1, and during the training
phase, O<f3<1. Normally, 3 will be very close to unity during,
training. Its effect is to make stored values r, k and u reduce
slightly each clock cycle; 1€ they decay with time. Elements
k and u are affected indirectly via the relationship between
r' and s, and s and k'.

The foregoing examples of the ivention employed a
nonlinear transformation of the Euclidean distance D (a real
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quantity 20) to exp(-D?/10). This function is referred to as

the Gaussian approximation in numerical analysis. Possible

nonlinear transformations include:

+(D)=D, piece-wise linear approximation (mathematically a
nonlinear transformation 1nvolving a fit of line segments
to a curve),

+(D)=D", cubic approximation,

+(D)=D"logD, thin plate splines,

+(D)=(D*+A%)", multiquadratic approximation (where A is

a positive constant of the order of the mean nearest

neighbour distance between the chosen centres)
+(D)=(D”+A%)™", inverse multiquadratic approximation,
+(D)=exp(=D</A®), Gaussian approximation referred to

above with A=v0.

More generally, it is sufficient (but not necessary) for the
chosen nonlinear transformation to involve a function which
1s continuous, monotonic and non-singular. However, func-
fions such as fractal functions not possessing all these
properties may also be suitable. Suitability of a function of
transformation 1s testable as previously described by the use
of test data with which known answers not employed in
fraining are compared.

The QR/LSM processor 18/20 fits transtormed vectors ¢,
etc to corresponding training answers y, etc by weighting
the vector elements appropriately to obtain a least squares {it
computed over all training data. The QR decomposition
approach and its implementation on a systolic array provide
a least squares solution which 1s mathematically exact.
Against this, for some purposes 1t may prove to be compu-
tationally onerous, since for example the number of pro-
cessing cells increases rapidly as the number of centres used
in a problem increases. One alternative {itting technique
employs the Widrow LMS algorithm. This technique
together with an apparatus for its implementation are dis-
closed 1n British Patent No. 2,143,378B. It exhibits inferior
convergence and accuracy properties as compared to the QR
decomposition approach, but requires reduced signal pro-
cessing circuitry. More generally, fitting techniques other
than least mean squares approaches are also known and may
be used to fit training ¢ vectors to training answers. Known
fitting techniques include for example those based on mini-
misation of the so-called L, norm, in which a sum of moduli
of differences is minimised (as opposed to a sum of squared
differences in the QR approach). Alternative optimisation
methods 1nclude maximum entropy and maximum likeli-
hood approaches.

We claim:

1. An heuristic processor comprised of:

(1) non-linear transforming means for producing a respec-
five training ¢ vector from each member of a training
data set on the basis of a set of centers, each training,
data set member having a displacement from each of
said centers, where a norm of the displacement is
calculable from each of said displacements, and each
clement of a ¢ vector consisting of a non-linear trans-
formation of the norm of the displacement of the
assoclated training data set member from a respective
center set member,

(2) processing means for combining training ¢ vector
clements 1n a manner producing a training fit to a set of
fraining answers, and

(3) means for generating result estimate values, each of
said estimate values consisting of a combination of the
clements of a respective ¢ vector produced from test
data, each combination being at least equivalent to a
summation of vector elements weighted in accordance
with the training {fit
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wherein the transforming means 1s a digital arithmetic
unit computing differences between training data vec-
tor elements and corresponding center vector elements
and for summing the squares of such differences asso-
ciated with each data vector-center vector pair, and for
converting each sum to a value 1n accordance with the
non-linear transformation and for providing a respec-
five training ¢ vector element, wherein the processing
means 1s a systolic array of processing cells for imple-
menting a rotation algorithm to provide QR decompo-
sition of a @ matrix ¢ vector rows and least squares
fitting to the training answer set, the algorithm 1nvolv-
ing computation and application of rotation parameters
and storage of updated decomposition matrix elements
by the processing cells, and wherein the systolic array
has a first row of processing cells arranged to receive ¢
vectors extended by training answers, each first row
cell being arranged for input of a respective element of
cach extended vector.
2. A processor according to claim 1 wherein the process-
ing cells are boundary and internal cells connected to form
rows and columns of the systolic array and:

(1) each row begins with a boundary cell and continues
with at least one internal cells which diminish in
number down the array by one per row,

(2) the first array row contains a number of boundary and
internal cells equal to the number of elements 1n an
extended vector,

(3) the columns comprise a first column containing a
boundary cell only, subsequent columns containing a
respective boundary cell surmounted by numbers of
internal cells increasing from one by one per column,
and at least one outer column of 1nternal cells arranged
o receive training answer 1nput,

(4) the boundary and internal cells are arranged to com-
pute rotation parameters from input values and apply
them to 1nput values respectively, and to store respec-
tive updated decomposition matrix elements for use 1n
such computation, and

(5) the cells have row and column nearest neighbour
connections providing for rotation parameters to pass
along rows and rotated values to pass down columns.

3. A processor according to claim 2 further including a
multiplier cell (M) for multiplying cumulatively rotated
values output from an outer column of internal cells by
cumulatively multiplied and relatively delayed parameters
generated by boundary cells 1in appropriate form for com-
puting least squares residuals arising between combined
clements of training data ¢ vectors and their respective
fraining answers.

4. A processor according to claim 1, wherein the means
for generating result estimates values includes means for
switching the systolic array to a test mode of operation 1n
which decomposition matrix element update and training
answer 1nput are suppressed.

5. An heuristic processor comprised of:

(1) non-linear transforming means for producing a respec-
five training ¢ vector from each member of a training
data set on the basis of a set of centers, each training
data set member having a displacement from each of
said centers, where a norm of the displacement is
calculable from each of said displacements, and each
clement of a ¢ vector consisting of a non-linear trans-
formation of the norm of the displacement of the
assoclated training data set member from a respective
center set member,
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(2) processing means for combining training ¢ vector
clements 1n a manner producing a training fit to a set of
training answers, and

(3) means for generating result estimate values, each of
said estimate values consisting of a combination of the
clements of a respective ¢ vector produced from test
data, each combination being at least equivalent to a
summation of vector elements weighted 1n accordance
with the training fit, wherein the heuristic processor
consists at least partly of processing devices linked by
connecting means incorporating clocked latches for
data storage and propagation.

6. An heuristic processor comprised of:

(1) non-linear transforming means for producing a respec-
five training ¢ vector from each member of a training,
data set on the basis of a set of centers, each training,
data set member having a displacement from each of
said centers, where a norm of the displacement is
calculable from each of said displacements, and each
clement of a ¢ vector consisting of a non-linear trans-
formation of the norm of the displacement of the
assoclated training data set member from a respective
center set member,

(2) processing means for combining training ¢ vector

clements 1n a manner producing a training fit to a set of
training answers, said processing means consisting at
least partly of programmed transputers interconnected
together by single-bit data links and for performing
calculation operations in parallel with one another, and

(3) means for generating result estimate values, each of
said estimate values consisting of a combination of the
clements of a respective ¢ vector produced from test
data, each combination being at least equivalent to a
summation of vector elements weighted 1 accordance
with the training fit.

7. An heuristic processor comprised of:

(1) non-linear transforming means for producing a respec-
five training ¢ vector from each member of a training
data set on the basis of a set of centers, each training
data set member having a displacement from each of
said centers, where a norm of the displacement 1is
calculable from each of said displacements, and each
clement of a ¢ vector consisting of a non-linear trans-
formation of the norm of the displacement of the
associated training data set member from a respective
center set member,

(2) an electronically addressable memory incorporated in
the transforming means, the memory “receiving”
addresses 1n fixed point arithmetic format and “provid-
ing” output 1n floating point arithmetic format in the
course of producing each said training ¢ vector in
floating point format,

(3) processing means for combining training ¢ vector
clements 1n a manner producing a training fit to a set of
training answers, and

(4) means for generating result estimate values, each of
said estimate values consisting of a combination of the
clements of a respective ¢ vector produced from test
data, each combination being at least equivalent to a
summation of vector elements weighted 1 accordance
with the training fit.

8. An heuristic processor comprised of:

(1) non-linear transforming means for producing a respec-
five training ¢ vector from each member of a training
data set on the basis of a set of centers, each training
data set member having a displacement from each of
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said centers, where a norm of the displacement i1s
calculable from each of said displacements, and each
clement of a ¢ vector consisting of a non-linear trans-
formation of the norm of the displacement of the
assoclated training data set member from a respective
center set member,

(2) processing means for combining training ¢ vector
clements 1n a manner producing a training fit to a set of
fraining answers,

(3) means for generating result estimate values, each of
said estimate values consisting of a combination of the
clements of a respective ¢ vector produced from test
data, each combination being at least equivalent to a
summation of vector elements weighted 1n accordance
with the training fit, wherein the non-linear transform-
Ing means, the processing means and the means for
generating result estimate values are interlinked by
multibit buses and single-bit lines for data transmission
PUIrpoOSES.

9. An heuristic processor comprised of:

(1) non-linear transforming means for producing a respec-
tive training ¢ vector from each member of a training
data set on the basis of a set of centers, each training
data set member having a displacement from each of
said centers, where a norm of the displacement i1s
calculable from each of said displacements, and each
clement of a ¢ vector consisting of a non-linear trans-
formation of the norm of the displacement of the
assoclated training data set member from a respective
center set member,

(2) an electronically addressable memory incorporated in
the transforming means, the memory being for “receiv-
ing” addresses 1 fixed point arithmetic format and
“providing” output 1n floating point arithmetic format
in the course of producing each said training ¢ vector
in floating point format, said output 1n each case being
a non-linear transformation of the respective address
value,

(3) processing means for combining training ¢ vector
clements 1n a manner producing a training fit to a set of
training answers, and

(4) means for generating result estimate values, each of
said estimate values consisting of a combination of the
clements of a respective ¢ vector produced from test
data, each combination being at least equivalent to a
summation of vector elements weighted in accordance
with the tramning {it.

10. An heuristic processor comprised of:

(I) a non-linear transformation device producing a
respective training ¢ vector from each member of a
fraining data set on the basis of a set of centers, each
iraining data set member having a displacement from
each of said centers, where a norm of the displacement
is calculable from each of said displacements, and each
element of a ¢ vector consisting of a non-linear trans-
formation of the norm of the displacement of the
assoctated training data set member from a respective
center set member,

(2) a combining processor combining training ¢ vector
elements in a manner producing a training fit to a set
of training answers, and

(3) a result estimate value generator generating estimate
values, each of said estimate values consisting of a
combination of the elements of a respective ¢ vector
produced from test data, each combination being at
least equivalent to a summation of vector elements
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weighted in accordance with the training fit, wherein
the heuristic processor consists at least partly of pro-
cessing devices linked by connectors incorporating
clocked laiches for data storage and propagation.

11. An heuristic processor comprised of:

a non-linear transformation device producing a respec-
live tratning ¢ vector from each member of a training
data set on the basis of a set of centers, each training
data set member having a displacement from each of
said centers, where a norm of the displacement is
calculable from each of said displacements, and each
element of a ¢ vector consisting of a non-linear trans-
formation of the norm of the displacement of the
assoctated training data set member from a respective
center set member,

electronically addressable memories incorporated in the
fransformation device, the memories “receiving”
addresses in fixed point arithmetic format and “pro-
viding” output in floating point arithmetic format in the
course of producing said elements of training ¢ vectors
in floating point format, and

a combining processor combining training ¢ vector ele-
ments in a manner producing a training fit to a set of
fraining answers in a form suitable for enabling result

estimate values to be generated,

each of said estimate values consisting of a combination
of the elements of a respective ¢ vector produced from
lest data, each combination being at least equivalent to
a summation of vector elements weighted in accor-
dance with the training fit.

12. An heuristic processor comprised of.

(1) a non-linear transformation device producing a
respeciive training ¢ vector from each member of a
iraining data set on the basts of a set of centers, each
training data set member having a displacement from
each of said centers, where a norm of the displacement
is calculable from each of said displacements, and each
element of a ¢ vector consisting of a non-linear trans-
formation of the norm of the displacement of the
assoctated training data set member from a respective
center set member,

(2) a combining processor combining training ¢ vector
elements in a manner producing a training fit to a set
of training answers, and

(3) a result estimate value generator generating estimate
values, each of said estimate values consisting of a
combination of the elements of a respective ¢ vector
produced from test data, each combination being at
least equivalent to a summation of vector elements
weighted in accordance with the training fif,

wherein the transformaiion device, the combining proces-
sor and the result estimate value generator are inter-
linked by multibit buses and single-bit lines for data
[ransmission purposes.

13. An heuristic processor comprised of:

a non-linear transformation device producing a respec-
live training ¢ vector from each member of a training
data set on the basis of a set of centers, each fraining
data set member having a displacement from each of
said centers, where a norm of the displacement is
calculable from each of said displacements, and each
element of a ¢ vector consisting of a non-linear frans-
formation of the norm of the displacement of the
associated training data set member form a respective
center set member,

electronically addressable memories incorporated in the
transformation device, the memories “receiving”
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addresses in fixed point arithmetic format and “pro-
viding” output in floating point arithmetic format in the
course of producing said elements of training ¢ vectors

in floating point format, said output in each case being

a non-linear transformation of the respective address 5
value,

a combining processor combining training ¢ vector ele-
ments in a manner producing a training fit to a set of

fraining answers in a form suitable for enabling result
estimate values to be generated, 10

each of said estimate values consisting of a combination
of the elements of a respective ¢ vector prodiced from
test data, each combination being at least equivalent to
a summation of vector elements weighted in accor-
dance with the training fit.

14. An heuristic processor comprised of:

15

a non-linear transformation device producing a respec-
live training ¢ vector from each member of a training
data set on the basis of a set of centers, each training
data set member having a displacement from each of
said centers, where a norm of the displacement is
calculable from each displacement, and each element
of a ¢ vector consisting of a non-linear transformation
of the norm of the displacement of the associated
fraining data set member from which said training ¢
vector is prodiced,

20
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a processor which weights and combines training ¢ vector
elements and produces a fraining fit fo a set of training
answers, and

a result estimate value generator generating estimate
values and producing a respective test ¢ vector from
each ember of a set of test data, each test data set
member having a displacement from each of said
centers, where a norm of said test data set member ;s
displacement 1s calculable from each test data set
member displacement and each element of a test ¢
vector consisting of said non-linear transformation of
said norm of said test data set member displacement,
each of said estimate values consisting of a combina- ,,
lion being at least equivalent to a summation of vector
elements weighted in accordance with the training fit.
15. A processor according to claim 14, wherein the
transformation device computes differences between train-
ing data vector elements and corresponding center elements, -
sums the squares of such differences associated with each
center-data vector pair, converts each sum to a value in
accordance with the non-linear transformation and provides
a respective training ¢ vector element.

16. An heuristic processor comprised of: 50

a non-linear transformation device producing a respec-
live ftraining ¢ vector from each member of a training
data set on the basis of a set of centers, each training
data set member having a displacement from each of
said centers, where a norm of the displacement is ss
calculable from each displacement, and each element
of a ¢ vector consisting of a non-linear transformation
of the norm of the displacement of the associated
fraining data set member from which said training ¢
vector is prodiced, 60

a processor which weights and combines training ¢ vector
elements and produces a fraining fit to a set of training
answers, and

a result estimate value generator generating estimate
values and producing a respective test ¢ vector from 65
each member of a set of test data, each test data set
member having a displacement from each of said

30
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centers, where a norm of said test data set member
displacement is calculable from each test data set
member displacement and each element of a test ¢
vector consisting of said non-linear transformation of
said norm of said test data set member displacement,
each of said estimate values consisting of a combina-
tion of the elements of a respective test ¢ vector and
each said combination being at least equivalent to a
summation of vector elements weighted in accordance
with the training fit, wherein said processor comprises

programmed processing devices for performing calcu-

lation operations in parallel with one another:

17. An heuristic processor comprised 0f:
a non-linear transformation device producing a respec-

live training ¢ vector from each member of a training
data set on the basts of a set of centers, each training
data set member having a displacement from each of
said centers, where a norm of the displacement is
calculable from each displacement, and each element
of a ¢ vector consisting of a non-linear transformation
of the norm of the displacement of the associated
training data set member from which said training ¢
vector is produced,

a processor which weights and combines training ¢ vector

elements and produces a fraining fit to a set of training
answers, wherein said processor comprises a digital
electronic processor for performing calculations in

floating point arithmetic, and
a result estimate value generator generating estimate

values and producing a respective test ¢ vector from
each member of a set of test data, each test data set
member having a displacement from each of said
centers, where a norm of said test data set member
displacement 1s calculable from each test data set
member displacement and each element of a test ¢
vector consisting of said non-linear transformation of
said norm of said test data set member displacement,
each of said estimate values consisting of a combina-
lion of the elements of a respective test ¢ vector and
each said combination being at least equivalent to a
summation of vector elements weighted in accordance
with the training fit.

18. An heuristic processor comprised of.
a non-linear transformation device producing a respec-

live training ¢ vector from each member of a training
data set on the basts of a set of centers, each training
data set member having a displacement from each of
said centers, where a norm of the displacement is
calculable from each displacement, and each element
of a ¢ vector consisting of a non-linear transformation
of the norm of the displacement of the associated
fraining data set member from which said training ¢
vector 1s produced,

a processor which weights and combines training ¢ vector

elements and produces a fraining fit to a set of training
answers, and

result estimate value generator generaling estimate
values and producing a respective test ¢ vector from
each member of a set of test data, each test daia set
member having a displacement from each of said
centers, where a norm of said test data set member
displacement 1s calculable from each test data set
member displacement and each element of a test ¢
vector consisting of said non-linear transformation of
said norm of said test data set member displacement,
each of said estimate values consisting of a combina-
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lion of the elements of a respecitive test ¢ vector and
each satd combination being at least equivalent fto a
summation of vector elements weighted in accordance
with the training fit.

19. An heuristic processor comprised of. 5

devices linked by connectors incorporating clocked latches
for data storage and propagation, said method comprising
the steps of:

(1) producing a respective training ¢ vector from each
member of a training data set on the basis of a set of
centers, each training data set member having a dis-
placement from each of said centers, where a norm of
the displacement is calculable from each of said
displacements, and each element of a ¢ vector consist-
ing of a non-linear transformation of the norm of the
displacement of the associated training data set mem-
ber from a respective cenier set member, and

(2) combining training ¢ vector elements in a manner
producing a training fit to a set of training answers,

each of said estimate values consisting of a combination
of the elements of a respective ¢ vector produced from
lest data, each combination being at least equivalent to
a summation of vector elements weighted in accor-
dance with the training fit.

22. A method of training an heuristic processor, said

method comprising the steps of:

(1) producing a respective training ¢ vector from each

a non-linear transformation device producing a respec-
live training ¢ vector from each member of a training
data set on the basis of a set of centers, each training
data set member having a displacement from each of
said centers, where a norm of the displacement is 19
calculable from each displacement, and each element
of a ¢ vector consisting of a non-linear transformation
of the norm of the displacement of the associated
fraining data set member from which said training ¢
vector is produced, 15

a processor which weights and combines training ¢ vector
elements and produces a training fit to a set of tratning
answers, and

a result estimate value generator generating estimate
values and producing a respective test ¢ vector from
each member of a set of test data, each test data set

20

member having a displacement from each of said

centers, where a norm of said test data set member
displacement is calculable from each test data set
member displacement and each element of a test ¢
vector consisting of said non-linear transformation of
said norm of said test data set member displacement,
each of said estimate values consisting of a combina-
lion of the elements of a respecitive test ¢ vector and

25

member of a training data set on the basis of a set of
centers, each training data set member having a dis-
placement from each of said centers, where a norm of
the displacement is calculable from each of said
displacements, and each element of a ¢ vector consisi-
ing of a non-linear transformation of the norm of the
displacement of the associated training data set mem-
ber from a respective center set member said non-

each said combination being at least equivalent to a ” linear transformation being implemented with the aid
summation of vector elements weighted in accordance of electronically addressable memories responsive fto
with the training fit, wherein the transformation device an input address in fixed point arithmetic format by
and the processor incorporate digital electronic signal providing output of a ¢ vector element as a transfor-
processing devices controlled by clock signals. 15 mation of that address in floating point format, and

20. An heuristic processor comprised of:

a non-linear transformation device producing a respec-
live training ¢ vector from each member of a training
data set on the basis of a set of centers, each training
data set member having a displacement from each of
said centers, where a norm of the displacement is
calculable from each displacement, and each element
of a ¢ vector consisting of a non-linear transformation

40

(2) combining training ¢ vector elements in a manner

producing a training fit to a set of training answers in
a form suitable for enabling result estimate values to be
generated, each of said estimate values consisting of a
combination of the elements of a respective ¢ vector
produced from test data, each combination being at
least equivalent to a summation of vector elements
weighted in accordance with the training fit.

of the norm of the displacement of the associated 23. A method of training of heuristic processor, said
training data set member from which said training ¢ ,s processor including a non-linear transformation device, a
vector is produced, combining processor and a result estimate value generator
are interlinked by muliibit buses and single-bit lines for data
fransmission purposes, satd method comprising the steps of:

(1) producing, in said non-linear transformation device, a

a processor which weights and combines training ¢ vector
elements and produces a training fit to a set of tratning
answers and comprises digital electronic signal pro-

cessing devices for storing processing results for output s respective training ¢ vector from each member of a
after a delay, and fraining data set on the basis of a set of centers, each
a result estimate value generator generating estimate training data set member having a displacement from
values and producing a respective test ¢ vector from each of said centers, where a norm of the displacement
each member of a set of test data, each test data set is calculable from each of said displacements, and each
member having a displacement from each of said 55 element of a ¢ vector consisting of a non-linear trans-

centers, where a norm of said test data set member
displacement is calculable from each test data set
member displacement and each element of a test ¢
vector consisting of said non-linear transformation of

formation of the norm of the displacement of the
assoctated training data set member from a respective
center set member, and

(2) combining, in said combining processor, training ¢

said norm of said test data set member displacement, 60 vector elements in a manner producing a training fit to
each of said estimate values consisting of a combina- a set of training answers in a form suitable for enabling
tion of the elements of a respecitive test ¢ vector and result estimate values to be generated, each of said
each said combination being at least equivalent to a estimate values consisting of a combination of the
summation of vector elements weighted in accordance elements of a respective ¢ vector produced from test
with the training fit. 65 data, each combination being at least equivalent to a

21. A method of training an heuristic processor, wherein
the heuristic processor consists at least partly of processing

summation of vector elements weighted in accordance
with the training fit.
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24. A method of training an heuristic processor, said
method comprising the steps of:

producing a respective training ¢ vector from each mem-
ber of a training data set on the basis of a set of centers,
each training data set member having a displacement
from each of said centers, where a norm of the dis-
placement 1s calculable from each of said
displacements, and each element of a ¢ vector consist-
ing of a non-linear transformation of the norm of the
displacement of the associated training data set mem-
ber from a respective center set member, said non-
linear transformation being implemented with the aid
of memory means which, when supplied with an input
address in fixed point arithmetic format, provides oui-
put of an element of each said training ¢ vector as a

ransformation of that address in floating point format,
and

combining training ¢ vector elements in a manner pro-
ducing a training fit to a set of training answers in a
form suitable for enabling result estimate values to be
generated, each of said estimate values consisting of a
combination of the elements of a respective ¢ vector
produced from test data, each combination being at
least equivalent to a summation of vector elements
weighted in accordance with the training fit.

25. A method of training an heuristic processor, said

method comprising the steps of:

producing a respective training ¢ vector from each mem-
ber of a training data set on the basts of a set of centers,
each training data set member having a displacement
from each of said centers, where a norm of the dis-
placement is calculable from each displacement, and
each element of a ¢ vector consisting of a non-linear
transformation of the norm of the displacement of the
assoctated training data set member from which said
fraining ¢ vector is produced, said non-linear trans-
formation being implemented with the aid of memory
means which, when supplied with an input address in
fixed point arithmeitic format, provides output of an
element of each said training ¢ vector as a transfor-
mation of that address in floating point format, and

weighting and combining training ¢ vector elements and
producing a training fit to a set of training answers in
a form suitable for enabling result estimate values to be
generated, each of said estimate values consisting of a
combination of the elements of a respective ¢ vector
produced from test data, each combination being at
least equivalent to a summation of vector elements
welghted in accordance with the training fit.

20. A method of training an heuristic processor, according
to claim 25, wherein said first producing step includes the
steps of.

computing differences between training vector elements

and corresponding center elements;

summing the squares of such differences associated with
each center-data vector pair;

converting each sum to a value in accordance with the
non-linear transformation and

providing a respective fraining ¢ vector element.

27. A method of training an heuristic processor, wherein
said processor comprises a programmed processing device
for performing calculation operations in parallel with one
another, satd method comprising the steps of.

producing a respective training ¢ vector from each mem-
ber of a training data set on the basts of a set of centers,
each training data set member having a displacement
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from each of said centers, where a norm of the dis-
placement is calculable from each displacement, and
each element of a ¢ vector consisting of a non-linear
transformation of the norm of the displacement of the
associated training data set member from which said
fraining ¢ vector is produced, and

weighiing and combining training ¢ vector elements and
producing a training fit to a set of training answers in
a form suitable for enabling result estimate values to be
generated, each of said estimate values consisting of a
combination of the elements of a respective ¢ vector
produced from test data, each said combination being
at least equivalent to a summation of vector elements
weighted in accordance with the training fit.

28. A method of training an heuristic processor, wherein
said processor comprises a digital electronic processor for
performing calculations in floating point arithmetic, said
method comprising the steps of:

producing a respective training ¢ vector from each mem-
ber of a tratning data set on the basis of a set of centers,
each training data set member having a displacement
from each of said centers, where a norm of the dis-
placement is calculable from each displacement, and
each element of a ¢ vector consisting of a non-linear
transformation of the norm of the displacement of the
associated training data set member from which said
fraining ¢ vector is produced, and

weighiing and combining training ¢ vector elements and
producing a training fit to a set of training answers in
a form suitable for enabling result estimate values to be
generated, each of said estimate values consisting of a
combination of the elements of a respective ¢ vector
produced from test data, and each said combination
being at least equivalent to a summation of vector
elements weighted in accordance with the training fit.
29. A method of training an heuristic processor, satd
method comprising the steps of:

producing a respective training ¢ vector from each mem-
ber of a training data sef on the basis of a set of centers,
each training data set member having a displacement
from each of said centers, where a norm of the dis-
placement is calculable from each displacement, and
each element of a ¢ vector consisting of a non-linear
transformation of the norm of the displacement of the
assoctated training data set member from which said
fraining ¢ vector is produced, and

weighting and combining training ¢ vector elements and
producing a training fit to a set of training answers in
a form suitable for enabling result estimate values to be
generated, each of said estimate values consisting of a
combination of the elements of a respective ¢ vector
produced from test data, and each said combination
being at least equivalent to a summation of vector
elements weighted in accordance with the training fit.
30. A method of training an heuristic processor, said
processor including a non-linear transformaiion device and
said processor and transformation device incorporate digi-
tal electronic signal processing devices controlled by clock
signals, said method comprising the steps of:

producing, in said non-linear transformation device, a
respective training ¢ vector form each member of a
training data set on the basis of a set of centers, each
fraining data set member having a displacement from
each of said centers, where a norm of the displacement
is calculable from each displacement, and each element
of a ¢ vector consisting of a non-linear transformation
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of the norm of the displacement of the associated
fraining data set member from which said training ¢
vector is produced, and

weilghting and combining training ¢ vector elements and
producing a training fit to a set of training answers in
a form suitable for enabling result estimate values to be
generated, each of said estimate values consisting of a
combination of the elements of a respective ¢ vector
produced from test data, and each said combination
being at least equivalent to a summation of vector
elements weighted in accordance with the training fit.
31. A method of training an heuristic processor, said
method comprising the steps of:

producing a respective training ¢ vector from each mem-
ber of a training data set on the basts of a set of centers,
each training data set member having a displacement
from each of said centers, where a norm of the dis-
placement 1s calculable from each displacement, and
each element of a ¢ vector consisting of a non-linear
transformation of the norm of the displacement of the
assoctated training data set member from which said
fraining ¢ vector is produced, and

weighting and combining training ¢ vector elements and
producing a training fit to a set of training answers in
a digital electronic signal processing device for storing
processing results for output after a delay in a form
suitable for enabling result estimate values to be
generated, each of said estimate values consisting of a
combination of the elements of a respective ¢ vector
produced from test data, and each of said combination
being at least equivalent to a summation of vector
elements weighted in accordance with the training fit.
32. A method of estimaiting results using an electronic
processing device, the device including a means for the
non-linear transformation of data, for combining elements
of transformed data, and for weighting data, said method
comprising arranging said electronic device to execute the
steps of.
(1) producing training ¢ vectors from each member of a
iraining data set on the basts of a set of centers, each
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training data set member having a displacement from
each of said centers, where a norm of the displacement
is calculable from each of said displacements, and each
element of a ¢ vector consisting of a non-linear frans-
formation of the norm of the displacement of the

associated training data set member from a respective
center set member,

(2) combining training ¢ vector elements in a manner
producing a training fit to a set of training answers, and

(3) generating result estimate values, each of said esti-
mate values comprising a combination of weighted
elements of a respective ¢ vector produced from test
data, said weighting in accordance with the training fit.

33. A method of estimating results using first and second

electronic processing devices, said first electronic process-
ing device including a means for the non-linear transfor-
mation of data and for combining elements of transformed
data, and said second electronic processing device including
means for producing weighted combinations of vector
elements, said method comprising arranging said first elec-
fronic processing device to execute the steps of:

(1) producing training ¢ vectors from each member of a
training data set on the basis of a set of centers, each
fraining data set member having a displacement from
each of said centers, where a norm of the displacement
is calculable from each of said displacements, and each
element of a ¢ vector consisting of a non-linear trans-
formation of the norm of the displacement of the
associated training data sef member from a respective
center set member,

(2) combining training ¢ vector elements in a manner
producing a training fit to a set of training answers, and
said second electronic processing device generating result
estimate values, each of said estimate values comprising a
combination of weighted elements of a respective ¢ vector
produced from test data, said weighting in accordance with
the training fit produced by said first electronic processing
device.
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