(19)
(12)

United States

Reissued Patent
Chang et al.

(10) Patent Number:
45) Date of Reissued Patent:

USOORE37305E

US RE37,305 E
Jul. 31, 2001

(54) VIRTUAL MEMORY ADDRESS
TRANSLATION MECHANISM WITH
CONTROLLED DATA PERSISTENCE

(75) Inventors: Albert Chang, Austin, TX (US); John

Cocke, Bedford, NY (US); Mark F.
Mergen, Mount Kisco, NY (US);
George Radin, Grandview, NY (US)
(73) Assignee: International Business Machines
Corporation, Armonk, NY (US)

(21) Appl. No.: 07/812,837

(22) PCT Filed: Dec. 30, 1982

(86) PCT No.: PCT/US82/01829
§ 371 Date: Sep. 19, 1983
§ 102(¢) Date: Sep. 19, 1983

(87) PCT Pub. No.: W0O84/02784
PCT Pub. Date: Jul. 19, 1984

Related U.S. Patent Documents

Reissue of:

(64) Patent No.: 4,638,426
Issued: Jan. 20, 1987
Appl. No.: 06/573,975
Filed: Sep. 19, 1983

U.S. Applications:

(63) Continuation of application No. 07/299,177, filed on Jan. 19,
1989, now abandoned.

(51) Int. CL7 oo, GO6F 12/10

(52) US.ClL ..., 711/207; 711/206; 711/208;

711/216

(58) Field of Searchcccocoovene 395/400, 425;

7117206, 207, 208, 216
(56) References Cited
U.S. PATENT DOCUMENTS
3,588,839 6/1971 Belady .
3,781,808 * 12/1973 Ahearn et al.ccceeeeni. 364/200

(List continued on next page.)

{

54

EFFECTIVE ADDRESS

OTHER PUBLICATTONS

Radin, George, “The 801 Minicomputer’, ACM Sigplan
Notices, vol. 17, No. 4, Apr. 1982, pp. 39-47.*

(List continued on next page.)

Primary Examiner—Jack A. Lane
(74) Attorney, Agent, or Firm—Sughrue, Mion, Zinn,
Macpeak & Seas, PLLC

(57) ABSTRACT

A memory address translation and related control system for
performing the dual functions of converting virtual memory
addresses generated by the CPU 1nto real memory addresses
in a highly efficient and versatile manner and for controlling
certain memory functions such as journalling. The address
translation function comprises two steps, the first compris-
ing converting the virtual address 1nto a second virtual
address or an effective address and finally the step of
converting the effective address 1nto a real memory address.
The first step utilizes a set of special registers addressable by
a small field to the CPU generated virtual address which
converts the virtual address into an expanded form. The
second or effective address 1s then used as the subject of the
second or address translation step. To greatly enhance the
translation of frequently used virtual addresses, a special set
of translation tables referred to heremn as a Translation
Look-Aside, Buffer (TLB) contain current effective to real
address translations for use where frequently referenced
addresses are requested. The TLBs are addressed using a
subset of the effective address whereupon the contents of the
addressed TLB 1s examined for a match with the effective
address. If the addresses match a successtul address trans-
lation 1s possible and the real address stored in the address
field of the TLB 1s available for system use. If the desired
ciiective address 1s not present 1n the TLB, the page frame
tables stored 1n main memory are accessed and searched for
the desired effective address and if found the associated real
address 1s accessed. Further a special data field 1s provided
in both the TLBs and the page frame tables in main memory
wherein a bit 1s provided for each line 1n the referenced page
at a given effective to real address translation which bits may
be used to indicate when a line of data has been accessed or
altered.

65 Claims, 10 Drawing Sheets

H

0

{

{5

12 BITS —

SEGMENT
REG ISTERS

af6 1D O

SEIE i

SEG ID 13

4

TLB @

TAG

RPN |STA

TID

LOCK

15

L {[-8ITS PAGE DISPLACEMENT

FOR 2K PAGES OR
12-BITS FOR 4K PAGES

{T-BITS FOR 2K PAGES
OR 16- BITS FOR 4K PAGES

28729 -BIT VIRTUAL PAGE ADDRESS

TLE |

0 | TAG |RPA
i

STAITID) LOCK

13

1
REAL PAGE NUMBER

SELECT

REF

CHE

4191

US RE37,305 E

Page 2
U.S. PATENT DOCUMENTS 4,525,778 6/1985 Cane .

4 581,702 * 4/1986 Saroka et al.cooveeennnnneenn. 364,200
3,828,327 * 8/1974 Berglund et al.cccouenenen. 364/200 4,604,688 * 8/1986 TONE ..oovveveveerererrerrereernnianes 364/200
3,942,155 * 3/1976 Lawlor ..cccovvvvummerevneeneeneenenns 364/200 4,654,819 3/1987 Stiffler et al. .
4?0205466 *4/1977 Cordi et al. ..covvvvvvneriinnn, 364/200 4?731?739 * 3/1988 Woffinden et al. .ovovvevvnenn.nn. 364/200
4,037,215 * 7T/1977 Bimey et al.cc..cc.c....... 364/200
4042911 * 81977 Bourke et al. ..ocovvrevveee... 364/200 OTHER PUBLICATIONS
4,050,094 * 9/1977 Bourke et al. .oooveeverrernn... 364/200 | o |
4,053,948 * 10/1977 Hogan et al. ..coveeeeevreeernnne. 364200 Reference and Change Bit Recording™ IBM Technical
4,057,848 * 11/1977 Hayashi ...cocoovveveveverevennne.. 364/200 Disclosure Bulletin vol. 23, No. 12, May 1981, pp.
4,077,059 * 2/1978 Cordi et al. ..couvvevivvneeennnn.n. 364,200 55165519 (Hoff‘man et al).
4,084,225 * 4/1978 Anderson et al. 364/200 Design COnsiderations For the IBM System/38 Soltis et al,
}gzj?%g? j/ggz gfﬂtid{ - 18th IEEE Computer Society International Conference,

1 dpPOZZl .

4145738 * 32979 000 66 AL oo 364000 aoror PP 152737 - - -
S # “Virtual to Real Address Translation Using Hashing” IBM
4,170,039 * 10/1979 Beacom et al. 3647200 ‘ : :
4215,402 * 7/1980 Mitchell et al. ..o.ooooveeee.... 364/200 Lechnical Disclosure Bulletin, vol. 24, No. 6, Nov. 1981, pp.
4218743 * 8/1980 Hoffman et al. v 364200 2/24-272 (Cocke et al). |
4251.860 * 2/1981 Mitchell et al. .ooooevveven... 364200 TARCUS—A Modularized System Approach—Richter et
4,356,549 10/1982 Chueh . al, Proceedings of the Sixth Texas Conference On Comput-
4,410,941 * 10/1983 Barrow et al.ccccevvvvveeeenn.n. 364/200 ing Systems, Nov. 14-15, 1977, pp. 7B—12 through 7B-20.
4,453,212 6/1984 Gaither et al. . A. J. Smith, Computing Survey, vol. 14, No. 3, Sep. 1982,
4,463,420 7/1984 Fletcher . pp. 518-520.
4,490,787 * 12/1984 Ohya et al. ..eoeeoeereeereerreerenn. 364/200
4,513,367 4/1985 Chan et al. . * cited by examiner

U.S. Patent

0SC

{0

Jul. 31, 2001 Sheet 1 of 10

FIG.

US RE37,305 E

(MEMORY)

STORAGE CARDS

CPU STORAGE CHANNEL INTERFACE

T ADDRESS
| COMMON | ADDRESS | STORAGE
FRONT | TRANSLATION | CONTROL
END | LOGIC | LOGIC
{2 14 16 |
A
DATA
FIG. 2
ENTRY
noMBER U 13
0 SEGMENT 1D~ [S|K
SRR 1
, T
/ /)
/ / /7
NI
15 '

SPECIAL BIT— -T |
KEY BIT

SEGMENT REGISTERS

RAM
ARRAY A

RAM
ARRAY B

ROS

U.S. Patent Jul. 31, 2001 Sheet 2 of 10 US RE37,305 E

FIG. S

EFFECTIVE ADDRESS

0 34 31

SEGMENT
PAGE DISPLACEMENT
REGISTERS {1 BITS FOR 2K PAGES OR
0 [SEc 1D 0 .n {2 BITS FOR 4K PAGES
| | SEG ID | '
ln VIRTUAL PAGE INDEX
’ ' {7 BITS FOR 2K PAGES OR

5 n 16 BITS FOR 4K PAGES

SEGMENT IDENTIFIER
- 1

SEGMENT VIRTUAL PAGE BYTE
ID INDEX INDEX

VIRTUAL ADDRESS

U.S. Patent Jul. 31, 2001 Sheet 3 of 10 US RE37,305 E

FIG. 4

EFFECTIVE ADDRESS
0 34 3

11-BITS PAGE DISPLACEMENT

FOR 2K PAGES OR
12-BITS FOR 4K PAGES

SEGMENT
REGISTERS

SEG ID 0
{ | SEG ID |

S
5

S A I7-BITS FOR 2K PAGES
' '___ OR 16- BITS FOR 4K PAGES
i5 | SEG 1D 15 |S[K

{2 BITS
28/29 -BIT VIRTUAL PAGE ADDRESS

I TLB ¢ LB |
0| TAG |RPN LOCK 0 | TAG |RPN LOCK

! - i N
. JE N N
L N

SELECT

REAL PAGE NUMBER

U.S. Patent Jul. 31, 2001 Sheet 4 of 10 US RE37,305 E

FIG. S
TRANSLATION LOOKASIDE BUFFERS

NEUNJEER e 25—« 13— 1| 2 |1 o— 8 —f— 16 ——
 ADDRESS TAG | RPN VKW TID | ook BiTs

[« ADDRESS TAG——IvRPN——-| & |WI——TID——|-—LOCK BITS —]

REAL PAGE NUMBER LTMNSACTION ID

VALID BIT WRITE BIT
KEY BITS

US RE37,305 E

Sheet 5 of 10

Jul. 31, 2001

U.S. Patent

J18YL 1Ivd (J14IAN]

9 914

118V1
dOHINY HSVH

NOILONNS HSYH

LI
WNLYIA

US RE37,305 E

Sheet 6 of 10

Jul. 31, 2001

U.S. Patent

u:._oooho;oooooooooooooooooooooooooo

1 1 1 1 i 1 |

SR Y/ 0
SS34AAv/S118 IONVHO ANV 4dONJdd4dd

8 9l

OF1VAN! 43INIOd LVH=1
01 1VA ¥431NI0d LVH=0

118 ALdN3 —;
QI'TVAN] 431NIOd Lal=1 118 1931044 JL14M
QITVA 431INIOd 1di=0 INIW93S TY1934S |
11§ 15V T
]]|‘|_|A|.‘|_|_|ﬂl_|jJ||‘H_.rll_.|_.|_|_||_. TT
© o (3NESY
.
5118 4907 I T T I e TR
—————+-H
43INI0d 1d L |S3|1 £3INI0 1Y S34(3
N1 SSIUAQV 4| A3)
£ 6h 9l 8L €2 O
378VL 39Vd Q3LY3IANI/378VL JOHONV HSVH
UHUNAHNY L Ol

US RE37,305 E

Sheet 7 of 10

Jul. 31, 2001

U.S. Patent

1Z1S | 4AAY INILYYLS (ELYEREL

e 8¢ 0¢ 0
dd1S1938 NOILVOI4d103dS SOY

IOl

400V INILYYLS HS 34434 (ELY. EREL
0¢ 6/ H 0

¥31S193¥ NOILVOI4103dS WYY
OF Old

s
¢ 8

4adv 35ve 0/1 (ELLEREL

¢ b 0
43151934 3Sv8 O/1

6 Ol

US RE37,305 E

Sheet 8 of 10

Jul. 31, 2001

U.S. Patent

$S3YAaY NOILdIIXd JIVHOLS
¢ 0

431SI1934 SS34AAVY NOILd3OX3 d9VHOlS
bt 9l

EEMEEH , 0IAY353Y
I

22 0
H31S1934 NOILd3IOX3 3FT9VHOLS

gl 914

I ¥ .

¥31S1934 TOYLNOD NOILVISNVYL
¢l 9Old

US RE37,305 E

Sheet 9 of 10

Jul. 31, 2001

U.S. Patent

I INdWI3S (ELY-EREL

1§62 B 0
(N331XIS 40 3NO)
LYINHOd H31SI19348 INJNWOIS

Ll Ol

0I NOILIVSNYYL (EVYEREL

1 be 0
43.1S1934 NOILVOI4I1LNIdl NOILOVSNVYL

Ol

Ol

SSIAQY J9VY0LS TV 0000000[T
€ g) 0

Y31S1934 SS3¥AAV 1v3Y Q3LVISNVYl
Gt Old

US RE37,305 E

Sheet 10 of 10

Jul. 31, 2001

U.S. Patent

51184901 AT NOLLOVSNY YL M| 03AY3S3Y

¢8I Old

AN (A Emz_;_ JIVd ._ﬁ:_ (ELYEREL
N W G N S _ 11 | |

¢ 6¢ 9t 0

¢ 8 9Ol
S | | 9L SSIHAQY B EE

e 8¢ ¢ 0
| 81 9Ol4
LJVINHO4d 8911

US RE37,305 E

1

VIRTUAL MEMORY ADDRESS
TRANSIATION MECHANISM WITH
CONTROLLED DATA PERSISTENCE

Matter enclosed in heavy brackets [] appears in the
original patent but forms no part of this reissue specifi-
cation; matter printed in italics indicates the additions
made by reissue.

This 1s a Continuation of reissue application Ser. No.
07/299,177 filed Jan. 19, 1989 now abandoned which is a

Rerssue of Ser. No. 06/573,975, Sep. 18, 1998, U.S. Pat. No.
4,638,426.

BACKGROUND OF THE INVENTION

1. Field of the Invention

The present invention relates generally to computer
memory subsystems and more particularly to such a memory
subsystem organized into what 1s known 1n the art as a
virtual memory. Still more particularly, the invention relates
to an apparatus for converting virtual addresses into real
memory addresses and for effecting certain unique control
functions within the memory hierarchy.

In most modern computer [system] systems, when a
program 1s executing, it frequently attempts to access data or
code which resides somewhere in the system (that is, in
some level of the cache/main store/Direct Access Storage
Device (DASD) storage hierarchy or even at another node in
a distributed system network). For the most primitive
system, consider what the program must understand in order
to make this access.

Where is the data (or code)? The location will generally
determine what kind of address must be used for the access
(e.g. main storage address of 24 bits, or sector address on a
disk track, or node address in a network). The location will
also determine what kinds of instructions must be used to
accomplish the access (e.g. Load/Store/Branch for main
storage accesses, channel command words for disk accesses,
communication protocols for network accesses).

Is this data shared with our program executions? If 1t 1s,
the access cannot proceed unless certain locks are held. It
the changes which this program is about to make to data are
not to be seen by others at this time, the Store instruction
must be to some private address.

Is this data to be recoverable? If 1t 1s, some “journalling”
strategy must be implemented so that a consistent prior state
of the data can be retrieved when necessary.

Suppose, 1n this very primitive system, the program was
in fact required to make these distinctions at each access.
Then the following would result:

If the program 1s to be generally applicable the accesses
would be very slow, even for the most frequent occurrences
of “trivial, safe” requests, namely, for private, unrecoverable
data 1n main storage.

If the program were to perform well 1t would be locked
into one accessing mode, so that it would not run correctly
against data with different characteristics.

The program would be complex, large and prone to error.

Modern systems have addressed these problems in vary-
ing degrees. For instance:

Relocate architectures generally allow private,
unrecoverable, nonpersistent data and programs to be
addressed uniformly, with an address size of 16 to 32
bits—(usually adequate for temporary computational
requirements). When these architectures are implemented
with proper “look-aside” hardware, the vast majority of such

10

15

20

25

30

35

40

45

50

55

60

65

2

accesses are accomplished at cache or main storage speeds.
Only when this look-aside hardware fails (less than one in
one hundred attempts) does the system pay the cost of
accessing the relocation table structure. And only when the
relocation tables fail (i.e. the data is not in main storage)
does the system pay the significant “page fault” overhead.
Thus the penalties are paid only when they are really
necessary, which 1s surely the goal of a good architecture
and 1mplementation.

When the data is to persist beyond this execution of this
program, most modern systems require that, instead of
Load/Store/Branch instructions, access be made by explicit
requests to software-implemented “access methods.” These
access methods generally support data which are organized
into certain defined aggregates, called “records” and files.”
The “instruction” to access are usually called “read/write” or
“get/put.”

This data 1s not shared or recoverable. It may in fact be 1n
main storage (in some buffer area). But for every access, the
program must pay the overhead of these explicit “read/
write” calls. Thus access methods, when suitably defined,
have resulted 1n programs which are less complex and more
ogenerally usable than 1n primitive systems, but the perfor-
mance of these accesses are uniformly poorer than Load/
Store, and the data accessed must have been structured into
the appropriate aggregate type.

When the data 1s to be shared or recovered, most modern
systems require that explicit requests be made to software-
implemented “data-base subsystems.” These accesses are
ogenerally much slower than those for access methods, not
only because of the additional functions of lock and journal
management, but also because the kinds of aggregates which
these subsystems support (e.g. relations, hierarchies) are
themselves more complex.

Again, the data may 1n fact be more simply structured and
in a buifer 1n main storage, but the overhead must be paid on
every access request.

Some systems support the recovery of non-persistent data
with a facility called “checkpointing.” Now the programmer
who wishes to write a recoverable application must deal
with three different facilities—checkpointing for computa-
tional data, explicit backup for files, and “commit” nstruc-
tions for data base.

The IBM System/38 has gone farther than most systems
in providing at least a uniform addressing structure for all
data. But 1t has done this at the cost of making all addresses
very large, many accesses very slow, much storage and
hardware required to implement the architecture, and has not
yet provided a uniform approach to sharing or recovery.

Various techniques are known in the art whereby a
number of computer programs, whether executed by a single
essential processing unit or by a plurality of such [a}
processing units, share a single memory. The memory being
shared by programs in this manner requires an extremely
large parent storage capacity, which capacity 1s often much
larger than the actual capacity of the memory. If, for
example, a system employs a 32-bit addressing scheme, 2°~
addressable bytes of wvirtual storage are available. This
virtual storage space 1s conventionally thought of as being
divided into a predetermined number of areas or segments
cach of which 1s in turn divided into pages with each page
consisting of a predetermined number of lines each in turn
having a predetermined number of bytes. Thus segment and
page designations or addresses assigned to virtual storage
are arbitrary programming designations and are not actual
locations 1n main storage. Therefore, virtual segments and

US RE37,305 E

3

pages are usually randomly located throughout main storage
and swap 1n and out of main storage from backing stores as
they are needed.

The random location of segments and pages in main
storage necessitates the translation of virtual addresses to
actual or real addresses using a set of address translation
tables that are located 1n main storage conventionally
referred to as page frame tables. In a large virtual system a
orcat many such address translation tables are employed.

These may be organized 1n a number of different ways. The
essential feature of any such organization is that the par-
ficular virtual address must logically map to a memory
location 1n said tables which will contain the real address for
said virtual address (if one exists).

Functionally, the operation of such address conversion
tables 1s as follows: the high order bits of the particular
virtual address are used to access a specific section of said
translation tables, which relate to a particular frame or
secgment, where upon a search 1s then performed on the
lower bits to see if a particular virtual address 1s contained
therein and, if so, what real address 1s associated therewith.
Each page table pointed to by a virtual frame address
contains the real locations of all of the pages 1n one of the
frames. Therefore 1f a particular frame 1s divided into for
example, 16 pages there would be 16 page tables, for each
frame, and a separate frame table which would have the
entries pointing to a particular set of individual page tables.
It should be understood that the above description 1s gen-
eralized in nature and that there are many different ways of
organizing the address conversion utilizing the page tables,
as well as the means for addressing same, starting with the
CPU produced virtual address. In the subsequent description
of the preferred form of the invention as set forth and
disclosed 1n the embodiment there will be a detailed descrip-
tion of the hash address tables (HAT) and the inverted page
tables (IPT) which, in essence, are functionally organized as
set forth above.

When making the actual address translation, regardless of
the details of the overall system organization and use of the
page tables, the proper entry point 1nto the page-frame tables
1s made and the page tables are accessed using the presented
virtual address as the argument and, usually after a plurality
of memory accesses, the desired entry in the page tables 1s
found. At this point a check 1s usually made to determine 1f
all system protocols have been followed and 1f so, the real
address of the requested page 1n memory 1s accessed from
the page table. The byte portion of the virtual address or
“byte oflset” 1s essentially a relative address and 1s the same
in the virtual page as 1 the real page whereby once the
desired real page address portion of the virtual address has
been translated, the byte offset portion 1s concatenated onto
the real page address location to provide the real byte
address 1n main storage.

As 1s well known 1n current virtual memory systems, 1n
order to avoid having to translate a virtual address each time
the memory 1s accessed, current translations of recently used
virtual addresses to real addresses are retained 1n a special

set of rapidly accessible tables or high speed memories
referred to as Directory Look-Aside Tables (DLAT) or

Translation Look-Aside Buffers (TLBs) as used in the
present invention. These tables or buflers are conventionally
special high speed or rapidly accessible memories which
may be accessed much faster than the previously described
page frame tables whereby frequently used virtual addresses
may be stored 1n this table and accessed very rapidly with
the resultant saving of a great deal of execution time within
the computer. The efficiency of such TLB address translation

10

15

20

25

30

35

40

45

50

55

60

65

4

systems 1s predicated upon the fact that, subsequent to the
first access to a particular virtual page, there will be a great
many accesses to the same page during a given program
execution. As 1ndicated above, even though subsequent
accesses are to different lines and bytes within a page, the
virtual to real page address translation 1s the same for that
page regardless of which line or byte 1s being addressed.

The use of the TLBs significantly reduces the number
translations that must be made (in the page frame tables) and
thus has a considerable effect on the performance of the
overall virtual memory system.

Another problem with such prior art relocation systems 1s
handling the problem of journalling. That 1s, maintaining a
copy of data 1n back up storage while a current program 1s
running and using the data. Thus i1n the event of some
hardware or software failure a valid copy of the original data
will still be available. This function has been accomplished
in the past by complex and time consuming hardware and
software routines to provide the requisite journalling func-
tfion again at the cost of slowing down memory performance.

PRIOR ART

As stated previously, virtual memory systems have been
known 1n the computer arts for many years. It 1s also well
known that the virtual addresses must be translated into real
addresses via some sort of relocation or address translation
means wherein the translatability of the virtual address into
the real memory address must be assured. While 1t would be
impossible to list all patents and arficles relating to this
subject, the following prior art 1s mtended to be exemplary
of typical address translation mechanisms and represents the
closest prior art known to the inventors.

U.S. Pat. No. 3,828,327 of Berglund et al describes a prior
storage control technique for extending the memory by
means of adding a high order bit to the address which high
order bit 1s not part of the program apparent address but 1s
controlled by the different system modes, such as interrupt
mode, I/O mode, etc. This patent relates to a memory
extension system but 1s provided together with appropriate
address translation hardware. U.S. Pat. No. 4,042,911 of
Bourke et al also discloses a system for extending main
storage and explicitly includes address translation means
therewith. Neither of these two patents disclose the virtual
address expansion concept nor the provision of special lock
bits 1n both the TLBs and page frame tables.

An article entitled “The 801 Minicomputer,” by George
Radin, published in ACM SIGPLAN NOTICES, Vol. 17,
No. 4, April 1982, pages 39—47, includes a general descrip-
fion of an experimental computer whose operational char-
acteristics depend to a large extent on a very fast memory
subsystem 1n which the present relocation mechanism would
have particularly utility.

U.S. Pat. No. 4,050,904 of Bourke et al discloses a
memory organization including an address relocation trans-
lator which includes among other things stack segmentation
registers. The particular segmentation registers disclosed in
this patent are for the purpose of storing a real assigned
address of a physical block 1n the main memory rather than
for storing an expanded virtual address as utilized with the
present 1vention.

U.S. Pat. No. 4,251,860 of Mitchell et al. discloses a
memory addressing system including virtual addressing
apparatus for implementing a large virtual address memory.
The patent describes [a] splitting of a virtual address into a
secoment and offset portion, however, the segment portion
and associlated segment registers are used as a convenient

US RE37,305 E

S

way of splitting the address and do not operate 1n any
analogous manner to the address translation scheme of the
present mvention.

U.S. Pat. No. 4,037,215 of Birney et al, discloses a system
very similar to that of the previously referenced U.S. Pat.
No. 4,050,094, 1n that a series of segmentation registers are
utilized for pointing to specific real memory blocks. This
patent additionally shows the use of ‘read only’ validity bits
fied mnto the specific segmentation registers. These bits have
little analogy to the special purpose lock bits provided 1n the
hardware of the present relocation mechanism.

U.S. Pat. No. 4,077,059 of Cordi et al, discloses a
hierarchical memory system which includes the provision of
special controls to facilitate journalling and copyback. A
plurality of dual memories 1s involved 1n this patent wherein
the current version of data 1s kept in one of the memories and
changes are noted i1n the other to facilitate subsequent
journalling and copyback operations. The hardware and
controls of this patent bear little resemblance to the lock bit
system of the present invention.

U.S. Pat. No. 4,053,948 of Hogan et al, discloses an

address translation system in which special provisions
including a counter are included with each entry i a

Directory Look-Aside Table (DLAT).

U.S. Pat. No. 4,218,743 of Hoflman et al 1s exemplary of
a number of patents listed below which relate to the IBM
System/38 relocation architecture. This particular patent
illustrates a simplification of the manner 1n which I/O
handles addressing 1in a virtual storage computer system.

Other patents related to the subject of the virtual storage
system are: U.S. Pat. Nos. 4,170,039, 4,251,860, 4,277,862,

4,215,402,

U.S. Pat. No. 4,020,466 of Cord1 et al also discloses a
memory system which incorporates a special facilities to
facilitate journalling and copyback procedures. The patent
has no relationship to the locking bit control means of the
present mvention.

U.S. Pat. No. 3,942,155 of Lawlor discloses a form of

segment partitioning in a virtual memory system, however,
the segmenting used 1n this patent 1s quite different from the
secgmenting operation of the present imvention which 1is
utilized to expand the virtual address.

U.S. Pat. No. 4,215,402 1s cited as exemplary of the use

of various hashing schemes for accessing a virtual memory
translation mechanism.

SUMMARY OF THE INVENTION

In accordance with the teachings of the present invention,
a virtual memory subsystem 1s provided which takes a
pervasive hardware-software approach to the address trans-
lation and overall memory control function. All data and
programs 1n the system are addressed uniformly regardless
of where they reside, whether they are temporary,
catalogued, shared or private, recoverable or not. This
means, for example, that the accessing of private, non-
recoverable, computational data which 1s 1n the cache may
be recovered at cache-access speed. However, a further
result 1s that even though data i1s shared, access by a
particular program which holds the key 1s also at cache
speeds.

Thus, the architectural organization of the herein dis-
closed memory subsystem which permits this type of uni-
form or “one-level store” addressing includes the provision
within the system of a 32-bit virtual address which 1s 1ssued
by the CPU of which address, 4-bits point to a set of sixteen

10

15

20

25

30

35

40

45

50

55

60

65

6

[12-bit] segment [registes] registers. The contents of the
selected segment register are concatenated onto the remain-
ing 28-bits of the virtual address to form a 40-bit effective
address. Thus, 1t may be readily seen that each segment can
contain up to 2°° bytes of data. It should be noted that this
new 40 bit address 1s still a virtual address. It 1s translated
by first accessing a high speed partially associative Trans-
lation Look-Aside Buffer to determine 1if the real address 1s

present and 1f not, the system, as with other translation
systems, then refers to the pages tables to effectuate the
address translation.

Another unique feature of the present organization 1s the
provision within both the Translation Look-Aside Buffers
and also the page frame table of special purpose lock-bits to
check locking, journalling and authorization. It 1s particu-
larly to be noted that a plurality (16 in the present

embodiment) of such lock bits are provided with each real
address both 1n the Translation. Look-Aside Buffers and also

in the page frame tables. One lock bit 1s provided for each
line within a page and 1s utilized for the purpose of con-
trolling journalling within the system. Accessing and soft-
ware means are also provided 1n the system whereby these

bits are accessible to software as well as hardware.

It 1s a primary object of the present invention to provide
a virtual memory subsystem having an extremely large
virtual address space.

It 1s a further object of the mnvention to provide such a
memory subsystem which functions as a “one-level store”
for all memory operations.

It 1s another object of the invention to provide such a
memory subsystem which 1s less prone to addressing errors
due to the use of incorrect translation tables.

It 1s another object of the mnvention to provide a control
mechanism within such a virtual memory subsystem which
oreatly facilitates journalling and related data protection.

It 1s another object of the invention to provide such a
control mechanism which 1s available to both the software
and hardware.

The foregoing and other objects, features and advantages
of the present invention will be apparent from the following
description of the preferred embodiment of the 1nvention as
illustrated 1n the accompanying drawings.

DESCRIPTION OF THE DRAWINGS

FIG. 1 comprises a functional block diagram of the major
portions of the address translation and access control system
of the present invention.

FIG. 2 1s a diagrammatic illustration of the format of the
Segment Registers used 1n the present address translation
mechanism.

FIG. 3 1s a combination functional block diagram and data
flow diagram 1llustrating the conversion of an effective
address to a virtual address.

FIG. 4 1s a combination functional block diagram and data
flow diagram 1llustrating the complete address translation
mechanism from an effective address to real address.

FIG. § 1s a diagram illustrating the organization and
contents of the organization of the Translation Look-Aside
Buflers as used in the overall address translation mechanism
of the present invention.

FIG. 6 1s a conceptual 1llustration of the combined Hash
Anchor Table/Inverted Page Table and a data tlow diagram
therefor illustrating the operation of these tables when no
TLB entry 1s found for a given virtual address.

FIG. 7 comprises an 1llustrative diagram of the structure
and contents of the actual Hash Anchor Table/Inverted Page
Table as 1t 1s stored 1n memory.

US RE37,305 E

7

FIG. 8 1llustrates the format of the reference and change
bits as utilized with each I/O address.

FIG. 9 1s a diagrammatic illustration of the I/O Base
Address Register configuration.

FIG. 10 1s a diagrammatic illustration of the format of the
RAM Specification Register.

FIG. 11 1s a diagrammatic 1llustration of the format of the
ROS Specification Register.

FIG. 12 1s a diagrammatic illustration of the format of the
Translation Control Register.

FIG. 13 1s a diagrammatic illustration of the format of the
Storage Exception Register.

FIG. 14 1s a diagrammatic illustration of the format of the
Storage Exception Address Register.

FIG. 15 1s a diagrammatic illustration of the format of the
Translated Real Address Register.

FIG. 16 1s a diagrammatic illustration of the format of the
Transaction Identifier Register.

FIG. 17 1s a diagrammatic 1llustration of the contents of
one of the sixteen Segment [Registes] Registers.

FIGS. 18.1, 18.2 and 18.3 1llustrate diagrammatically the

format of three of the fields utilized for each page reference
in each of the Translation Look-Aside Buffers. It 1s noted
that there are two separate Translation Look-Aside Buifers
in the presently disclosed embodiment and that there are
sixteen real page references stored at any one time 1n each
of said buifers.

DESCRIPTION OF THE PREFERRED
EMBODIMENT

The objects of the present invention are accomplished in
general by the herein disclosed storage controller that
attaches to a host CPU Storage Channel which implements
the address translation architecture described in general
terms previously, and which will be described 1n greater
detail subsequently. The translating mechanism contains the
logic required to interface with up to 16M bytes of storage.
Storage can be interleaved or non-interleaved, and static or
dynamic. The translation mechanism 1s functionally divided
into three sections (see FIG. 1). The CPU storage channel
interface (CSC) 10 logic consists of the Common Front End
(CFE), section 12 which provides the proper protocol from
the storage channel to the Address Translation Logic 14 and
Storage Control Logic 16. All communication to and from
the storage channel 1s handled by this logic. The Address
Translation Logic provides the translation from a virtual
address received from the storage channel to a real address
used to access storage. This logic contains a translation
look-aside buffer (TLB) organized as 2-way set associate
with 16 congruence classes. Logic 1s provided that auto-
matically reloads TLB entries from page tables in main
storage as required. The Storage Control logic 16 provides
the interface from the Address Translation Logic 14 to
storage. Dynamic memory refresh control 1s also provided
by this logic.

It should be noted at this point that the present invention
relates primarily to the novel structural combination and
functional operation of well-known computer circuits,
devices and functional units and not 1n the specific detailed
structure thereof. Accordingly, the structure, control, and the
arrangement of these well-known circuits, devices and
blocks are 1llustrated 1n the drawings by the use of readily
understandable block representation and functional dia-
orams that show only these specific details pertinent to the
present mvention. This 1s done 1n order not to obscure the

10

15

20

25

30

35

40

45

50

55

60

65

3

invention with structural details which would be readily
apparent to those skilled 1n the art in view of the functional
description of same. Also, various portions of these systems
have been appropriately consolidated and functionally
described to stress those features pertinent to the present
invention. The following description will allow those skilled
in the art to appreciate the possibilities and capabilities of the
disclosed memory subsystem and further would allow its
ready 1ncorporation into any one of a variety of computer
architectures.

FIG. 1 1llustrates the above described functional portions
of the present address translation system which would be
appropriately located on a single logic chip 1n a very large
scale integrated circuit technology.

Whether an address is translated (treated as virtual) or
treated as real in the present system is controlled by the
value of the Translate Mode bit ('Tbit) on the CPU Storage
Channel (CSC). Each device which places a request on the
CSC controls the value of the Translate Mode bit for each
request. The T bit 1s taken from the appropriate field of
memory access instruction provided by the CPU. For stor-
age accesses generated by I/O devices, the T bit value 1s
oenerated by the attaching adapter. When the T bit 1s one,

storage addresses (instruction fetch, data load, data store) are
subject to translation. When the T bit 1s zero, storage
addresses are treated as real.

Within the herein disclosed architecture, storage protec-
fion 1s not elfective for storage requests which are not
subject to translation.

Reference and change recording 1s effective for all storage
requests, regardless of whether they are subject to transla-
tion.

For addresses subject to translation, the translation opera-
tion logically proceeds as follows.

Various implementations may perform different parts of
this function 1n parallel rather than 1n strict logical sequence
as described subsequently.

The present address translation mechanism implements a
“single level storage” addressing structure. The address
translation mechanism provides support for the following in
the herein disclosed preferred embodiment:

. Multiple independent virtual address spaces.
. Address space size of 4 gigabytes.

. Demand paging.

. Page size of 2048 or 4096 bytes.

. Storage protection.

. Shared segments, for 1nstructions and data.

. Journalling and locking of [128 bytes] 128-byte lines.
. Real storage addressability of up to 16 megabytes.

. Reference and change bits for each real page.

10. Hardware assist for load real address, invalidate TLLB

entries, and storage exception address.

Storage 1s treated as 1f 1t were mapped onto a single 40-bit
virtual address space consisting of 4096 segments of 256
megabytes each. The 32-bit address received from the CSC
is converted to a 40-bit (“long form virtual”) address by
using the four high-order bits to select one of sixteen
segment registers, the 12-bit contents of which are concat-
enated with the remaining 28 bits of the effective address.
The translation mechanism then converts the 40-bit virtual
address to a real address for storage access. As will be
readily appreciated the size of the virtual address can be
changed by minor changes to the hardware.

At any given 1instant, only 4 gigabytes of storage is
addressable, namely the sixteen 256 megabyte segments

O 0 ~1 O U B =

US RE37,305 E

9

specified by the sixteen segment registers. This fact allows
the operating system to create multiple independent virtual
address spaces by loading appropriate values 1nto the seg-
ment registers. As a limiting case, 256 completely indepen-
dent 4 gigabyte address spaces could be created in this
manner, although it is more likely that some segments (such
as nucleus code) would be shared across multiple address
spaces.

Storage protection similar to that of the IBM System 370
1s provided on a 2K or 4K byte page basis. Store produce and

fetch protect are supported, with the protect key (equivalent
to the key 1n the S/370 PSW) specified independently for
cach 256 megabyte segment.

Support for a Persistent Storage class 1s provided by a set
of “lock bits” associated with each virtual page. The lock
bits effectively extend the storage protection granularity to
“lines” of storage (128-bytes for 2K pages, or 256-bytes for
4K pages) and allow the operating system to detect and
automatically journal changes to Persistent variables. Per-
sistent Storage class as used herein means storage which
may reside permanently on disk file storage.

The following terms are used throughout this document
and are defined here for clarity and convenience.

Byte Index: A number in the range 0 to 2047 (11 bits) for
2KB pages [or 0 to 4095 (12 bits) for 4KB pages] which
identifies a byte within a page or page frame. The Byte Index
is taken from the low-order 11 bits [12 bits] of the Effective
Address.

Change Bit: Abit associated with each Page Frame which
is set to “1” whenever a successful storage reference (write
only) is made to that Frame.

Effective Address: The 32-bit storage channel address
generated by devices on the storage channel. This can be an
address generated by the host CPU for instruction fetch, data
load, or data store. It can also be an address generated by an
I/0 device on the storage channel, such as a DMA address.

Line: A 128-bit portion of a page on a 128-byte boundary.
This 1s the amount of storage controlled by one lockbit.

Lockbit: One of a set of 16 bits associated with each page
of a Persistent Storage segment. Each lockbit 1s associated
with one Line of storage. The combination of Transaction
ID, the Write bit, and the Lockbit value for a Line determine
whether a storage access request 1s granted or denied 1n a
Persistent Storage segment.

Page: 2048 bytes [or 4096 bytes] of storage on a 2048-
byte [4096-byte | boundary. “Page” properly refers to virtual
storage while “page frame” refers to real storage, but his-
torically the term “page” has been used for both virtual and
real.

Page Frame: 2048 bytes [or 4096 bytes] of storage on a
2048-byte [4096-byte| boundary. Pages reside in Page

Frames or on external storage (i.e., disk).

Page Table: The combined hash anchor table inverted
page table entries in main storage that are used for transla-
fion of a virtual address to the corresponding real address
(also referred to herein as HAT/IPT).

Protection Key: A 1-bit value 1n each Segment Register
which indicates the level of authority of the currently-
executing process with respect to accessing the data i the
ogrven segment. This key 1s stmilar 1n function to the System/
3770 PSW Key, but 1s applied individually to each segment
rather than globally to all of addressable memory.

Real Address: The result of the translation operation: the
Real Page Index (10 to 13 bits) concatenated with the
low-order 11 bits [or 12 bits] of the Effective Address. (Real
Page Index || Byte Index.)

Real Page Index: Anumber in the range 0 to 8192 (13 bits)

which identifies a page frame 1n real storage. Some 1mple-

10

15

20

25

30

35

40

45

50

55

60

65

10

mentations may limit this value to as few as 10 bits, thereby
restricting the maximum amount of real storage supported to
2MB of 2KB pages.

Reference Bit: A bit associated with each Page Frame
which 1s set to “1” whenever a successful storage reference
(read or write) 1s made to that Frame.

Segment ID: A number in the range 0 to 4095 (12 bits)
which 1denfifies a 256MB virtual storage segment. The
Segment ID concatenated with the Virtual Page Index
uniquely specifies a page 1n the 40-bit virtual address space.

Storage Key: A 2-bit value i each TLB entry which
indicates the level of protection associated with one particu-
lar page. This key 1s similar 1n function to the Storage Key
associated with each System/370 memory page.

TLB: Translation Lookaside Buffer. The TLB 1is the
hardware containing the virtual-to-real mapping (in some
implementations the TLB may contain only a portion of this
mapping at any given time). In addition to the mapping each
TLB entry contains other information about its associated
page, such as Translation ID, Storage Key and Lockbits.

Transaction ID: A number in the range 0 to 255 (8 bits)
which 1dentifies the “owner” of the set of Lockbits currently
loaded 1n a TLLB entry.

Virtual Address: The 40-bit address value formed 1nside
the present address translation mechanism by concatenation
of the Segment ID with the low-order 28 bits of the Effective
Address. (That is, Segment ID || Virtual Page Index || Byte
Index.)

Virtual Page Index: A number 1n the range 0 to 131,072
(17 bits) for 2KB pages [or 0 to 65,536 (16 bits) for 4KB
pages| which identifies a page within a wvirtual storage
secgment. The Virtual Page Index 1s taken from bits 4-20
|4—-19] of the Effective Address.

|: Concatenation.

The hardware required to support the present address
translation mechanism 1s described below. Note that some
field widths may vary with different implementations.

The TLB consists of an arbitary number of entries, with
cach entry controlling the translation of the virtual address
of one page to 1its real address.

Details of the organization of the TLB are implementation
dependent. Two 1mplementations are possible. A content
addressable memory (CAM) which would be addressed by
Segment ID || Virtual Page Index and which would contain
one entry per real storage frame. The index (ordinal number)
of the CAM entry would be equal to the Real Page Index. A
set associative TLB which would be addressed by some
number of the low-order bits of the Virtual Page Index. The
Real Page Index would be contained within a field in the
TLB entry.

The only constraint on TLB shape 1s that a non-CAM
implementation must be at least two-way set associative.
Each TLB entry can be read and written individually from
the CPU using IOR and IOW i1nstructions. TLB enftries
contain the following fields:

The incoming 32-bit effective address (from the CPU or
an I/0 device) is first expanded to a 40-bit virtual address by
concatenating a scgment identifier to the effective address.
The wvirtual address i1s then presented to the translation
hardware for conversion to the equivalent real address.
Virtual addresses are translated to a real storage address by
the process described below.

The high-order four bits of the incoming effective address
are used to index into the segment table to select one of
sixteen segments. A 12-bit segment i1dentifier, a “special
segment” bit, and a key bit are obtained from the selected
secoment register. The 12-bit segment 1dentifier 1s used for

US RE37,305 E

11

formation of the virtual address. The special segment bit and
the key bit are used for access validation as described
subsequently. FIG. 2 shows the segment table format.

The 12-bit segment 1dentifier 1s concatenated with bits 4
through 31 of the incoming effective address to form a 40-bit
virtual address. The lower order 11 bits for 2K pages, or 12
bits for 4K pages, of the effective address are used as the
byte address for the selected real page. These bits are not
altered by the translation process. The remaining 29(28) bits
of the virtual address are then presented to the translation
hardware. FIG. 3 shows the generation of the virtual address
using the segment [inditifer] identifier and the storage effec-
five address.

The herein disclosed address translation system utilizes a
Translation Look-aside Buffer (TLLB) to contain translations
of the most recently used virtual addresses (32 in the present
embodiment). Hardware is used to automatically update
TLB enfires from main storage page tables as new virtual
addresses are presented to the TLBs for translation. A
simplified data-flow of the translation hardware 1s shown 1n
FIG. 4 and the format of each TLB 1s shown i FIG. §.

The system utilizes two two TLBs with 16 entries per
TLB (2-way set associative with 16 congruence classes).
The lower-order 4 bits of the virtual page index are used to
address both TLBs in parallel. The Address Tag entry in each
TLB 1s compared with the segment 1dentifier concatenated
with the remaining bits of the virtual page index (25 bits for
2K pages, or 24 bits for 4K pages). If either of the two
compares are equal and the TLB entry is valid (as indicated
by the [Valide] Valid Bit), the associated TLB contains the
translation information for the given virtual address.

The Real Page Number Field (RPN) in the selected
[TL.M] 7LB entry contains the number of the real page in
main storage that 1s mapped to the given virtual address. It
this 1s not a special segment, the access 1s checked for
storage protect violations using the Key Bits from the TLB
entry and the Key Bit from the Segment Register before the
access 15 allowed. If this 1s a special segment, as 1indicated
by the Special Bit 1n the segment register, lockbit processing,
1s pertormed before the access 1s allowed. The storage
protect facility 1s described subsequently as 1s special seg-
ment processing. If the access 1s permitted, main storage 1s
then accessed and the reference and change bits associated
with the page are updated. The setting of the reference and
change bits 1s also described subsequently.

If no match 1s obtained from the two TLB compares, the
address translation logic will attempt to reload the faulting
TLB entry from the page table entries 1n main storage. The
main storage page table 1s resident in real storage and
logically consists of two parts, a Hash Anchor Table (HAT)
and an Inverted Page Table (IPT). The HAT allows the
mapping of any virtual address, through a flashing function,
to any real page.

The Inverted Page Table (IPT) specifies the wvirtual
address (if any) which is associated with each real page
frame. It 1s organized as an array of entries indexed by Real
Page Number, with each entry containing its associated
Segment ID and Virtual Page Number.

Determining the Virtual Address for a given Real Address
1s trivial, since the IPT 1s indexed by Real Page Number. To
determine efficiently the Real Address for a given Virtual
Address requires a hashing function to map the Virtual
Address to an anchor point and a chain of entries to resolve
hash collisions as will be well understood by those skilled 1n
the art.

The Hash Anchor Table (HAT) is logically separate from

the IPT (though it is physically incorporated into the IPT for

10

15

20

25

30

35

40

45

50

55

60

65

12

hardware efficiency reasons). As shown in FIG. 6, a hash
function converts a Virtual Address into the index of an entry
in the HAT, which in turn points to the first of a chain of IPT
entries (real pages) with the same HAT index. A search of the
chain of IPT [entires] entries for a match on Virtual Address
will yield the IPT index (thus Real Address) for the desired
Virtual Address, or will terminate with no match found (page
not mapped). In the present embodiment there 1s one HAT
and IPT entry for each page of real storage.

Translation of a virtual to a real address 1s accomplished
by first exclusive or-ing selected low-order bits of the
clfective address with bits from the segment 1dentifier. This
“hashed” address 1s then used to index into the HAT. The
selected HAT entry 1s pointer to the beginning of a list of IPT
entries to be searched for the given virtual address. Entries
in the list of IPT entries to be searched are linked together
by a pointer 1n each entry that points to the next IPT entry
to be searched. A flag bit 1n the IPT entry 1s used to indicate
the end of the search chain. Note that since the hashing
function can produce the same HAT address for several
different effective addresses, there can be several virtual
address entries in the IPT chain to be [seached] searched.

For hardware efficiency reasons, the HAT and IPT are
combined 1nto one structure which can be addressed by one
indexing structure. There 1s one entry 1n the combined HAT
and IPT for each page of real storage. For example, 1
megabyte of real storage organized as 2K-byte pages
requires 512 entries and 512K bytes organized as 4K-pages
requires 128 entries. The format of the combined HAT and
IPT entries 1s shown in FIG. 7. The HAT/IPT contains 16
bytes for each entry and starts on an address that 1s a multiple
of the table size.

The first word 1n each entry contains the address tag
which 1s composed of the segment identifier concatenated
with (||) the virtual page index. Note that for 2K pages the
address tag 1s 29 bits, and for 4K pages 1t 1s 28 bits. If a page
size 4K is used, the 28-bit address tag is stored in bits [3
through 30]. Bit 2 is reserved. The first word also contains
a 2-bit key which 1s used for storage protection as described
later.

The second word contains the HAT pointer, IPT pointer,
and valid bits for each pointer. Use of the pointer is
described subsequently.

The third word contains the write protect, lock bits, and
TID for special segments. Use of these fields 1s described
subsequently also.

The fourth word 1s not used for TLB reloading and 1s
reserved for possible future use.

The HAT/IPT base address 1s a field in the Translation
Control Register (described subsequently), and is used for
computing the beginning address of the main storage page
table. The value contained in the HAI/IPT base address is
multiplied by the amount shown 1n Table 1 depending on
storage and page size to obtain the starting address of the
main storage page table. Also shown 1n Table 1, 1s the size
of the HAT/IPT for each storage size and the page size.

TABLE 1

HAT/IPT Base Address Multiplier

Storage HATY/IPT HAI/IPT Base
SIZE Page Size | Entries/ Address
Bytes Bytes Bytes] Multiplier

64K 2K 32/512 512
64K 4K 16/256 256
128K 2K 64/1K 1024

US RE37,305 E

13

TABLE I-continued

HAT/IPT Base Address Multiplier

Storage HAIL/IPT HAT/IPT Base
SIZE Page Size | Entries/ Address
Bytes Bytes Bytes] Multiplier
128K 4K 32/512 512
256K 2K 128/2K 2048
256K 4K 64/1K 1024
512K 2K 256/4K 4096
512K 4K 128/2K 2048
1M 2K 512/8K 8192
1M 4K 256/4K 4096
2 M 2K 1024/16K 16384
2 M 4K 512/8K 8192
4 M 2K 248/32K 32768
4 M 4K 1024/16K 16384
8 M 2K 4096/65K 65536
8 M 4K 2048/32K 32768
16 M 2K 8192/128K 131072
16 M 4K 4096/64K 65536

HAT ADDRESS GENERATION

As stated previously the HAT index 1s computed by
exclusive or-ing selected bits from the segment 1dentifier
with bits from the effective address. The number of bits used
1s chosen so that the resulting index will select one of n
entries 1n the HAT/IPT. This hashing operation 1s shown 1n
FIG. 6. The bits used for generation of the HAT index are

listed 1n Table II. The storage address of the selected HAT
entry is computed as: HAT/IPT Base Address+HAT Index ||
0100.

The selected HAT entry 1s accessed and the Empty Bit
checked to determine 1f the IPT search chain 1s empty. If the
Empty Bit 1s one, there 1s no page mapped to the given
virtual address and a “page fault” 1s reported as described
later. If the Empty Bit 1s zero, entries in the IPT search chain
exist and entries 1n the IPT are searched. The HAT Pointer
field of the selected HAT entry 1s then used as a pointer to
the start of the IPT search chain.

TABLE 11

HAT/IPT Index Generation Source Fields

Storage Page Segment Effective
Size Size Register Address [ndex
Bytes Bytes Bits Bits |# Bits]|
64K 2K 7:1] 16:20 5
64K 4K 8:1] 16:19 4
128K 2K 6:1] 15:20 6
128K 4K 7:11 15:19 5
256K 2K 5:11 14:20 7
256K 4K 6:1] 14:19 6
512K 2K 4:1] 13:20 8
512K 4K 5:11 13:19 7
1M 2K 3:1] 12:20 9
1M 4K 4:1] 12:19 8
2M 2K 2:1] 11:20 10
2M 4K 3:1] 11:19 9
4M 2K 1:11 10:20 11
4M 4K 2:1] 10:19 10
SM 2K 0:11 9:20 12
8M 4K 1:11 9:19 11
16M 2K 01 0:11 8:20 13
16M 4K 0:11 8:19 12

The HAT pointer previously accessed 1s used as the

starting index into the IPT. The storage address of the first
IPT entry 1s computed as: HAIT/IPT Base Address+HAT

Pointer || 0000.

10

15

20

25

30

35

40

45

50

55

60

65

14

An access 1s made to the first entry 1n the IPT and the
address tag compared to the given virtual addres. If the two
are equal, the real page assigned to the virtual address has
been located and the faulting TLLB entry can be reloaded.
Reloading of the TLB entry will be described subsequently.
If the two are not equal, the IPT search continues by
accessing the IPT pointer. The IPT pointer address 1s com-
puted as: HAT/IPT Base Address+HAT Pointer || 0100. The
IPT pointer 1s then accessed and the Last Bit checked to
determine if there are additional entries 1 the IPT search
chain. If the Last Bit 1s a zero, there are additional entries
and the search process continues. If the Last Bit 1s a one,
there are no additional IPT entries to be searched, and a
“page fault” 1s reported.

If there are additional IPT entries to be searched, the
address of the next IPT entry for searching 1s computed as:
HAT/IPT Base Address+IPT Pointer 0000. This address is
used to access the next entry 1n the IPT search chain and the
address tag contained 1n the selected entry 1s compared to the
orven virtual address. If the two are equal, the real page
assigned to the virtual address has been located and the
faulting TLB entry can be reloaded. If the two are not equal,
the search process continues by accessing the pointer to the
next entry to be searched. The address of the pointer to the
next entry 1s computed as: HAT/IPT Base Address+IPT
Pointer || 0100. This word is then accessed and the Last Bit
1s checked to determine if there are additional entries 1 the
IPT search chain. If the Last Bit 1s a one, there are no
additional IPT entries to be searched, and a “page fault” 1s
reported. If the Last Bit 1s a zero, there are additional entries
and the search process continues. The current IPT Pointer 1s
used to access subsequent entries using the previously
described process, until either the address tag in the IPT
entry 1s equal to the given virtual address, or no match 1s
found and the Last Bit indicates no further entries exist in the
scarch chain.

The following 1s a synopsis of the steps to be followed to
convert a Virtual Address to the index of its IPT entry (and
thus to its corresponding Real Address).

(1) Select the low-order 13 bits of the Virtual Page
Number. This will be bits 7-9 of the Effective Address if

4KB pages are used, or bits 820 if 2KB pages are used.

(2) Select the 12-bit contents of the Segment Register
specifled by bits 0-3 of the Effective Address. Concatenate
a ‘0’ bit on the left to form a 13-bit field.

(3) Exclusive-OR the two 13-bit fields from steps (1) and
(2) to form a 13-bit Hash Anchor Table entry number.

(4) Shift the value from step (3) left 4 bits. This forms the
byte offset of the start of the IPT entry which physically
contains the desired HAT entry.

(5) Compute the address of the HAT/IPT entry. This is
done by adding the result of step (4) to the starting address
of the IPT. If the IPT 1s constrained to start on an appropriate
power-of-two byte boundary, the “add” may be replaced by
OR or concatenation.

(6) Check for empty IPT chain. Investigate the “E”
(“empty”) bit in the HAT/IPT entry. If E=1 then the IPT

chain is empty (HAT pointer is invalid): the search termi-
nates unsuccesstully; the virtual page 1s not mapped.

(7) If the IPT chain is not empty, select the HAT Pointer

from the address HAT/IPT entry. This 13-bit value 1s the
index of the first IPT entry 1n the chain of entries having the
same hash result [step (3)].

(8) Shift the IPT index value left 4 bits. This forms the
byte offset of the start of an IPT entry which 1s to be checked
for a match on Virtual Address.

US RE37,305 E

15

(9) Compute the address of the IPT entry. This 1s done by
adding the result of step (8) to the starting address of the IPT.
If the IPT 1s constrained to start on an appropriate power-
of-two byte boundary, the “add” may be replaced by OR or
concatenation.

(10) Compare the Virtual Address match. Compare the
Segment ID || Virtual Page Number from the IPT entry (28
or 29 bits with the segment register contents specified by the
Effective Address [step (2)] concatenated with the Virtual
Page Number 1n the Effective Address.

(11) If a match, search has completed successfully. This
entry 1s the one corresponding to the desired Virtual
Address; 1ts index number 1s equal to the required Real Page
Number.

(12) If not a match, check for end-of-chain. Investigate
the “L” (“last™) bit in the IPT entry. If L=1 then this is the
last IPT entry in this chain: the search terminates unsuc-
cesstully; the virtual page 1s not mapped.

(13) If not end-of-chain, slect the IPT Pointer field from
the IPT entry. This 13-bit value 1s the index of the next IPT
entry to be investigated.

(14) Go to Step (8).

TLLB Reload

If an IPT entry 1s found with an address tag field equal to
the given virtual address, the faulting TLB entry 1s reloaded.
Reloading consists of selecting the least recently used TLB
entry for the congruence class of the faulting virtual address,
and loading the selected entry with the given virtual address
tag field, the corresponding real page number and the key
bits. If this 1s a special segment as indicated by the Special
Bit 1n the segment register, then the Write Bit, TID, and
L.LOCK bits are also reloaded.

Hardware 1s used to determine the least recently used TLB
entry 1in each congruence class. Since the low-order bits of
the virtual address determine the congruence class, the only
decision to be made 1s which TLB should have the selected
entry replaced. One of the two TLBs will then be selected
based on which TLB contained the entry in the given
congruence class that was least recently referenced.

Once the least recently used TLB entry for the given
congruence class has been determined, the selected TLB
entry can be reloaded. The Address Tag Field and Key bits
are reloaded from the IPT entry contained 1in main storage.
The address of this entry was previously computed in the
IPT search process. Since the IPT index computed 1n the
search process 1s equal to the real page number, this value 1s
used to reload the Real Page Number field 1n the TLB. If this
1s a special segment, as imdicated by the Special Bit i the
segment register, the TID and Lock Bits are also reloaded.
The TID and Lock Bits are reloaded by accessing the third

word 1n the selected IPT entry.
STORAGE ACCESS CONTROL

The present address translation mechanism provides two
access control facilities. The first facility applies to non-
special segments and provides read/write protection for each
page of real storage. The second facility applies only to
special segments and 1s used to support persistent data types.
These access control facilities apply only to translated
accesses. If a violation 1s detected by either facility, the
storage access 1s terminated and an exception reported as
described subsequently.

STORAGE PROTECTION PROCESSING

Storage protection processing applies only to non-special
segments. Once a correspondence between a virtual and a

10

15

20

25

30

35

40

45

50

55

60

65

16

real address has been determined by the TLB, the requested
access 1s veriflied to imsure proper access authority. This
facility allows each page to be marked as no access, read
only, or read/write.

Access control 1s a function of the one-bit protection key
in the selected Segment Register, the two-bit key in the TLB
entry, and whether the access 1s a load or store operation.
Access 1s controlled as shown 1n Table III.

TABLE 111

Protection Key Processing

Protect

Key in Key in Access Permitted
TLB Seg Reg Load Store
00 0 Yes Yes
1 No No

01 0 Yes Yes
1 Yes No

10 0 Yes Yes
1 Yes Yes

11 0 Yes No
1 Yes No

If the access 1s not allowed, then the translation 1s
terminated, and a Protection exception 1s reported to the

CPU.

LOCKBIT PROCESSING

Lockbit processing 1s applied only to special segments as
indicated by the Special bit 1n the selected segment register.
Special segments are used to support Persistent data. Lock-
bit processing allows the operating system to automatically
monitor changes to Persistent variables and to journal
changes, create shadow pages, and perform other processing
required for data base consistency. Lockbits also extend the
protection from the page size resolution (either 2K or
4K-bytes) provided by the storage protect facility to lines of
either 128 or 256 bytes. A resolution of 128 bytes 1s provided
for 2K pages, and 256 bytes for 4K bytes. The individual
line lockbit 1s selected by bits [21:24] of the effective
address for 2K pages, and bits [20:23] for 4K pages.

Access control 1s a function of the one-bit write key in the
selected TLB entry, the lockbit value of the selected line, the
TID compare, and whether the access 1s a load or store
operation. Access 1s controlled as shown 1n Table IV {fol-
lowing.

TABLE 1V

L.ockbit Processing

Lockbit
Current TID Write Value for
Compared to Bit Selected Access Permitted
TID in TLB in TLB Line Load Store
Equal 1 1 Yes Yes
0 Yes No
0 1 Yes No
0 No No
Not Equal — — No No

The Data storage exception 1s used to report a lockbit
violation. This violation may not represent an error; 1t may
be simply an indication that a newly modified line must be
processed by the operating system.

US RE37,305 E

17

Reference and change bits are provided for each page of
real storage. These bits are 1n arrays external to the present
address translation mechanism and are updated as required
for each storage access. The reference bit 1s set to one 1f the
corresponding real page 1s accessed for either a read or write
operation. The change bit 1s set if the corresponding page 1s
written.

Reference and change bits are accessible via I/O read and
write instructions (IOR and IOW) from the associated CPU.
Reference and change bits for each page of real storage start

at the I/0 address specified by the I/O Base Address Register
plus X*1000°. The I/O address of the reference and change

bits for a given page 1s given by the following expression.

[/0O Address = Address Specified by 1/0 Base

Address Register +
X'1001" +

Page Number

Each I/O address contains the reference and change bits
for one page of real storage. The format of the reference and
change bits 1s shown 1n FIG. 8.

Data transferred by accesses to reference and change bits

1s defined as follows:

Bits 0.29: Zeros.

Bit 30: Reference Bit. Set to one when the corresponding
real page 1s accessed for a read or write operation.

Bit 31: Change Bit. Set to one when the corresponding real
page 1S accessed for a write operation.

Reference and change bits are not imitialized by hardware.
They are 1nitialized and cleared by system software via [OW
instructions. Since reference and change bits can be set by
execution of a program to set or clear the reference and
change bits, a write to clear or set reference and change bits
followed by a read, will not necessarily read the same data
which was written.

CONTROL REGISTERS

There are a number of control registers used for defining
the storage conflguration, page table address, and I/O base
address. These registers are initialized (loaded) by system
software via I/O read and I/O write (IOR and IOW) instruc-
fions from the CPU. Their organization and format are
shown 1n FIGS. 9 through 18. These registers are accessible
only from supervisor state.

The I/O Base Address Register specifies which 64K block
of I/O addresses are assigned to the translation system. The
I/0 base address 1s equal to the value contained in the I/O
Base Address Register multiplied by 65536 (x°10000°). The
format of the I/O Base Address Register 1s shown in FIG. 9.

The 1/O Base Address Register 1s defined as follows:
Bits 0.23: Reserved.

Bits 24:31: I/O Base Address. This 8-bit value defines which
64K byte block of I/O addresses are assigned to the
translation system (i.e. these 8 bits are the most significant
8 bits) in the I/O address recognized by the translation
system.

The “RAM Specification Register” defines the RAM size,
RAM starting address, refresh rate, and [wheter] whether
parity checking or Error Correcting Code (ECC) 1s used.
ECC and parity checking features do not form a part of the
present mvention and, other than mentioning facilities pro-
vided for their handling, will not be described further. The
format of the RAM Specification Register 1s shown in FIG.

10.

10

15

20

25

30

35

40

45

50

55

60

65

138

The RAM Specification Register 1s defined as follows:

Bits 0:10: Reserved.

Bits 10:18: Refresh Rate. This 9-bit quantity determines the
refresh cycle rate. The refresh cycle rate 1s equal to the
value contained in bits [10:18] multiplied by the CPU
clock frequency. A Refresh Rate of zero disables refresh.
The refresh rate value can be computed by dividing the
required memory refresh rate by the CPU clock fre-
quency. For example, in a system with dynamic memory
the requires refreshing 128 rows every 2 msec., the
refresh interval per row 1s 128/2 msec., which 1s 15.6
usec. For a 200 nsec. CPU clock, the required refresh rate
count is 15.6 usec/200 nsec., which is 78 (X‘04E’). This
requires loading the Refresh Rate with X‘O4E’. The
Refresh Rate 1s initialized to X‘01A’ as part of the POR
sequence.

Bits 20:27: RAM Starting Address. This eight-bit field
defines the starting address of RAM for both translated
and non-translated accesses. For translated accesses,
RAM will be selected if the translated address 1s within
the range specified by the RAM Starting Address and
RAM Size. For non-translated accesses, the RAM Start-
ing Address 1s used 1n conjunction with RAM Size to
determine 1f an address 1s within the address range
specified for this storage controller. The starting address
of RAM 1s defined to be a binary multiple of the RAM

size, and 1s computed by multiplying the bits indicated 1n
Table V below by the value specified by RAM Size.

TABILE V
RAM Bits Multi-
Size 20 21 22 23 24 25 26 27 plier
64K X X X X X X X X 64K
128K X X X X X X X — 128K
256K X X X X X X — — 256K
512K X X X X X — — — 512K
1M X X X X — — — — 1M
2M X X X — — — — — 2 M
4 M X X — — — — — — 4 M
SM X — — — — — — — S M
16M — — — — — — — — 16 M

X = bit used 1n address calculation
— = bit not used in address calculation

For example, 1f a storage size of 256K 1s specified, bits
[20:25] specify which one of 64 256K-byte boundaries is the
RAM starting address. If bits [20:25] are 011101, the RAM
starting address 1s X‘00740000°. If a RAM si1ze of 1M byte
is specified, bits [20:23] specify which one of sixteen
1M-byte boundaries 1s the RAM starting address. If bits
[20:23] are 1001, the RAM starting address 1s X*00900000°.
Bits 28:31: RAM Size. This four-bit field defines the size of

the RAM attached to the present translation system. RAM

size 15 selectable from 64K bytes to 16M bytes as defined
in Table VI below.

TABLE VI

Bits 28:31 RAM Size

0000 No RAM
0001 thru 0111 64K
1000 128K
1001 256K
1010 512K
1011 1M
1100 2 M
1101 4 M

US RE37,305 E

19

TABLE VI-continued

Bits 28:31 RAM Size
1110 8 M
1111 16 M

ROS SPECIFICATION REGISTER

The ROS Specification Register defines the ROS starting,
address, ROS size, and whether parity 1s provided by ROS.
ROS can be accessed 1 both translated and non-translated
mode. The format of the ROS Specification Register is

shown 1n FIG. 11.

The ROS Specification Register 1s defined as follows:

Bits 0.19: Reserved.

Bits 20:27: ROS Starting Address. This eight-bit field
defines the starting address of ROS for both translated and
non-translated accesses. For translated accesses, ROS will
be selected if the translated address 1s within the range

specified by the ROS Starting Address and ROS Size. For
non-translated accesses, the ROS Starting Address 1s used

in conjunction with ROS Size to determine 1f an address
1s within the address range specified for this storage
controller. The starting address of ROS 1s defined to be a
binary multiple of the ROS size, and 1s computed by
multiplying the bits indicated in Table VII below by the

value specified by ROS Size.

TABLE VII

ROS Bits Multi-
Size 20 21 22 23 24 25 26 27 plier
64K X X X X X X X X 64K
128K X X X X X X X — 128K
256 M X X X X X X — — 256 M
512K X X X X X — — — 512K
1M X X X X — — — — 1M
M X X X — — — — — 2 M
4 M X X — — — — — — 4 M
SM X — — — — — — — S M
16 M — — — — — — — — 16 M

For example, 1if a ROS size of 64K 1s specified, bits
[20:27] specify which one of 256 64K-byte boundaries is the
ROS starting address. If bits [20:27] are 110010, the ROS
starting address 1s X*00C80000°.

Bits 28:31: ROS Size. This four bit field defines the size of

ROS attached to the translation system. ROS size 1s

selectable from 64K bytes to 64M bytes as defined in

Table VIII below. If ROS is not used, bits [28:31] are set
to zero.

TABLE VIII

Bits 28:31 ROS Size

0000 No ROS
0001 thru 0111 64K
1000 128K
1001 256K
1010 512K
1011 1M
1100 2 M
1101 4 M
1110 8 M
1111 16 M

TRANSLAITTON CONTROL REGISTER

The Translation Control Register (TCR) specifies if inter-
rupts are generated on successtul hardware TLB reload, it

10

15

20

25

30

35

40

45

50

55

60

65

20

parity 1s used on the reference and change array, the size of
cach page (either 2K or 4K-bytes), and the starting address
of the main storage page table (combined HAT and IPT).
The format of the Translation Control Register 1s shown 1n

FIG. 12.

The Translation Control Register 1s defined as follows:
Bits 0:20: Reserved.
Bit 21: Enable Interrupt on Successiul TLB Reload. This bat

1s used to enable reporting of successtul hardware TLB
reloading. When set to one, a successtul hardware TLB

reload will cause an exception reply to be generated, and
the TLB Reload bit (bit 22) in the SER to be set to one.

When Enable Interrupt On Successiul TLB Reload 1s set
to zero, successiul hardware reloading of TLB entries 1s
not reported. This facility can be used for software
performance measurement of the TLBs.

Bit 22: Reference and Change Array Parity Enable. This bat
1s used to indicate i1f parity 1s used on the external
reference and change array. If this bit 1s set to one, parity
1s used on the reference and change array.

Bit 23: Page Size. A value of zero 1s used for 2K-byte pages,
and a value of one 1s used for 4K-byte pages.

Bits 24:31: HAT/IPT Base Address. This 8-bit field 1s used

to specity the starting address of HAT/IPT entries 1n main

storage. The value contained 1n this field 1s multiplied by

a constant determined by the size of a real storage and the

page size, to determine the starting address of the HAT/

IPT entries. For a page size of 2K bytes, the base address

is specified by bits [24:31], and for 4K pages by bits

[25:31]. The constant for each storage size and page size

configuration 1s listed 1n Table 1.

The Storage Exception Register (SER) 1s used to report
errors 1n the translation process, and system errors, for a
storage access. Individual bits are provided to report each
error condition detected by the translation system. In the
case of multiple errors, each error 1s reported by the setting
of the appropriate bit. Bits which were set by previous errors
are not reset by subsequent errors.

The SER 1s initialized to zero by the POR sequence. Once
an exception 1s reported, system software 1s responsible for
clearing the SER after the exception has been processed. For
format of the Storage Exception Register 1s shown 1n FIG.
13.

The Storage Exception Register 1s defined as follows:
Bits 0.21: Reserved.

Bit 22: Successtul TLB Reload. This bit 1s set to one when
Interrupt On Successful TLB entry 1s successfully
reloaded.

Bit 23: Reference And Change Array Parity Error. This bit
1s set to one when a parity error 1s detected 1n the reference
and change array.

Bit 24: Write to ROS Attempted. This bit 1s set to one when
an attempt 1s made to write to an address contained in the
ROS address space.

Bit 25: IPT Specification Error. This bit 1s set to one when
an 1nfinite loop 1s detected in the IPT search chain. An
infinite loop can be created by a system software error
which incorrectly specifies IPT pointer values that result
in an IPT pointer pointing to a previous entry in the
current IPT search chain (an infinite loop).

Bit 26: External Device Exception. This bit 1s set to one
when an exception 1s caused by a device on the RSC other
than ROMP.

Bit 27: Multiple Exception. This bit 1s set to one when more
than one exception (IPT Specification Error, Page Fault,
Specification, Protection, or Data) has occurred before the
exception indication has been cleared in the Storage
Exception Register.

US RE37,305 E

21

This bit normally indicates that system software has failed
o process an exception. However, 1f an exception 1s caused

by a Load Multiple (LM) or Storage Multiple (STM)

mstruction, this bit can be set since the LM or STM

instruction will attempt to load or store all of the registers
specified 1n the instruction before the instruction 1s termi-
nated due to an exception.

Bit 28: Page Fault. This bit 1s set to one when translation 1s
terminated because no TLB entry or main storage page
table entry contains the translation for a virtual address.

Bit 29: Specification. This bit 1s set to one when translation
1s terminated because two TLB entries were found for the
same virtual address.

Bit 30: Protection. This bit 1s set to one when translation 1s
terminated because Storage Protection processing for a
non-special segment determines that a storage access 1s
not allowed.

Bit 31: Data. This bit 1s set to one when ftranslation 1s
terminated because Transaction ID/Lockbit processing for
a special segment determines that a storage access 1s not
allowed.

The Storage Exception Address Register (SEAR) contains
the effective storage address causing the exception reported
by the Storage Exception Register (SER) for data load and
store requests from the CPU. The SEAR 1is not loaded for
exceptions caused by ROMP [instructions] instruction
fetches, or by external device. The format of the Storage
Exception Address Register 1s shown 1 FIG. 14.

The Storage Exception Address Register 1s defined as
follows:

Bits 0.31: Storage Exception Address. The 32-bit effective
storage address causing the exception reported by the
SER. In the case of multiple errors (bit 27 of the SER set
to one), the address contained in the SEAR 1is the address
of the oldest exception.

The Translated Real Address Register (TRAR) contains
the real storage address determined by the Compute Real
Address operation. The Compute Real Address function 1s
used to determine 1f a virtual address 1s currently mapped in
real storage, and the corresponding real address 1f the virtual
address 1s mapped. The Compute Real Address function 1s
described subsequently. The format of the Translated Real
Address Register 1s shown 1 FIG. 185.

The Translated Real Address Register 1s defined as fol-
lows:

Bit O: Invalid Bit. This bit 1s set to one 1if the translation
failed, and 1s set to zero if the translation i1s successful.

Bits 1:7: Zeros. This seven-bit field 1s always zero.

Bits 8:31: Real Storage Address. This 24-bit field contains
the real storage address mapped to the given wvirtual
address 1f translation was successful. This field 1s set to
zero 1f translation failed.

The Transaction Identifier Register (TID) contains the
cight-bit 1dentifier of the task currently defined as the
“owner’ of special segments. If a segment 1s defined as a
specilal segment by the Special Bit 1n the selected segment
register, then lockbit processing as described [in Section 6.2}
earlier herein applies to the storage access. Lockbit pro-
cessing uses the value contained 1n the TID and compares 1t
against the TID entry in the TLB to determine 1if the storage
access 1s permitted. The format of the Transaction Identifier
Register 1s shown 1n FIG. 16.

The transaction Identifier Register 1s defined as follows:
Bits 0.23: Reserved.

Bits 24:31: Transaction Identifier. This eight-bit value speci-
fies the owner of special segments.

The sixteen Segment Registers provided contain the Seg-
ment Identifier, Special Bit, and Key Bit. The 12-bit Seg-

10

15

20

25

30

35

40

45

50

55

60

65

22

ment Identifier specifies one of 4096 256M-byte virtual
storage segments. The Special Bit indicates that this 1s a
special segment and lockbit processing applies. The Key Bit
indicates the level of access authority associated with the
currently executing task with respect to storage accesses
with the given segment. The format of each Segment Reg-
ister 1s shown 1n FIG. 17.

The content of each Segment Register 1s defined as

follows:
Bits 0.17: Reserved.

Bits 18:29: Segment Identifier. This 12-bit quantity specifies
one of 4096 256M-byte virtyal storage segments.

Bit 30: Special Bit. This bit 1s set to one for special
scgments, and set to zero for non-special segments.

Bit 31: Key Bit. This bit determines the level of access
authority of the currently executing task for accesses
within the given segment. Use of this bit for storage
access control 1s described 1n Section 6.1.

In the herein disclosed embodiment, each of the two TLBs
contain sixteen entries which provide the necessary trans-
lation and control information for the conversion of a virtual
address to a real address. In addition, each TLB entry
contains additional imformation used for storage access
control. Since the TLB contents are automatically updated
from the main storage page table by hardware, writing of the
TLB entry followed by a read will not necessarily read the
same data which was written. Also, altering TLLB entries can
cause unpredictable results since the correspondance
between virtual and real addresses will be destroyed. Access
to the TLB contents 1s provided for diagnostic purposes
only, and should only be made 1n non-translated mode. A
write to a TLB entry 1n non-translated mode with all other
translated accesses disabled, followed by a read, will read
the same data that was written.

Each TLB entry is logically a 66-bit quantity (excluding
reserved bits) [compared] composed of a 25-bit address [tab]
fag, a 13-bit real page number, a valid bit, a 2-bit key, a write
bit, an 8-bit transaction ID, and 16 [lockbit] lockbits. Each
TLB entry 1s partitioned into three ficlds which are indi-
vidually addressable. The [format] formats for each of the
TLB fields are described below.

The “TLB Address Tag” field contains the high-order 25
bits of the segment identifier || virtual page index for 2K
pages, and the high-order 24 bits for 4K pages. The format
of the Address Tag field for each TLB entry 1s shown 1n FIG.
18.1.

The content of each TLB Address Tab field 1s defined as
follows:

Bits 0:2: Reserved.

Bits 3:27: Address Tag. This field contains high-order 25 bits
of the segment identifier || virtual page index for 2K
pages, and the high-order 24 bits for 4K pages. For 4K
pages, the Address Tag is contained in bits [3:26].

Bits 28:31: Reserved.

The “TLB Real Page Number, Valid bit (V), and Key bits
(key)” field contains the real page number assigned to the
virtual address contained 1n the Address Tag Field of the
TLB entry. This field also 1includes a Valid Bit to indicate the
orven TLB entry contains valid information, and Key Bits
for the access authority required for a given page. The
format of this field for each TLB entry 1s shown in FIG. 18.2.

The content of the Real Page Number, Valid, and Key Bits
field 1s defined as follows:

Bits 0:15: Reserved.

Bits 16:28: Real Page Number. This 13-bit field speciiies
one of 8192 real pages. If less than 8192 pages are
implemented, only those low-order bits required to
address the number of implemented pages are used.

US RE37,305 E

23

Bit 29: Valid Bit. This bit 1s a one when the selected TLB
entry contains valid information. This bit 1s a zero if the

TLB entry contains invalid information.
Bits 30:31: Key Bits. This 2-bit field defines the access

authority for each page. Use of the Key bits [are] is
described [in Section 6.1] earlier herein.

The “TLB Write Bit, Translation ID, and Lockbits” field
contains the Write Bit, Transaction ID, and Lockbits
assigned to the virtual address contained 1n the Address Tag
field of the TLB entry, if the TLB entry 1s for a special

scgment. The format of this field for each TLB entry is
shown in FIG. 18.3.

The content of each TLB Write Bit, Transaction ID, and

Lockbit field 1s defined as follows:

Bits 0:6: Reserved.

Bit 7: Write Bit. This bit defines the access authority
assoclated with each page for special segments. Use of
this bit 1n lockbit processing 1s described subsequently.

Bits 8:14: Transaction Identifier. This 8-bit field defines the
task which currently owns the selected page within a
special segment. Use of these bits 1 lockbit processing
are described previously.

Bits 15:31: Lockbits. This 16-bit field defines the access
authority for each “line” within a 2K or 4K page for
special segments. A line 1s 128 bytes for 2K pages, and
256 bytes for 4K pages. Use of these bits in lockbit
processing [are] is described subsequently.

The present translation mechanism provides hardware
support for frequently required translation functions. This
hardware provides the ability to selectively invalidate TLB
entires, and to perform a “load real address” function similar
to that provided by the IBM System/370 family of comput-
€rs.

As changes to the virtual-to-real address mapping are
made, 1t 1s necessary for system solftware to synchronize the
contents of the TLBs with the contents of the page table in
main storage. Entries in both the TLBs and page frame tables
must be purged (invalidated) to ensure that obsolete map-
ping information as not used for a subsequent translation.

The present system provides three functions to assist in
the synchronization of TLB entries with the contents of the
page table 1n main storage. There functions can be used to
invalidate the entire TLB contents, or to invalidate only
selected TLB entries. These functions are invoked by I/0O
write instructions (IOW) directed to specific I/O addresses
within the 64K byte block of I/O addresses recognized by
the system. Address assignments for each of these functions
will be given to the system as required.

“Invalidate Entire TLB” function causes all TLB entries
to be 1nvalidated. This will force the TLB contents to be
updated from page tables in main storage for subsequent
translations.

An I/0 write to the address associated with this function
causes all TLB entries to be invalidated. The data transferred
by the I/O write instruction 1s not used.

An “Invalidate TLB [Entires] Entries in Specified Seg-
ment” function causes all TLB entries with the specified
segment 1dentifier to be invalidated. Subsequent translations
using this segment 1identifier will cause the TLB contents to
be updated from page tables 1n main storage.

An I/O write to the address associated with the function
causes TLB entries with the specified segment 1dentifier to
be invalidated. Bits [0:3] of the data transferred by the I/O
write 1nstruction are used to select the segment 1dentifier. All
TLB entries containing this segment identifier are invali-
dated. Subsequent translations with an effective address
within the 1nvalidated segment will cause the TLB contents
to be updated from the page table 1n main storage.

10

15

20

25

30

35

40

45

50

55

60

65

24

The “Invalidate TLB Entry for Specified Effective
Address” function causes the TLB entry with the specified
cifective address to be mvalidated.

Subsequent translations with an effective address within
the page containing the specified effective address will cause
the TLB contents to be updated from the page table 1n main
storage.

An 1I/0 write to the address associated with this function
causes the TLB entry with the specified effective address to
be invalidated. Bits [0:31] of the data transferred by the I/O
write 1nstruction are used as the effective address. The
normal translation process 1s applied using the segment
register contents contained 1n the present address translation
mechanism.

The “Compute Real Address” function 1s used by system
software to determine 1f a given virtual address 1s currently
mapped 1n real storage, and what real address 1s assigned to
the virtual address 1f 1t 1s mapped.

If a virtual address 1s not mapped, then 1ts use would cause
a page fault; this information may be important to the system
routines running with interrupts disabled. The result of the
virtual-to-real translation is required by system I/O routines,
since most I/0 operations are performed using real storage
addresses.

The compute Real Address function 1s invoked by an 1/0
write to the address associated with this function. Bits [0:31]
of the data transferred by the I/O write 1nstruction are used
as the effective address. This effective address 1s then used

for the normal translation process, except the results of
translation are loaded into the Translated Real Address
Register (FIG. 15) (TRAR), rather than being used to access
storage. The TRAR contains a bit indicating whether the
translation was successtul, and the corresponding real stor-
age address 1f the translation was successful. Normal storage
protection processing and lockbit processing are included 1n
the 1ndication of successtul translation. Results of the Com-

pute Real Address function are obtained by an I/O read of
the TRAR.

A 64K-byte block of I/O addresses are assigned to the
translation system. This 64K-byte block begins at an I/O

address speciiied by the I/O Base Address Register. The 1/0
base address 1s defined to be on 65k boundaries. The I/0O
address assignments listed 1n Table IX are displacements 1n
the specified 64K-byte block. The absolute I/O address is
equal to the I/O base address plus the displacement.

TABLE IX

Displacement Assignment

0000 thru O00F Segment Registers O through 15.

0010 [/O Base Address Register
0011 Storage Exception Register
0012 Storage Exception Address Register
0013 Translated Real Address Register
0014 Transaction ID Register
0015 Translation Control Register
0016 RAM Specification Register
0017 ROS Specification Register
0018 RAS Mode Diagnostic Register
0019 thru 001F Reserved
0020 thru 002F TLBO Address Tag Field for TLLBO entries O
through 15.
0030 thru 003F TLB1 Address Tag Field for TLBO entries 0
through 15.

0040 thru 004F TLBO Real Page Number, Valid Bit, and Key Bits for
TLBO entries O through 15.
TLB1 Real Page Number, Valid Bit, and Key Bits for
TLBO entries O through 15.

0050 thru 005F

US RE37,305 E

25

TABLE IX-continued

Displacement Assignment

0060 thru 006F TLBO Write Bit, Transaction ID, and Lockbits for
TLBO entries O through 15.
0070 thru 007F TLB1 Write Bit, Transaction ID, and Lockbits for
TLBO entries O through 15.

0080 [nvalidate Entire TLB.

0081 [nvalidate TLLB Entries in Specified Segment.

0082 [nvalidate TLLB Entry for Specified Effective Address.

0083 Load Real Address.
0084 thru OFFF Reserved.
1000 thru 2FFF Reference and Change bits for pages 0 through 8191.
3000 thru FFFF Reserved.

CONCLUSIONS

It will be apparent from the above description of the
preferred embodiment of the invention, that many changes
in the form and details of the system hardware and software
may readily be made by those skilled 1in the art without
departing from the spirit and scope of the present invention,
which 1ncludes the usual segmenting scheme and the pro-
vision of lockbits 1n both the TLBs and 1n the page frame
tables. These changes could obviously include, but are not
limited to changes 1n the memory size, register sizes and
control field designation, address size, page frame table
accessing methods and organization, and hash addressing
methods to name but a few.

Having thus described our invention, what we claim as
new, and desire to secure by Letters Patent is:

1. A method for converting virtual memory addresses
supplied by an associated central processing unit into real
memory addresses within a large [hierarachical] hierarchi-
cal memory system wherein the virtual memory address
space 1s significantly larger than the actual memory, which
method comprises;

the CPU generating a first virtual address comprising a
segment identifier field, a page offset field, and a byte
offset field,

utilizing the segment identifier field to access a set of
segment registers pointed to by the segment 1dentifier

field,

accessing the contents of the addressed segment register

and concatenatmg the contents of same with the page
oifset and byte offset fields of said first virtual address
to form a significantly larger second virtual address,
wherein portions of said second virtual address
obtained from said segment registers and the page
oifset portion of said first virtual address comprise a
virtual page address to be utilized as a search arcument
in a subsequent address translation procedure, which

procedure comprises

utilizing a subset of said virtual page address as the search
arcument 1n a set of high speed translation-look-aside
buffers,

comparing a complete virtual address stored at an

accessed location of said translation look-aside buifers
with the complete virtual address utilized as the search
arcument and accessing an associated real page address
in the main memory from the translation look-aside

buflers 1f the virtual address comparison 1s successiul,

in the event of an unsuccessful search for the wvirtual
address 1n said translation look-aside buffers, continu-
ing the search 1n a specified segment of storage 1n main
memory (page frame tables) including

10

15

20

25

30

35

40

45

50

55

60

65

26

hashing said virtual page address,

accessing the page frame tables 1n main memory as a

function [at] of said hashed address, determining if the
desired virtual address 1s at the hashed address and if

not

determining 1f the hashed address 1s the 1nitial member of
a linked list of virtual addresses, all of which would

produce the same hashed address,

continuing the search for the desired virtual address 1n
said linked address list 1n said page frame tables until
cither the desired complete virtual address 1s found or
it 1s determined that no such address 1s present,

accessing the real page address associated with said
complete virtual page address, i1f found, 1n said page
frame tables and utilizing said real page address as the
requested real memory address,

accessing additional access conirol bits stored in both
said translation look-aside buffers and in the page
frame tables associated with each translation entry for
every virtual to real address translation stored therein,

accessing a plurality of lock bits stored in either said
translation look-aside buffers or in the page frame
lables associated with each successfully translated
page, said plurality of lock bits comprising a bit for
each line within an associated real page and ufilizing
said lock bits to control copy back and journaling
operations when the current version of data stored in
memory 1s accessed by the CPU.

[2. An address translation method as set forth in claim 1,

including

accessing additional access control bits stored 1n both said

translation look-aside buil

ers and in the page frame
tables associated with each translation entry for every
virtual to real address translation stored therein,

accessing a plurality of lock bits stored 1n either said
translation look-aside buffers or in the page frame
tables associated with each successtully translated
page, said plurality of lock bits comprising a bit for
cach line within an associated real page and utilizing
said lock bits to control copy back and journaling
operations when the current version of data stored in
memory is accessed by the CPU]

3. In a data processing system, including a CPU and a
large hierarchical memory, a method for translating virtual
memory addresses into real memory [address] addresses
which comprises:

the CPU generating a first virtual address comprising a
segment 1dentifier portion, a page oifset portion and a
byte offset portion (within the page),

using the segment 1dentifier to access one of a plurality of
segment registers pointed to by the segment 1dentifier,
cach of which contains a second virtual address point-
ing to a large virtual block of data,

combining said second virtual address with the page offset
and byte off:

set portions of said first virtual address to
form a third virtual address wherein said third virtual
address 1s substantially larger than said first virtual
address,

utilizing said second virtual address and said page offset
portion of said first virtual address as a virtual page
scarch argcument in a translation look-aside bufler
(TLB) which comprises a very high speed searching
mechanism for searching for a limited number of
virtual addresses and for accessing real addresses
stored therein which are translations of each related
virtual address,

US RE37,305 E

27

accessing said TLBs utilizing a subset of the search
arcument as an address,

comparing the virtual page search arcument with the
contents of a selected field of the accessed TLB,

upon a successful comparison, utilizing a real page
address stored therein as the translation of said virtual
address and,

accessing additional fields at the accessed location in said
TLB for accessing and data persistence control infor-
mation relevant to the data stored at the translated real
page address, said accessing and data persistence
control information at the accessed location in said
T'LB comprising a plurality of bits each relevant to the
data stored in a respective one of a plurality of regions
within the memory space corresponding to said
accessed location,

and 1f unsuccessfiul 1nitiating a search 1n the page frame

tables 1n main memory,

which contain the real [address] addresses corresponding,

to all virtual addresses utilized 1n the memory system at
any point 1n time,
generating an address 1n the page frame tables as a
function of the virtual page search argument,

accessing said page frame table at said generated address
which address 1dentifies the 1nitial member of a linked
list of entries and comparing said virtual page search
arcument with a virtual page identifier stored at each
entry storage location 1n said page frame tables until a
successiul comparison occurs.

4. An address translation method as set forth 1n claim 3
including: retrieving the real page address, stored mm and
associated with a successful search, from the page frame
tables together with the access and data persistence control
information stored therewith and transferring said transla-
fion and control information to an appropriate storage loca-
fion 1n the TLBs.

5. An address translation method as set forth in claim 4
wherein said step of generating an address 1n the page frame
tables 1ncludes

generating a hash function of the virtual page search
arcument and

utilizing said hash function as at least a portion of the
address to a particular subset of said page frame tables.
[6. In a high speed electronic data processing system
including a central processing unit (CPU) and a large
hierarchical memory system provided with a virtual address-
ing space significantly larger than the actual memory, the
improvement which comprises an address translation
mechanism for converting virtual addresses into real
memory addresses mcluding,

means for generating a first virtual address which com-
prises a segment 1dentifier field, a page offset field and
a byte oifset field,

a plurality of segment registers and means for loading
same under program control with a second wvirtual
address 1dentifying a large virtual block of data,

means for accessing one of said segments registers speci-
fied by said segment 1dentifier field of said first virtual
address,

means for concatenating the virtual address from the

speciflied segment register with the page offset and byte
oifset fields of said first virtual address to form a large
virtual effective address comprising an effective page
address portion and a byte offset portion,

a high speed translation look-aside buffer system {for
storing address translation data for most recently used
virtual accesses to the memory hierarchy,

5

10

15

20

25

30

35

40

45

50

55

60

65

23

means for utilizing at least a portion of said effective page
address to access the translation look-aside buifer sys-
tem to determine 1s said effective page address has been
previously translated and, if so,

means for accessing the real page address from the
translation look-aside builer as the result of the trans-
lation process.]

7. [an address translation mechanism as set forth in claim
6] In a high speed electronic data processing system includ-
ing a central processing unit (CPU) and a large hierarchical
memory system provided with a virtual addressing space
significantly larger than the actual memory, the improve-
ment which comprises an address translation mechanism for
converting virtual addresses into real memory addresses
including,

means for generating a first virtual address which com-
prises a segment tdentifier field, a page offset field and

a byte offset field,

a plurality of segment registers and means for loading
same under program control with a second virtual
address identifving a large virtual block of data,

means for accessing one of said segment registers speci-
fied by said segment identifier field of said first virtual
address,

means for concatenating the virtual address from the
specified segment register with the page offset and byte
offset fields of said first virtual address to form a large
virtual effective address comprising an effective page
address portion and a byte offset portion,

a high speed translation look-aside bujffer system for
storing address translation data for most recently used
virtual accesses to the memory hierarchy,

means for uiilizing at least a portion of said effective page
address to access the translation look-aside buffer
system to determine if said effective page address has
been previously translated and, if so,

means for accessing the real page address from the

translation look-aside buffer as the result of the trans-
lation process,

wherein said translation look-aside bufler system includes

a plurality of storage locations each of which includes
means for storing[;]: the complete virtual page address
for a particular translation, the complete real page
address, and memory access and data persistence con-
trol data relevant to the particular real page of data, said
memory access and data persistence control data in
each storage location comprising a plurality of bits
each relevant to a respective portion of saitd particular
real page of data,

means for comparing the complete effective page address
which caused access of a particular storage location of
the translation look-aside buffer with the virtual page
address stored therein, and

means for continuing the search for a particular trans-
lation in [the] page frame tables in main memory which
contain all of the virtual to real address translations 1n
the memory hierarchy if the search 1n the translation
look-aside buffer system was unsuccesstul.
8. An address translation mechanism as set forth 1n claim
7 1including means for accessing the translation look-aside
buffer system at an address computed from a subset of said
cliective page address whereby it 1s possible for many
cliective addresses to cause access of the same storage
locations 1n said translation look-aside buffer.
9. An address translation mechanism as set forth 1in claim
7 wherein the means for continuing the search for a par-
ticular translation i1n the page frame tables includes

US RE37,305 E

29

means for hashing the etffective page address to obtain an
access address 1nto the page frame tables,

means for linking together all entries 1n the page frame
tables which represent the virtual to real address trans-
lations of all those virtual page addresses which would
hash to the same address,

means for continuing the search for a particular effective
page address 1n the linked list until either the address 1s
found or 1t 1s determined not to be present, and

means for transferring predetermined data relating to
translation and memory control functions from the page
frame tables to the appropriate location in the transla-
tion look-aside [buffers] buffer concurrently with a
successiul translation which required using the page
frame tables.
10. An address translation mechanism as set forth 1n claim
O wherein said plurality of bits included in said memory
access and data persistence control data in each storage
location of said translation look-aside buffer comprises N
lock bits, where N is the number of lines in a page of data
stored in said memory system, said address translation
mechanism further 1ncluding

means in said [translation look-aside buffers and the] page
frame tables for storing [N-lock] N lock bits in each
storage location [wherein N is the number of lines in a
page of data stored in said memory system],

means for accessing said lock bits in said translation
look-aside buffer and said page frame tables under
program control wherever an address translation opera-
tion occurs and

means for utilizing said lock bits to control copy back and
journaling operations when the lock bits indicate that
the particular lines(s) of data must be retained in an
original form for at least a predetermined period.
11. A high speed translation look-aside buffer (TLB)
mechanism for use with a virtual to real address translation
system comprising,

as many addressable storage locations therein as there are
virtual to real address translation data entities, means 1n
cach storage location for storing;

a virtual address tag for comparison with a virtual address
to be translated,

the real address 1n memory of the data referenced by the
above virtual address, access control and identifier data
relating to the data, stored at said real address in
MmMemory,

a series of “N” lock bits for use 1n insuring data persis-
tence for a particular memory page wherein “N” 1s the
number of lines in the page, [pl] means for accessing
said “N” lock bits stored 1n said translation look-aside
buffers, said plurality of lock bits comprising a bit for
cach line within an associated real page and means for
setting said lock bits to control copy back and journal-
ing operations when the current version of data stored
in memory 1s accessed by the CPU and

means operable under program control for accessing or
altering data stored in storage [location] locations in
said TLLB based on a subset of the virtual address to be
translated.

12. A translation look-aside bufler as set forth 1n claim 11
including means for processing the lock bits accompanying
any real page of data which 1s the subject of a successtul
translation operation to assure that copies of lines of data in
the page designated by the lock bits are retained 1n storage
in unaltered form.

I

10

15

20

25

30

35

40

45

50

55

60

65

30

13. In a high speed electronic data processing system
including a central processing unit (CPU) and a large
hierarchical memory system provided with a virtual address-
ing space significantly larger than the actual memory, the
improvement which comprises an address translation
mechanism for converting virtual addresses into real
memory addresses including,

means for generating a first virtual address which com-
prises a segment tdentifier field, a page offset field and

a byte offset field,

a plurality of segment registers and means for loading
same under program control with a second virtual
address tdentifving a large virtual block of data,

means for accessing one of said segments registers speci-
fied by said segment identifier field of said first virtual
address,

means for concatenating the virtual address from the
specified segment register with the page offset and byte
offset fields of said first virtual address to form a large
virtual effective address comprising an effective page
address portion and a byte offset portion,

a high speed translation look-aside bujffer system for
storing address translation data for most recently used
virtual accesses to the memory hierarchy,

means for uiilizing at least a portion of said effective page
address to access the translation look-aside buffer
system to determine if said effective page address has
been previously translated and, if so,

means for accessing the real page address from the

translation look-aside buffer as the result of the trans-
lation process,

wherein said translation look-aside buffer system includes

a plurality of storage locations each of which includes
means for storing; the complete virtual page address
for a particular translation, the complete real page
address, and memory access and data persisience
control data relevant to the particular real page of
data,

means for comparing the complete effective page address
which caused access of a particular storage location of
the translation look-aside buffer with the virtual page
address stored therein, and

in the page from tables in main memory which contain all
of the virtual to read address translations in the
memory hierarchy if the search in the translation
look-astde buffer system was unsuccessjul,
wherein the means for continuing the search for a particular
translation in the page frame tables includes

means for hashing the effective page address to obtain an
access address into the page frame tables,

means for linking together all entries in the page frame
tables which represent the virtual to real address trans-
lation of all those virtual page addresses which would
hash to the same address,

means for continuing the search for a particular effective
page address in the linked list uniil either the address
is found or it is determined not to be present, and

means for transferring predetermined data relating to
translation and memory conirol functions from the
page frame tables to the appropriate location in the
translation look-astide buffers concurrently with a suc-
cessful translation which required using the page frame
fables,
said address translation mechanism further including

means n said translation look-aside buffers and the page
frame tables for storing N lock bits in each storage

US RE37,305 E

31

location wherein N is the number of lines in a page of

data stored in said memory system,

means for accessing said lock bits under program control
wherever an address translation operation occurs and

means for utilizing said lock bits to control copy back and
journaling operations when the lock bits indicate that
the particular line(s) of data must be retained in an
original form for at least a predetermined period.

14. A translation look-aside buffer (I'LB) mechanism for
use with a virtual to real address translation system, said
TLB including a plurality of addressable storage locations
each corresponding to a virtual to real address translation
data entity, satd mechanism further comprising:

means n each storage location for storing: a virtual
address tag for comparison with a virtual address to be
translated; the real address in memory of the data
referenced by the above virtual address; access control
and identifier data relating to the data stored at said
real address in memory; a series of “N” lock bits for
use in insuring data persistence for a particular
memory page wherein “N 7 is the number of lines in the
pageﬁ

means for accessing said “N” lock bits stored in said
translation look-aside buffer, said plurality of lock bits
comprising a bits for each line within an associated
real page,

means for setting said lock bits to control copy back and
journaling operations when the current version of data
stored tn memory is accessed by the CPU, and

means operable under program conirol for accessing or
altering data stored in storage locations in said TLB
based on a subset of the virtual address to be trans-
lated.

15. A method of translating a particular virtual address,
designating a location in a virtual memory space including
first and second types of segments, to a real address desig-
nating a location in real memory, said method including the
steps of accessing a translation table with an address
derived from said particular virtual address and retrieving
at least a portion of said real address from the accessed
location of said translation table, said method further com-
prising the steps of.

accessing at least a first control bit for determining access

control for performing a particular operation in seg-
ments of said first type, and

accessing at least a second conitrol bit for determining
access control for performing said pariicular operation
in segments of said second type,

wherein said first control bit is not used for access control

for performing said particular operation in segments of

said second type and said second control bit is not used
for access control for performing said particular
operation in segments of said first type.

16. A method of translating as set forth in claim 15,
wherein said first control bit is stored outside of said
translation table.

17. A method of translating as set forth in claim 15,
wherein said second control bit is stored in said translation
table.

18. A method of translating a particular virtual address,
designating a location in a virtual memory space including
first and second types of segments, to a real address desig-
nating a location in real memory, said method including the
steps of accessing a translation table with an address
derived from said particular virtual address and retrieving
at least a portion of said real address from the accessed

10

15

20

25

30

35

40

45

50

55

60

65

32

location of said translation table, said method further com-
prising the steps of.
accessing at least a first control bit for determining access
control for performing a particular operation in seg-
ments of said first type, and

accessing at least a second control bit for determining
access control for performing said particular operation
in segments of said second type, wherein said second
control bit is not used for access control for performing
said particular operation in segmentis of said first type,

wherein said first control bit is stored outside of said

translation table and said step of accessing at least a

first control bit comprises accessing both said first

control bit and at least a third control bit different from

said second control bit and stored in said translation
fable.

19. A method of translating a particular virtual address,

designating a location in a virtual memory space including

first and second types of segments, to a real address desig-

nating a location in real memory, said method including the
steps of accessing a translation table with an address
derived from said particular virtual address and retrieving
at least a portion of said real address from the accessed
location of said translation table, said method further com-
prising the steps of:
accessing at least a first control bit for determining access
control for performing a particular operation in seg-
ments of said first type, and

accessing at least a second control bit for determining
access control for performing said particular operation
in segments of said second type, wherein said second
control bit is not used for access control for performing
said particular operation in segments of said first type,

satd method further including the step of converting a first
virtual address to said particular virtual address by
accessing a segment table with a segment table address
dertved from said first virtual address to obtain a
portion of said particular virtual address, and wherein
said first control bit is stored in said segment table.

20. A method of translafing as set forth in claim 15,
wherein said translation table stores a plurality of bits
designating a transaction, and wherein said step of access-
ing said second control bit comprises accessing both said
second control bit and said plurality of bits for determining
access control for segments of said second type.

21. A method of translating as set forth in claim 20,
wherein said plurality of bits designating a transaction
comprises at least eight bits.

22. A method of translating a particular virtual address,
designating a location in a virtual memory space including
first and second types of segments, to a real address desig-
nating a location in real memory, said method including the
steps of accessing a rtranslation table with an address
derived from said particular virtual address and retrieving
at least a portion of said real address from the accessed
location of said translation table, said method further com-
prising the steps of:

accessing at least a first control bit for determining access

control for performing a particular operation in seg-
ments of said first type, and

accessing at least a second control bit for determining
access control for performing said particular operation
in segments of said second type, wherein said second
control bit 1s not used for access control for performing
said particular operation in segments of said first type,

wherein each addressed location in said translation table
corresponds to a region in main memory having a

US RE37,305 E

33

plurality of subregions therein, and wherein each
addressed location of said translation table stores a
plurality of bits each corresponding to a respective one
of said subregions.

23. A method of translating as set forth in claim 22,
wherein each said region comprises a page of real memory
and each said subregion comprises a line within said page.

24. A method of translating as set forth in claim 15,
wherein said first type of segment stores non-persistent data
and said second type stores persistent data.

25. A method of translating as set forth in claim 15,
wherein said translation table comprises a buffer for storing
address translation information for a less than entire portion
of the data currently stored in real memory.

20. A method of translating as set forth in claim 15,
wherein said translation table comprises a page frame table
for storing address translation information for all data
currently stored in real memory.

27. A method of translating a particular virtual address
designating a location in a virtual memory space to a real
address designating a location in real memory, said method
including the steps of accessing a translation table with an
address derived from said particular virtual address and
retrieving at least a portion of said real address from the
addressed location of said translation table, each location of
said translation table corresponding to a region of said real
memory having a plurality of subregions, said method
further comprising the step of accessing at said addressed
location of said translation table a plurality of lock bits,
each lock bit being associated with a respective different one
of said subregions.

28. A method of translating as set forth in claim 27,
wherein said translation table stores a plurality of transac-
tion bits designating a transaction, said method further
comprising the step of accessing said transaction bits at said
addressed location.

29. A method of translating as set forth n claim 28,
wherein at least eight transaction bits are stored at each
addressed location of said translation table.

30. A method of translating as set forth in claim 27,
wherein each said region comprises a page of real memory
and each said subregion comprises a line within said page.

31. A method of translating as set forth in claim 27,
wherein said translation table comprises a buffer for storing
address translation information for a less than entire portion
of the data currently stored in real memory.

32. A method of translating as set forth in claim 27,
wherein said translation table comprises a page frame table
for storing address translation information for all data
currently stored in real memory.

33. A method of controlling access to locations in real
memory, in a system including converting means for con-
verting a particular virtual address, designating a location
in a virtual memory space including first and second types
of segments, to a real address designating a location in real
memory, satd converting means including a translation table
and means for accessing said translation table with an
address derived from said virtual address and for retrieving
at least a portion of said real address from the accessed
location of said translation table, said method comprising
the steps of:

controlling access to segments of said first type on the
basis of at least a first conirol bit when performing a
particular operation in segments of said first type; and

controlling access to segments of said second type on the
basis of at least a second control bit which is different
from said first control bit,

5

10

15

20

25

30

35

40

45

50

55

60

65

34

wherein said first control bit is not used for access control
for segments of said second type when performing said
particular operation in segments of said second type,
and said second conirol bit 1s not used for access
control for segments of said first type when performing
said particular operation in segments of said first type.

34. A method of controlling access as set forth in claim 33,
wherein said first control bit is stored outside of said
translation table.

35. A method of controlling access as set forth in claim 34,
wherein said second control bit is stored in said translation
table.

36. A method of controlling access to locations in real
memory, in a system including converting means for con-
verfing a particular virtual address, designating a location
in a virtual memory space including first and second types
of segments, 1o a real address designating a location in real
memory, said converting means including a translation table
and means for accessing said translation table with an
address derived from said virtual address and for retrieving
at least a portion of said real address from the accessed
location of said translation table, said method comprising
the steps of:

controlling access to segmenis of said first type on the
basis of at least a first conirol bit when performing a
particular operation in segments of said first type; and

controlling access to segments of said second type on the
basis of at least a second control bit which is different
from said first control bit and which is not used for
access control for segments of said first type, when

performing said particular operation in segments of
said second type,

wherein said first control bit is stored outside said trans-
lation table and said step of controlling access to
segments of said first type comprises controlling access
on the basis of both said first conitrol bit and at least a
third control bit different from said second bit and
stored in said translation table.

37. A method of controlling access to locations in real
memory, in a system including converting means for con-
verfing a particular virtual address, designating a location
in a virtual memory space including first and second types
of segments, 1o a real address designating a location in real
memory, satd converting means including a translation table
and means for accessing said translation table with an
address derived from said virtual address and for retrieving
at least a portion of said real address from the accessed
location of said translation table, said method comprising
the steps of:

controlling access to segments of said first type on the
basis of at least a first conitrol bit when performing a
pariticular operation in segments of said first type; and

controlling access to segments of said second type on the
basis of at least a second control bit which is different
from said first control bit and which is not used for
access control for segmenits of said first type, when
performing said particular operation in segments of
said second type,

wherein said system further includes virtual address con-
version means for converting a first virtual address to
said particular virtual address, said virtual address
conversion means wmcluding a segment table accessed
by a segment table address derived from said first
virtual address to obtain a portion of said particular
virtual address, and wherein said first control bit is
stored in said segment table.

US RE37,305 E

35

38. A method of controlling access as set forth in claim 33,
wherein said translation table stores a plurality of bits
designating a transaction, and wherein said step of control-
ling access to segments of said second type comprises
controlling access to segmenis of said second type on the
basis of said plurality of bits.

39. A method of controlling access as set forth in claim 38,
wherein said plurality of bits designating a transaction
comprises at least eight bits.

40. A method of controlling access to locations in real
memory, 1n a system including converting means for con-
verting a particular virtual address, designating a location
in a virtual memory space including first and second types
of segments, to a real address designating a location in real
memory, said converting means including a translation table
and means for accessing said translation ftable with an
address derived from said virtual address and for retrieving
at least a portion of said real address from the accessed
location of said translation table, said method comprising
the steps of:

controlling access to segments of said first type on the
basis of at least a first control bit when performing a
particular operation in segments of said first type; and

controlling access to segments of said second type on the
basis of at least a second control bit which is different
from said first control bit and which is not used for
access control for segments of said first type, when
performing said particular operation in segments of
said second type,

wherein each addressed location in said translation table
corresponds to a region in main memory having a
plurality of subregions therein, and wherein each
addressed location of said translation table stores a
plurality of bits each corresponding to a respective one
of said subregions, said step of controlling access to
segments of said second type comprises controlling
access to each subregion on the basis of the bit corre-
sponding to said each subregion.

41. A method of controlling access as set forth in claim 40,
wherein each said region comprises a page of real memory
and each said subregion comprises a line within said page.

42. A method of controlling access as set forth in claim 33,
wherein said first type of segment stores non-persistent data
and said second type stores persistent data.

43. A method of controlling access as set forth in claim 33,
wherein said translation table comprises a buffer for storing
address translation information for a less than entire portion
of the data currently stored in real memory.

44. A method of controlling access as set forth in claim 33,
wherein said translation table comprises a page from table
for storing address translation information for all data
currently stored in real memory.

45. A method of controlling access to locations in real
memory, In a system including converting means for con-
verting a particular virtual address designating a location in
a virtual memory space to a real address designating a
location in real memory, said converting means including a
translation table and means for accessing said translation
table with an address derived from said virtual address and
for retrieving at least a portion of said real address from the
accessed location of said translation table, each location of
said translation table corresponding to a region of said real
memory having a plurality of subregions, said method
comprising the steps of:

accessing at said addressed location of said translation

table a plurality of lock bits each associated with a
respective different one of said subregions, and

10

15

20

25

30

35

40

45

50

55

60

65

36

controlling access to each subregion on the basis of its
respective lock bit.

46. A method of controlling access as set forth in claim 45,
wherein said translation table stores a plurality of transac-
fion bits designating a transaction, and wherein said step of
controlling access comprises conirolling access on the basis
also of said translation bits.

47. A method of controlling access as set forth in claim 406,
wherein said plurality of bits designating a transaction
comprises at least eight bits.

48. A method of controlling access as set forth in claim 45,
wherein each said region comprises a page of real memory
and each said subregion comprises a line within said page.

49. A method of controlling access as set forth in claim 45,
wherein said translation table comprises a buffer for storing
address translation information for a less than entire portion
of the data currently stored in real memory.

50. A method of controlling access as set forth in claim 45,
wherein said translation table comprises a page frame table
for storing address translation information for all data
currently stored in real memory.

51. An apparatus for translating a particular virtual
address, designaiing a location in a virtual memory space
including first and second types of segments, to a real
address designating a location in real memory, said appa-
ratus comprising.

a translation table having a plurality of addressable
locations for storing address translation information
including at least one first control bit for determining
access control to segments of said first type when
performing a particular operation in said segments of
said first type;

storing means for storing at least one second control bit
outside of said translation table for determining access
control for segments of said second type and which is
not used in determining access control for segments of
said first type, when performing said particular opera-
fion in said segments of said second type; and

means for accessing said storing means during an address
translation process, and for accessing said translation
table during said address translation process with an
address derived from said particular virtual address
and for retrieving at least a portion of said real address
from the accessed location of said translation table.

52. A translating apparatus as set forth in claim 51,
further wherein said translation table stores at least one-
third control bit for determining access to segments of said
second type in conjunction with said second control bit.

53. A translating apparatus as set forth in claim 51,
further including converting means for converting a first
virtual address to said particular virtual address, said
converting means including a segment table addressable by
an address derived from said first virtual address to obtain
a portion of said particular virtual address, and wherein
said segment table comprises said storing means and said
second control bit is stored in said segment table.

54. A translating apparatus as set forth in claim 51,
wherein said translation table stores at each location a
plurality of translation bits designating a transaction.

55. A translating apparaius as set forth in claim 54,
wherein said plurality of bits designating a transaction
comprises at least eight bits.

56. A translating apparatus as set forth in claim 51,
wherein each addressed location in said translation table
corresponds to a region n main memory having a plurality
of subregions therein, and wherein each addressed location
of said translation table stores a plurality of bits each
corresponding to a respective one of said subregions.

US RE37,305 E

37

57. A translating apparatus as set forth in claim 50,
wherein each said region comprises a page of real memory
and each said subregion comprises a line within said page.

58. A translating apparatus as set forth in claim 51,
wherein said first type of segment stores persistent data and
said second type stores non-persistent data.

59. A translating apparatus as set forth in claim 51,
wherein said translation table comprises a buffer for storing
address translation information for a less than entire portion
of the data currently stored in real memory.

60. A translating apparatus as set forth in claim 51,
wherein said translation table comprises a page frame table
for storing address translation information for all data
currently stored in real memory.

01. An apparatus for translating a particular virtual
address designating a location in a virtual memory space 1o
a real address designating a location in real memory, said
apparatus comprising.

a translation table having a plurality of addressable
locations each for storing address translation
information, each location of said translation table
corresponding to a region of said real memory having
a plurality of subregions and each translation table
location storing a plurality of lock bits each associated
with a respective different one of said subregions; and

means for accessing said translation table with an

address derived from said particular virtual address.

62. A translating apparatus as set forth in claim 01,
wherein each location of said translation table stores a
plurality of transaction bits designating a transaction.

63. A translating apparatus as set forth in claim 62,
wherein at least eight transaction bits are stored at each
addressed location of said translation table.

64. A translating apparatus as set forth in claim 61,
wherein each said region comprises a page of real memory
and each said subregion comprises a line within said page.

10

15

20

25

30

35

33

65. A translating apparatus as set forth in claim 61,
wherein said translation table comprises a buffer for storing
address translation information for a less than entire portion
of the data currently stored in real memory.

00. A translating apparatus as set forth in claim 01,
wherein said translation table comprises a page frame table
for storing address translation information for all data
currently stored in real memory.

67. An apparatus for controlling access to locations in
real memory, in a system including converting means for
converting a particular virtual address, designating location
in a virtual memory space including first and second types
of segments, to a real address designating a location in real
memory, satd converting means including a translation table
and means for accessing said translation table with an
address derived from said virtual address and for retrieving
at least a portion of said real address from the accessed
location of said translation table, said apparaius compris-

Ing:

means for controlling access to segments of said first type
on the basis of at least a first control bit when per-
forming a particular operation in segments of said first
type; and

means for controlling access to segments of said second
type on the basis of at least a second control bit
different from said first control bit when performing
said particular operation in said segments of said
second type,

wherein said first conirol bit is not used for controlling
access to segments of said second type when perform-
ing said particular operation in segments of said sec-
ond type, and said second control bit is not used for
controlling access to segments of said first type when
performing said particular operation in segments of
said first type.

	Front Page
	Drawings
	Specification
	Claims

