(19) United States
(12) Reissued Patent

(10) Patent Number:

USOORE37156E

US RE37,156 E

Neumann et al. 45) Date of Reissued Patent: May 1, 2001
(54) REWINDING TIME-BASED SCRIPT 5,247,651 * 9/1993 Clarisse ...c...ccceeeeveeeeeenne 395/500.34
SEQUENCES 5,261,041 * 1171993 SuUSMAN ...oevvvrvvrnneeernnneeenenennn. 345/473
5,297,248 * 3/1994 Clarkccocveevvivernieivnnenne 345/440

(75) Inventors: Eric R. Neumann, Seattle, WA (US); 5,315,703 * 5/1994 Mathery et al. ... 345/507

Albert James Fenton, San Jose, CA
(US)

(73) Assignee: Object Technology Licensing
Corporation, Cupertino, CA (US)

(21) Appl. No.: 09/292,065

(22) Filed: Apr. 14, 1999
Related U.S. Patent Documents
Reissue of:
(64) Patent No.: 5,621,877
Issued: Apr. 15, 1997
Appl. No.: 08/510,131
Filed: Oct. 13, 1995

U.S. Applications:

(63) Continuation of application No. 08/305,793, filed on Sep.
13, 1994, now Pat. No. 5,475,811, which 1s a continuation of
application No. 08/040,479, filed on Mar. 31, 1993, now

FOREIGN PATENT DOCUMENTS
2/1992 (DE) .
OTHER PUBLICATIONS

0469850 *

Robin, Laura, “Temporal Adaptation of Multimedia
Scripts”, SPIE vol. 1460, pp103—-113, Feb. 1991.*

Ogawa et al, “Scenario Based Hypermedia: A Model and A

System”, Proceedins of the First European Conference on
Hypertext, France, pp 3851, Nov. 1990.%

Horn et al., “On Programming and Supporting Multimedia
Object Synchronization”, The Computer Journal, vol. 36,

No. 1, pp 4-10, Oct. 1992.%
Studio Manual, Macrominder Director No. 2, 1989.*

Interactivity Manual, Macrominder Director No. 3, Apr.
1990.*

* cited by examiner

Primary Fxaminer—Ba Huynh
(74) Attorney, Agent, or Firm—Morgan & Finnegan, LLP

abandoned.
(51) INte CL7 oo GO6F 15/00 (57) ABSTRACT
(52) US.Cl o, 345/302, 345/473,345/326, The SYSt@II] of the pI'@SGI]t invention pI'OVid@S 1 mechanism
_ 713/400; 713/500 for executing a script sequence containing a plurality of
(58) Field of Searchcccccooeene 345/326, 302, commands and associated time for executing the commands.
345/473; 713/500, 400 The system allows a user of the script sequence to specily an
_ arbitrary time, either forward or backward from a current
(56) References Cited time, and the result of the execution reflects the cumulative
US PATENT DOCUMENTS effects of exec:uting the script sequence fron:} the beginnigg
| up to the arbitrary time. The system provides for a skip
4?375?650 : 3/}983 Tle'HlaIlIl 348/‘408 ahead mechanism in WhiCh Commands are executed Without
;h?%?ﬁg) g? ggg B{uzbirg U 395/ 52282;2 waiting for the occurrence of their associated time. The
,119, 1 cCalley et al.c.ooeeeeeeennnee. - - _
5.140.419 * 8/1992 Galumbeck et al. v, 348465 System also provides for rewind and key-irame features.
5,168,554 * 12/1992 Luke ...cooovvviiieiriieiiriieinennnne, 707/509
5,208,655 * 5/1993 McCalley et al. 348/12 19 Claims, 2 Drawing Sheets
100 \\
1o 122 123
PROCESSOR O
128
16— | SOUND 3/
e 124
KEYBOARD | | MOUSE T —126
l |
112 114
120——
sob d ®
> o

U.S. Patent May 1, 2001 Sheet 1 of 2 US RE37,156 E

100

N

110 122 123

l

PROCESSOR

“6’“‘ SOUND

g L
-#Tﬁ_424
‘KEYBOARD iMOUSE | I L“‘“'*‘“""*——126

| \ , |
112 114
120 B> IO o
F1G. 1 132 134 136
152 154 156 150

I I

0000 | CREATE OVAL, OVAL COLOR (BLACK) —‘I:N:EO
- . 162

0010 | OVAL COLOR (GREEN)

0030 | OVAL COLOR (RED) 164
CREATE SQUARE, SQUARE COLOR (BLACK)

0055 | CREATE AND PLAY "HELLO” SOUND OBJECT 166
REMOVE OVAL

—] — 168
r! 0100 | SQUARE COLOR (BLUE) Ii——,

0110 | SQUARE COLOR (YELLOW) —170

174 _ N
\[CREATE SQUARE, SQUARE COLOR (BLUE)
FIG. 2 |

158

U.S. Patent May 1, 2001 Sheet 2 of 2 US RE37,156 E

200
N

210 220
247

SEQUENCE
PLAYER

CONDUCTOR l

244

~ 246

247

CHILD
OBJECT

224 223

250

300
N

CREATE OVAL, LOCATION: X=0, Y-0;
WAIT (10 UNITS):
PERFORM FIVE TIMES
(MOVE OVAL (X=1 UNIT)
WAIT (10 UNITS))

REMOVE OVAL.

FIG. 4

US RE37,156 E

1

REWINDING TIME-BASED SCRIPT
SKEQUENCES

Matter enclosed in heavy brackets [] appears in the
original patent but forms no part of this reissue specifi-
cation; matter printed in italics indicates the additions
made by reissue.

This 1s a confinuation of application Ser. No. 08/305,793
filed Sep. 13, 1994 now U.S. Pat. No. 5,475,811, which 1s a
continuation of application Ser. No. 08/040,479, filed Mar.
31, 1993, now abandoned.

BACKGROUND OF THE INVENTION

The present invention relates to time-based programming,
and more particularly to the implementation of time-based
sequences for controlling interactive media 1n an object
oriented programming environment.

Authors of computer-based multimedia presentations
(titles) need to create time-based sequences of events, such
as displaying text, graphics, sounds, animations and video,
as well as user mterface elements for controlling their titles.
Authors need to build these time-based sequences using
convenient tools without having to learn complex program-
ming techniques. At the same time, authors want the flex-
ibility to write scripts, using a powerful time-based pro-
gramming (scripting) language, to maintain precise control
over the functionality of these sequences.

An exemplary prior art scripting language incorporating
fime-based sequences can be found 1n MacroMind Director
published by MacroMedia. It allows authors to create time-
based displays of text, graphics, sounds, animations, and
video with user interface elements. It uses a time-based
“score” metaphor with 24 channels of animation over time.
It also includes a cast window for storing the artwork and
sounds that are used in the course of the presentation.

MacroMind Director has a powerful set of functions, but
1s limited 1n what can be anmimated over time. Only those
characteristics of objects that are controllable from the score
can be changed over time. For example, if a bitmap object
1s 1n one of the channels, only certain predetermined aspects
of the bitmap can be changed, such as its position on the
screen, its size (scaling), its transfer or “ink” mode (e.g.,
matte, copy, Xor, etc.), its colorization, the script which
executes when a user clicks on 1t, and which bitmap from the
cast 1s being displayed. Even though these are powerful
capabilifies, it 1s desirable not to be limited by these prede-
termined functions.

MacroMind Director also has the ability to execute a
certain user script in each frame. However, this ability 1s
outside of the score metaphor and 1s not sufficiently flexible
or powerful to enable authors to control events across
frames, much less arbitrary events. For example, 1t does not
maintain the cumulative etffects of previous frame scripts.

Another product which facilitates the creation of time-
based sequences 1s Apple’s Quicktime system software,
utilized by authoring tools such as Adobe’s Premier. Quick-
time allows an author to edit and play back time-based video
and sound, but does not provide a mechanism to precisely
control the playback of other media or the execution of
arbitrary sequences of code.

SUMMARY OF THE INVENTION

Broadly stated, the present invention 1s directed to a
system that synchronizes the execution of arbitrary
sequences of code to units of time. The system 1s 1mple-

10

15

20

25

30

35

40

45

50

55

60

65

2

mented at least partially within a scripting language for
controlling 1nteractive media in an object-oriented program-
ming environment. The system contains means for playing
media, such as displaying full-motion video or animation
sequences on a computer monitor or playing a sequence of
audio through a speaker connected to the computer. The
system 1s capable of executing a script sequence, such as a
sequence of commands 1n a scripting language. The system

also contains means for generating a sequence player object
for keeping track of time during the execution of the script

sequence. The system also contains means for generating at
least one tagged object which has a tag for associating the

tageed object with the sequence player object. The system
can then, for example, display the tagged object at the
predetermined time specified 1n the script sequence.

In one embodiment of the present invention, the system
provides means for jumping to an arbitrary point 1n time
during execution of the script sequence (while maintaining
the cumulative effects of commands executed prior to that
time), as well as delaying execution until an arbitrary
number of units of time has elapsed. In another embodiment
of the present ivention, the system contains means for
removing all tagged objects 1n the environment. After
removing all the tagged objects, the system can then return
to the starting point of the script sequence 1immediately and
skip ahead the script sequence to a time earlier than the time
when the tagged objects are removed. As a result, a rewind
operation can be performed. In yet another embodiment of
the present invention, the system contains means for gen-
erating a key frame script that replicates the current state of
the environment. This key frame script can be invoked at any
fime to replicate the environment without having to execute
a long string of commands 1n the script sequence.

Therefore, it 1s an object of the present invention to

provide a stmple yet powerlul programming environment to
multimedia authors.

It 1s another object of the present invention to provide a
flexible time-based programming language to multimedia
authors.

It 1s a further object of the present invention to provide a
time-based programming language including conditional
statements.

It 1s yet another object of the present invention to provide
for jumping to an arbitrary point 1n a time-based script
sequence.

It 1s also an object of the present invention to provide a
rewind feature to a time-based script sequence.

It 1s a further object of the present invention to include a
key frame script in a time-based programming environment.

Other objects, advantages, and features of the present
invention will become apparent to those skilled in the art
from the following specification when taken 1n conjunction

with the accompanying drawings.

BRIEF DESCRIPITION OF THE DRAWINGS

FIG. 1 1s a drawing showing a computer system operating
in an object ortented multimedia environment according to
the present invention.

FIG. 2 shows an example script sequence and a key frame
script according to the present invention.

FIG. 3 1s a drawing showing the object oriented program-
ming environment of the present invention.

FIG. 4 shows a script sequence containing a conditional
statement according to the present invention.

DETAILED DESCRIPTION OF PREFERRED
EMBODIMENTS

FIG. 1 1s a drawing showing a computer system 100
operating 1n an object oriented multimedia environment.

US RE37,156 E

3

System 100 comprises a processor unit 110, a keyboard 112,
a pointing device (such as a mouse 114) and a monitor 120.
Processor umt 110 preferably contains a central processor
unit memory, and other components for performing digital
processing operations. Processor unit 110 further contains a
sound unit 116 for generating audio outputs in the multime-
dia environment. Different peripheral devices, such as video
systems (not shown), can also be advantageously coupled to
processor unit 110.

Monitor 120 1s used to display various objects in the
multimedia environment. Examples of objects are an oval
122, a square 123 and a window 124 for separating a portion
of the display area of monitor 120 from the rest of the
display area. In FIG. 1, window 124 displays a script
sequence 126, the details of which will be described below.
Window 124 also displays a cursor 128 which 1s preferably
controlled by mouse 114. Monitor 120 may also display one
or more 1cons, shown as reference numerals 132, 134, and
136, for visually representing various objects and methods
commonly used by a user.

FIG. 2 shows an example of a script sequence 150, written
in pseudo code form, and an associated key frame script 174.
Script sequence 150 contains a list of commands and the
assoclated time for performing the same. A user may enter
code sequence 150 into computer system 100 using, €.g., an
event editor, which 1s a table-like template containing rows
and columns. The user preferably types in the time and
activities using keyboard 112. However, the user can also
retrieve a pre-written script sequence from memory. The
details of key frame script 174 will be described below.

Script sequence 150 contains a playback-head column
152, a time sequence column 154 and an activity column
156. Script sequence 150 also contains a plurality of rows.
Each row contains a value 1n the time sequence column 154
representing time and one or more commands 1n the activity
column 156 representing the activities to be initiated at the
corresponding time. The commands used 1n activity column
156 for creating, modifying, and disposing of activities are
preferably commands in an object oriented scripting lan-
cuage. Script sequence 150 also shows a playback-head 158
in row 168 of playback-head column 152. The function of
playback-head 158 will be described below.

Script sequence 150 1s a simple sequence which 1s used to
illustrate the invention. The first row, row 160, of script
sequence 150 shows a time “0000” 1n the time sequence
column 154 and an activity of “create oval, oval color
(black)” in the activity column 156. It indicates that when
fime 1S equal to O units, an oval object, such as object 122
of FIG. 1, 1s created and 1ts color 1s black. The second row,
row 162, indicates that when time 1s equal to 10 units, the
color of oval object 122 changes to green. The third row, row
164, indicates that when time 1s equal to 30 units, the color
of oval object 122 changes to red. At the same time, a square
object, such as object 123 of FIG. 1, 1s created. The fourth
row, row 166, indicates that when time 1s equal to 55 units,
a “hello” sound object, which plays the sound “hello,” 1s
created. At the same time, oval object 122 1s removed. The
fifth row, row 168, 1ndicates that when time 1s equal to 100
units, the color of square object 123 changes to blue. In this
example, the length of time for playing the sound “hello”™ 1s
assumed to be twenty time units. Thus, the action of the
sound object 1s completed before this time. Finally, the sixth
row, row 170, indicates that when time 1s equal to 110 units,
the color of square object 123 changes to yellow.

An exemplary way for a user to execute script sequence
150 1s to move cursor 128 to a predefined 1con representing

10

15

20

25

30

35

40

45

50

55

60

65

4

“play”, such as icon 136, and click on mouse 114. The
“play” 1instruction causes computer system 100 to send a
“play” message to script sequence 150. As a result, script

sequence 150 executes from beginning (i.e., time equals
“00007) to end (i.c., time equals “01107). The user will see

and hear the following events: (1) A black oval (122) is
created immediately. (2) When time is equal to 10 units, the
color of oval 122 turns green. (3) When time is equal to 30
units, the color of oval 122 turns red. At the same time, a
black square (123) appears on monitor 120. (4) When time
1s equal to 55 units, the word “hello” can be heard. At the
same time, oval 122 disappears from monitor 120. (5) When
time 1s equal to 100 units, the color of square object 123
turns blue. (6) When time is equal to 110 units, the color of
square object 123 turns yellow.

The object oriented environment responsible for the
operation of script sequence 150 1s now described. FIG. 3
shows an object oriented programming system 200 which
resides 1n computer system 100. Programming system 200
comprises a conductor object 210 and a sequence player
object 220. Conductor object 210 has a list of objects that are
active, 1ssues them messages, and coordinates their use of
shared resources such as monitor 120, user events and CPU
cycles. Conductor object 210 1s responsible for the smooth
updating of the screen of monitor 120 by compositing the
objects together on the screen 1n an efficient manner. For
example, conductor object 210 preferably updates only
those areas of the screen that have changed.

Sequence player object 220 1s an object which 1s derived
from the player class which 1s 1tself dertved from the clock
class (not shown, but discussed in greater detail in copend-
ing patent application Ser. No. 08/041,395 entitled Synchro-
nized Clocks and Media Players, which 1s incorporated by
reference herein). Thus, it can keep time for a script
sequence, such as script sequence 150. In the preferred
embodiment, sequence player object 220 i1s able to keep
frack of time in various forms (e.g., absolute time and
relative time) and in different types of units (such as
milliseconds, %soths of a second, etc.). In other words,
sequence player object 220 1s an object that 1s also a clock
for 1ts corresponding script sequence.

The structure of sequence player object 220 1s disclosed
in the above described copending patent application. The
class hierarchy and other relationships among player, clock
and related classes, and the manner 1n which these classes of
objects keep track of time, 1s also discussed 1n greater detail
in the above described copending patent application. Also
shown are the methods that can be performed by script
sequence players (such as “playing” or executing a script
sequence at a particular rate), many of which are discussed
below by example.

In one embodiment to this invention, the script sequence
1s 1mplemented as a separate thread of execution. This
implementation allows for efficient script execution as well
as exploitation of a variety of existing programming
facilities, such as nested loops, subroutine calls, etc. In other
embodiments, threads are not necessary, and the script
sequence can be broken into fragments, each of which can
be executed when 1ts time arrives. In still another
embodiment, script sequences could be replaced with sub-
sets of script methods, such as position and appearance
changes.

During the execution of a script sequence, such as script
sequence 150, objects are created in response to mstructions
from sequence player object 220. These objects are called
the “children” of sequence player object 220. In script

US RE37,156 E

S

sequence 150, three children are created. They are child A
(224) representing oval object 122, child B (226) represent-

ing square object 123, and child C (230) representing “hello™
sound object. Each child object has a “tag” indicating that 1t

1s a “child” of sequence player object 220. Thus, children
objects A (224), B (226), and C (230) have tags 225, 228,
and 232, respectively. The effect of giving each object a

unique tag can also be obtained by instead maintaining a list
of each child object created by a particular player. The
objects 1n FIG. 3 can communicate with one another using

messages, shown in FIG. 3 as lines 241-247.

When script sequence 150 1s executed, sequence player
object 220 1s associated with script sequence 150. When
fime 1s equal to “0000.” 1.e. zero units, sequence player
object 220 causes oval object 122 to be created. The color of
oval object 122 1s black. As explained above, oval object 122
contains tag 225 indicating that it 1s a child of sequence
player object 220. Oval object 122 1s added to the list
maintained by conductor object 210. Oval object 122
appears on the screen of monitor 120 after the screen 1s
updated by conductor object 210. Sequence player object
220 functions as a clock for script sequence 150 wherein
time 1s advanced continuously. Since the next activity
according to script sequence 150 occurs when time 1s equal
to ten units, no further action 1s taken before that time 1s
reached.

When sequence player object 220 mndicates that time has
reached ten units, 1t executes the script associated with that
point 1n time, which changes the color of oval object 122 to
oreen. Conductor object 210 then updates the screen of
monitor 120 so that oval object 122 turns green. Computer
system 100 waits for twenty time units while sequence
player object 220 continues to keep track of time. When
sequence player object 220 indicates that the time has
reached 30 units, 1t executes the script associated with that
point 1n time, which changes the color of oval object 122 to
red. At the same time, sequence player object 220 causes
square object 123 to be created and added to the list of
conductor object 210. Square object 123 contains tag 228
indicating that 1t 1s a child of sequence player object 220.
Conductor object 210 updates the screen of monitor 120 to
reflect the changes.

Computer system 100 then waits for twenty five time
units while sequence player object 220 continues to keep
frack of time. When sequence player object 220 indicates
that time has reached 55 units, sequence player object 220
causes sound object 230 to be created and added to the list
of conductor object 210. Sound object 230 also contains tag
232 indicating that 1t 1s a child of sequence player object
220. At the same time, sequence player object 210 causes
oval object 122 to be removed from the list of conductor
object 210. Conductor object 210 1s notified of the changes.
As a result, the word “hello” 1s produced by sound unit 116
and oval object 122 disappears from the screen of monitor

120.

Computer system 100 then waits for forty five time units
while sequence player object 220 continues to keep track of
fime. When sequence player object 220 indicates that the
time has reached 100 units, 1t executes the script associated
with that point in time, which changes the color of square
object 123 to blue. Conductor object 210 then updates the
screen of monitor 120 to reflect the change. Computer
system 100 then waits for ten more time units while
sequence player object 220 continues to keep track of time.
When sequence player object 200 indicates that the time has
reached 110 unaits, 1t executes the script associated with that
point 1n time, which changes the color of square object 123

10

15

20

25

30

35

40

45

50

55

60

65

6

to yellow. Conductor object 210 then updates the screen of
monitor 120 accordingly.

Script sequence 150 allows a user to write a sequence of
time-based commands easily. These commands create and
remove objects, as well as setting their various
characteristics, over time. As explained below, the com-
mands could include “skip ahead,” “rewind,” and condi-
tional commands which are similar to a “do-loop” or a
“for-loop” used 1n many programming languages. Thus, the
script sequence according to the present mnvention 1s a very
flexible system which allows a user to use a simple yet
powerful object oriented language to create a multimedia
fitle.

The operation of the “skip ahead” command will now be
described. When a script sequence 1s executed in the regular
manner, the system waits for a specified time before an
activity takes place. For example, after a black oval 122 has
been created (when script sequence 150 starts), the system
walits for ten time units before changing the color of oval 122
to green because the value indicated in the time sequence
column 154 of script sequence 150 1s “0010.” In “skip
ahead” mode the system does not wait for the time indicated
by the time sequence column 154. Instead, the system
performs all the activities mdicated 1n the activity column
156 sequentially without waiting) until a predefined time
designated by the user 1s reached.

The user can initiate “Skip ahead” (i.e., skip in any
direction to time “x”’) by moving cursor 128 to the playback-
head column 152 of one of the rows, say row 168, of script
sequence 150 and then clicking on mouse 114. When
execution of script sequence 150 starts, the current time of
sequence player object 220 1s set to the predefined time set
by the user. 1.€., 100 time units. This time (1.€., any arbitrary
time) could also be determined by the author of the title or
input by the user while the ftitle 1s being executed.

In one embodiment, the “skip ahead” command 1s 1imple-
mented in (and invoked trough) the SetTime method, which
sets the script sequence player’s time—i.e., by rewinding the
script sequence to the beginning and executing until the
specilied time. When script sequence 150 1s executed
sequentially under “skip ahead,” there 1s no “waiting” at
rows 162, 164 and 166 because the time corresponding to
cach of these three rows 1s less than the current time
indicated by sequence player object 220. The conductor
object 210 1s not notified of the existence and status of the
oval, square, and sound objects prior to the time execution
reaches row 168. Consequently, these objects are not com-
posited (i.e., the screen of monitor 120 does not show the
oval and square objects and the sound unit 116 does not play
the word “hello.”). When script sequence 150 reaches the
destination at row 168, the existence and the status of the
square object 1s communicated to conductor object 210.
From the viewpoint of the user, he/she only sees a blue
square object on the screen of monitor 120. As a result, the
system “skips ahead” to time equals to 100 units. In this
manner, the system can “jump” to any particular point in
time during the execution of a script sequence (while
maintaining the cumulative effect of commands executed
prior to that time).

The operation of the “rewind” command will now be
described. Before the “rewind” command 1s 1ssued, part of
the script sequence has already been executed. For example,
if the status of script sequence 150 1s currently at row 168,
the screen of monitor 120 should show a square object
having a blue color. The user can move cursor 128 to the

playback-head column 152 of row 162, which 1s above row

US RE37,156 E

7

168, and click on mouse 114 to rewind script sequence 150.
Sequence player object 220 mstructs conductor object 210 to
1ssue messages to all the children of sequence player object
220 to remove themselves. As explained above, oval object
122, square object 123, and the sound object contain tags
indicating that they are children of sequence player object
220. As a result, these objects can be 1dentified and removed
casily. Script sequence 150 1s then executed again from the
beginning, 1.¢., row 160. The time of sequence player object
220 is set to 10 units (i.e., the value of time indicated by row
162). As explained above, script sequence 150 “skips ahead”
to row 162. From the viewpoint of the user, the system
rewinds to a time equal to 10 unaits.

In the above described embodiment of the “rewind”
command, script sequence 150 1s executed from the begin-
ning after all the existing objects have been removed. It 1s
also possible to execute the script sequence from a prede-
termined point 1n time utilizing a technique called a “key
frame” scheme. This method 1s especially advantageous
when a large number of commands needs to be executed to
“skip ahead” from the beginning to the designated time.

A key frame at a specified time can be generated auto-
matically by computer system 100 after a script sequence 1s
initiated and reaches the specified time. Computer system
100 asks all the objects existing at the specified time to
generate code that would replicate their current state. Note
that global and other non-object states of computer system
100 may need to be preserved. An example of a software
product that can generate the above described code for the
key frame 1s “Hot Draw” written by Kent Beck and Ward
Cunningham. This software 1s widely available, and the
details of which are not described here. The code for the key
frame becomes an auxiliary script (the key frame script)
which 1s associated with the state of the environment at the
specified time. The script sequence can be executed starting
from the key frame script as if the script sequence were
executed from the beginning to the specified time.

The following example will illustrate a key frame script
(shown in FIG. 2 as numeral 174) corresponding to one of
the rows, say row 168, of script sequence 150, 1.¢., at time
“0100.” Script sequence 150 1s executed 1n the regular
manner from time “0000” to “0100.” At that time, the screen
of monitor 120 shows a blue square only. The script which
ogenerates the same state 1s “Create square, square color
(blue).” Consequently, key frame script 174 for time “0100”
is “Create square, square color (blue).” As can be seen from
this example, the key frame script can be used to replace a
lengthy script which requires a long time to execute, thereby
making the skip ahead operation more efficient.

The script sequence 150 of FIG. 2 1s written 1n an event
editor format. It 1s also possible to write a script sequence 1n
a programming language format. In a programming lan-
cuage embodiment of key frames, the key frame script could
be placed at the beginning of the script sequence with an
appropriate conditional test based on the time to which the
player will skip ahead (e.g., if skip ahead time >50, then
execute key frame script and jump to appropriate position in
script sequence).

In order to include time-based information in the pro-
cramming language normally used 1 a computer system,
two new commands are added: a “wait” command and an
“await” command.

The “wait” command causes the system to wait for a
specified number of units of time starting from the end of the
last “wait” command. The “await” command causes the

system to wait for the occurrence of a specified absolute

10

15

20

25

30

35

40

45

50

55

60

65

3

time. As discussed above 1n the event editor example,
neither command will have any effect 1f the specified time
interval has already elapsed.

The script sequence 150 of FIG. 2 can be written 1n
programming language format utilizing both “wait” and
“await” commands as follows:

Create oval, oval color (black);
Wait (10 units);

Oval color (green);

Wait (20 units);

Oval color (red), create square, square color (black);
Await (55 units);

Create “hello” sound, remove oval;
Wait (45 units);

Square color (blue);

Wait (10 units);

Square color (yellow).

The script sequence according to the present invention
can also incorporate conditional commands. FIG. 4 1s a
script sequence 300, i programming language format,
including conditional commands. Script sequence 300 starts
with a statement creating an oval object at the origin, 1.¢.,
x=0 and y=0. The second statement 1s a wait command
causing script sequence 300 to wait for ten time units before
the third statement 1s executed. The third statement causes
the oval object to execute movements at five different times.
Each movement 1s one unit 1in the horizontal position and
occurs ten time units apart. Thus, the third statement of
script sequence 300 1s a conditional command because the
execution of the command depends on the number of times
the movement has occurred. The fourth statement of script
sequence 300 causes the oval object to be removed. Other
conditional constructs well known in the art (e.g., “if-then-
else”) can of course also be included using this same
mechanism for time control and synchronization.

When script sequence 300 is executed (e.g., by clicking
on icon 136), the time of sequence player object 220 is set
to zero. An oval object, such as oval object 122 of FIG. 1,
1s created. After the time of sequence player object 220 1s
advanced to ten time units, conductor object 210 1s notified
that oval object 122 should be moved one length unit in the
horizontal direction. Computer system 100 then waits for ten
more time units. When the time of sequence player object
220 has advanced to twenty time units, conductor object 210
1s again notified that oval object 122 should be moved one
length unit 1n the horizontal direction. This “perform™ loop
repeats five times. Afterward, oval object 122 1s removed
from the list of conductor object 210.

It can be seen from the above examples that the script
sequence according to the present invention provides flex-
ibility 1n programming which i1s not available 1n prior art
time-based sequences. The script sequence of the present
invention retains all the features of existing programming
languages designed for a multimedia system, including
conditional statements. On the other hand, existing time-
based programming environments do not provide for precise
control, maintenance and synchronization of time with arbi-
trary sequences of code, as shown 1n the “for” loop example
above. Further, the script sequence 1s not limited to the
capabilities of a small set of objects, as 1s the case 1in
MacroMind Director. As a result, multimedia authors are
able to create fitles 1n a more flexible and powerful manner.

Even though the script sequence of the present invention
1s more flexible and contains more features than existing
fime-based programming environments, the performance
does not suffer. As explained above, the incorporation of key
frames 1n the sequence reduces the time for performing skip

US RE37,156 E

9

ahead and rewind operations. Consequently, the efficiency of
the script sequence 1n accordance with the present invention
IMpProves.

It should be understood that while the present invention
has been specifically set forth and described with reference
to the preferred embodiments, it will be readily appreciated
by those skilled 1n the art that many changes in form and
detail may be made without departing from the spirit and
scope of the present invention as set forth 1n the appended
claims.

What 1s claimed 1is:

1. A method for rewinding a time-based script, for use
with a plurality of data objects each having a state, the script
comprising an ordered sequence of commands for modify-
ing the state of one or more of the data objects over time,
cach command associated with a corresponding time value,
and one or more of the commands being conditional, said
method comprising the following steps:

generating a sequence of time values 1n real-time, using a
clock, starting from an initial time value;

™

executing, using a digital computer, the script command
assoclated with each generated time value, at least one
of the associated script commands being conditional;

interactively specifying a desired time value earlier than
a currently generated time value;

restoring each data object to its state as of the initial time
value, using the digital computer;

alter the preceding step, skipping ahead to the desired
time value by restoring cach data object to 1ts state as
of the desired time value, 1n less time than the differ-
ence between the mitial time value and the desired time
value; and

resetting the clock to the desired time value, thereby
rewinding the time-based script to the desired time
value.

2. The method of claim 1, wherein the step of skipping
ahead to the desired time value includes the step of execut-
ing a key frame script reflecting a modification of each data
object by commands associated with time values earlier than
the desired time value.

3. The method of claim 1, wherein the step of skipping
ahead to the desired time value includes the step of per-
forming each command associated with a time value earlier
than the desired time value.

4. The method of claim 1, wherein one or more of the
commands for modilying the state of the data objects
comprise one or more 1terative loops.

5. The method of claim 1, wherein one or more of the
commands for modilying the state of the data objects
comprise one or more “if-then-else” statements.

6. The method of claim 1, wherein the maximum number
of data objects modified by the commands of the time-based
script depends only upon the digital computer used.

7. A digital computer-based apparatus for rewinding a
time-based script, the script comprising an ordered sequence
of commands, each command associated with a correspond-
ing time value, said apparatus comprising:

a plurality of data objects, each one of the data objects
having a state, the commands being operable to modity
said states, and one or more of the commands being
conditional;

a clock for generating a sequence of time values 1n
real-time, starting from an initial time value;

means for executing the script command associated with
cach generated time value, at least one of the associated
script commands being conditional;

10

15

20

25

30

35

40

45

50

55

60

10

means for interactively specifying a desired time value
carlier than the currently generated time value;

means for restoring each data object to 1ts state as of the
mitial time value;

means for skipping ahead to the desired time value 1n the
script sequence, by restoring each data object to 1ts state
as of the desired time wvalue, in less time than the
difference between the 1nitial time value and the desired
time value; and

means for resetting the clock to the desired time value,

thereby rewinding the time-based script to the desired
time value.

8. A computer program product for enabling the rewind-

ing of a time-based script in a digital computer having a

plurality of data objects each having a state, the script

including an ordered sequence of commands for modifyving
the state of one or more of the data objects over time, each
command associated with a corresponding time value, and
at least one of the commands being conditional, the com-

puter program product including a computer-useable means
for storing therein computer-readable code comprising.:

program code for generating a sequence of ftme values in
real-time, using a clock, starting from an inifial time
value,

program code for executing, in the digital computer, the
script command associated with each generated time
value;

program code for interactively specifying a desired time
value earlier than a currently generated time value;

program code for restoring each data object to its state as
of the nitial time value in the digital computer;

program code for skipping ahead, by restoring each data
object to its state as of the desired time value, in less
lime than the difference between the initial time value
and the desired time value; and

program code for resetting the clock to the desired time
value, thereby rewinding the time-based script fo the
destred time value.

9. The computer program product of claim 8, further
COMPFISING.

program code for executing a key frame script reflecting

a modification of each data object by commands asso-
ciated with time values earlier than the desired fime
value.

10. The computer program product of claim 8, further
COMprising:

compuiter program code for performing each command

associated with a time value earlier than the desired
fime value.

11. The computer program product of claim 8, wherein at
least one of the commands for modifving the state of the data
objects tncludes at least one iterative loops.

12. The computer program product of claim 8, wherein at
least one of the commands for modifying the state of the data
objects includes at least one conditional branching opera-
f1on.

13. The computer program product of claim 8, wherein
the maximum number of data objects modified by the com-
mands of the time-based script depends only upon charac-
teristics of the digital computer.

14. A computer program product for enabling the rewind-
ing of a time-based script in a digital computer having a

65 plurality of data objects each having a state, the script

including an ordered sequence of commands for modifying
the state of one or more of the data objects over time, each

US RE37,156 E

11

command associated with a corresponding time value, and
at least one of the commands being conditional, the com-
puter program product including a computer-useable means
for storing therein computer-readable code comprising:

program code for generating a sequence of fime values in
real-time, using a clock, starting from an inifial time
value;

program code for executing, in the digital computer, the
script command associated with each generated time
value;

program code for tagging each data object created by the
script commands;

program code for interactively specifying a desired time
value earlier than a currently generated time value;

program code for restoring each data object to its state as
of the initial time value by deleting one or more of the
tagged data objects in the digital computer;

program code for skipping ahead, by restoring each data
object to its state as of the desired time value, to the
desired time value in less time than the difference
between the initial fime value and the desired fime
value; and

program code for resetiing the clock to the desired time
value, thereby rewinding the time-based script fo the
destred time value.

10

15

20

25

12

15. The computer program product of claim 14, further
COMprising:

program code for executing a key frame script reflecting

a modification of each data object by commands asso-
ciated with time values earlier than the desirved time
value.

16. The computer program product of claim 14, further
COMPrising.

computer program code for performing each command

associated with a time value earlier than the desired
fime value.

17. The computer program product of claim 14, wherein
at least one of the commands for modifving the state of the
data objects includes at least one iteraiive loops.

18. The computer program product of claim 14, wherein
at least one of the commands for modifving the state of the
data objects includes at least one conditional branching
operation.

19. The computer program product of claim 14, wherein
the maximum number of data objects modified by the com-
mands of the time-based script depends only upon charac-
teristics of the digital computer.

	Front Page
	Drawings
	Specification
	Claims

