US00RE36916E # United States Patent [19] # Moshayedi # [11] E Patent Number: Re. 36,916 [45] Reissued Date of Patent: Oct. 17, 2000 # [54] APPARATUS FOR STACKING SEMICONDUCTOR CHIPS [75] Inventor: Mark Moshayedi, Orange, Calif. [73] Assignee: Simple Technology Incorporated, Santa Ana, Calif. [21] Appl. No.: **09/064,348** [22] Filed: Apr. 22, 1998 ### Related U.S. Patent Documents Reissue of: [64] Patent No.: 5,514,907 Issued: May 7, 1996 Appl. No.: 08/408,552 Filed: Mar. 21, 1995 ## [56] References Cited ### U.S. PATENT DOCUMENTS 3,246,386 4/1966 Ende . 3,290,559 12/1966 Kirby et al. . (List continued on next page.) # FOREIGN PATENT DOCUMENTS | 2 645 681 | 10/1990 | France. | |-----------|---------|---------| | 58-219757 | 12/1983 | Japan . | | 60-160641 | 8/1985 | Japan . | | 60-194548 | 10/1985 | Japan . | | 60-254762 | 12/1985 | Japan . | | 61-63048 | 4/1986 | Japan . | | 61-75558 | 4/1986 | Japan . | | 61-137335 | 6/1986 | Japan . | | 2-260448 | 10/1990 | Japan . | | 3-96266 | 4/1991 | Japan . | | | | | #### 4-209562 7/1992 Japan . 7-122842 5/1995 Japan . #### OTHER PUBLICATIONS Patent Abstract of Japan, Publication No. 05029534, Published May 2, 1993, Inventor: Nakamura Shigemi, entitled "Memory Module", European Patent Office. "Alternative assembly for memory ICs," XP-002093051, Electronic Engineering, Jan. 1987, p. 22. International Electronic Device Meeting, IEDM Technical Digest, Washington, D.C., Dec. 6–9, 1987. 3–D Integrated Packging and Interconnect Technology, Wescon/90 Conference Record, held Nov. 13–15, 1990, Anaheim, CA. Tuckerman, D.B. et al., "Laminated Memory: A New 3-Dimensional Packaging Technology for MCMs" article, nCHIP, Inc., IEEE, 1994. 1992 Proceedings, 42nd Electronic Components & Technology Conference, May 18–20, 1992. Dense-Pac Microsystems, 16-Megabit High Speed CMOS SRAM. Dense-Pac Microsystems, 128-Megabyte SDRAM Sodimm. (List continued on next page.) Primary Examiner—Mahshid Saadat Assistant Examiner—Jhihan B. Clark Attorney, Agent, or Firm—Knobbe, Martens, Olson & Bear, LLP ## [57] ABSTRACT A multi-chip memory module comprises multiple standard, surface-mount-type memory chips stacked on top of each other, and a pair of printed circuit boards mounted on opposite sides of the memory chips to electrically interconnect the memory chips. Each printed circuit board has vias that are positioned to form multiple rows, with each row of vias used to connect the printed circuit board to a respective memory chip. The vias falling along the bottom-most row of each printed circuit board are also exposed and are used to surface mount the multi-chip module to pads of a memory board. # 44 Claims, 8 Drawing Sheets | | U.S. PA | TENT DOCUMENTS | | 5,241,454 | | Ameen et al | | | |-----------|---------|---------------------|----------|------------------------------------------------------------|-------------------|--------------------------------------|--|--| | 2 212 096 | 4/1067 | Vilha | | | | Normington | | | | 3,313,986 | | | | 5,311,401 | | Gates, Jr. et al | | | | , , | | Ellett et al | | 5,313,096 | | Eide | | | | , , | | Horowitz et al | | | | Nishino 257/685 | | | | , , | | Michaels et al | | | | Cipolla et al | | | | 3,535,595 | | | 20.162.4 | - | | Burns et al 438/118 | | | | , , | | Farrand | | 5,373,189 | 12/1994 | Massit et al | | | | | | Peluso et al 17 | | 5,384,689 | 1/1995 | Shen | | | | | | Stein | | 5,397,916 | 3/1995 | Normington | | | | , | | Anacker | | 5,420,751 | 5/1995 | Burns | | | | 3,959,579 | | Johnson | | 5,426,566 | 6/1995 | Beilstein, Jr. et al 257/686 | | | | | | Beyerlein | | 5,446,313 | 8/1995 | Masuda et al 257/666 | | | | 4,116,518 | - | Pleskac | | 5,479,318 | 12/1995 | Burns | | | | 4,116,519 | 9/1978 | Grabbe et al | 439/69 | 5,481,133 | 1/1996 | Hsu | | | | 4,288,808 | 9/1981 | Hantusch | 257/738 | , | | Burns | | | | 4,288,841 | 9/1981 | Gogal | 257/725 | , , | | Burns | | | | 4,364,620 | 12/1982 | Mulholland et al | 439/525 | | | Moshayedi | | | | 4,371,912 | 2/1983 | Guzik | 361/417 | • | | Burns | | | | 4,379,259 | 4/1983 | Varadi et al | 714/32 | • | | Burns | | | | 4,394,712 | 7/1983 | Anthony | 361/411 | • | | Burns | | | | 4,398,235 | | Lutz et al | | , , | | Burns | | | | 4,571,663 | | McPherson | | , , | | Burns | | | | , , | | Smolley | | , , | | Eide et al | | | | • | | Sutrina | | 5,615,475 | | Burns | | | | 4,638,348 | | Brown et al | | 5,723,903 | | | | | | 4,638,406 | - | Samson | | 3,723,903 | 3/1990 | Masuda et al 257/686 | | | | , , | | Hodsdon et al | | | OTHE | R PUBLICATIONS | | | | , , | | Sorel | | | 01112 | | | | | 4,696,525 | | | 301,730 | Dense-Pac M | icrosyste | ms, 256–Megabyte CMOS DRAM. | | | | , , | - | Sugimoto et al | 257/713 | | - | ms, "While others are still defining | | | | , , | | Go | | it Our customers are cashing in!" flyer. | | | | | | 4,761,681 | | Reid | | IBM Technical Disclosure Bulletin, Vertical Chip Packag- | | | | | | 4,770,640 | | Walter | | | | | | | | 4,821,007 | | Fields et al. | | ing, vol. 20, No. 11A, Apr. 1978. | | | | | | 4,841,355 | | Parks | | IBM Technical Disclosure Bulletin, Edge-Mounted MLC | | | | | | , , | | | | Packaging Scheme, vol. 23, No. 12, May 1981. | | | | | | , , | | Woodman | | IBM Technical Disclosure Bulletin, Process for Producing | | | | | | , , | | Mueller et al | | Lateral Chip (| Connecto | rs, vol. 32, No. 3B, Aug. 1989. | | | | 4,924,352 | | Septions | | Research Disclosure, Organic Card Device Carrier, 31318, | | | | | | 4,953,005 | | Carlson et al | | May 1990, No. 313. | | | | | | 4,956,694 | - | Eide | | | | | | | | 4,996,583 | • | Hatada | | Dense-Pac Microsystems, "3-D Technology," 1993, 15 | | | | | | 4,996,587 | - | Hinrichsmeyer et al | | pages. | | | | | | 5,016,138 | | Woodman | | Dense-Pac MicroSystems, Inc., "Short Form Catalog," | | | | | | 5,025,307 | | Ueda et al | | 1991, 20 pages. | | | | | | 5,031,072 | | Malhi et al | | "New levels of hybrid IC density are provided by Three-Di- | | | | | | 5,041,395 | _ | Steffen | | mensional Packaging" article, 2 pages. | | | | | | 5,043,794 | | Tai et al | | | 0 0 | , I O | | | | | | Goldfarb | | | • | ems, Inc., "Short Order Catalog," | | | | 5,086,018 | - | Conru et al | | 1990, 12 page | S. | | | | | 5,107,328 | | Kinsman | | Dense-Pac Ma | icroSyste | ms, Inc., "Memory Products—Short | | | | 5,128,831 | | Fox, III et al | | Form—Q4," 1 | 1994 , 5 p | ages. | | | | 5,140,745 | | McKenzie, Jr | | "Electronic Packaging & Production" article, A Cahners | | | | | | 5,155,068 | | Tada | | | | | | | | 5,198,888 | 3/1993 | Sugano et al | 257/686 | Publication, Jan. 1992, 2 pages. | | | | | | 5,222,014 | 6/1993 | Lin | 361/792 | "Introducing a Revolutionary 3 Dimensional Package | | | | | | 5,231,304 | 7/1993 | Solomon | 257/684 | Type—The SLCC," John Forthun, Advancement In Tech- | | | | | | 5,239,447 | 8/1993 | Cotues et al | 257/686 | nology, Feb. 26, 1992, 12 pages. | | | | | | | | | | | | | | | Oct. 17, 2000 # APPARATUS FOR STACKING SEMICONDUCTOR CHIPS Matter enclosed in heavy brackets [] appears in the original patent but forms no part of this reissue specifi- 5 cation; matter printed in italics indicates the additions made by reissue. #### BACKGROUND OF THE INVENTION #### 1. Field of the Invention The present invention relates to the vertical stacking of conventional integrated circuit packages to increase the density of components on a printed circuit board. More particularly, the present invention relates to the vertical stacking of conventional memory integrated circuits pack- 15 ages on a surface mount printed circuit board. ## 2. Description of the Related Art An integrated circuit or "IC" is a microcircuit formed from active and passive electrical components interconnected on or within a single semiconductor substrate. To protect the IC and to facilitate connection of the IC to a printed circuit board, off-the-shelf ICs are commonly packaged within a ceramic, plastic or epoxy IC package having multiple external terminals or "pins." The full integrated 25 circuit package, including the IC, is commonly referred to (and will be referred to herein) as a "chip." As a result of the continuously increasing demand for large random access computer memories, and the demand for smaller computers, various techniques have been devel- 30 oped to increase densities of memory chips on printed circuit boards. In addition to the inherent size advantages provided, increased chip densities enable shorter circuit paths between components, allowing the components to operate at higher and electromagnetic interference (EMI) emitted from the printed circuit board. One development that has led to a significant increase in memory chip densities has been the advent of surface mount technology. With surface mount technology, conventional 40 plated through holes on printed circuit boards are replaced with conductive pads, and through-hole pins of conventional chips are replaced with smaller surface mount pins. Because the pitch or spacing between centers of adjacent surface mount pins is significantly less than the conventional 0.10- 45 inch spacing for conventional through-hole components, surface mount chips tend to be considerably smaller than corresponding conventional chips, and thus take up less space on the printed circuit board. Surface mount technology additionally facilitates the mounting of components on 50 both sides of the printed circuit board. Various techniques have been developed for increasing chip densities on printed circuit boards by vertically stacking or "piggybacking" two or more chips. See, for example, U.S. Pat. No. 4,996,583 to Hatada, U.S. Pat. No. 4,398,235 to 55 Lutz et al., U.S. Pat. No. 4,953,005 to Carlson et al., Japanese Patent Publication No. 61-63048 to Toshiba Corp., Japanese Patent Publication No. 58-219757 to Tokyo Shibaura Denki K. K., Japanese Patent Publication No. 61-75558 to NEC Corp., and Japanese Patent Publication No. 60 60-254762 to Fujitsu. These techniques, however, tend to suffer from a number of defects. For instance, many of the techniques require the manufacture of custom chips that are specifically designed for stacking, or else require special modifications to the pins of standard memory chips. Further, 65 many of the techniques do not make use of the various advantages of surface mount technology, such as the ability to maintain a low-profile when memory chips are mounted to the printed circuit board. Further, many proposed techniques for stacking memory chips are not cost effective. #### SUMMARY OF THE INVENTION The present invention involves a multi-chip memory module having two or more vertically stacked memory chips that are interconnected using a pair of printed circuit boards or "side boards." The multi-chip memory module can be constructed using standard, off-the-shelf memory chips, without modification to the pins of the memory chips. The multi-chip memory module is constructed such that pins of the lower-most memory chip in the stack are surfacemountable directly to pads of a memory board, permitting the multi-chip memory module to be mounted with a low profile relative to the memory board. In accordance with one aspect of the invention, the multi-chip memory module comprises a plurality of memory chips that are stacked on top of one another, with each memory chip having conductive surface mount pins. First and second side boards are mounted to the stacked memory chips such that the side boards are substantially parallel to one another. Each of the two side boards has vias for receiving the surface mount pins of the memory chips, with the vias arranged in rows such that each row corresponds to a respective memory chip. Vias of a bottom-most row of each side board fall along a lower side board edge, so that vias of the bottom-most row serve as surface mount terminals for surface mounting the multi-chip memory module to pads of a printed circuit board. Conductive traces are provided on or within each side board for interconnecting the surface mount pins of the memory chips. In accordance with another aspect of the invention, there speeds while reducing radio-frequency interference (RFI) 35 is provided a memory module that includes at least one multi-chip module. The memory module includes a circuit board having at least first and second sets of surface mount pads. The memory module further includes a first side board that is surface-mounted to the first set of surface mount pads such that the first side board is substantially perpendicular to the circuit board, and a second side board that is surfacemounted to the second set of surface mount pads such that the second side board is substantially perpendicular to the circuit board and substantially parallel to the first side board. The memory module further includes a plurality of chips stacked on top of one another between the side boards, with each chip conductively connected to the first and second side boards. > In accordance with an additional aspect of the invention, there is provided a method of increasing the density of memory chips on a memory board. The method includes the step of providing first and second side boards, with each side board comprising a printed circuit board having vias thereon, and with vias along bottom edges of the side boards forming surface mount terminals. The method further includes the step of stacking a plurality of memory chips on top of one another to generate a stack of memory chips. The method further includes the steps of positioning the first and second side boards relative to the stack of memory chips such that terminals of the memory chips extend within the vias, and attaching the first and second side boards to the stack of memory chips by filling the vias with solder. > In accordance with another aspect of the invention, there is provided a method of interconnecting circuit board components to increase component density. The method includes the step of constructing a first printed circuit board that has a plurality of vias formed along a row. The method further 3 includes the step of cutting the first printed circuit board along the row to expose the vias along an edge of the printed circuit board. The method further includes the steps of soldering the vias to respective pins of a semiconductor chip, and soldering the vias to pads of a second printed circuit 5 board such that the first printed circuit board is substantially perpendicular to the second printed circuit board. #### BRIEF DESCRIPTION OF THE DRAWINGS These and other features of the invention will now be described with reference to the drawings of a preferred embodiment, which is intended to illustrate and not to limit the invention, and in which: FIG. 1 is a perspective view illustrating a multi-chip memory module in accordance with a preferred embodiment of the present invention, illustrated above a portion of a printed circuit board to which the multi-chip memory module may be surface mounted. Solder plugs and circuit board traces are omitted to show the construction of the multi-chip memory module; FIG. 2 is an exploded perspective view of the multi-chip memory module of FIG. 1; FIG. 3 is a top plan view of the multi-chip memory module of FIG. 1, with terminal numbers for the multi-chip 25 memory module shown in brackets; FIG. 4 is a cross sectional view taken along the line 4—4 of FIG. 1; FIGS. 5a and 5b are top and bottom plan views of a portion of a circuit board panel, illustrating a process of ³⁰ manufacturing side boards in accordance with the present invention, and further illustrating conductive traces on first and second sides of the side boards of FIG 1; FIG. 6a is an enlarged view in partial cross section, showing a bottom portion of a side board of the multi-chip memory module of FIG. 1 with partially cut-away vias filled with solder to form surface mount terminals, and further showing the printed circuit board and pads of FIG. 1; FIG. 6b is an enlarged view in partial cross section of a side board and a printed circuit board with pads, illustrating an alternative configuration that results when conductive cylinders of vias are pushed inward during a routing process; FIG. 7 is a schematic diagram illustrating the electrical interconnections of memory chip pins and side board terminals for the multi-chip memory module of FIG. 1, with chip pin numbers shown in parenthesis and multi-chip memory module terminal numbers shown in brackets; and FIG. 8 is a plan view of a single in-line memory module having eight multi-chip memory modules surface mounted 50 to one side thereof. # DETAILED DESCRIPTION OF PREFERRED EMBODIMENT In accordance with one embodiment of the present 55 invention, one multi-chip memory module design is described herein. In order to fully specify this preferred design, various embodiment-specific details are set forth, such as the number of memory chips in the module, the layouts of the printed circuit boards of the module, and the 60 capacity, number of data bits and pin-outs of the memory chips. It should be understood, however, that these details are provided only to illustrate this single preferred embodiment, and are not intended to limit the scope of the present invention. With reference to FIGS. 1–4, a 28-terminal multi-chip memory module 30 (hereinafter "multi-chip module") com- 4 prises four functionally-identical, vertically-stacked memory chips 32, 34, 36, 38. The memory chips 32–38 are conventional 24-pin surface mount TSOP ("thin small outline package") chips, available from Toshiba, Mitsubishi, and the like. Each memory chip 32–38 has a capacity of $16M\times1$ -bit. The vertically-stacked memory chips 32–38 are held together and electrically interconnected by a pair of printed circuit boards 42, 44, referred to herein as "side boards." The side boards 42, 44 are positioned in parallel to each other, and perpendicular to the top surfaces of the chips 32–38. The multi-chip module 30 is configured to be surface-mounted to a memory board 70 (FIG. 1) that has surface mount pads 66 thereon. As used herein to describe the multi-chip module 30, the term "bottom" refers generally to the portion of the multi-chip module 30 that is closest to the memory board 70 when the multi-chip module 30 is mounted to the memory board 70. The terms "top," "bottom," and "lower" are not intended to imply a specific spacial orientation of the multi-chip module 30. Each side board 42, 44 has a plurality of plated throughholes or "vias" 48 for receiving the pins 50 of the chips 32-38, with each via 48 comprising a conductive tubular cylinder portion 48a that extends through the side board. The vias 48 are positioned to form four horizontal rows 52, 54, 56, 58, with each row corresponding to a respective memory chip 32, 34, 36, 38. With reference to FIG. 4, the rows 52–58 of vias are formed such that the distance D between centers of adjacent rows is approximately equal to the thickness T of each chip 32–38, so that adjacent memory chips are touching (or nearly touching) each other when the multichip module 30 is assembled. This close spacing of adjacent memory chips contributes to a low profile of the multi-chip module 30 relative to the memory board 70 (FIG. 1), as further discussed below. Adjacent memory chips could alternatively be spaced apart from one another, as may be desirable in certain applications to facilitate the cooling of the memory chips 32–38. With reference to FIGS. 1 and 2, for each side board 42, 44, the vias of the bottom-most row 58 are partially cut away, with the conductive cylinder 48a of each such via extending to the lower edge 80 of the side board so that the pins 50 of the bottom-most chip 38 can be soldered directly to the surface mount pads 66 (FIG. 1) of the memory board 70. The vias 48 along the lower edges 80 of the side boards 42, 44 thus serve as surface mount terminals. This aspect of the multi-chip module 30, in combination with the close spacings between adjacent memory chips, allows the multichip module 30 to be mounted with a very low profile relative to the memory board 70. The lower edge 80 is preferably formed using a routing machine, as further described below. As illustrated in FIG. 3, the multi-chip module 30 has a total of 28 surface mount terminals (terminal numbers shown in brackets), with the terminals arranged in two rows of 14 terminals each. With reference to FIG. 1, the surface mount pads 66 are arranged in two rows of 14 pads each (corresponding to the 14 terminals per side board 42, 44), with the distance between the two rows corresponding to the width of each chip 32—38. As best seen in FIGS. 1 and 3, the multi-chip module 30 occupies approximately the same area on the memory board 70 as would a single one of the memory chips 32–38. Conductive traces (shown in FIGS. 5a and 5b) of the side boards 42, 44 interconnect the pins 50 of the memory chips 32–38 such that all memory locations of all memory chips 32–38 can be utilized. In the embodiment shown, the memory chips 32-38 are interconnected such that all four 16M× 1-bit chips 32–38 are selected simultaneously, with each chip supplying (or, during a write cycle, storing) one bit 5 of data. The multi-chip module 30 thus acts as a 16M×4-bit memory module. With reference to FIGS. 1–3, four "extra" vias 72 are provided along the lower edges 80 of the multi-chip module **30**. The four vias **72** serve as terminals only, and do not 10 receive pins 50 of any of the memory chips 32–38. Each via 72 provides access to either a data input pin or a data output pin of a respective memory chip 32–38, and is thus dedicated to a single chip. It will be recognized that other types of terminal structures could be used in place of the vias 72. To assemble the multi-chip module 30, the memory chips 32–38 are initially stacked on top of one another. The side boards 42, 44 are then positioned so that the pins 50 extend within the corresponding vias, as best shown by FIG. 4. Advantageously, no modification to the pins 50 of the standard TSOP memory chips 32–38 is required. Once the side boards 42, 44 are properly positioned, all of the vias 48 of both side boards 42, 44 are filled with solder (solder plugs omitted in FIGS. 1–4). A solder with a relatively high melting point is used for this purpose so that the multi-chip module 30 can subsequently be mounted to the memory board 70 using a solder with a lower melting point without melting the solder within the vias 48. A preferred process for manufacturing the side boards 42, 30 44 of the multi-chip module 30 will now be described with reference to FIGS. 5a and 5b, which illustrate a circuit board panel 90 mid-way through the manufacturing process. FIG. 5a illustrates the outward-facing surface (relative to the multi-chip module 30) of the side board 42, and the inwardfacing surface of the side board 44. FIG. 5b illustrates the inward-facing surface of the side board 42, and the outwardfacing surface of the side board 44. Traces 92 are initially formed on both sides of the circuit board panel 90 using a conventional film etching process. 40 Via holes are then drilled through the circuit board panel 90, with the holes positioned to correspond to the pin positions of the chips 32–38. A conventional plating process is then used to form the conductive cylinders 48a of the vias 48 (preferably formed from copper), and to interconnect the via 45 cylinders 48a to the appropriate traces 92. Once the vias 48 and traces 92 are formed, the panel 90 is routed to form the lower edge 80 and the top edge 81 of each side board 42, 44. The panel 90 shown in FIGS. 5a and 5b is mid-way through the routing process, with top and 50 bottom edges 80, 81 formed only for the four side boards 42, 44 closest to the bottom of each Figure. During the routing process, the routing bit is preferably passed so that approximately 5% of the diameter of each via cylinder 48a along the bottom row 58 is cut away. Due to imperfections in the 55 routing process, the lower portions of some cylinders may be pushed inward (toward the centers of the respective vias) by the routing bit, as schematically shown at 96 in FIGS. 5a and 5b (and further illustrated in FIG. 6b). Cylinders that are surface mount terminals, and need not be modified. The panel 90 is scored on both sides to form break-away grooves 94. The break-away grooves 94 can be formed either before or after the above-described routing process. Finally, side boards 42, 44 are manually broken away from 65 the panel 90, and soldered to stacks of memory chips (as described above) to form multi-chip modules 30. With reference to FIG. 6a, once the partially cut-away vias 48 along the bottom edge 80 of a side board 42, 44 are filled with solder, a portion of each solder plug 98 is exposed along the bottom edge 80, forming a terminal that can be soldered to a corresponding surface mount pad 66. Each solder plug 98 preferably extends slightly below the lower edge 80, facilitating connection of the multi-chip module 30 to the pads 66. As illustrated in FIG. 6b, via cylinders 48a that are pushed inward during the routing process are similarly exposed along the lower edge 80, and are wellsuited for connection to the pads 66. FIG. 7 illustrates the interconnections the memory chips 32–38 of the multi-chip module 30, and also illustrates the connections between the memory chips 32–38 and the 28 terminals of the multi-chip module 30. Signal names for each of the 28 multi-multi-chip module terminals are shown at the left of FIG. 7. Terminal numbers for the multi-chip module 30 are shown in brackets in FIG. 7, and correspond to the bracketed terminal numbers of FIG. 3. Pin numbers for the chips 32–38 are shown in parenthesis in FIG. 6. As shown, like address pins (A0–A11), control pins (RAS, CAS and WE), and power pins (VCC and VSS) of the four memory chips 32–38 are connected together, and are connected to respective terminals of the multi-chip module 30. For example, the A0 pins (pin 8) of all four memory chips 32–38 are connected together, and are accessed via terminal 10 of the multi-chip module. With like address and control pins connected together, all four chips 32–38 are selected simultaneously, and are fed identical address values. The data-input pin (D) of each memory chip 32–38 is connected to a respective dedicated input terminal (D0-D3) of the multi-chip module 30, allowing a 4-bit value to be written to the multi-chip module 30 on each write cycle. Similarly, the data-output pin (Q) of each memory chip 32–38 is connected to a respective dedicated output terminal (Q0–Q3), allowing a 4-bit value to be read from to the multi-chip module 30 on each read cycle. As will be recognized, the chips 32–38 could alternatively be connected such that fewer than all of the chips are selected with each multi-chip module access. For example, a 64M×4-bit multi-chip can be constructed from four 16M×4-bit memory chips that are interconnected so that only one memory chip is selected at a time. In such an arrangement, the write enable pins and like address, data-in, and data-out pins of all four memory chips would be connected, and the RAS and CAS pins of each chip would be connected to dedicated RAS and CAS input lines (i.e., one pair of RAS/CAS input lines per memory chip). FIG. 8 illustrates one side of a 16M×36 bit single in-line memory module (SIMM) 100 in accordance with the present invention. The SIMM 100 comprises a SIMM board 170 having eight 16M×4 bit multi-chip modules 30a-30h mounted on the side shown. Four 16M×1-bit TSOP memory chips (not shown) are mounted on the opposite side of the SIMM board 170, in addition to one or more conventional buffer chips. Standard connector terminals 104 are provided along the bottom edge of the SIMM 100, permitting insertion of the SIMM into a connector slot. The eight 16M×4-bit multi-chip modules 30a-30h and four 16M×1-bit memory chips combine to produce a data width of 36 bits (32 data formed in this manner have been found to work well as 60 bits plus 4 error-correction code bits). The low profile of each multi-chip module 30a-30h advantageously enables multiple SIMMs to be mounted in close proximity to one another within a computer. > While the design of a single multi-chip module 30 has been described in detail herein, various modifications to the design are possible without departing from the scope of the present invention. For example, a different type of memory 7 chip can be used in the place of the 16M×1-bit chips 32–38 of the multi-chip module 30. Alternatively, a mixture of memory chips of different types can be used. Further, a different number of chips per multi-chip module can be used. Further, the side boards 42, 44 may be constructed 5 according to alternative techniques that are apparent to those skilled in the art. It will further be noted that the stacking techniques described herein may be useful in alternative applications that do not involve the stacking of memory chips. For ¹⁰ example, the stacking techniques could be used to stack multiple buffer chips, or to stack multiple logic driver chips. Accordingly, the scope of the present invention is intended to be defined only by reference to the appended claims. What is claimed is: - 1. A multi-chip memory module, comprising: - a plurality of memory chips stacked on top of one another, each memory chip of said plurality having conductive surface mount pins; and - first and second side boards mounted to said memory chips such that said side boards are substantially parallel to one another, each side board having: - vias for receiving said surface mount pins of said memory chips, said vias arranged in rows such that each row corresponds to a respective memory chip of said plurality, vias of a bottom-most row receiving surface mount pins of a bottom-most memory chip of said plurality, said bottom-most row falling along a lower side board edge such that vias of said bottom-most row serve as surface mount terminals for surface mounting the multi-chip memory module to pads of a printed circuit board; and conductive traces for interconnecting said vias. - 2. A multi-chip memory module as defined in claim 1, wherein said vias of said bottom-most row are exposed along said lower side board edge. - 3. A multi-chip memory module as defined in claim 1, wherein all memory chips of said plurality are functionally identical. - 4. A multi-chip memory module as defined in claim 1, wherein the total number of surface mount terminals on said first and second side boards is greater than the number of said surface mount pins on any one of said plurality memory chips. - 5. A multi-chip memory module as defined in claim 1, wherein said memory chips of said plurality are interconnected by said traces such that all memory chips of said plurality are selected simultaneously. - 6. A multi-chip memory module as defined in claim 1, in combination with a memory board having surface mount pads thereon, said vias of said bottom-most row soldered to said surface mount pads. - [7. A module that includes at least one multi-chip module, 55 said module comprising: - a circuit board having at least first and second sets of surface mount pads; - a first plane side board including a plurality of surface mount contacts positioned along an edge of said first 60 side board which abuts said circuit board, said plurality of surface mount contacts of said first side board being surface-mounted to said first set of surface mount pads of said circuit board such that said first side board is substantially perpendicular to said circuit board; - a second planar side board including a plurality of surface mount contacts positioned along an edge of said second 8 side board which abuts said circuit board, said plurality of surface mount contacts of said second side board being surface-mounted to said second set of surface mount pads of said circuit board such that said second side board is substantially perpendicular to said circuit board and substantially parallel to said first side board; and - a plurality of standard surface mount chips stacked between said side boards, each chip including a plurality of pins, a portion of each pin extending beyond a chip surface which lies generally parallel to said circuit board with said chip positioned between said side boards, each chip of said plurality conductively connected to said first side board and said second side board. - 8. A module as defined in claim [7] 12, wherein said first and second sets of surface mount pads are arranged in respective first and second rows. - 9. A module as defined in claim [7] 12, wherein a surface area of a region between said first and second side boards on said circuit board is generally equal to a surface area occupied by one of said chips of said plurality. - 10. A module as defined in claim [7] 12, wherein said standard surface mount chips of said plurality are stacked on top of one another. - 11. A module as defined in claim [7] 12, wherein all chips of said plurality are functionally identical. - 12. A module [as defined in claim 7,] that includes at least one multi-chip module, said module comprising: - a circuit board having at least first and second sets of surface mount pads; - a first planar side board including a plurality of surface mount contacts positioned along an edge of said first side board which abuts said circuit board, said plurality of surface mount contacts of said first side boards being surface-mounted to said first set of surface mount pads of said circuit board such that said first side board is substantially perpendicular to said circuit board; - a second planar side board including a plurality of surface mount contacts positioned along an edge of said second side board which abuts said circuit board, said plurality of surface mount contacts of said second side board being surface-mounted to said second set of surface mount pads of said circuit board such that said second side board is substantially perpendicular to said circuit board and substantially parallel to said first side board; and - a plurality of standard surface mount chips stacked between said side boards, each chip including a plurality of pins, a portion of each pin extending beyond a chip surface which lies generally parallel to said circuit board with said chip positioned between said side boards, each chip of said plurality conductively connected to said first side board and said second board, wherein a lower-most chip of said plurality is soldered to said first and second sets of surface mount pads. - 13. A module as defined in claim [7] 12, wherein each chip of said plurality is a memory chip. - 14. A module as defined in claim 12, wherein said lower-most chip is additionally soldered to vias of said first and second side boards. - 15. A module as defined in claim 14, wherein said lower-most chip is soldered to said vias with a first solder that has a first melting point, and is soldered to said first and second sets of surface mount pads with a second solder that 35 9 has a second melting point, said second melting point lower than said first melting point. 16. A module as defined in claim 12, wherein each surface mount contact of the first and second side boards is formed by a solder joint, and at least a portion of each solder joint 5 extends below a lower edge of the respective side board. 17. A low profile multi-chip module for mounting on a circuit board substrate, comprising: first and second support structures, each support structure including a plurality of electrically conductive 10 paths and a plurality of surface mount contacts positioned along an edge thereof, the plurality of surface mount contacts arranged to align with corresponding surface mount pads on the circuit board substrate to electrically couple the first and second support struc- 15 tures to the circuit board substrate; and at least first and second juxtaposed standard surface mount chips, the first and second chips being identical to each other, each chip having planar surfaces extending between at least a pair of opposing sides of the chip, 20 the planar surfaces arranged generally between the support structures with the planar surfaces of adjacent chips positioned face to face, the opposite sides of each chip having a respective set of identical pins extending beyond the side of the chip toward respective ones of 25 the support structures, at least some of each set of pins being electrically connected to respective ones of the support structures, the pins of the lower-most chip being disposed relative to the edges of the first and second support structures such that when the multi- 30 chip module is surface mounted to the circuit board substrate the two sets of pins of the lower-most chip are soldered directly to the surface mount contacts of the first and second support structures, respectively, and to the circuit board substrate. 18. The multi-chip module of claim 17, wherein the juxtaposed standard surface mount chips are interconnected by the plurality of electrically conductive paths such that all of the juxtaposed standard surface mount chips may be selected simultaneously. 19. The multi-chip module of claim 17, wherein the electrical conductive paths are electrically coupled to at least some of the pins of the juxtaposed standard surface mount chips and are arranged so as to individually select at least one the juxtaposed standard surface mount chips. 20. The multi-chip module of claim 17, wherein a total number of the surface mount contacts is greater than the total number of pins of the first chip. - 21. The multi-chip module of claim 17, wherein at least some of the pins of the juxtaposed standard surface mount 50 chips are mechanically connected to one of the support structures. - 22. The multi-chip module of claim 17, wherein at least some of the pins of the juxtaposed standard surface mount chips are solder connected to one of the support structures 55 so as to mechanically and electrically connect the pins to the support structures. - 23. The multi-chip module of claim 17, wherein all of the juxtaposed standard surface mount chips of the module are positioned to lie entirely between the first and second 60 support structures. - 24. The multi-chip module of claim 17, wherein at least corresponding portions of the first and second support structures lie generally parallel to each other. - 25. The multi-chip module of claim 17, wherein the first 65 standard surface mount chip is aligned above the second standard surface mount chip. 26. The multi-chip module of claim 17, wherein the first and second support structures comprise opposing inner surfaces, and the pins of the juxtaposed standard surface mount chips extend outward beyond the inner surfaces of the first and second support structures. 27. The multi-chip module of claim 17, wherein the first and second support structures are spaced apart from each other by a distance less than a distance between an outer end of a first pin on one side of the first standard surface mount chip and an outer end of a second pin on an opposite side of the first standard surface mount chip. 28. The multi-chip module of claim 17, wherein said planar surfaces of each chip lie generally within respective parallel planes, and each pin of at least one of the chips connects to the corresponding support structure at a location outside the space between the plane. 29. The multi-chip module of claim 24, wherein the first and second support structures comprise planar side boards. 30. The multi-chip module of claim 24, wherein each of the first and second support structures extends along at least a side of one of the plurality of juxtaposed standard surface mount chips. 31. The multi-chip module of claim 30, wherein each support structure is formed of a unitary piece of printed circuit board material. 32. The multi-chip module of claim 30, wherein the planar surfaces of each chip lie generally normal to the parallel corresponding portions of the first and second support structures. 33. The multi-chip module of claim 26, wherein said first and second support structures each include a plurality of vias that are arranged to receive at least outer ends of at least some of the pins. 34. A low profile memory module comprising: a memory board having at least a pair of surface mount pads; and at least one multi-chip module comprising a circuit board structure on the memory board and at least two identical, standard surface mount memory chips, each chip having a plurality of substantially identical pins extending outwardly from the respective chip, the chips being stacked one above the other with corresponding pins of two chips positioned above each other generally in vertical alignment, the corresponding pins which are in general vertical alignment being separated by solder, metal contacts and a portion of the circuit board structure, the portion of the circuit board structure having metal contacts on each side and the solder connecting each metal contact to an adjacent pin of a corresponding one of the chips, the pins of a lowermost one of the chips being soldered to the surface mount pads of the memory board and being soldered to metal contacts along a bottom side of the circuit board structure such that with the multi-chip module surface mounted onto the memory board the pins of the lowermost one of the chips are disposed between the circuit board structure and the memory board. 35. A module as defined in claim 34, wherein the circuit board structure includes an interconnecting conductive path electrically connecting together the metal contacts. 36. A module as defined in claim 34, wherein the portion of the circuit board structure between the metal contacts has a generally rectangular cross-sectional shape. 37. A low profile multi-chip memory module having surface mount contacts for surface mounting to surface mount pads of a memory board, the memory module comprising: at least two identical, standard surface mount memory chips stacked one above the other, each chip having a plurality of identical pins extending outwardly from the respective chip; and 11 at least one circuit board structure including a plurality of electrically conductive paths and a plurality of surface mount contacts positioned along a bottom edge of the circuit board structure, the plurality of surface mount contacts aligned to align with corresponding surface mount pads on the memory board to electrically couple the circuit board structure to the memory board, the circuit board structure being electrically connected to at least some of the pins of the chips, each surface mount contact being formed by solder and one of the pins of a bottom one of the memory chips, said surface mount contacts extending below the bottom edge of the circuit board structure. 38. A module as defined in claim 37, wherein each chip includes a pair of opposing sides with the pins extending from both sides, and the circuit board structure supports the pins on both sides of the chips. 39. A module as defined in claim 37, wherein the circuit board structure includes a first circuit board side element and a second circuit board side element, each side element extending along a side of at least the bottom one of the chips and supporting a set of pins that extend from the respective side of an upper one of the chips, and each side element includes some of the plurality of electrically conductive paths and some of the plurality of surface mount contacts that are arranged along a lower edge of the respective side 30 element. 40. A module as defined in claim 39, wherein each side element has a generally uniform rectangular cross-sectional shape. 41. A module as defined in claim 37, wherein the total number of surface mount contacts on the circuit board structure is greater than the number of the plurality of pins on any one of the standard surface mount chips. 42. A module as defined in claim 37, wherein the circuit board structure is formed of a unitary piece of printed circuit board material. 43. A module as defined in claim 37, additionally comprising a second circuit board structure including a plurality of electrically conductive paths and a plurality of surface mount contacts positioned along at least one edge of the second circuit board structure, the plurality of surface mount contacts arranged to align with corresponding surface mount pads on the memory board to electrically couple the second circuit board structure to the memory board, the second circuit board structure being electrically connected to at least some of the pins of the chips. 44. A module as defined in claim 37, wherein each chip has planar surfaces that extend between at least a pair of opposing sides of the chip, and the chips are arranged in the module with the planar surfaces of adjacent chips positioned face to face. 45. A module as defined in claim 42, wherein the circuit board structure has a generally uniform rectangular cross-sectional shape. * * * * *