United States Patent

Heinen, Jr.

[19]

[11] E
[45] Reissued Date of Patent:

USOORE36852FE
Patent Number:

Re. 36,852
Sep. 5, 2000

[154] SEGMENTED DEBUGGER
|75] Inventor: Roger J. Heinen, Jr., Bellevue, Wash.
| 73] Assignee: Digital Equipment Corporation,
Houston, Tex.
21] Appl. No.: 08/988,806
22| Filed: Dec. 11, 1997
Related U.S. Patent Documents
Reissue of:
|64] Patent No.: 4,589,068
Issued: May 13, 1986
Appl. No.: 06/538,371
Filed: Oct. 3, 1983
51] Int. CL7 e, GO6F 11/00
52] US.Clo e, 395/704
58] Field of Search ... 395/704
[56] References Cited
U.S. PATENT DOCUMENTS
3,778,767 12/1973 Carlyle et al. 395/183.21
4166272 8/1979 DeCK wvvvveeeeeerereerereeerrernnn. 395/183.21
4,241,237 12/1980 Paraskevakos et al. 395/183.21
4,437,184 3/1984 Corketal.cceeeiiinii, 395/183.14
4,462,075 7/1984 Mort et al.ccccvneenniniieen. 395/200.32
4,489,414 12/1984 Titherley et al. 395/183.16
4,503,495 3/1985 Boudreaucccccuevriernennnnne. 395/729
4,670,838 6/1987 Kawatacccccceeveeeeereinennineenennnns 714/38

OTHER PUBLICAITTONS

Chase, et al., Parallel building: experience with a CASE

System for Workstation Networks, IEEE Online, Abstract,
Mar. 7, 1988.

Dervisoglu, Using Scan technology for debug and diagnos-
tics 1 a Workstation Environment, IEEE Online, Abstract,
Sep. 12, 1988.

“MicroPower/Pascal Debugger User’s Guide,” Digital
Equipment Corporation, Jun. 1985.

Primary Fxaminer—James P. Trammell
Assistant Examiner—John Q. Chavis
Attorney, Ageni, or Firm—Hamilton,

Reynolds, P.C.

Brook, Smith,

57 ABSTRACT

A debugger for debugging, from a central location (e.g., a
user terminal 13), jobs or processes running on one or more
remote units (11) connected to the user terminal (13) via a
communication network (15). The user terminal (13)
includes a debugger (21) that receives and interprets debug
commands produced by a keyboard and display console
(19). The debug commands fall in any one of three

categories—debug commands directed to the user terminal

(USER TERMINAL CONTROL commands); debug com-
mands directed to a particular remote unit (REMOTE UNIT
CONTROL commands); and, debug commands directed to

a specific job or process of multiple jobs or processes
running on a particular remote unit (LOCAL JOB/
PROCESS commands). The USER TERMINAL CON-
TROL commands are executed at the user terminal (13). The
REMOTE UNIT CONTROL commands and LOCAL JOB/
PROCESS commands are transmitted to the remote units
(11) via the communication network (15). Each of the
remote units (11) include a remote unit debugger (23) and a
local job/process debugger (25) for each job or process
subject to debug control. The remote unit debuggers (23)
and the local process debuggers (25) receive and carry out

the REMOTE UNIT CONTROL commands and the
LOCAL JOB/PROCESS commands, respectively. The
remote unit and local job/process debuggers send
ACKNOWLEDGE or NEGATIVE-ACKNOWLEDGE
messages to the user terminal debugger (21) after a debug
operation 1s executed, depending upon whether the execu-
tion was successful or unsuccessful. If successful, data
accompanying the ACKNOWLEDGE message 1s displayed
at the user terminal. Contrariwise, a NEGATIVE-
ACKNOWLEDGE message creates a suitable error display
at the user terminal. Further, the local job/process debuggers
(25) can send a message to the user terminal debugger (21)
in situations where an error 1s recognized during the opera-
tion of a job or process or where a job or process 1s to be
debugged prior to being placed i1n operation. Such local
job/process messages cause the i1dentity of the sending
job/process debugger to be added to a debug control data
base maintained in the user terminal and the message to be
displayed for subsequent action by the user.

16 Claims, 5 Drawing Sheets

USER /
TEAMIKAL
COMMUNI/CATION NETWORA
);“f’ ‘ Y% / ’ 1% T % p
APEMOTE LMOTE HEMOTE AEMOTE AEMOTE / HEMPOTE /
V774 LAYT LA AT V778 V7. 44
2 USER RN - 4-/9
: i
TG 7 7| b
DEBLGEER
t A
]
|
-1
G L5
DEBLGOER
ff - - I kh"‘
{ P : H“x
Tlocal [locdl V5
TSRS BB PRAESS
DERsGarR| |\ DLBvesER| ¢ T 0
AEMOTE LT

Re. 36,852

Sheet 1 of 5

Sep. 5, 2000

U.S. Patent

/7’

LIV
TLOW T]

/!

LINS
FLOWTY

4

LINT FLOWTE

&T22//870
L/V)7
FLOWTY

(565 52T
———— Y T2NIE T

G

TR H7sn e

/74
TLONVTS/]
/!

LIN/7 L7
[2] [0 [2,

4 1/

HEOMLIN NOULEINITWAO)D

T YIY T
£/ %..Nw\w\

IL

U.S. Patent Sep. 5, 2000 Sheet 2 of 5 Re. 36,852

IMTALIZE DATA

S7RLCTURES
OPEN F/LES. QN
COMMLIMIEATION

KEAD £ AARSE JAOM
USER CoMMAND g 38

DETERMINE
FEMOTE UNIT

ADIRESS &

RO
o5 iiD

EUYNLD N D REHIE UMIT
AP | e | [
YWIRN (OMMAN AEQLUESTING ALMOTE BELLIED

NI | T CTTMED)

7 WD AL

NO

USER TLERAM/INAL
DEBUGGEA

/5
AL S SAG

TAROL ™
52%&%&’@-’

yps | GISFLAY
ASSTCATED
DATA

AMAL Y575
SLBROUTINE
(/G 4)

7O FlG. 36

U.S. Patent Sep. 5, 2000 Sheet 3 of 5
AROM
Az 34
.’ﬁ”;f’ 7 P
AR DA7A
BASE FOR DISUAY
NTHAT W) NOT | fRrROA 2,
wenai oy |00 | MESSAGE [N TS it
OB/ AROESS N N
FOUND NI USER TERMINAL
NN DEBUGGER
TIE/PUNES. AN
AN~ Ve S
%ﬁ/‘}wmp E’ %,m' _
- .. A
y> f /‘Z = (T7MED)
oo 7 RECEND
K LESTIN G OB/
PROCESS LOMMAND ves | iaPLAY
ACTION J5SD0IATED
D474
SEMND MESSAGE
7O AEMO7E
LW
Gl BT, VS| T XS
Y5 AWMLV oA E
YN0
EXECYTE
. 2% ﬁéz’//f’z'—;'ff/z
1.5/(/72-7%’ CF/G. 4.
OF /?f/%fz; %%7‘ NOT %_Z{f}/
At%ﬂiﬁffff FOUND FILE
W DENT/E18477 0N
LOUND
DAY MESAGES
WD ABOYT
Jaa/%;g: ANAL Y5/S
e s SUEROVTINE
SeD A7 ¢
SEND ﬁggﬂ’ »
ACANOWL L

X7

Re. 36,852

70

U.S. Patent Sep. 5, 2000 Sheet 4 of 5 Re. 36,852

/V/'??Z/ZE LA7/ 54

/W//('f[/

C’HA&’/VA-'A f
USER TERM/NVAL

DEBUYGGEHN

KECEIVE _
MESSAGEL |

FROM A LOCAL~_VES %% %%A

JOB/ DEBUGGEHR SN /g ,;/5_(/,4‘;[

FPROCESS)‘?U//VAL

KEMOTE LM/ T VO
DEBL GG LA

PeRFORM
&l CONTROL

A CONTROL

MESSAGE LN 770N
Y NO
SEARCH LILAL SEND
FROLESS TABLE CONTROL -
JO JETERMINE ACKNMWLEDS
JGNORE 1F JOB) PROLESS MESSAGL
MESSAGE /5 FE/NG MO
FERFORMED BY
THIS REMOTE LWIT SEND LONTRIL-
NEGAT/VE -
ACAKMOWLEDGE
- MESSAGL
FORWARD '
MESSAGLE 70
LOCAL JOR/FROCESS |

CELUG GER

U.S. Patent Sep. 5, 2000 Sheet 5 of 5 Re. 36,852

5
\ STAUCTLRES
OFEN CHANNEL
T REMOTE
7 DEBUGGER

—ZEND
WA AT I
p b

LOCAL
JOB/ PROCLESS
DEBLGGER

WAr7 FOR
ACANOWL EDGAM

OF ,
WNTE=AT7TEATION
MESSAGE ; [GMORE

OTHER
MESSAGELS

RECENE LKAL
JOB/FROCESS

COMMAND
MESSAGL

LEZFORM
Lo, JABPROLESS
FUNC TION

S oA
RN Ay s

MESSAGE

SEND LOCAL
OB/ PAOCLSS
MeATVE
INOWLEDGE
MESSAGL

Re. 36,852

1
SEGMENTED DEBUGGER

Matter enclosed in heavy brackets [] appears in the
original patent but forms no part of this reissue specifi-
cation; matter printed in italics indicates the additions
made by reissue.

TECHNICAL AREA

This 1nvention 1s directed to debuggers used to debug the
programs that control the operation of central processing,
units and, 1n particular, debuggers used to debug the pro-
ograms that control distributed central processing units that
communicate with one another via a communication net-
work so that they can cooperate together to achieve a
specific objective, such as the production of a variety of
components and their assembly to create a product.

BACKGROUND OF THE INVENTION

As will be readily appreciated by those familiar with the
data processing art, debuggers are widely used to i1dentily
mistakes, or malfunctions 1n a computer program. More
specifically, the debugging process involves the detection,
location, 1solation and elimination of mistakes, or
malfunctions, from an operating program. In essence, a
debugger 1s a special program designed to assist a user 1n the
process of debugging an operating program. Because com-
puter operating programs come 1n a wide variety of forms
designed to be used 1 a wide variety of applications,
debuggers come 1n a wide variety of forms. In some cases,
the debugger forms part of the main computer program. In
other instances, the debugger 1s an entirely separate pro-
oram. In any case, the debugger 1s designed to respond to
user commands normally entered via a keyboard. For
example, the user could enter an EXAMINE command
requesting that data present at a certain point in the process
being debugged be displayed. Based on the nature of the
command, e.g., EXAMINE, and associated information also
entered by the user, such as the address of the register whose
data 1s to be displayed, the debugeger would locate the data
and cause 1t to be displayed. Another common command
used during debugging 1s entitled STEP, which requests that
the program being debugged be stepped and that the steps be
displayed. A further common debugging command i1s
CONTINUE, directing the program to continue from a stop
point or from a specified new point. As will be readily
appreciated by those skilled in the processing art,
EXAMINE, STEP and CONTINUE are merely examples of
a wide variety of commands designed to cause the operating
program being debugged to function 1n a desired manner so
that the operator or user can determine if the operating
program 1s running correctly.

In the past, debugeing has been primarily accomplished
by attaching a keyboard and display to a computer contain-
ing the program to be debugged, 1f a keyboard and display
were not previously associated therewith, and implementing
the debugger which, as noted above, may comprise a sepa-
rate program or form part of the operating program. The
debugeing user debugs the operating program by entering
selected commands plus any additional necessary data via
the keyboard and observes the results of the commanded
action on the display. While this approach is satisfactory
when the program 1s located 1n a local computer, particularly
if the local computer includes a keyboard and display
console, 1t 1s disadvantageous when the program 1s 1n a
computer that normally does not include a keyboard and
display console. Past debugging procedures are particularly

10

15

20

25

30

35

40

45

50

55

60

65

2

disadvantageous for use 1n computer systems that include a
plurality of central processing units, particularly distributed
systems, wherein various parts of a composite program are
located 1n different units. For example, 1n recent years, more
and more attention has been given to automating the manu-

facturing and assembly of products. Initially, each
manufacturing, assembly, inspecting, etc., machine was con-
trolled by a separate program. More recently, attempts have
been made to integrate the operations of such machines
together and with other systems, such as conveyors for
moving parts from one machine to another, in order to
provide entirely automated assembly lines. The 1initial
approach to providing entirely automated assembly lines
was to write a sophisticated large operating program and
debug the operating program as a unit. However, this
approach has a number of disadvantages. Most importantly,
the production of such operating programs and their debug-
omng require the services of skilled programmers who are
usually not familiar with the environment in which the
program 1s to be used. The end result 1s an expensive
program that frequently does not operate as satisfactorily as
desired at start up. Frequently time consuming and, thus,
expensive debugeing by skilled programmers 1s required
before satisfactory operation 1s achieved. Further, changes in
such programs usually require the services of skilled pro-
OTamImers.

More recently, proposals have been made to provide
computer systems comprising a plurality of central process-
ing units connected together via a communication network.
Each of the central processing units 1s programmed to
control all or part of one or more of the machines of the
automated factory. Because the central processing units can
communicate with one another via the communication
network, several central processing units can be pro-
crammed to work together to accomplish a particular result.
For example, the central processing unit controlling the
operation of a part inspection machine can be programmed
to cooperate with a robotic arm that removes defective parts
from a conveyor. Separate central processing units may be
programmed to control the part inspection machine and the
robotic arm or a single central processing unit may include
separate programs designed to control these 1tems. In any
event, cooperation between the “programs” 1s required in
order to accomplish the desired results—the removal of
defective parts. Stmilarly, cooperation between the 1nspec-
tion machine, the robotic arm, and the conveyor conveying
the parts may be necessary 1n order to speed up or slow down
the conveyor depending upon the number of defective parts
removed. As will be readily apparent, while the “programs”
that control these 1items must be designed to coact together,
they can be separately written. Because separate programs to
control such 1tems are relatively uncomplicated, they can be
written by programmers with limited skills—{requently per-
sons familiar with the manufacturing procedure who have
been taught a suitable high level programming language. In
the past, one disadvantage of this approach to programming
has been the difficulty associated with debugging programs
that cooperate with one another, particularly when parts of
the cooperating programs are located in separate central
processing units that are spaced from one another.

In the past, in order to debug a series of related operating

programs, particularly when they are included i wisely
separated central processing units, it has been necessary to

connect consoles including a keyboard and a display to each

of the central processing units and have two (or more)
operators work together. Obviously, 1t would be less expen-
sive and, thus, more desirable, to allow a single operator to

Re. 36,852

3

debug such central processing unit systems from a central
location. This 1nvention 1s designed to {ill this need. More
specifically, this invention 1s designed to provide a debugger
suitable for use in a data processing (e.g., computed) system
comprising a plurality of central processing units connected
together by a communication network so that the central
processing units can cooperate 1n order to achieve a par-
ticular result. The invention 1s directed to accomplishing this
result without requiring a separate user console for each
assoclated central processing unit. Rather, the invention
provides for debugging from a single console, which may be
at a location remote from the location of the central pro-
cessing units whose program(s) are to be debugged.

SUMMARY OF THE INVENTION

In accordance with this invention, a segmented debugger
for debugging, from a central location (¢.g., a user terminal),
Jjobs or processes running on one or more remote central
processing units connected to the user terminal via a com-
munications network 1s provided. The segmented debugger
includes a user terminal debugger that receives and inter-
prets debug commands entered by the user via a keyboard.
The user commands can fall in any one of three categories—

debug commands directed to the user terminal (USER
TERMINAL CONTROL commands);, debug commands

directed to a particular remote unit (REMOTE UNIT CON-
TROL commands); and, debug commands directed to a
specific job or process of a multiple of jobs or processes

running on a particular remote unit (LOCAL JOB/
PROCESS commands). The USER TERMINAL CON-

TROL commands are executed at the user terminal. The
REMOTE UNIT CONTROL commands and LOCAL JOB/
PROCESS commands are transmitted to the remote units via
the communication network. The segmented debugger also
includes remote unit debuggers, one located 1n each of the
remote units, plus local job/process debuggers, which are
also located 1n the remote units, for each job or process
subject to debug control. The remote unit debuggers and the
local job/process debuggers perform the commanded debug
function defined by the REMOTE UNIT CONTROL com-
mands and the LOCAL JOB/PROCESS command, respec-
fively. The remote unit and local job/process debuggers send
ACKNOWLEDGE or NEGATIVE-ACKNOWLEDGE
messages to the user terminal debugger after a debug
operation 1s completed, depending upon whether the debug
operation 1s successful or unsuccesstul. If successtul, asso-
ciated data accompanying the ACKNOWLEDGE message
1s displayed at the user terminal. Contrariwise, a
NEGATIVE-ACKNOWLEDGE message creates a suitable
error display. The nature of the error display 1s, of course,
dependent upon the nature of the commands that created the

NEGAITTVE-ACKNOWLEDGLE message.

In accordance with other aspects of this invention, pro-
vision 1s also made for a local job/process debugger to send
a message to the user terminal debugger and create a display
in situations where a process error 1s recognized and/or
situations where a process needs to be debugged before it 1s
placed 1n operation. The local job/process debugger origi-
nated messages cause the 1dentity of the job/process origi-
nating the message to be added to a debug control data base
in the user terminal prior to the message being displayed for
user action.

As will be readily appreciated from the foregoing
description, the 1nvention provides a debugger suitable for
debugging programs (herein denoted jobs or processes)
stored 1n a plurality of remotely located central processing
units. Because debugging 1s accomplished via a common

10

15

20

25

30

35

40

45

50

55

60

65

4

user terminal, the location of the jobs or processes to be
debugged 1s of no 1importance. That 1s, the jobs or processes
to be debugged can comprise a single process located 1n a
single remote central processing unit that may also include
other processes, or a job formed by several processes
distributed between several remote central processing units.

Not only does the invention provide for the debugging of
computer systems formed by a plurality of distributed cen-
tfral processing units connected together via a communica-
fions network, the invention accomplishes its intended
results 1n a low-cost manner. That 1s, only the segments of
the debugger associated with each of the units—the user
terminal, the remote terminal, and the local job/processes—
are located 1n the noted item. Parts of the debugger not
assoclated with a particular item are not included 1n the 1tem.
Thus, multiplicity 1s avoided. Rather, sharing of debugger
segments is provided. As a result, the invention [minimized]
minimizes debugging cost.

BRIEF DESCRIPTION OF THE DRAWINGS

The foregoing objects and many of the attendant advan-
tages of this invention will become more readily appreciated
as the same becomes better understood by reference to the
following detailed description when taken in conjunction
with the accompanying drawings wherein:

FIG. 1 1s a block diagram of a distributed data processing,
system comprising a plurality of remote central processing
units connected together and to a user terminal via a com-
munication network;

FIG. 2 1s a block diagram of a portion of FIG. 1 1llus-
frating the portions of a segmented debugger formed in
accordance with the invention located in the user terminal
and the remote units;

FIGS. 3A and 3B comprise a flow diagram of a user
terminal debugger suitable for use 1n the segmented debug-
ger 1llustrated in FIG. 2;

FIG. 4 1s a block diagram of an analysis subroutine
suitable for use 1n the user terminal debugger 1llustrated in

FIGS. 3A and 3B;

FIG. 5 1s a flow diagram of a remote unit debugger
suitable for use in the segmented debugger illustrated in

FIG. 2; and,

FIG. 6 1s a flow diagram of a local process debugger
suitable for use 1n the segmented debugger illustrated 1n

FIG. 2.

DESCRIPTION OF THE PREFERRED
EMBODIMENT

FIG. 1 illustrates a plurality of remote units 11 connected
together and to a user terminal 13 via a communication
network 15. The communication network may, for example,
comprise a CSMA/CD communication network.

Each of the remote units 11 include a central processor
and all of the additional elements necessary to form a
stand-alone computer designed to be programmed to per-
form a plurality of tasks. In an industrial automation
environment, the tasks may comprise controlling the opera-
fion of a conveyor belt, controlling the operation of a
machine tool, controlling the operation of a robotic arm,
controlling the operation of an inspection machine, etc. The
portion of the program stored 1n each remote unit associated
with a particular task 1s defined herein as a process. A
plurality of processes forming a portion or all of the program
of several remote units may cooperate together to accom-
plish a particular job. For example, a complicated machine

Re. 36,852

S

tool may require a relatively large program requiring the
capabilities of several remote units working together.
Alternatively, a portion of the program required to operate
an 1tem, such as an inspection device, may be distributed
through several remote units with one or more of the remote
units including processes that control the operation of other
devices. In other words, the system 1llustrated in block form
in FIG. 1 covers a wide variety of arrangements. The present
invention 1s not directed to any specific arrangement, 1.¢.,
any specific way the remote units are programmed or
cooperate together. Rather, the 1nvention 1s directed to a
debugger for debugging the remote units of a system of the
type 1llustrated m FIG. 1 from a user terminal 13.

As shown 1n FIG. 2, a segmented debugger formed 1n
accordance with the invention comprises: a user terminal
debugger 21 located in the user terminal 13; and, remote
terminal debuggers 23 and local job/process debuggers 25
located 1n the remote units 11. More specifically, a single
remote unit debugeger 23 1s located 1n each of the remote
units 11. One or more local job/process debuggers 25 are
located 1 the remote unit 11. The number of local job/
process debuggers 1s dependent upon the number of pro-
cesses 1n a particular remote unit subject to debug control.
Also located at the user terminal 1s a keyboard and display
console 19. The keyboard and display console allows a user
to enter debug commands and view messages produced 1n
the manner hereinafter described.

While the user terminal, remote unit, and local job/
process debuggers could be formed of dedicated electronic
circuits or subsystems, preferably, the user terminal, remote
unit and local job/process debuggers are m the form of
programs that function in the manner illustrated in FIGS.
3-6, which are next described.

FIGS. 3A and 3B comprise a flow diagram 1llustrating the
preferred form of a user terminal debugger formed in
accordance with the invention. The first step of the user
terminal debugger illustrated 1n FIG. 3A 1s the 1nitialization
of data structures forming part of the user terminal and used
during the operation of the user terminal debugger. After
data structure initialization, channels of communication are
opened to the remote units known to require debugging.
Preferably, the communication channels are logical commu-
nication channels which allow communication via address
information, rather than physical communication channels.

After the foregoing steps have been completed, the user
terminal debugger cycles to a read and parse (i.e., interpret)
user command step. During the read and parse user com-
mand step, commands entered by the user are analyzed to
determine 1f they are USER TERMINAL CONTROL
commands, such as EXIT, or commands directed to a remote
unit debugger or a local job/process debugger. If the com-
mand 18 a USER TERMINAL CONTROL command, 1t 1s
executed. Thereafter, the user terminal debugger returns to
the read and parse user command step.

If the command 1s not a USER TERMINAIL CONTROL

command, additional data inserted by the operator with the
command 1s analyzed to determine the address of the remote
unit to which the command 1s directed. Also, the command
1s converted mto a form understandable by the architecture
of the user terminal. Then, the command 1s analyzed to
determine 1f 1t 1Is a REMOTE UNIT CONTROL command,
1.e., a command directed to controlling the system environ-
ment of the remote unit, as opposed to a command directed
to a particular local job/process debugger. Examples of
REMOTE UNIT CONTROL commands are CREATE

JOB—a message requesting that the remote unit debugger

10

15

20

25

30

35

40

45

50

55

60

65

6

create a specific job; GET JOB LIST INFO—a message
requesting that the remote unit debugger return information
about one or more jobs that are currently active; RAISE
DEBUG EXCEPTION—a message requesting that the
remote unit debugger hault a specified process and begin a
debug sequence; and, GET MEMORY DATA—a message

requesting that the remote unit debugger return information
about the state of a memory allocation.

If the command 1s a REMOTE UNIT CONTROL

command, the user terminal debugger builds a message
directed to remote unit requesting the action defined by the
REMOTE UNIT CONTROL command. In essence, the
control command 1s put into a form suitable for transmission
to the remote unit that is to carry out the command.
Thereafter, the message 1s sent to the remote unit. Then, a
remote unit message received loop 1s entered. The first step
in the remote unit message received loop 1s a time test
designed to recognize reply messages directed to the use
terminal debugger by the remote unit debuggers. This step
only recognizes messages originated by the remote unit
debuggers. Messages originated by the local job/process
debuggers and forwarded to the user terminal debuggers by
the remote unit debuggers are recognized and acted upon at
a different point 1n the user terminal debugger, as described
below.

When a remote unit debugger message 1s received, a test
1s made to determine if the message mncludes a CONTROL

ACKNOWLEDGE message. If the message includes a
CONTROL ACKNOWLEDGE message, data associated
with the CONTROL ACKNOWLEDGE message 1s dis-
played on the keyboard and display console 19 of the user
terminal. Thereafter, the user terminal debugger cycles to the
timed remote unit reply message received step. If the mes-
sage does not mclude a CONTROL ACKNOWLEDGE
message, a test 1s made to determine if the message 1ncludes
a CONTROL NEGATIVE-ACKNOWLEDGE message. If
the message 1ncludes a CONTROL NEGATIVE-
ACKNOWLEDGE message, a suitable error message 1s
displayed. That 1s, the nature of the error message 1s depen-

dent upon other message material accompanying the CON-
TROL NEGATIVE-ACKNOWLEDGE message. Examples

of such other messages are: COMMUNICATIONS
ERROR—indicating an error 1n the message protocol; NO
MEMORY—indicating the remote unit does not have
enough memory to process the REMOTE UNIT CONTROL
command; ACCESS VIOLATION—the REMOTE UNIT
CONTROL command 1s directed to nonexistent memory;
BAD REQUEST—the request contains inconsistent data;
and, NO SUCH JOB—the specified job or process 1s not
currently active. After the error message 1s displayed, the
user terminal debugger cycles to the remote unit reply

message receive step. Receipt of either a CONTROL
ACKNOWLEDGE or a CONTROL NEGATIVE-

ACKNOWLEDGE message ends the transaction initiated
by the user command.

If the message does not include a CONTROL
NEGATIVE-ACKNOWLEDGE message, an analysis sub-
routine 1llustrated in FIG. 4 and described below 1s entered.

In essence, the analysis subroutine analyzes the message to

determine the source of the message, adds the message’s
information to the user terminal communication data base
and, then, displays the message. After the pass through the
analysis subroutine, the user terminal debugger cycles to the
fimed remote unit reply message received step.

As noted above, the remote unit reply message received
step 15 a timed step that i1s started when the remote unit
message received loop 1s entered. At the end of the timed

Re. 36,852

7

per1od, the loop 1s left and the user terminal debugger cycles
to the read and parse user command step.

If the test of the user command determines that it 1s not a
REMOTE UNIT CONTROL command, as illustrated 1in

FIG. 3B, 1t 1s assumed that the user command 1s a LOCAL
JOB/PROCESS command. As a result, the user terminal

data base 1s searched for mmformation about the designated
remote unit job/process. If the user terminal data base
contains no i1nformation about the designated remote unit
job/process, a suitable error message 1s displayed.
Thereafter, the user terminal debugger cycles to the read and
parse user command step. If the data base includes infor-
mation about the designated remote unit job/process, a test
1s made to determine if the state of the job/process 1is
consistent with the nature of the command. If the job/process
state 18 not consistent with the nature of the command, a
suitable error message 1s displayed. For example, 1f the
command requires that the job/process stop and the job/
process 1s already stopped, an error message stating this fact
will be displayed. Thereafter, the user terminal debugger

cycles to the read and parse user command step 1llustrated 1n
FIG. 3A.

If the job/process state 1s consistent with the user
command, the user terminal debugger builds a message to
the remote unit requesting the commanded job/process
action; and, the message 1s sent to the remote unit 1n which
the job/process 1s located. Examples of LOCAL JOB/
PROCESSES user commands are: EXAMINE—a message
requesting that specific data from a speciiic job or process be
sent to the user terminal debugger; DEPOSIT—a message
requesting that data forming part of the message be depos-
ited 1n the memory of the specified job or process; SET
BREAK—a message requesting that a breakpoint be set 1n
the specified job or process; CLEAR BREAK—a message
requesting that a previously set breakpoint be cleared;
STEP—a message requesting that the specified job or pro-
cess step one or more 1nstructions; CONTINUE—a message
requesting that the specified job or process continue execut-
ing at the present location or at a specified new location 1n
the job or process; and PROCESS EXIT—a message
requesting that the specified job or process terminate. These
examples are just a few of the many different types of
commands that are used by programmers to debug pro-
orams. Obviously, the execution of each command causes a
series of actions directed to achieving the intended result.

After the message directed to a specilic job/process
debugger 1s built and sent, the user terminal debugger
program enters a local job/process message received loop.
The first step 1n the local job/process message received loop
1s a timed test that responds to debug messages produced by
the local job/process debuggers and sent to the user terminal
debuggers by the remote debuggers in the manner described
below. When a suitable message 1s received, it 1s tested to
determine 1f 1t 1ncludes a local job/process ACKNOWL-
EDGE message. If the message includes a local job/process
ACKNOWLEDGE message, data associated with the local
job/process ACKNOWLEDGE message 1s displayed.
Thereafter, the user terminal debugger cycles to the timed
local job/process reply message received step. If the mes-
sage does not include a local job/process ACKNOWLEDGE
message, a test 1s made to determine if the message includes
a local job/process NEGATIVE-ACKNOWLEDGE mes-
sage. If the message includes a local job/process
NEGATIVE-ACKNOWLEDGE message, a suitable error
message 1s displayed. Thereafter, the user terminal debugger
cycles to the timed local job/process reply message received
step. If the message does not include a local job/process

5

10

15

20

25

30

35

40

45

50

55

60

65

3

NEGATIVE-ACKNOWLEDGE message, a pass 1s made
through the analysis subroutine 1llustrated in FIG. 4 and next
described. After the pass through the analysis subroutine, the
user terminal debugger cycles to the timed local job/process
reply message received step. Again either of the acknowl-
cdge messages completed the transaction initiated by the
user command.

As noted above, the local job/process message received
step 1s timed. Timing starts when the local job/process
message received loop 1s entered. At the end of the time
per1od, the loop 1s left and the user terminal debugger cycles

to the read and parse user command step 1llustrated 1n FIG.
3A and described above.

The first step 1n the analysis subroutine illustrated in FIG.
4 1s a search of the data base of the user terminal for the
combination of the remote unit address and/or the job/
process 1dentification associated with a message that 1s
received during passes through either the remote unit mes-
sage received loop or the local job/process message received
loop. If the search of the data base does not locate the remote
unit address and/or the job/process identification, a new
debug communication data base 1s entered in the user
terminal. Thereafter, or if the remote unit address and/or the
job/process 1dentification 1s found, the portion of the mes-
sage containing information about the job/process 1s dis-
played. For example, the display could read “JOB/
PROCESS STOPPED AT TIME t.” Therecafter, an
acknowledgement of the message 1s sent to the remote unit
debugger that sent the message to the user terminal debug-

o€,
As will be readily appreciated at this point, the user

terminal debugger executes any command related to the user
terminal per se. Commands not related to the user terminal
are analyzed to determine whether a command 1s directed to
a remote unit or a local job/process located 1n a remote unit.
If the command 1s directed to a remote unit, a message 1S
built and sent to the remote unit debugger. Thereafter, for a
predetermined period of time, the user terminal debugger
waits for a reply from the remote unit debugger. Any
messages received from the remote unit debuggers are
analyzed. Debugger messages replying to a command cause
either associated data or an error message to be displayed,
depending upon whether the commanded action was suc-
cesstul or unsuccesstul. If the remote unit debugger message
1s the result of some other action, if necessary, a new data
base 1s opened and a suitable display i1s created. If the
command 1s directed to a particular job/process, the com-
mand 1s analyzed to determine 1f the specific job/process 1s
contained in the designated remote unit and if the command
1s consistent with the state of the job/process. If these tests
are passed, a message 1s built and sent to the remote unit
requesting the commanded job/process action. Thereafter,
the user terminal debugger, for a predetermined period of
time, looks for local job/process reply messages related to
the commanded action. If a local job/process reply message
related to the commanded action 1s received, either associ-
ated data or an error message 1s displayed, depending upon
whether the commanded action was or was not successful.
If a local job/process debugger message not associated with
the commanded action 1s received, 1f necessary, a new data
base 1s opened and the message 1s displayed.

The first step 1n the remote unit debugger illustrated 1n
FIG. 5 1s the mitialization of the data structures of the remote
unit and the opening of a channel of communication to the
user terminal debugger. As noted above, preferably, the
opening of a communication channel comprises creating a
logical communication channel between the remote unit

Re. 36,852

9

debugger and the user terminal debugger. After the data
structures have been 1itialized and a communication chan-
nel has been opened, the remote unit debugger shifts to a
receive message step. Messages can be received from two
sources—the user terminal debugger or a local job/process
debugger. When a message 1s received, the remote unit
debugger cycles to a test directed to determining whether the

message 1s from a local job/process debugger. If the message
1s from a local job/process debugger, local process data, 1.¢.,
data 1dentitying the source of the local job/process message,
1s recorded. Thercafter, the message 1s sent to the user
terminal debugger. Then, the remote unit debugger cycles to
the receive message step. If the message 1s not from a local
job/process debugger, a test 1s made to determine 1if the
message 1s a REMOTE UNIT CONTROL command, 1.€., a
message directed to the remote unit debugger, per se, as
opposed to a message directed to a local job/process debug-
ger. If the message 1s a REMOTE UNIT CONTROL
command, the action commanded by the message 1s per-
formed and, thereafter, a test 1s made to determine if the
action was successful. If the action was successful, a CON-
TROL ACKNOWLEDGE message along with data related
to the result of the commanded action 1s sent to the user
terminal debugger. Thereafter, the remote unit debugger
cycles to the receive message step. If the commanded action
was unsuccessful, a CONTROL NEGATIVE-
ACKNOWLEDGE message 1s sent to the user terminal and,
thereafter, the remote unit debugger cycles to the receive
message step.

If the message was not a REMOTE UNIT CONTROL
command, 1t 1s assumed that the message 1s a LOCAL
JOB/PROCESS command and a search of a local process
data base stored in the remote unit 1s made to determine it
the job/process defined by the message 1s known by the
remote unit receiving the message. If the process 1s not
known by the remote unit, the message 1s 1gnored and the
remote unit debugger cycles to the receive message step. For
example, the job/process defined by the message would not
be known by the remote unit if the job/process had been
replaced by another job/process, and the imnformation about
the completion of the replacement had not yet been sent to
the user terminal, prior to the job/process debug message
being received.

If the search of the local process table determines that the
job/process 1s known by the remote unit receiving the
message, the message 1s forwarded to the local job/process
debugger. Thereafter, the remote unit debugger cycles to the
receive message step.

The first step of the local job/process debugger illustrated
in FIG. 6 1s the initialization of the data structures of the
related local job/process. Thereafter, a channel 1s opened to
the remote unit debugger of the remote unit within which the
local job/process debugger 1s located. Next, if the local
job/process requires that 1t be debugged prior to being
placed 1 operation, or 1if an error occurs 1n the local
job/process requiring debugging action, the local job/
process debugger sends a WANTS-ATTENTION message
to the remote unit debugger, which, as previously described,
forwards the message to the user terminal debugger. As also
previously described, if the user terminal debugger does not
include the particular local job/process 1n 1ts debug com-
munication data base, a pass during the analysis subroutine
(FIG. 4) results in a data base being started for the particular
local job/process; and, the user terminal debugger sending
an acknowledgement of the WANTS-ATTENTION to the
local job/process debugger. As illustrated 1n FIG. 6, after the
local job/process debugger sends the WANTS-ATTENTION

10

15

20

25

30

35

40

45

50

55

60

65

10

message to the user terminal debugger via the remote unit
debugger, 1t waits for the user terminal debugger acknowl-
cdgement of the WANTS-ATTENTION message. During
the waiting period, all other messages are 1gnored. After the
acknowledgement of the local job/process debugger
WANTS-ATTENTION message 1s received, the local job/
process debugger cycles to a receive local job/process
command message step. When a local job/process command
message 1s produced by the user terminal debugger 1n the
manner previously described, and received by the local
job/process debugger, the commanded local job/process
function 1s performed. Thereafter, a test 1s made to deter-
mine if the commanded local job/process action was suc-
cesstul.

If the action was successful, a local job/process
ACKNOWLEDGE message, along with any relevant data,
is sent to the user terminal debugger (via the remote unit
debugger). Thereafter, a local job/process debugger cycles to
the receive local job/process command message step. If the
local job/process action was not successtul, the local job/
process debugger sends a local job/process NEGATIVE-
ACKNOWLEDGE message to the user terminal debugger
(also via the remote unit debugger). Thereafter, the local
job/process debugger cycles to the receive local job/process
command message step.

As will be readily appreciated from the foregoing
description, the invention provides a segmented debugger,
cach segment of which carries out only the steps needed to
be accomplished by the particular item with which 1t 1s
assoclated. More specifically, the user terminal debugger
secgment only performs the steps that need to be accom-
plished by the user terminal. The remote unit debugger
secgment only carries out the steps that need to be accom-
plished by the remote unit and the local job/process debug-
oger only carries out the steps that need to be accomplished
by the local job/process. Thus, the invention 1s 1deally suited
for use 1n distributed, central processing unit systems, par-
ticularly central processing unit systems wherein a series of
related processes designed to accomplish a specific job are
stored 1n remotely located and separately programmed com-
puters. While such systems can be used in various
environments, one specific environment where such systems
find use 1s 1n an automated factory. The 1nvention avoids the
need to physically transport a user terminal to each central
processing unit location for debugging purposes. Further,
the 1nvention avoids the need to have several operators each
connected to one of the central processing units of a series
of distributed central processing units designed to coact
together 1n order to accomplish a common objective. A
single operator located at a single location can debug
interrelated programs even though the interrelated programs
are located in physically separated central processing units.

While a preferred embodiment of the invention has been
1llustrated and described, it will be appreciated that various
changes can be made therein without departing from the
spirit and scope of the mvention. Consequently, the 1nven-
tion can be practiced otherwise than as specifically described
herein.

The embodiments of the invention 1 which an exclusive
property or privilege 1s claimed are defined as follows:

1. A segmented debugger for a computer system wherein
at least one user terminal that includes a keyboard and
display console 1s connected via a communication network
to a plurality of remote units for distributed processing, each
[of which includes] remote unit including a central process-
ing unit and at least one job/process subject to debug control,
said segmented debugger comprising:

Re. 36,852

11

(A) a user terminal debugger located 1n said user terminal
for:

(1) receiving debug commands entered by a user via
said keyboard and display console;

(2) executing said debug commands when said debug
commands are directed to said user terminal;

(3) sending said debug commands to remote unit
debuggers located 1n said remote units when said
debug commands are directed to a particular remote
unit or a job/process 1n a remote unit that 1s subject
to debug control; and,

(4) receiving debug messages from said remote unit
debuggers and causing related information to be

displayed by said keyboard and display console;

(B) a plurality of remote unit debuggers, one located in
cach of said plurality of remote units, for:

(1) receiving the debug commands sent to said remote
units by said user terminal debugger;

(2) executing said debug commands when said debug
commands are directed to the remote unit debugger
receiving sald debug commands;

(3) creating messages based on the results of the
execution of said debug commands by said remote
unit debugger;

(4) forwarding said messages to said user terminal
debugger;

(5) forwarding said debug commands to the local
job/process debugger to which said commands relate
when said debug commands are directed to a local
job/process debugger 1n the remote unit receiving
said debug commands; and,

(6) receiving debug messages from the local job/
process debuggers 1n said remote units and forward-
ing said debug messages to said user terminal debug-
ger; and,

(C) a plurality of local job/process debuggers, one asso-
cilated with each of the job/processes 1n said remote unit
subject to debug control, each job/process to be
debugged comprising one of (i) a single process among
other processes located in a single central processing
unit of said remote unit, and (it) a job formed of plural
processes distributed between ceniral processing units
of multiple remote units including said remote unii,
each local job/process debugger for:

(1) receiving debug commands forwarded to said local
job/process debuggers by said remote unit debug-
gers;

(2) executing said debug commands received by said
local job/process debuggers from said remote unit
debuggers;

(3) creating messages based on the results of the
execution of said debug commands by said local
job/process debuggers; and,

(4) forwarding said messages to said remote unit
debuggers for forwarding by said remote unit debug-
gers to said user terminal debugger.

2. A segmented debugger as claimed 1n claim 1, wherein,

after said debug commands directed to said remote unit
debuggers are executed, said remote unit debuggers:

(1) sends a CONTROL ACKNOWLEDGE message and
associated data to said user terminal debugger when the
execution of said debug commands directed to said
remote unit debugger are successtul; and,

(2) send a CONTROL NEGATIVE-ACKNOWLEDGE

message to said user terminal debugger when the
execution of said debug commands directed to said
remote unit debugger are unsuccesstul.

10

15

20

25

30

35

40

45

50

55

60

65

12

3. A segmented debugger as claimed 1n claim 2, wherein
a CONTROL ACKNOWLEDGE message received by said
user terminal debugger from a remote unit debugger causes
a display of the data associated with said CONTROL
ACKNOWLEDGE message and wherein the receipt of a
CONTROL NEGATIVE-ACKNOWLEDGE message by

said user terminal debugger from a remote unit debugger
causes a related error message to be displayed.

4. A segmented debugger as claimed 1n claim 3, wherein,
after said debug commands directed to said local job/process
debuggers are executed, said local job/process debuggers:

(1) send a local job/process ACKNOWLEDGE message

and associated data to said remote unit debugger for
forwarding to said user terminal debugger when the
execution of said local job/process debugger command
1s successful; and,

(2) send a local job/process NEGATIVE-
ACKNOWLEDGE message to said remote unit debug-
ger for forwarding to said user terminal debugger when
the execution of said local job/process debugger com-
mand 1s unsuccessiul.

5. A segmented debugger as claimed 1n claim 4, wherein

the receipt of a local job/process ACKNOWLEDGE mes-
sage by said user terminal debugger causes a display of the

data associated with said local job/process ACKNOWL-
EDGE message and wherein the receipt of a local job/
process NEGATIVE-ACKNOWLEDGE message by said
user terminal debugger causes a related error message to be
displayed.

6. A scgmented debugger as claimed 1n claim 5, wherein
said user terminal debugger includes a data base of infor-
mation related to the remote unit debuggers and the local
job/process debuggers with which 1t 1s communicating and
wherelin the receipt of a message from a remote unit debug-
ger causes the opening of a new data base if said remote unit
debugger and any associated local job/process debugger are
not 1identified in the existing data base and a display of the
message.

7. A segmented debugger as claimed in claim 6, wherein
said user terminal includes a data base containing informa-
tion about the job/processes that are subject to debug control
and wherein said data base 1s searched by said user terminal
debugger when a command directed to a local job/process
debugger 1s received to determine the state of said job/
process and wherein a suitable error message 1s displayed if
said job/process 1s not found in said data base.

8. A scgmented debugger as claimed 1n claim 7, wherein
the state of said job/process 1s analyzed by said user terminal
debugger when a command directed to a local job/process
debugger 1s received to determine if 1t 1s consistent with the
command directed to said local job/process debugger and, 1t
inconsistent, a suitable error message 1s displayed.

9. A segmented debugger as claimed 1n claim 1, wherein,
after said debug commands directed to said local job/process
debuggers are executed, said local job/process debuggers:

(1) send a local job/process ACKNOWLEDGE message
and associated data to said remote unit debugger for
forwarding to said user terminal debugger when the
execution of said local job/process debugger command
1s successful; and,

(2) send a local job/process NEGATIVE-
ACKNOWLEDGE message to said remote unit debug-
ger for forwarding to said user terminal debugger when
the execution of said local job/process debugger com-
mand 1S unsuccesstul.

Re. 36,852

13

10. A segmented debugger as claimed 1n claim 9, wherein
the receipt of a local job/process ACKNOWLEDGE mes-
sage by said user terminal debugger causes a display of the
data associlated with said local job/process ACKNOWL-
EDGE message and wherein the receipt of a local job/
process NEGATIVE-ACKNOWLEDGE message by said
user terminal debugger causes a related error message to be
displayed.

11. A segmented debugger as claimed in claim 10,
wherein said user terminal debugger includes a data base of
information related to the remote unit debuggers and the
local job/process debuggers with which 1t 1s communicating
and wherein the receipt of a message from a remote unit
debugger causes the opening of a new data base if said
remote unit debugger and any associated local job/process
debugger are not 1dentified 1 the existing data base and a
display of the message.

12. A segmented debugger as claimed 1n claim 11,
wherein said user terminal includes a data base containing,
information about the job/processes that are subject to debug
control and wherein said data base 1s searched by said user
terminal debugger when a command directed to a local
job/process debugger 1s received to determine the state of
said job/process and wheremn a suitable error message 1s
displayed 1f said job/process 1s not found 1n said data base.

13. A segmented debugger as claimed i1n claim 12,
wherein the state of said job/process 1s analyzed by said user
terminal debugger when a command directed to a local
job/process debugger 1s received to determine 1f 1t 1S con-

10

15

20

25

14

sistent with the command directed to said local job/process
debugger and, if inconsistent, a suitable error message 1s
displayed.

14. A segmented debugger as claimed in claim 1, wherein
said user terminal debugger includes a data base of infor-
mation related to the remote unit debuggers and the local
job/process debuggers with which 1t 1s communicating and
wherein the receipt of a message from a remote unit debug-
ger causes the opening of a new data base if said remote unit
debugger and any associated local job/process debugger are
not identified in the existing data base and a display of the
message.

15. A segmented debugger as claimed 1n claim 1, wherein
said user terminal includes a data base containing informa-
tion about the job/processes that are subject to debug control
and wherein said data base 1s searched by said user terminal
debugger when a command directed to a local job/process
debugger 1s received to determine the state of said job/
process and wherein a suitable error message 1s displayed if
said job/process 1s not found 1n said data base.

16. A segmented debugger as claimed 1n claim 1, wherein
the state of said job/process 1s analyzed by said user terminal
debugger when a command directed to a local job/process
debugger 1s received to determine if 1t 1s consistent with the
command directed to said local job/process debugger and, 1t
inconsistent, a suitable error message 1s displayed.

¥ ¥ # ¥ ¥

	Front Page
	Drawings
	Specification
	Claims

