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INFERENCE RULE DETERMINING
METHOD AND INFERENCE DEVICE

Matter enclosed in heavy brackets [ ] appears in the
original patent but forms no part of this reissue specifi-
cation; matter printed in italics indicates the additions
made by reissue.

This s a reissue of application Ser. No. 07/904,690, filed
Jun. 26, 1992 now U.S. Pat. No. 5,255,344, which 1s a
continuation of application Ser. No. 07/459,815, filed as
PCT/JP89/00504, May 19, 1989, now U.S. Pat No. 5,168,
549.

TECHNICAL FIELD

The present invention relates to inference rule determin-
ing methods and inference devices 1n controlling apparatus,
in the inference of an expert system, and 1n pattern recog-
nition based on 1nput data.

BACKGROUND ART

In order to describe a conventional technique, first, the
basic fuzzy inference will be outlined by taking as an
example fuzzy control used 1n apparatus control, etc.

In a control system which relates to the evaluation of
human beings, the operator can determine a final manipu-
lated control variable using a variable which the operator has
determined subjectively and/or sensuously, for example,
“large”, “middle”, “tremendously”, or “a little” (which is
hereinafter referred to as a fuzzy variable). In this case, the
operator determines the manipulated variable from the 1input
variables on the basis of his control experience. An inference
device using fuzzy control assigns an nput fuzzy number to
an IF part of an inference rule in accordance with the
inference rule of “IF . . . THEN . . . ” type and determines
an output fuzzy number of the THEN part from a fitting
grade (membership value) indicative of the extent to which
the mnference rule is satisfied. The actual manipulated vari-
able can be obtained by taking the center of gravity value,
etc., of the output fuzzy number.

One of the conventional control methods using fuzzy
inference 1s fuzzy modeling disclosed, for example, in

Gean-Tack Kang, Michio Sugano; “fuzzy modeling” SOCI-
ETY OF INSTRUMENT AND CONTROL ENGINEERS

PAPERS, Vol. 23, No. 6, pp. 650-652, 1987. In the control
rule of the fuzzy modeling, the IF part 1s constituted by a
fuzzy proposition and the THEN part 1s constituted by a
regular linear equation between inputs and outputs. If a
timing lag of first order tank model 1s considered, for
example, the control rule among a control error ¢, 1ts change
in error de and a control output (manipulated variable) u is
ogrven by

If € 1s Zero and de 1s Positive Medium
Then u=0.25 e+1.5 de

A plurality of such mference rules are prepared, all of
which are referred to as control rules Zero, Positive
Medium, etc., are each a label or a fuzzy variable (fuzzy
number) used to described the rules. FIG. 1 illustrates one
example of a fuzzy variable. In FIG. 1, NB denotes Negative
Big; NM, a negative Medium; NS, a Negative Small; ZO, a
Zero; PS, Positive Small; PM, a Positive Medium; and PB,
Positive Big, A function indicative of a fuzzy number F on
X 1s referred to as a membership function g ) and the
function value of x° is referred to as a membership value
1(X"). The general form of the control rules is given by
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R>:If x; is A}, Xxp is A, ..., Xy is AS

+ ¢

Then v =cp +¢iX) + 63X + ... + ¢ Xy

where R indicates a s rule; X;, an input variable; A7, a
fuzzy variable; v°, an output from the s” rule; and ¢, a
THEN part parameter. The result of inference for an input
(x,", X5, . . . X_°) is given by

n
Sy
s=1

. n

2, WP

5=1

y

where n 1s the number of rules, and w” 1s a fitting grade at
which the input (x,°, x,°, . . ., x_°) is adapted to the IF part
of the S rule W* is given by

W = ]_[ uAs(X)
=1

where the membership value in the x° in the fuzzy variable
A7 1s u, °(x7). The identification of a fuzzy model includes
a two-stage structure, namely, 1dentification of the structure
of the IF and THEN parts and identification of the IF and
THEN parts. The conventional 1dentifying process includes
the steps of (1) changing the fuzzy proposition of the IF part
to a proper proposition, (2) changing W” in a constant
manner, (3) searching only the actually required ones of the
input variables of the THEN part using a backward elimi-
nation method, (4) calculating parameters of the THEN part
using the method of least squares, (5) repeating the steps
(2)—«(4) to determine an optimal parameter, (6) changing the
fuzzy proposition of the IF part and (7) returning to the step
(2) where an optimum parameter is repeatedly arched under
the conditions of a new fuzzy proposition. Namely, this
method can be said to be a heuristic method-like 1dentifying
algorithm.

A conventional inference device includes a fuzzy infer-
ence device, for example, shown 1n FIG. 2 1n which refer-
ence numeral la denotes a data input unit (including a
measured value and a value evaluated by human being); 2a,
a display command unit; 3a, a fuzzy inference operation
unit; 4a, an inference result output unit; and Sa, a display.
The display 2a 1s composed of a keyboard, and the fuzzy
inference operation unit 3a 1s composed of a digital com-
puter. The mput data to the digital input unit 1a is subjected
to inference operation at the fuzzy inference operation unit
da. Thus, the operation unit 3a outputs the result of the
inference and simultaneously displays a list of inference
rules, a list of fuzzy variables and the states of use of various
inference rules on the display 5a. In a conventional inference
device such as that shown 1n FIG. 2, the inference rules of
the fuzzy inference rules and the fuzzy variables as input
data are fixed as constant values in the fuzzy inference
operation unit 3a and have no function of changing the fuzzy
variables.

Since an algorithm of determining a membership function
1s based on heuristic method in the conventional inference
rule determining method as well as in the fuzzy modeling,
it 1s complicated and the number of parameters to be
determined 1s very large. Therefore, optimal inference rules
cannot be obtained easily at high speed.

Since an influence device such as that shows in FIG. 2 has
no function of learning inference rules, the characteristic of
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the 1nference variable changes with time, so that 1t cannot
cope with the situation that the inference accuracy would be
deteriorated according to the inference rules set initially.
Assume, for example, that there 1s the inference rule “If 1t 1s
hot, then control diarie a so as to be 1n level B.” Since the
obscure concept “hot” varies from person to person as well
as season to season, satistactory control cannot be achieved
unless the mnference device has a learning function and can
change the inference rules adaptively 1n accordance with
situations under which the device 1s used. Furthermore, there
are actually many cases where non-linear inference 1s
required, so that a method of performing linear approxima-
tion described with reference to the above conventional
example has a limit to improvement 1n the inference accu-
racy.

SUMMARY OF THE INVENTION

In order to solve the above problems, it 1s a first object of
the present invention to provide an inference rule determin-
ing process for automatically determining a fuzzy number
contained 1n the inference rules described in the form
“IF ... THEN. . .” using a learning function without relying
upon experience.

It 1s a second object of the present invention to provide an
inference device which 1s capable of coping with an infer-
ence problem at high speed even if the problem 1s non-linear,
using the non-linearity of a neural network model. In the
inference device, a membership value determiner constitut-
ing the neural network infers from the input variables a
membership value corresponding to the IF part of each
inference rule. The individual inference quantity determiner
of the inference device infers from the input variables an
inference quantity corresponding to the THEN part of the
inference rule. The final inference quantity determiner
makes a synthetic determination based on the inference
quantity and the membership value inferred for each of the
rules for the mput variables and obtains a final inference
quantity. The present invention is the inference device which
functions as described above.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 1llustrates fuzzy variables;
FIG. 2 1s a schematic of a conventional inference device;

FIGS. 3 and 4 are schematics of neural network models
which constitute the membership value determiner and the
individual inference quantity determiner;

FIG. 5 1s a schematic of a linear signal processor;
FIG. 6 1s a schematic of a non-linear signal processor;

FIG. 7 1s an mput-output characteristic diagram of a
threshold processor;

FIG. 8 illustrates a process for automatically determining,
a membership function using a neural network model,;

FIG. 9 1s a schematic of an inference device of one
embodiment 1n the present invention;

FIG. 10 1s a schematic of imput/output data used for
describing the operation of the FIG. of embodiment 1;

FIG. 11 1illustrates the membership value of each learning
data 1n the IF part of the FIG. 9 embodiment;

FIG. 12 1llustrates an inference error produced when the
number of 1nput variables 1s reduced;

FIG. 13 illustrates the result of inferring the inference
quantity of the FIG. 9 embodiment;

FIG. 14 illustrates the result of the inference according to
the present invention applied to the problem of inferring the

COD density 1n Osaka Bay.
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BEST MODE FOR CARRYING OUT THE
INVENTION

The features of the mventive method lies in sequentially
determining membership functions using a learning func-
tion. Various methods of realizing the learning function are
conceivable. In a first-embodiment, a learning algorithm of
a neural network model 1s used. Before description of the
embodiment, a neural network model and a neural network
model learning algorism will be described.

The neural network model 1s a mathematical network
which has gotten a hint from the combination of cranial
neural cells. Inference rules can be determined without
relying on experience by determining the intensity of con-
nection of units constituting the network using sequential
leaning.

The network of FIG. 3 1s a kind of a neural network
model. In FIG. 3, reference numeral 100 denotes a multi-
input-single output signal processor; and 101, mnput termi-
nals of the neural network model. FIG. 4 shows an example
of a 3-stage structured neural network model which receives
four 1mnput variables and output a simngle output value. There
1s no mterconnection 1n each stage and a signal 1s propagated
to an upper stage only. FIG. § specifically illustrates the
structure of a linear signal processor which basically
includes a linear computation section of the multi-input-
single output signal processors 100 constituting the neural
network model. In FIG. 5, reference numeral 1001 denotes
cach of input terminals of the multi-input-single output
signal processor 100; 1002, a memory which stores weight-
ing coeflicients given to the corresponding inputs from the
mput terminals 1001; 1003, multipliers which multiply the
inputs from the 1nput terminals 1001 by the corresponding
welght coeflicients 1n the memory 1002; and 1004, an adder
which adds the respective outputs from the multipliers 1003.

Namely, the multi-input-single output signal processor 100
of FIG. § calculates

y=2cpX,

where X; 1s an 1nput value to the corresponding one of the
input terminals 1001 and c; 1s the corresponding one of the
welght coellicients stored 1in the memory 1002. FIG. 6
specifically illustrates the structure of a non-linear signal
processor, which performs a nonlinear operation, of the
multi-input-single output signal processors 100 which con-
stitute the neural network model. In FIG. 6, reference
numeral 1000 denotes the linear signal processor described
with reference to FIG. 5; and 2000, a threshold processor
which limits the output from the linear signal processor to a
value 1n a predetermined range. FIG. 7 1llustrates the mnput-
output characteristic of the threshold processor 2000. For
example, the mnput/output characteristic of the threshold
processor 2000 which limits the output from the linear signal
processor 1000 to within the range (0, 1) is represented
mathematically by

OUT=1/(1+exp(-IN))

where IN and OUT are the input and output to and from the
threshold processor 2000.

The input/output relationship in the neural network i1s
represented by

Y=NN(x) (1)

In the description of the embodiment, the model size 1s
represented by the k-layer |u, x u,x . . . x 1,| where u; is the
number of neuron models of each of the mput, middle and
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output layers. The above refers to a general description of
the neural network model.

The learning algorithm of the neural network model waill
now be described. Various learning, algorithms are
proposed, one of which is a backpropagation (D. E.
Rumelhart, G. E. Hinton and R. J. Williams, “Learning
Representations by Back-Propagating Errors,” Nature, Vol.
323, pp. 533-536, Oct. 9, 1986). The mathematical verifi-
cation and formulation of this algorithm are left to
references, but it 1s basically described as follows. First, a
multiplicity of sets of mput variables as learning data and
percentage values belonging to the respective inference rules
inferred by other means are prepared. Input data i1s mput to
the neural network model. Initially, an appropriate value, for
example a random number value, 1s mput 1n the memory
1002. The error between the output value from the neural
network model and the percentage value belonging to the
inference rules 1s calculated. Since the error 1s a function of
the weight coeflicients 1n the memory 1002, the weight
coellicient 1s corrected 1n the direction of weight differen-
fiation with respect to the error. Namely, the error 1s mini-
mized and leaning i1s performed by correcting the weights
sequentially 1n accordance with the Steepest Decent
Method. This 1s the summary of the learning method using
Backpropagation Algorithm.

An 1nference rule determining process and the inference
quantity calculating process according to the present 1nven-
tion will be descried using the neural network model and
leaning algorithms.

Step 1

Only 1nput variables having high correlation to an infer-
ence value are selected and unnecessary mput variables are
removed. If the determination 1s performed, for example,
using the neural network model, first, respective input
variables x; where j=1, 2, . . . k are assigned to the neural
network model and learning 1s performed such that an
inference value y; 1s obtained. Similar learning is performed
by decrementing the number of imput variables by one.
Similarly, the backward elimination method 1s repeated. The
difference between each output of the neural network model
which has completed the corresponding learning and the
inference value y; 1s compared using the error sum of
squares as an evaluation mdex, and only the input variables

(X; where j=1, 2, . . . m, where m=K) to the neural network
model present when the error 1s minimized are selected.
Step 2

The input/output data (x, y,) i1s divided into n, data
secgments for 1dentifying the structure of in inference rule
(hereinafter described as TRD) and n_, inference rule evalu-
ation data segments (hereinafter described as CHD) where
n=n+N_.

Step 3

Each TRD 1s divided into optimal r sub-segments using,
regular clustering method. Each set of learning data seg-
ments to which the TRD 1s divided 1s R where s=1, 2, . . .,
r, and the learning data on R* is (x;°, Y,°) where 1=1, 2, . . .,
(n,)” where (n,)” denotes the number of data of the TRD in
each R®. The r-division of an m-dimensional space means
that the number of inference rules 1s r.

Step 4

The IF part structure 1s 1dentified. X, 1s an input value to
the mput layer of the neural network model and the output
value from the output layer 1s given by
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1: X, eR®
W =
0:X; R°
where1=1, ....npands=1, ..., r

A neural network model 1s learned such that the grade w;” of
cach learning data (x;) belonging to each R’ is inferred. The
output value from the neural network model after learning 1s
the membership value of the IF part. Namely, the member-
ship function 1s given by

Ha' (X )=w,°
where 1=1, 2, . . ., n

Step 5

The structure of the THEN part 1s 1dentified. The THEN

part structure model of each inference rule 1s A represented
by the input-output relation (1) of the neural network model
and the input values x;°, . . ., x,,.° where 1=1, 2, . .., (n,)
and the output value y.° are allocated. A neural network
model which infers the inference quantity by learning is
identified. Substituting the CHD 1nput values x.°, ..., x, °
where 1=1, 2, . . ., n_ into the resulting neural network model
and the error sum of squares O 1s calculated by

0, = ;(y; — V) X AR (x;)

There 1s another 1dea to calculate 0 ° with the weight; this
1S

D HA D] = ¥ X HAT ()P
1=/

Step 6

Only the input variables contributing to the inference
quantity inferring equation of the THEN part of each infer-
ence rule are selected using variable reducing method. Only
any one of m input variables 1s removed and a neural
network model 1s then 1dentified for each THEN part using
the TRD similarly to step 5. The mferred error sum of
squares O ¥ of the inference quanfity obtained when the
CHD 1s used 1s calculated as follows:

OF 1= ) () - ¥ X A (%))
1=1

wherep=1,2, ....,m

From the above expression, 1t will be seen to what extent the
removed 1nput variable 1s important to determine the THEN
part. If

S 50
em }em—l 3

the 1nput variable x* 1s discarded because it 1s considered to
be not 1mportant.

Step /

An operation similar to step 5 1s performed by using the
m remaining input variables. Subsequently, steps 5 and 6 are
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repeated and the calculation is stopped when no equation (2)
holds for all the input variables. The optimal neural network
model 1s the one where O° minimum.

The steps 1-7 determine the IF and THEN parts for each
inference rule and the identification of the structure of the
fuzzy inference rule ends.

Step 8
The quanfity of inference y; 1s obtained by

F (3)
D Wis:
5=1
Yi = T
2. Wi
5=1
where1=1,2, ..., 1ng

where y° shows a presumed value obtained by substituting
CHD 1into the optimal neural network model obtained at step
7.

If the neural network model includes a collection of
non-linear characteristics of FIG. 7, the inference of a
non-linear object 1s automatically possible by this learning
process, ol course.

Thus, 1f the imnference rule 1s determined by the mmventive
process, the inference rules are obtained easily and accu-
rately without using the heuristic method since the inference
rules are determined sequentially using the leaning function
even 1f the object to be 1nferred 1s 1n a non-linear relationship
Or 1n an obscure mput/output relationship.

The 1inventive process described above will now be
described using specific experimental values. In the particu-
lar experiment, the inference rule and the quantity of infer-
ence were determined using simple numeral examples
shown 1n Tadashi Kondo, Revised GMDH Algorithm Esti-
mating Degree of the Complete Polynomial, SOCIETY OF
INSTRUMENT AND CONTROL ENGINEERS PAPERS,

Vol. 22, No. 9, pp. 928-934, 1986. The process for deter-
mining the inference rule will be described below.

Steps 1, 2

FIG. 10 shows input/output data where data numbers
1-20 denote data for determining the structure of an infer-
ence rule (TRD) used in learning and data numbers 21—40
denote evaluation data (CHD). Therefore, n,=n_=20 and
m=2. Input variables were selected by learning 15,000 times
in a three-layered (3x3x3x1) neural network model. The
results are shown 1n Table 1.

TABLE 1

ERROR SUM OF SQUARES

when all variables were used 0.0007
when x* was removed 0.3936
when x* was removed 0.1482
when x> was removed 0.0872
when x* was removed 0.0019

The error sum of squares 1s not so much 1nfluenced even
if the input variable x* is added or otherwise removed.
Therefore, it 1s determined that 1t does not virtually influence
the determination of the membership function and thus 1s not
used 1n the subsequent experiments.

Step 3

The TRD 1s divided using the regular clustering method.
As the result of the clustering, each learning data 1s dividable
into two segments as shown 1n Table 2.
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TABLE 2

INFERENCE RULES LEARNING DATA NUMBERS

RY 1,2,3, 4,5, 11, 12, 13, 14, 15
R2 6,7, 8,9, 10, 16, 17, 18, 19, 20

Step 4

In order to infer with the value of W?¢|0,1] a proportion
W =10, 1} belonging to leaning data (x,, y,) where i=1,
2, ..., 20, the three-layered [3x3x3x2] neural network
model was learned 5,000 times to obtain the fuzzy number
A’ of the IF part. FIG. 11 illustrates the fuzzy number A' of
the IF part for the inference rule R' at this time. The input

data in Table 2 where ug'(x;, v,)=W, >0 was used as the
learning data.

Similarly, the fuzzy number of the IF part for R* was
calculated.

Step 5

An inference quantity presuming equation of the THEN
part in each inference rule was calculated. The three-layered

| 3x8x8x1 | neural network model was learned 20,000 times
and 0, was obtained as shown 1n Table 3.
TABLE 3
REFERENCE RULE 1: O, 27.86
REFERENCE RULE 2: O, 1.93

Steps 0, 7

0° 1s calculated where any one 1nput variable 1s removed
from the structure model of the THEN part of the influence
rule R®. A three-layered |[2x8x8x1] neural network model
was learned 10,000-20,000 times. As a result the error sums
of squares of FIG. 12 were obtained for the inference rules
R* and R?, respectively. The comparison between steps 5
and 6 for each inference rule shows that

all 8 > 65( =27.8)

6’% < Qﬁ( = 1.93) where x; 1s removed.

Therefore, the neural network model at step 5 1s used as
the THEN part model for inference rule 1. For inference rule
2, calculation 1s further continued and 1s ended at the
repetitive calculations at the second stage. (The neural
network model with (x,, X5) inputs is used as the THEN part.
The resulting fuzzy model 1s given by

R!: TF x=(x{, X0, X3) is Al

THEN y' = NN;(x;, X2, X3)

R*: IF x=(x{, Xs, X3) is A®

THEN ¥ = NN,(x,, X3)

FIG. 13 illustrates the results of the calculation of y° in
equation (3) using an inference device which executed the
rules thus obtained.

While 1n the particular embodiment the weighted center

of gravity defined by equation (3) was employed as the
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quantity of inference obtained as the results of the fuzzy
inference, a process for calculating the central value or
maximum value may be used mstead. While 1n the particular
embodiment the algebraic product was used 1n the calcula-
fion equation of w’, a fuzzy logical operation such as a
miniature calculation may be used imstead of the algebraic
production.

In the steps of the process for determining the inference
rule, the step of determining a non-linear membership func-
tion automatically will now be described 1 more detail.

It 1s natural that the same reference rule will be applied to
similar input data. At step 3, learning data 1s clustered (FIG.
8(a)). These classes correspond to inference rules in one-to-
one relationship. The inference rule 1s, for example, “IF x,
1s small and x, 1s large, THEN . . .”. Three such inference
rules R,—R, are shown in FIG. 8(a). One hundred percent of
each of the inference rules is obeyed at typical points (a set
of input data) in these classes, but the data arc more
influenced by a plurality of such inference rules nearer the
boundary. A function indicative of this percentage 1s the
membership function, the form of which is as shown 1n FIG.
8(c), for example, which is a view of the membership
function as viewed from above and the hatched portion 1s an
arca where the membership functions intersect.

A step 3, 4 1s for preparing such membership functions. A
neural network model of FIG. 8(b) is prepared, variable
values (x1 and x2 1n FIG. 8(b) of the IF part are allocated to
the mput while 1 1s allocated to a rule number to which the
input value belongs and 0 1s allocated to rule numbers other
than the former rule number 1n the output. Learning is then
performed. One of the important features of the neural
network model 1s that a similar mput corresponds to a
similar output. While in learning the points x of FIG. 8(a)
alone are used, the same output 1s obtained at points near the
points X, namely, the output shows that the same 1nference
rule 1s obeyed. The neural network model which has finished
learning outputs optimal balance percentages belonging to
the respective inference rules when it receives data in the
vicinity of the boundaries of the respective inference rules.
These are the membership values. In other words, the neural
network model includes all the membership functions of the
respective inference rules.

While in the particular embodiment of the inventive
process the membership functions of fuzzy inference rules
are determined using the learning algorithm of the neural
network, other learning algorithms may be used, of course.
As will be easily 1imagined from the fact that the Back-
Propagation algorithm described in the algorithms of the
neural network 1s based on the classic steepest descent
method, many learning algorithms will be easily conceived
which are used i1n the field of non-linear minimization
problems such as Neuton’s method and conjugate gradient
method. It 1s commonsense that in the field of pattern
recognition a learning method 1s used 1n which a standard
pattern which 1s used for recognition 1s caused to sequen-
tially approach the input pattern. Such sequential learning
process may be used.

While 1n the step 5 of the embodiment the THEN part has
been 1llustrated as being constructed by a neural network, 1t
may be expressed using another process. For example, 1if
fuzzy modeling such as that described 1n a conventional
method 1s used, the THEN part will differ from that of the
first embodiment 1n terms of non-linear expression.
However, the essence of the present mvention will not be
impaired which automatically determines the fuzzy number
of an inference rule sequentially using the learning function
if a learnming function such as a neural network model is
incorporated 1n the IF part.
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In the particular embodiment of the present invention, the
expression “automatic formation of a membership function
of a fuzzy inference rule” 1s used. This special case corre-
sponds to a production rule used 1n a classic expert system.
In such a case, the expression “automatic formation of the
reliability of a inference rule” would be more intelligible.
However, this 1s only a special case of the embodiment of
the present invention.

A second embodiment of the mmvention which performs
inference on the basis of the inference rule obtained by the
inventive method will now be described. FIG. 9 1s a sche-
matic of the first embodiment of the inference device
according to the present invention. In FIG. 1, reference
numeral 1 denotes a membership value determiner which
calculates the membership value of the IF part of each
inference rule; 2, an individual inference quantity deter-
miner which infers a quantity of inference to be calculated
at the THEN part of each inference rule; and 3, a final
inference quantity determiner which determines the final
quantity of inference from the outputs of the individual
inference quantity determiner 2 and the membership value
determiner 1. Reference numerals 21-2r denote the internal
structure of the individual inference quantity determiner 21
which determines an inference quantity in accordance with
the respective inference rules 1-r. The determiners 1 and
21-2r each have a mulfi-stage network structure such as
shown 1n FIG. 3.

[f input values x,—x_are input to the inference device of
the present invention, the membership value determiner 1
outputs the respective percentages in which the correspond-
ing mput values satisfy the respective inference rules. The
determiner 1 has beforehand finished 1ts learning in accor-
dance with the steps described 1n the inference rule deter-
mining process of the present invention. The individual
inference quantity determiner 21 outputs in inference quan-
tity when those input values obey the inference rule 1.
Similarly, the individual inference quantity determiners
21-2r output mference quantities when they obey inference
rules 2-r. The final inference quantity determiner 3 outputs
a final mference result from the outputs of the determiners
1 and 2. The process for the determination uses the equation
(3), for example.

As will be clear from FIGS. 6 and 7, the input/output
relationship of the multi-input-single output signal processor
100 which constitutes the neural network model 1s non-
linear. Therefore, the neural network model 1tself can per-
form nonlinear inference. Thus, the inference device accord-
ing to the present invention realizes a high inference
accuracy which cannot be achieved by linear approximation.

High inference accuracy of the present invention will be
illustrated using a specilic application. The application
refers to the inference of the COD (Chemical Oxygen
Demand) density from five parameters measured in Osaka
Bay from Aprl, 1976-March, 1979. The five measured
parameters are (1) water temperature (°C.), (2) transparency
(m), (3) DO density (ppm), (4) salt density (%), and (5)
filtered COD density (ppm). In this data, 32 sets of data
obtained from Apr., 1976 to Dec., 1978 were used for
learning and the remaining 12 sets of data were used for
evaluation after the leaning process. FIG. 14 illustrates the
result (solid line) estimated by the present invention and the
actual observed values of COD density (broken lines). It will
be understood that the presumed result 1s a very good one.

As described above, the first embodiment of the inventive
inference device includes a membership value determiner
constituted by a plurality of multi-input-single output signal
processors connected 1n at least a network such that 1t has a
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learning function and 1s cable of determining a quantity of
inference corresponding to the input variables in a non-
linear relationship.

A second embodiment of the inventive inference device 1s
capable of performing approximate inference by storing in
memory the beforehand obtained input/output relationship
of a predetermined neural network model, and referring to
the memory 1nstead of execution of neural network model
directly each time this execution 1s required. While 1n the
first embodiment the membership value and individual infer-
ence quantity determiners are described as having a neural
network model structure, an input-output correspondence
table may be prepared beforehand from a neural network
model determined by a learming algorithm 1f the input
variables are obvious beforehand and/or if close approxi-
mation 1s permissible. Although the mventive method can-
not be mcorporated so as to have a learning function in the
second embodiment which functions as a substitution for the
membership value determiner or the individual inference
quantity determiner by referring to the correspondence table
during execution of the inference rule, an inexpensive small-
sized mference device 1s realized because no circuit struc-
ture such as that shown in FIG. § 1s needed. The inference
corresponding to non-linearity can be performed as in the
first embodiment of the inference device of the present
invention.

As described above, according to the second embodiment,
at least one of the membership value determiner and the
individual inference quantity determiner 1s composed of the
memory which beforehand stores the input/output charac-
teristic of the inference unit constituted by a plurality of
multi-input-single output processors connected to at least the
network, and the memory referring unit. Thus, the inference
device has a simple circuit structure for determining an
inference quantity corresponding to input variables i1n a
non-linear manner.

INDUSTRIAL APPLICABILITY

As described above, according to the present invention, an
inference rule 1s prepared which has a learning function,
forms an 1nference rule automatically and performs the best
inference. According to the inventive inference device,
inference 1s performed with high accuracy even if an object
to be inferred 1s non-linear, so that the device 1s valuable
from a practical standpoint.

We claim:

1. A method of determining fuzzy inference rules for an
adjusting device to adjust output characteristics of a mem-
bership value determiner 1n an inference device to be used
In an outer system,

said inference device comprising a system variable input
device for receiving input signals from said outer
system and for generating an input vector from said
input signals to the inference device;

the membership value determiner for generating a mem-
bership value mdicative of the degree of attribution of
the mput vector to an IF part of a fuzzy inference rule
of an IF-THEN type, the 1mnput vector being received
from the system variable mput device;

an individual inference quantity determiner for generating
a first inference quantity of the input vector correspond-
ing to the THEN part of a fuzzy inference rule, the input
vector being received from the system variable input
device;

a final inference quantity determiner for determining a
final 1inference quantity by processing values attained
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from the inference quantities generated by the indi-
vidual inference quantity determiner and the corre-
sponding membership values; and

an adjusting device, receiving said input vector and said
observed output from said system variable input device
and said final inference quantity, for adjusting output
characteristics of the membership value determiner,

wherein said membership value determiner includes a
signal processing network having input terminals
receiving input vectors from the system variable 1nput
device, output terminals and an artificial neural net-
work structure mcluding a plurality of multiple 1nput-
single output signal processors each receiving plural
respective outputs from one or more others of said
signal processors and providing one output to one or
more others of said signal processors;

cach of the multiple mput-single output signal processors
having an artificial neural network structure comprising
a signal processor which includes a memory for storing,

a plurality of weighting coefficients to define member-
ship values;

a plurality of multipliers for weighting the 1mput vector
from the system variable input device with the weight-
ing coeflicients read from the memory;

at least one adder for generating output data by adding
plural weighted mnput vectors from said multipliers; and

a threshold processor for generating an output as a mem-
bership value by clipping the output data from said
adders within a predetermined range;

the method comprising the steps of:

(a) receiving and clustering the input vectors from the
system variable input device and providing class
numbers based on degree of similarity of the input
vector, said class numbers corresponding to the
output terminals of the membership value determiner
respectively;

(b) calculating an ideal output vector on the assumption
that the ideal output vector i1s output from only the
corresponding output terminals of the signal process-
ing network corresponding to the class numbers
provided as the result of clustering;

(c) obtaining a difference between the ideal output
vector and said first inference quanfity from the
signal processing network when said network
receives the input vector from the system variable
input device;

(d) altering the weighting coefficients stored in the
memory 1n order to decrease the obtained difference;

(e¢) reiterating the above steps until the difference
becomes less than a predetermined value so that a
proper output characteristic 1s obtained for the signal
processing network; and

(f) fixing the output characteristic of the membership
value determiner based on the output characteristics
of the signal processing network after the reiterating
step (e) 1s performed.

2. A method of determining inference rules in accordance
with a fuzzy inference rule which has anIF part and a THEN
part, the method comprising:

(a) providing a signal processor configured to act as an
artificial neural network;

(b) training the signal processor in at least the IF part of
the fuzzy inference rule so that an output of the fuzzy
inference rule as provided by the signal processor
approaches an optimum ouiput to dertve a membership
function defining at least an input fuzzy variable of the
IF part; and




Re. 36,523

13

(¢) determining the inference rule in accordance with the
membership function.
3. A method as in claim 2, wherein step (b) comprises:

(1) inputting input data info the signal processor;

(i) inputting into the signal processor as supervised data
a membership value with which the fuzzy inference rule
fuzzy-divides an input space which comprises the input
data, and

(iif) training the signal processor in an input-oulput

relation between the input data and the supervised data
o derive the membership function defining the input
fuzzy variable of the IF part.

4. A method as in claim 2, wherein step (b) comprises
adjusting a parameter which defines a shape of the mem-
bership function to derive the membership function.

5. A method of determining inference rules in accordance
with a fuzzy inference rule which has an IF part and a THEN
part, the method comprising.:

(@) providing a signal processor configured to act as an
artificial neural network:

(b) training the signal processor in at least the THEN part
of the fuzzy inference rule so that an ouiput of the fuzzy
inference rule as provided by the signal processor
approaches an optimum output to derive a membership
function defining at least an output of the THEN part;
and

(¢) determining the inference rule in accordance with the
membership function.
0. A method of determining inference rules in accordance
with a fuzzy inference rule which has an IF part and a THEN
pari, the method comprising.:

(a) providing at least one signal processor configured to
act as an artificial neural network;

(b) training the at least one signal processor in the IF part
and the THEN part of the fuzzy inference rule so that
an output of the fuzzy inference rule as provided by the
at least one signal processor approaches an optimum
output to derive a first membership function defining an
input fuzzy variable of the IF part and a second
membership function defining an ouitput of the THEN
part; and

(¢) determining the inference rule in accordance with the
first membership function and the second membership
function.

7. A method as in claim 6, wherein step (b) comprises:

(1) inputting input data into the signal processor;

(i) inputting into the signal processor as supervised data
a membership value with which the fuzzy inference rule
fuzzy-divides an input space which comprises the input
data; and

(iif) training the signal processor in an input-oulput

relation between the input data and the supervised data
o derive the membership function defining the input
fuzzy variable of the IF part.

8. A method as in claim 6, wherein step (b) comprises
adjusting a parameter which defines a shape of the first
membership function to derive the first membership func-
fron.

9. An inference device comprising.

a membership value determiner for determining member-
ship function values corresponding to IF parts of fuzzy
inference rules from input values;
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an individual inference quantity determiner for determin-
ing a control operation quaniity corresponding to an

output of a THEN part of said fuzzy inference rule; and

a final inference quantity determiner for determining a
final control inference quantity in accordance with an
output of said membership value determiner and an
output of said individual inference quantity determiner;

satd membership value determiner comprising a signal
processing network including at least a plurality of
multi-input/single-output signal processors connected
in network with one another:

10. An inference device according to claim 9 in which said
membership value determiner further comprises a memory
for storing a pre-calculated relation between an input and
an output of the signal processing neitwork.

11. An inference device comprising.:

a membership value determiner for determining member-
ship function values corresponding to IF parts of fuzzy
inference rules from input values;

an tndividual inference quantity determiner for determin-
ing a control operation quaniity corresponding to an
output of a THEN part of said fuzzy inference rule; and

a final inference quantity determiner for determining a
final control inference quantity in accordance with an
output of said membership value determiner and an
output of said individual inference quaniity determiner;

said individual inference quantity determiner comprising
a signal processing network including at least a plu-
rality of mulfi-input/single-output signal processors
connected tn network with one another.

12. An nference device according to claim 11 in which
said individual inference quaniity determiner further com-
prises a memory for storing a pre-calculated relation
between an input and an output of the signal processing
network.

13. An inference device comprising:

a membership value determiner for determining member-
ship function values corresponding to IF parts of fuzzy
inference rules from input values;

an individual inference quantity determiner for determin-
ing a control operation quaniity corresponding to an
output of a THEN part of said fuzzy inference rule; and

a final inference quantity determiner for determining a
final control inference quantity in accordance with an
output of said membership value determiner and an
output of said individual inference quaniity determiner;

each of said membership value determiner and said
individual inference quaniity determiner respectively
comprising a signal processing network including at
least a plurality of multi-input/single-output signal
processors connected in network with one another.
14. An inference device according to claim 13 in which at
least one of said membership value determiner and said
individual inference quantity determiner further comprises a
memory for storing a pre-calculated relation between an
input and an output of the signal processing network of said
at least one of said membership value determiner and said
individual inference quantity determiner.
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