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METHOD TO CONTROL PAGING
SUBSYSTEM PROCESSING IN VIRTUAL
MEMORY DATA PROCESSING SYSTEM

DURING EXECUTION OF CRITICAL CODE
SIKCTIONS

Matter enclosed in heavy brackets [ ] appears in the
original patent but forms no part of this reissue specifi-
cation; matter printed in italics indicates the additions
made by reissue.

This is a continuation of application Ser. No. 07/461,569,
filed Jan. 5, 1990, now abandoned.

FIELD OF INVENTION

This invention relates 1n general to methods for handling
page faults 1n large virtual memory data processing systems
and, 1n particular, to an 1mproved method for logically
serializing responses to system events that cause the states of
virtual pages and page frames 1n real memory to be changed.

CROSS-REFERENCED APPLICATIONS

U.S. application Ser. No. 817,457, filed concurrently
herewith 1n the name of O’Quin et al, entitled “Method to
Operate On Large Segements of Data 1n a Virtual Memory
Data Processing System”, and assigned to the same assignee
as this application discloses and claims a method for oper-
ating on large segments of data in a paged segmented virtual
memory data processing system.

BACKGROUND ART

The prior art discloses various data processing systems
which employ a virtual memory arrangement for storing
information. Virtual storage extends the power of computer
storage by expanding the number of storage addresses that
can be represented 1n a system while relieving the limitation
that all addressable storage must be present in the main
memory of the system. The address translation mechanism,
which functions to translate a virtual address to an address
in real memory requires data structures such as page tables
fixed in memory to perform the address translation function.

In some prior art systems, the size of the conventional
page table 1s proportional to the size of the virtual address
space which places a practical limit on the number of
address locations 1n virtual memory which, 1 turn, effec-
tively limits the size or storage capacity of the wvirtual
Mmemory.

Other prior art systems employ a technique referred to as
“paged segmentation” for the virtual memory. The cross-
referenced application describes a virtual memory which
employs a paged segmentation technique. In that
arrangement, the effective address space was divided into 16
equal sized segments by the memory management unit, and
the 32 bit effective address generated by the processor was
converted to a 40 bit virtual address by using 4 bits of the
clfective address to select 1 of 16 segment registers each of
which stores a 12 bit segment 1dentifier. The 12 bit segment
identifier concatenated with the 28 bit segment offset com-
prises the 40 bit virtual address which defines one addres-
sable location for one byte of data. The division of the virtual
address space 1nto segments, and then into pages, 1s what 1s
referred to as “page segmentation.”

A segment stores an object such as program a mapped {ile,
or computational data. A data structure referred to as the
scoment table defines the objects that can be currently
referenced by the system, and provides mformation such as
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2

the object size and the location where 1ts external page table
1s stored. The external page table for the segment has one
entry for each page in the segment. Page segmentation 1s a
means of improving the overall operation of the memory
system. It takes advantage of the grouping of related data in
virtual storage by representing page table data, specifically
for each segment. This allows space savings for short or
unused segments. The other data structure used by prior art
systems 1s the 1nverted page table. An 1nverted page table
further expands the range of addressability by reducing the
real storage overhead required to support a very large virtual
address space. Since an inverted page table contains one
entry for each page of real memory, 1ts overhead 1s propor-
tional to the physical, rather than virtual memory size. This
makes 1t feasible to map a system’s enfire data base using a
single set of virtual addresses (the “one level store™). With
a one level store, each segment can be large enough to
represent an entire file or collection of data.

This 1s possible because the address translation hardware
only needs the location of pages that are present in real
memory. If a page 1s not present, the hardware must detect
this fact, but it does not require a backing store address. The
system’s paging subsystem does need this information,
however. Hence, the paging subsystem must keep this
information in some data structure, such as the external page
table that 1s associated with the page. Unless this data
structure 1s pageable, the advantage of the inverted page
table 1s lost because the pinned real storage requirements
become proportional to virtual memory size.

The function of the paging subsystem 1s fundamentally to
manage pages ol virtual memory and page frames of real
memory. Each of these items will have well defined states
which change as they are processed through the system. The
data structures that keep track of these states must be
updated to reflect each changed state. Since independent
system events can cause the state of a page or page frame to
be changed, 1t 1s important to ensure that the state changes
caused by one system event are reflected 1n the appropriate
data structures before the next system event 1s permitted to

execute a state change.

In other words, the system events that change page states
and require updates to data structures that reflect states of
pages and page frames, must be logically serialized. Such
events depend to some extent on the architecture of the
system, particularly the memory management function and
the page fault mechanism, but generally fall ito three
categories:

(1) page fault interrupts;

(2) paging I/O completion interrupts;

(3) supervisory calls to paging services, 1.€., creating or

destroying a segment.
Without this serialization, the mtegrity of the data structures
could not be guaranteed.

A virtual machine, virtual memory type data processing
system 1s described 1n the cross-referenced applications and
1s generally the type of system 1n which the method of the
present invention may be employed to mnsure that the system
events that change or update data structures that store the
current status of the virtual pages and page frames are
logically serialized so that the mtegrity of these data struc-
tures 1s maintained. The general architecture of that system
1s similar to prior art systems from the standpoint of the need
to serialize those system events that cause data structures to
be changed 1n order to reflect the current state of pages and
page Irames.

Briefly, 1n systems of the above type, pages can assume a
plurality of different states, such as the five states described
below.
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(1) new

The virtual page 1s known to be all zeros. Each virtual
page 1s 1nitialized to this state when a segment 1s created or
increased 1n size

(2) accessible

The virtual page may be accessed without resulting 1n a
page fault. This 1s the only page state that allows a virtual
page to be accessed without resulting in a page fault.

(3) hidden

The virtual page 1s hidden from program access and any
access to the page will result in a page fault.

(4) on disk

The virtual page 1s only valid on disk. It does not have a
page frames assigned to it.

Page frames can also assume a plurality of di
such as the four described below.

(1) in use

Page frames 1n this state are assigned to a virtual page.

(2) free

Page frames 1n this state are free to be assigned to a new
virtual page.

(3) page-in

Page frames with page-in I/O 1n progress.

(4) page-out

Page frames with page-out I/O 1n progress.

Data structures employed by these systems to maintain
the current status of virtual pages and page frames 1nclude,
for example, a segment table, an External Page Table, and an
Inverted Page Table. These structures generally have the
following functions:

Terent states,

Segment Table

The Segment Table (SIDTABLE) contains information
describing the active segments. The table 1s pinned 1n real
memory and its size 1s predetermined. The segment table
must be altered only 1n a Paging Subsystem critical section.

External Page Table

The External Page Table (XPT) describes how a page is
mapped to the disk There 1s one XPT entry for each defined
page of virtual memory. The XPT entries for a segment are
allocated as confinuous entries when the segment 1s created.
The virtual page number 1s the index mto the XPT table. The
XPT must be altered only 1n a Paging Subsystem critical
section.

Inverted Page Table

The Inverted Page Table (IP) describes the relationship
between virtual addresses and real addresses. The IPT
consists of two arrays. The first one 1s primarily defined by
the translation hardware, and contains the information that
controls the translation function. The second array contains
the Virtual Memory Manager page state information, used to
control page fault processing. It 1s pinned, and its size 1s
determined by the real memory size which 1s set at the Initial
Program Load time (IPL). The real page number 1s the index
into the IPT. It must be altered 1n a virtual memory critical
section. Each real page frame has an entry in the IPT.

The following lists link associated page frames in the IPT.

There 1s one main list for each valid segment. This list
links together all of the page frame assigned to the segment
with a valid virtual address.

There 1s one system-wide free list that links together the
pages that may be reassigned. Accesses to pages on this list
will always result 1n a page fault. Pages may be on both the
main list and free list.
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There 1s one system-wide I/O list that links together all of
the pages currently being read or written to the disk.
Accesses to pages on this list will also result 1n a page fault.

A process 1s either blocked, synchronous page fault
processing, or allowed to dispatch another subtask, asyn-
chronous page fault processing, when 1/O 1s required to
process one of its page faults.

A Process Control Block (PCB) contains the information
describing the state of the process. It 1s used by the paging
subsystem to save the states of a process for synchronous
page fault processing.

A Notification Control Block (NCB) contains the infor-
mation required to notify a virtual machine of the comple-
tion of an asynchronously paging request. The asynchronous
request can be either a purged page range Service Call
(SVC), or a page fault when asynchronous acknowledge-
ment 1s allowed. An NCB 1s a self-describing control block
in the system control block area. Like some of the previous
structures, 1t must be altered 1n a critical section.

There 1s one page I/O wait list for each page frame 1n the
system. A PCB or NCB 1s placed 1n a page’s I/O wait list
when 1t reclaims a page with I/O 1n progress or it 1nitiates a
page 1n I/O as a result of a page fault.

There 1s one global system free page frame wait list. It
links together NCBs and PCBs for the processes that are
waiting for a free page frame. A process 1s placed on this list
when 1t requires a free page frame and there i1s not one
available.

Lastly, there 1s one global system page /O wait list. It
links together the NCBs and PCBs for the processes that are
waiting for all page-out 1/0 less than or equal to a specific
page I/O level. A process 1s placed on this list by several
service calls to ensure that the contents of the disk match the
contents 1n memory.

The section of the paging subsystem code where state
changes can occur 1s referred to as a critical sections. A page
fault can occur 1n a critical section potentially, since one of
the data structures that needs to be updated in the external
page table which, as stated previously, 1s made pageable 1n
order to not restrict the virtual address space.

The manner 1n which the paging subsystems in these
critical sections are synchronized and handled to ensure that
the 1ntegrity of the data structures, such as the external page
table that reflect the various states of a virtual page or page
frame, are the subjects of the present invention.

SUMMARY OF THE INVENTION

In accordance with the method of the present invention,
system events, such as page fault interrupts, paging I/O
completion interrupts, and supervisory calls to paging
services, that alter page states are serialized 1n the following
manner.

If a page fault occurs within a critical section of the
paging subsystem, the page fault handler will get control and
run 1ts critical section. The potential serialization problem
this 1ntroduces 1s resolved efficiently by back-tracking.
(Back-tracking is the restarting of the critical section at a
predetermined point, typically the start, that 1s not the point
of interruption.) Paging subsystem critical sections which
need to touch data that may not be present in main storage
are run 1n a “backtracking state.” On entry to the critical
section, a process state 1s established, at which point execu-
tion will be resumed if a page fault occur Code running in
a critical section 1s pinned, (Le., it cannot be paged out),
along with 1ts local data, so faults can occur only on
pageable global data.
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Since faulting within a critical section causes
backtracking, the first time pageable data are touched 1s
potentially an exit from the critical section. All global data
must be 1n a consistent state whenever an exit from the

critical section can occur. This requires care on the part of 5

the programmer, but the code 1s usually straightforward.
This care 1s referred to as “careful update”. Typically, the
program reads global data, some of it 1s pageable, decides
what to do based on current state information, and then
makes changes to the data structures to reflect the new state.
When making changes to these data, the program must
“touch” all relevant pageable data before making any
changes. The “touch” function 1s merely a function which
checks to see 1f the page 1s 1n real memory, and 1f not, to page
fault and bring the required page 1nto real memory. Once a
page has been touched within a critical section, 1t will
remain unless it 1s paged out by that critical section. No other
critical section can gain control and change the page’s state.
When a critical section page faults and backtracks, any
pages that had already been touched will have been refer-
enced but not locked. Different processes cannot deadlock
by holding on to page frames while waiting on another
virtual page to be transferred into main memory. Each time
a faulting process 1s redispatched, it begins again, recheck-
ing all relevant page states.

Touching a page while 1in a back-track state 1s sufficient to
ensure that 1t 1s accessible. This feature drastically reduces
the number of page states that must be considered within
some critical sections. It allows many unusual state transi-
tions to be 1solated 1n the page fault handler

Page fault interrupts are never disabled. The page fault
interrupt handler runs with hardware 1I/0 interrupts enabled
and paging dequeue interrupts disabled If a page fault
interrupt occurs while the paging subsystem 1s 1n a back-
track state, the machine state at the time of the interrupt is
discarded and the process will be resumed with whatever
state was saved on entry to the original critical section.

Normal page faults (not in a back-track state), cause the
process state at the time of the mterrupt to be saved. Since
the page fault handler may page fault on the external page
tables, 1t establishes a back-track state at this time. If the
interrupt handler should fault, its state will be discarded, as
1s normal 1n a back-track state. The interrupt handler will be
called again immediately to fix i1ts own page fault. When this
fault 1s resolved and the process i1s re-dispatched, 1t will
re-execute the original faulting 1nstruction. Most likely, this
will fault again, but this time the page fault handler waill
probably find the page that caused the back-track page fault
In Memory.

Surpervisor calls for specific services, such as creating or
deleting a segment, are processed as follows. When a paging
service requested by a virtual machine must change global
subsystem data, it establishes a back-track state at the entry
to 1ts critical section and runs with paging dequeue interrupts
disabled. If a fault occurs, the process state 1s discarded.
After the fault 1s fixed, the process will be resumed at the
entry to its critical section.

When a paging I/0 request completes, it 1s necessary to
run a critical section that updates the states of the page and
its frame. Since the I/O interrupt may occur during a paging
critical section, some mechanism 1s required to delay run-
ning the paging I/O completion critical section until all
paging data structures are 1n a consistent state. In accordance
with the improved method of this invention, the I/O interrupt
handlers simply appends the dequeue request to a list and
sets a software latch, requesting a lower priority interrupt
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level The paging critical section will then be executed by the
interrupt handler for this paging dequeue level.

During paging critical section, hardware I/O interrupts
may remain enabled, but paging dequeue interrupt requests
remain pending until that level 1s enabled on exit from the
critical section. Because 1t has lower priority, this interrupt
request will remain pending unftil after the initiating I/0O
mterrupt handler terminates. Since the page fault handler
runs with dequeue interrupts disables, back-track page faults
are processed 1immediately, the dequeue interrupts remain
pending until after the back-track fault 1s processed.

As soon as dequeue 1nterrupts are enabled, the paging I/0
completion interrupt handler will update the page tables.
Normally, 1t 1s not necessary for an I/O completion critical
section to backtrack. 1t 1s likely that updates can be confined
to pinned data, such as the inverted page table.

When paging dequeue interrupts are inhibited, process
switching 1s also disabled. Coding the critical section to
mimic an interrupt level will bypass dispatching a new
process 1n the interrupt return path. This prevents a process
running a paging critical section from being preempted by
another process which might attempt to enter a paging
critical section.

The method of the present mvention 1s most advanta-
ogeously employed 1n a system where the hardware provides
dynamic address translation for virtual storage and the
process 1s re-startable after a page fault, so demand paging
can be supported.

The primary advantage of allowing faults within paging
subsystem critical sections i1s gained when the hardware
does not force external page tables to be pmned. This 1is
achieved with an mverted page table or some other means,
as long as the hardware allows faults on the page tables.

The paging dequeue interrupt level works best when the
machine provides multiple interrupt levels that can be
enables selectively. Software should be able to request an
interrupt that 1s subject to the usual interrupt priority code,
and remains pending until the requested level 1s enabled.
This feature could be emulated 1n software, but performance
might be aifected.

I/0 1nterrupts for non-paging devices are enabled during
paging critical sections. Since interrupt handlers are not
permitted to page fault, they can preempt paging critical
sections without cuasing problems. If 1t 1s desired that I/O
interrupt handlers be able to unpin buffers or other data, then
the pin and unpin routines must disable I/O interrupts while
updating the pin count word 1n the IPT. This 1s sufficient,
because pinned pages and their frames cannot change state
and, hence, no 1nterrupted critical section will be modifying
their table entries.

It 1s, therefore, an object of the present invention to
provide an improved method for use 1n a virtual memory
system for ensuring the mtegrity of pageable data structures
that reflect the current states of virtual pages and page
frames.

Another object of the present invention 1s to provide an
improved method for use 1in a virtual memory system for
logically serializing system events that cause a change 1n the
state of a virtual page or a page frame in real memory when
the data structures that function to keep track of page and
page frame states are also pageable. A further object of the
present 1nvention 1s to provide an improved method for
serializing system events 1n a demand paging system having
a page segmented virtual memory 1n which the external page
tables are pageable and 1n which critical sections of the
paging subsystem do not mhibit normal I/O terrupts
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Objects and advantages other than those mentioned above
will become apparent from the following description when
read 1n connection with the drawing.

BRIEF DESCRIPTION OF THE DRAWING

FIG. 1 1s a schematic illustration of a virtual memory
system 1n which the method of the present invention may be
advantageously employed.

FIG. 2 illustrates the interrelationship of the Virtual
Resource Manager shown in FIG. 1 to the data processing
system and a virtual machine.

FIG. 3 illustrates the virtual storage model for the system
shown 1n FIG. 1.

FIG. 4 illustrates conceptually, the TLB reload function of
the system shown 1n FIG. 1.

FIG. 5 1illustrates some of the major data structures
employed by the system shown in FIG. 1.

FIG. 6a—6g arc a series of charts, illustrating on the
vertical scale, the interrupt level priorities of the system and
on the horizontal scale, a sequence of different system
cvents.

DESCRIPTION OF THE PREFERRED
EMBODIMENT

System Overview

FIG. 1 1s a schematic illustration of a virtual memory
system 1n which the method of the present invention is
employed. As shown 1n FIG. 1., the system comprises a
hardware section 10 and a software or programming section
11. Hardware section 10, as shown, comprises a processor
function 12, a memory management function 13, a system
memory function or RAM 14, system bus 15, an Input/
Output Channel Controller (IOCC) 16, and an Input/Output
bus 21. The hardware section further includes a group of 1I/O
devices attached to the I/O bus 21 through the IOCC 16,
including a disk storage function 17, a display function 18,
a co-processor function 19, and block 20, representing other
r1/0 devices such as a keyboard or mouse-type device.

The program section of the system includes the applica-
tion program 22 that 1s to be run on the system, a group of
application development programs 23, or tools to assist 1n
developing new applications, an operating system kernel 24,
which, for example, may be an extension of the UNIX*
system V kernel, and a Virtual Resource Manager program
25, which functions to permit a number of virtual machines
to be created, each of which 1s running a different operating
system, but sharing the system resources. The system may
operate, therefore, in a multi-tasking, multi-user environ-
ment which 1s one of the main reasons for requiring a large

virtual memory type storage system.
*Trademark of A.'T. and T.

FIG. 2 1llustrates the relationship of the Virtual Resource
Manager 25 to the other components of the system. As
shown 1n FIG. 2, a virtual machine includes one or more
application programs such as 22a—22c¢ and at least one
operating system 30. A virtual machine interface 31 1is
established between the virtual machine and the VRM 25. A
hardware 1nterface 32 1s also established between the VRM
25 and the hardware section 10. The VRM 25 supports
virtual memory. It can be assumed, for purposes of expla-
nation, that the memory capabilities of the hardware shown
in FIG. 1 includes a 24 bit address space for system memory
14, which equates to a capacity of 16 megabytes for memory
14, and a 40 bit address space for virtual memory, which
equates to 1 terabyte of memory. A paged segmentation
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technique 1s implemented for the Memory Management Unait
13, so that the total virtual address space 1s divided into
4,096 memory segments, with each memory segment occu-
pying 256 megabytes.

FIG. 3 1llustrates the virtual storage model. The processor
12 provides a 32 bit effective address which 1s specified, for
example, by the application program. The high order 4 bits
of the 32 bit address functions to select 1 of 16 segment
registers which are located in the Memory Management Unait
(MMU) 13. Each segment register contains a 12 bit segment
ID section, along with other special control-type bits. The 12
bit segment ID 1s concatenated with the remaining 28 bits of
the 1mitial effective address to provide the 40 bit virtual
address for the system. The 40 bit virtual address 1s subse-
quently translated to a 24 bit real address, which 1s used to
address the system memory 14.

The MMU 13 utilizes a Translation Look-aside Buifer
(TLB) to contain translations of the most recently used
virtual addresses. Hardware 1s used to automatically update
TLB entries from main storage page tables as new virtual
addresses are presented to the TLBs for translation.

FIG. 4 1llustrates conceptually, the TLB reload function.

The 40 bit virtual addresses are loaded 1nto the TLB by
looking them up in an Inverted Page Table (IPT), as shown
in FIG. 4. The table 1s “inverted” because 1t contains one
entry for each real memory page, rather than one per virtual
page. Thus, a fixed portion of real memory 1s required for the
IPT, regardless of the number of processes or virtual seg-
ments supported. To translate an address, a hashing function
is applied to the virtual page number (high order part of the
40 bit virtual address, less the page offset) to obtain an index
to the Hash Anchor Table (HAT). Each HAT entry points to
a cham of IPT entries with the same hash value. A linear
scarch of the hash chain yields the IPT entry and, thus, the
real page number which corresponds to the original 40 bat
virtual address. If no such entry is found, then the virtual
page has not been mapped into the system, and a page fault
interrupt 1s taken.

The function of the Page Fault Handler (PFH) is to assign
real memory to the referenced virtual page and to perform
the necessary I/O to transfer the requested data into the real
memory. The system 1s, thus, a demand paging type system.

When real memory becomes full, the PFH 1s also respon-
sible for selecting which page of data 1s paged out. The
selection 1s done by a suitable algorithm such as a clock page
replacement algorithm, where pages are replaced based on
when the page was last used or referenced. Pages are
transferred out to disk storage.

Virtual Memory Manager Data Structures

The characteristics of the Virtual Memory Manager data
structures will now be described.

Segment Table: The Segment Table (SIDTABLE) con-
tains 1nformation describing the active segments. The table
has the following characteristics. The table 1s pinned in real
memory and its size 1s predetermined. It must be word-
aligned 1n memory, and the segment table must be altered 1n
a paging subsystem critical section.

External Page Table. The External Page Table (XPI)
describes how a page 1s mapped to the disk. There 1s one
XPT entry for each defined page of virtual memory. The
XPT entries for a segment are allocated as continuous entries
when the segment 1s created. The XPT entries for a small
segment, that 1s one that 1s less than 1 megabyte, do not cross
an XPT page boundary. The XPTs for a large segment, those
larger than 1 megabyte, are aligned at the start of an XPT
page. The XFT entries are allocated in units of 32 entries
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which will map 65,536 bytes (64K) of virtual memory. Each
entry requires 4 bytes. The table has the following charac-
teristics. Only XPT root entries must be pinned into memory.
Its size 1s predetermined and it must be word-aligned. The
virtual page number 1s the index into the XPT table. The
XPT must be altered only 1n a Paging Subsystem critical
section.

Inverted Page Table: The Inverted Page Table (IPT)
describes the relationship between virtual addresses and real
addresses as discussed previously. The IPT consists of two
arrays. The first one 1s primarily defined by the memory
management unit, and contains the information that controls
the translation function. The second array contains the
Paging Subsystem page state information, used to control
page fault processing. This array has the following charac-
teristics. It 1s pinned, and its size 1s determined by the real
memory size which 1s set at the Initial Program Load time
(IPL). It is aligned according to real memory size. The real
page number 1s the index into the IPT. Like the previous
structures 1t must be altered in a Paging Subsystem critical
section. Each real page frame has an entry in the IPT. All

pages are on one of three lists.

There 1s one main list for each valid segment. It 1s doubly
linked and anchored in the segment control block. This list
links together all of the page frames assigned to the segment
with a valid virtual address and for which there may be a

valid Translation Look-aside Buffer (TLB) entry.

There 1s one system-wide free list that links together the
page Irames that may be reassigned. This doubly linked,
circular list 1s anchored 1n the IPT entry for page one. Pages
on this list do not have a valid TLB entry, and accesses to
them will always result 1n a page fault. Pages may be on both
the main list and free list. This 1s done so that the pages may
be released without searching the free list. Unnamed
(unhashed) pages are put at the head of the list, and named
(hashed) pages are put at the tail.

There 1s one system-wide 1/0 list that links together all of
the pages currently being read or written to the disk. This
doubly linked, circular list 1s anchored 1n the IPT entry for
page two. Pages on this list do not have a valid TLB entry,
and accesses to them will also result in a page fault. There
must be only one page I/0 list to ensure that I/O 1s processed
first-1n, first-out by block, even if non-first-in, first-out disk
scheduling 1s performed.

Notification Control Block: A Notification Control Block
(NCB) contains the information required to notify a virtual
machine of the completion of an asynchronous paging
request. The asynchronous request can be either a purge
page range Service Call (SVC), or a page fault when
asynchronous acknowledgement 1s allowed. An NCB 1s a
self-describing control block 1n the system control block
arca Its identifier field can be used to differentiate 1t from
other types of control blocks in the system control block
arca. This 1s required since NCBs are queued on the same list
as Process Control Blocks (PCBs). An NCB is pinned and
allocated 1n the system control block area when needed. Like
the previous structures, it must be altered in a Paging
Subsystem critical section. An NCB 1s only allocated when
the Page Fault Handler 1s performing a function on behalf of
a process and, therefore, will not cause the system to

abnormally terminate due to insufficient system control
blocks.

Page Fault Wait Lists: The Virtual Memory Manager can
place a process either internal or virtual machine on one of
three circular wait lists.

There 1s one page I/O wait list for each frame in the
system A page’s I/O wait list in anchored 1n the page’s IPT
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entry and links together the Process Control Blocks (PCBs)
of the processes synchronously waiting for I/O to complete
to the page, and the NCBs of the processes asynchronously
waiting for I/O completion noftification. A process 1s placed
in a page’s I/O wait list when it reclaims the page with 1/0O

In progress or 1t initiates a page 1n I/0 as a result of a page
fault.

There 1s one global system free page frame wait list. It
links together the PCBs or NCBs for the processes that are
waiting for a free page frame. This list 1s processed first-in,
first-out. A process 1s placed on this list when 1t requires a
free page frame and there i1s not one available. The pro-
cesses’ PCB 1s enqueued on the list for synchronous waits
and an NCB 1s enqueued on the list for asynchronous waits.

Lastly, there 1s one global system page I/O wait list. It
links together the PCBs or NCBs for the-processes that are
waiting for all page out 1I/O less than or equal to a specific
page I/O level. This list 1s sorted by a page I/O level. A
process 15 placed on this list by several of the Virtual
Memory Manager service calls to ensure that the contents of
the disk match the contents in memory. A PCB 1s enqueued
on the list for synchronous requests or an NCB 1s enqueued
on the list for asynchronous requests. Note that with non-
first-1n, first-out disk scheduling, the page I/O level may
result 1n the process waiting longer than 1s required.

Paging Mini-Disk Table: The paging mini-disk table
controls the translation of Virtual Memory Manager slot
numbers into the mini-disk I/O Device Number (IODN) and
logical block number. The number of entries 1n this table
define the maximum number of mini-disks that the Virtual
Memory Manager can perform paging operations to. This
array has the following characteristics. It 1s pinned, its size
1s predetermined, and 1t 1s word-aligned. The paging space
mini-disk entries are allocated at system 1initialization and
must be the first entry/entries in the table Mapped page range
service calls allocate an entry for mapped mini-disks. The
most significant bits of the disk address are the index into
this table As 1n the previous data structures, 1t must only be
altered 1n a Virtual Memory Manager critical section.

Disk Allocation Bit Map: The Virtual Memory Manager
maintains a bit map for each paging space mini-disk. Each
bit 1ndicates 1if i1ts page 1s allocated or free. Bad slots are
marked as allocated when the mini-disk 1s opened at system
initialization. This array has the following characteristics It
1s not pageable, the paging space 1s allocated at page out
time, the least significant bits of the disk address are the
index 1nto this array, and as with the previous structures, it
must be altered only 1n a Virtual Memory Manager critical
section.

Paging Device Extensions: One Paging Device Extension
(PDX) exists for each paging space that the Virtual Memory
Manager supports. A PDX 1s an extension for a paging space
entry 1 the paging mini-disk table. The Virtual Memory
Manager manages paging space and the PDX 1s what 1s used
to guide 1t 1n that management. The attributes of the PDX
are; 1t 1s pinned and it 1s allocated from the system control
block area at system 1nitialization. It 1s linked together 1n a
list and anchored by a global pointer, and as previous
structures, 1t must be altered only in a Virtual Memory
Manager critical section. PDXs are not dynamically allo-

cated. System 1nitialization allocates all PDXs and initializes
them.

Page Fault Processing Synchronous page fault processing,
1s the traditional type of page fault processing. In this
operation, the faulting process 1s forced to wait until the I/0
required to resolve the page fault 1s completed. The Virtual
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Memory Manager restarts the process at the completion of
memory I/O request. When redispatched, the process will
cither page fault, in which case additional I/O will be
scheduled to resolve the fault, or will not page fault, 1n
which case the page fault was resolved. There are two major
advantages to this type of page fault processing. First, the
Virtual Memory Manager does not need to maintain a page
fault state data structure to tell 1t how to restart the page fault
processing for the page. Secondly, this type of a design 1s
more compatible with the dynamic nature of a demand
paging systems.

The VMM which executes within the VRM has no
concept of the tasks, structures, or environment of tasks
executing within a virtual machine. Therefore, the Virtual
Memory Manager cannot effectively manage these tasks
through traditional synchronous page fault processing. The
concept of asynchronous page fault processing with notifi-
cation 1s used to overcome this limitation. In general, a
virtual machine 1s informed of page faults through a “page
fault occurred” machine communication interrupt.
Subsequently, the virtual machine receives a “page fault
cleared” machine communication interrupt so that it can put
its faulting task back on 1ts ready task list. This allows page
faults to be processed asynchronously With respect to the
execution on the virtual machine. The viral machine can
force synchronous page fault processing by disabling page
fault notification. It should be noted that page fault cleared
interrupts cannot be directly disabled by a virtual machine.
A page fault cleared interrupt 1s always given when the 1/0
1s complete for a fault that has resulted 1n a page fault
occurred interrupt. Page fault cleared interrupts can be
indirectly disabled by disabling page fault occurred inter-
rupts.

Synchronous Page Fault Processing: For synchronous
faults, the Process Control Block (PCB) of the process that
faulted 1s placed on either the page’s I/O wait list or the free
page frame list when the I/O 1s required. The process 1s
placed on the page I/O wait list when the Virtual Memory
Manager 1nitiates I/O for the page or I/O for the page was
already 1n progress. The process 1s placed on the free page
frame list when there are no free page frames available to
perform the I/0 into.

Asynchronous Page Fault Processing: When an asynchro-
nous page fault occurs, the faulting virtual machine 1is
notified of the segment identifier 1s faulted on, and the
virtual address rounded down to the nearest page boundary.
It 1s important to note that notification 1s not given for the
address that the virtual machine faulted on, but for that page.
For example, if a virtual machine faults on addresses x*806°,
x‘856°, x‘87’E, 1t will get three page fault occurred notifi-
cations for x*'800° and one page fault cleared notification for
x‘800°. A Notify Control Block (NCB) is allocated and
chained to the page’s I/O wait list when 1/0 1s required. This
1s the same chain that PCBs are chained onto. The PCBs and
NCBs are typed so it 1s possible to tell them apart. A PCB
1s chained for a synchronous fault and an NCB 1s chained for
an asynchronous fault.

If the notification was given because of a page fault on the
External Page Table (other than the original fault), then the
Notification Control Block i1s chained off the IFT that the
XPT 1s paged into, but the address of the original fault 1s 1n
the Notification Control Block.

The free frame wait list case 1s a special case. The virtual
machine 1s notified and 1ts Nofification Control Block 1is
chained, first-in, first-out, onto the free frame wait list along
with PCBs. The first page out that causes a frame to be
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freed-up when this NCB 1s at the head of the free frame wait
list will cause nofififcation to be given.

Page Fault Occurred Notification: A page fault occurred
interrupt 1s generated by the page fault handler upon deter-
mining that an asynchronous fault has occurred and I/O 1s
required. No internal VRM queue element 1s required to
perform this function. The page fault handler actually swaps
the virtual machine’s (PSB) and execution level. The
premise that allows this 1s that page faults on machine
communications or program check levels are processed
synchronously, without nofification. This 1implies that the
mterrupt does not need to be queued because the virtual
machine can always take page fault occurred interrupts.

Page Fault Cleared Notification: When the I/0 for a page
fault 1s complete, the Virtual Memory Manager will be
called to clean up. The page fault complete mterrupt is
queued to the virtual machine by the VRM queue manage-
ment function. This implies the need for a queue element.
The Notificaton Control Block 1s used for that function.

Asynchronous Page Fault Scenario: A page fault 1s con-
sidered complete when each I/O 1t generates completes. A
virtual machine will get ‘n’ total page fault occurred
interrupts, and ‘n’ page fault complete interrupts for a page
fault that requires ‘n’ I/Os to satisfy. Example (n=3 here):
Assume that the virtual machine faults asynchronously on a
page that exists, but 1s not in memory, there are no free
frames 1n memory to page 1t into, and the virtual memory
manager faults on the XPT for the original page. The
following lists the order of events (Note that this scenario is
not the typical case):

1. VM Page Faults

2. VMM Enqueues Page out requests to build up free page
frame list

3. VMM Notifies virtual machine of Original Page Fault

4. VM is Dispatched (presumably it will task switch or
wait)

5. Page out I/O completes

6. VMM Notifies virtual machine that the original Page
Fault 1s resolved

7. VM 1s Dispatched

8. VM Page Faults again on the same address

9. VMM Page Faults on XFT

10. VMM Enqueues Page 1n request for that XPT

11. VMM Notifies virtual machine of Original Page Fault

12. VM 1is Dispatched (presumably it will task switch or
wait)
13. The XPT Page 1n I/O completes

14. VMM Notifies virtual machine that the original Page
Fault 1s resolved

15. VM 1s Dispatched
16. VM Page Faults again on the same address

17. VMM Enqueues Page 1n request for the page faulted
on

18. VMM Notifies virtual machine of the Page Fault

19. VM 1is Dispatched (presumably it will task switch or
wait)
20. The Page 1n I/O completes

21. VMM Notifies virtual machine that the original Page
Fault 1s resolved

22. VM 1s Dispatched
Purge Page Range Nofification: There 1s another way 1n
the system to get a notification of I/O complete from the
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Virtual Memory Manager. This 1s on the asynchronous
forced write option of the Purge Page SVC One machine
communications interrupt 1s presented to the Virtual
machine upon completion of the I/O for the Purge Like page
fault complete interrupts, this 1s given to the virtual machine,
regardless of whether the virtual machine enables page fault
notification.

The way 1t works 1s an NCB 1s chained on the page 1/0
level wait list, along with PCBs. In the NCB 1s marked the
page 1/0 level that must be achieved before the purge 1/0
can be considered complete. When that page 1/0 level 1s
attained, the virtual machine will be notified.

Page Fault Handler. A large function of the page fault
handler, namely the way 1t handles synchronous and asyn-
chronous page faults 1s discussed 1n “Page Fault Process-
ing.” In the following section, where statements are made
such as: “the faulter 1s notified,” this means that if the faulter
faulted asynchronously, 1t 1s nofified, otherwise 1t 1s
un-readied, as per previously described rules. This section
describes the actual process that the page fault handler goes
through to resolve a fault.

The page fault handler runs as an extension of the
program check handler, at a lower interrupt level; below all
iterrupting devices. It runs 1n a back-track state, thus
allowing 1t to page fault on the Virtual Memory Manager
data structures.

When the page fault handler 1s entered, 1t immediately
saves 1nformation above the fault, such as the wvirtual
address. The reason that it does this 1s, if 1t page faults within
itself, and that fault needs to do 1/0, the page fault handler
must know what address to give to the virtual machine for
asynchronous nofification. This implies that no page faults
are allowed 1n the window between where the page fault
handler has been backed out because of a page fault and
where 1t 1s called again to service its own fault.

There are several important steps into which the page
fault handler may be broken into:

Page Reclaim

If the page can be reclaimed, then the page fault handler
1s done. If page 1n or page out I/O 1s 1n progress to the
page, then the faulter 1s chained onto the page’s 1/0
wait list. Upon completion of the 1/0, a test 1s made to
see 1 any process 1s waiting on the frame and if so, 1t
1s notified. Reclaim, therefore, 1s split across the page

fault handler and page fault end. If the page 1s on the

free list, then the faulter 1s redispatched after the page
frame 1s made accessible. The faulter 1s not notified or
forced to wait.

Building up the Free Page List
If the free list 1s found to be below a lower threshold, then

page outs are 1nitiated to built 1t up to an upper
threshold. These thresholds are system tuning param-
cters. If the free list 1s still empty after attempting to
replenish 1t, then the faulter will be notified of the
original fault.
Clock with second change 1s the technique used to select
pages to be replaced.
Processing the Fault

The page fault handler involves itself with most of the
Virtual Memory Manager structures, but most
importantly, 1t examines the XPT for the page faulted
on, and the page fault handler may fault at this time. It
also allocates a paging space disk slot for the page.

Page Fault End: This procedure handles all I/O comple-

fion interrupts for the Virtual Memory Manager. It 1s sched-
uled for execution by the queue manager when the hard file
device driver dequeues a Virtual Memory Manager request.
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Note that execution of this routine i1s delayed until the
completion of any preempted Virtual Memory Manager
critical section. Page fault cleared notification 1s given by
this procedure according to the rules set in “Page Fault
Processing.” This procedure may not page fault and,
therefore, no references are allowed to XPTs or other
pageable data structures. There are two types of 1I/0 that can
complete for the Virtual Memory Manager.

Page 1n

Page out

All processes waiting on the frame are readied/notified.
Also, the page I/0 level 1s updated. This 1s a count of all the
I/O operations that have completed. All processes waiting on
a page I/0 level less than or equal to the updated page 1/0
level are readied/notified when the oldest I/O operation
completes. The frame 1s made accessible by validation the
IPT tag word for all page 1n completions and reclaimed page
out completions of an unreleased page. Otherwise, the frame
1s placed on the free list.

This procedure attempts to replenish the system control
block area when the number of free system control blocks 1s
below 1its upper threshold and a free frame exists. All
processes waiting on a free system control block are then
readied. This procedure 1s also responsible for waking up
processes waiting for a free frame. A free frame 1s assigned
to the process that has been waiting the longest for a free
frame. This processes 1s then notified/readied.

Paging Space: The Virtual Memory Manager supports
paging to one or more paging spaces. Currently, the only
paging device supported 1s a hardfile, however, the design
has been made relatively flexible 1n this area for future
expansion. A requirement of all paging spaces 1s that they be
formatted for 512 byte blocks.

Paging Space Inmitialization: All paging spaces MUST be
known to the Virtual Memory Manager at system initializa-
tion. If a user creates a paging space using a Mini-disk
Manager, then, before the Virtual Memory Manager will
page to 1t, the system must be re-IPLed, or reinitialized. The
reason for this 1s that system initialization is the only time
that the Virtual Memory Manager paging space data struc-
tures are built. All paging spaces, as well as the disk
allocation bit map are set up at Mini-disk Manager 1nitial-
1zation time. The Mini-disk Manager queries all mini-disks,
and when 1t find a paging space mini-disk, it calls a routine
which effectively “defines” a paging space to the VMM.
Before calling the define paging space routine, the Mini-disk
Manager opens the paging mini-disk (it will be left open).
The way that the define paging space routine works 1s as
follows:

1. Allocate a PDX for the paging space.
2. Imitialize the PDX.
3. Imitialize the paging mini-disk table.

4. Insert the new PDX onto a linked list of all existing
PDXs.

5. Each PD X 1s made to point to 1ts paging mini-disk table
entry and vice versa.

6. Set up the disk allocation bit map (temporary disk map
for this paging space

There 1s one disk allocation bit map, and 1t 1s partitioned
among all paging spaces. The reason for having one bit map,
rather than multiple, 1s that by packing paging spaces into
one bit map, it will improve the locality of reference to the
bit map. The XPTs for the bit map are set such that the bit
map 1s 1nitially all logically zero. If a paging space 1s not a
multiple of 64K, then system 1nitialization rounds the size up
to the next 64K boundary, and marks the blocks (bits) in
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between as allocated. This requires the ability of system
initialization to a first reference page fault at this time After
defining a paging space, the Mini-disk Manager then checks
for bad blocks on the paging space. If a bad paging space
block 1s found, the Mini-disk Manager will call a routine to
mark the bad paging spaces as allocated 1n the Virtual
Memory Manager temporary disk map. This way, the Virtual
Memory Manager will never use them. The Mini-disk
Manager will then do bad block relocation on that paging
space 1n the future.

Paging Space Management: Paging disk blocks are allo-
cated one at a time, 1n a circular fashion per paging space.
A pointer 1s kept to the last place allocated at 1n each paging,
space. On the next allocation 1n that particular paging space,
the search for an empty slot starts at the last allocated slot
and 1incrementally runs through the paging space rewrapping
around at end). The idea behind allocating in this fashion is
to 1mprove page out aiffinity, and page ahead. The circular
pointer through a paging space can be thought of as pointing,
to the “oldest” spot on that paging space, or, 1n other words,
the spot that was written out the longest ago. It 1s a
reasonably good probability that that disk slot will be free
now (since it was allocated a long time ago). All disk slots
are allocated at page out time, so 1f a large purge page range
1s performed, causing a lot of slots to be allocated at once,
this will allocate them close together. This 1s assuming that
the purge 1s being done to page out a working set of a
particular process, or entity 1n the virtual machine. When
that process becomes active again, 1ts working set 1s close
together on disk, minimizing arm movement, and maximiz-
ing page ahead efliciency.

In the presence of more than one paging space, they each,
individually, behave as previously described. The Virtual
Memory Manager disk allocation will decide which paging
mini-disk to allocate a block to. The disk scheduler will keep
track of where the disk arm is (approximately). The Virtual
Memory Manager utilizes this by attempting to allocate on
the paging space whose point at last allocation 1s closest to
where the disk array is (for all disks).

Virtual Memory Manager SVCs: The Virtual Memory
Manager SVCs all execute as extensions of the virtual
machine. These SVCs can result m explicit I/O such as a
page out of a purged page or implicit I/O such as page faults
on code, stack, or data. All I/O for synchronous SVCS will
place the virtual machine in a synchronous page fault wait
state until the I/O 1s complete. Only implicit I/O for asyn-
chronous SVCs will place the virtual machine 1in a synchro-
nous page fault wait state until the I/O 1s complete. Explicit
I/O0 will be initiated and the virtual machine notified upon
completion.

Special Program Check Error Processing: Program check
errors that occur while executing code within a virtual
machine are reported to the virtual machine via a program
check virtual iterrupt. Program check errors that occur
while executing within the VRM result in an abnormal
system termination. VRM SVCs execute within the VRM
and perform functions on behalf of a virtual machine.
Theretore, the program check handler looks at a value 1n low
memory to determine if errors that occur within VRM SVC
code are to be reported to the virtual machine as a program
check virtual interrupt with the old LAR specifying the SVC
or 1f the errors are an abnormal system termination.

Selected VMM SV s use this facility to save path length
by not checking for error conditions when accessing param-
eter lists. The program check handler performs the error
recovery for them.

Virtual Memory Manager Services: All Virtual Memory
Manager services execute synchronously with respect to the
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caller. Several of these services can result 1n page faults 1n
which case the process of the caller 1s forced to wait for the
page fault to be resolved.

Asynchronous vs. Synchronous Page Faults: The VRM
supports both synchronous and asynchronous page fault
processing for virtual machines. With synchronous page
fault processing, the entire virtual machine 1s forced to wait
until the page fault 1s resolved. With asynchronous page
fault processing, the virtual machine 1s allowed to dispatch
other tasks. Only the faulting task 1s forced to wait until the
page fault 1s resolved. Because of this, any operation that
results 1n synchronous page fault processing will tend to
lower the number of concurrent taks that can be executed
while any operation that results 1n asynchronous page fault
processing will tend to maximize the number of concurrent
tasks that can be executed.

In summary, the improved method serializes three system
events described above as follows: page fault interrupts are
processed to permit another page fault interrupt. The page
fault processing 1s coded, such that if an interrupt does occur
during a critical section, the process 1s re-started at some
previous point, which 1s recorded (back-tracking). In
addition, the section 1s coded, such that pages are “touched”
to 1nsure that they are in memory before any change to the
page or 1ts data structure 1s initiated Interrupts signalling the
fact that a page fault I/O has been completed, are not enabled
when the page fault process 1s running. These paging 1/0
completion interrupts are effectively placed on a wait list
which 1s serviced at a lower priority.

Supervisory calls to the paging subsystem which operate
to change page states are serialized secondly, relative to
paging I/O interrupts, by establishing a backtrack state at the
entry of a critical section. I/O mterrupts are allowed, but I/O
completion interrupts are disabled. Therefore, relative to
these I/O completion mterrupts, paging services are second,
putting the I/O completion interrupts third in the serial
change. If a page fault interrupt occurs 1n a service, the
paging service supervisory call is re-started at the beginning
of the critical section where the status was saved. I/O
completion interrupts are disabled, so that these are pro-
cessed last at a lower priority level.

FIG. 6a 1llustrates a basic page fault without an I/0O
operation. In these figures, the horizontal axis represents
time, while the vertical axis represents the various priority
interrupt levels at which the system operates. The circled
number represents a time period during which an operation
OCCUTS.

In FIG. 6a during period 1, Process A references a virtual
address that 1s not 1n memory and the hardware responds
with a program check interrupt.

During period 2, the program check handler determines
that it 1s a page fault, and initiates the VMM Page Fault
Handler critical section.

During period 3, the Page Fault Handler determines that
the fault can be processed without I/O. It resolves the fault
and redispatches Process A.

During period 4, Process A executes the faulting instruc-
tion successtully, and proceeds.

During periods 2 and 3, no processes can be dispatched,
and therefore, the VMM Page Fault Handler 1s serialized
with respect to VMM services executing within the process.

FIG. 6b 1llustrates a page fault requiring an I/O operation.

With reference to FIG. 6b during period 1, Process A
references a virtual address that 1s not 1n memory and the
hardware responds with a program check interrupt.

During period 2, the program check handler determines
that it 1s a page fault, and initiates the VMM Page Fault
Handler critical section.
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During period 3, the Page Fault Handler (PFH) initiates an
I/0 operation to the secondary store to resolve the fault.

During period 4, other activity can occur 1n the system,
since the system must wait for the I/O operation to complete.

During period 5, the disk I/O completes, level 6 1s set
pending, and a request 1s placed on the VMM disk [/O
completion queue.

During period 6, the VMM disk I/O completion critical
section makes Process A ready.

During period 7, the highest priority process that 1s on the
I/0 completion queue list 1s dispatched.

During periods 2 and 3 and periods § and 6, no processes
can be dispatched and, therefore, the Page Fault Handler and
VMM disk completion critical sections are serialized with
respect to VMM services, executing within processes.

FIG. 6c 1llustrates a page fault involving a backtracking
operation.

During period 1, Process A references a virtual address
that 1s not in memory and the hardware responds with a
program check interrupt.

During period 2, the program check handler determines
that 1t 1s a page fault and imitiates the VMM Page Fault
Handler critical section.

During period 3, the Page Fault Handler page faults while
processing the original page fault.

During period 4, the program check handler determines
that 1t 1s a page fault and imitiates the VMM Page Fault
Handler critical section.

During period §, the Page Fault Handler initiates I/O to
resolve fault.

During period 6, other activity occurs while waiting for
the I/O completion.

During period 7, disk I/O completes, level 6 1s set
pending, and a request 1s placed on the VMM disk I/O
completion queue.

During period 8, VMM disk I/O completion critical
section makes process A ready.

During period 9, the system dispatches the highest prior-
ity process. Assuming it was the original process of step 1,
it will re-execute and re-fault again.

The rest of the sequence 1s as occurs 1n FIGS. 6a and 6Db.

The Page Fault Handler 1s serialized with itself by careful
coding where 1t can page fault and by always restarting the
process at the original page fault. This 1s an example of
back-tracking with careful update.

FIG. 6d 1illustrates a page fault serialized with the VMM
disk I/O completion interrupt.

During period 1, Process A references a virtual address
that 1s not in memory and the hardware responds with a
program check interrupt.

During period 2, the program check handler determines
that 1t 1s a page fault and imitiates the VMM Page Fault
Handler critical section.

During period 3, the Page Fault handler starts processing,
the fault and 1s interrupted.

During period 4, the disk completion interrupt completes
for the paging request Level 6 interrupt 1s set and a request
1s put on the VMM 1/0 disk completion queue. Note that this
1s not a VMM critical section, so therefore, the Page Fault
Handler 1s restarted where 1t was interrupted.

During period 5, the Page Fault handler continues pro-
cessing the page fault, determines that the fault can be
processed without 1/0, resolves the fault, and redispatches
Process A.

During period 6, the dispatcher attempts to dispatch
Process A, but since that takes a pending VMM disk 1/0
complete level 6 mterrupt, so Process A 1s not dispatched at
that time.
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During period 7, the VMM disk I/O completion interrupt
makes the Process B ready.

During period 8, the higher priority process, either A or B,
1s executed.

During periods 2—7, no processes can be dispatched and,
therefore, the page Fault Handler and the VMM disk 1/0

completion critical sections are serialized with the VMM
services executing within the process. Also, the VMM disk
I/O completion critical section does not page fault and 1s,
therefore, serialized with respect to the Page Fault Handler.

FIG. 6¢ 1illustrates a VMM service critical section.

During period 1, a process call for VMM service 1s
executed. The VMM service simulates a level 6 interrupt
when 1t enters a VMM critical section.

During period 2, the VMM critical section executes on
level 6, thus preventing other processes from inifiating a
VMM critical section since they cannot be dispatched to
level 6. The VMM critical section simulates an interrupt
return when exiting from interrupt level 6.

During period 3, the VMM service returns to the calling
application when finished, and the system proceeds execut-
ing the original process.

FIG. 6f illustrates a VMM service with a page fault.

During period 1, a process call for VMM service 1s
executed. The VMM service simulates a level 6 interrupt
when 1t enters a VMM critical section.

During period 2, the VMM critical section page faults.

During period 3, the program check handler determines
that 1t 1s a page fault and initiates the VMM Page Fault
Handler critical section.

During period 4, the Page Fault Handler (PFH) initiates an
I/O operation to the secondary store to resolve the fault.

During period 5, other activity can occur in the system,
since the system must wait for the I/O operation to complete.

During period 6, the disk I/O completes, level 6 1s set
pending, and a request 1s placed on the VMM disk I/O
completion queue.

During period 7, the VMM disk I/O completion critical
section makes process A ready.

During period 8, the process of step 1 1s redispatched and
a call to the VMM critical section 1s made. The VMM
service simulates a level 6 interrupt when 1t enters the VMM
critical section.

During period 9, the entire VMM critical section executes
as 1n step 2 of FIG. 6¢.

During period 10, the VMM service returns to the caller
when finished. It then executes under the original process.

The page fault between periods 2-3 1s a back-tracking
situation. Each VMM critical section 1s carefully coded to

control where a page fault can occur.

FIG. 6¢ 1llustrates a VMM service with a disk 1/0
completion.

During period 1, a process call for a VMM service 1s made
The VMM service simulates a level 6 interrupt when 1t
enters a VMM critical section.

During period 2, the VMM critical section executes on
level 6, thus preventing other processes from initiating a
VMM critical section since they cannot be dispatched. The
VMM critical section 1s interrupted.

During period 3, the disk I/O completion interrupt com-
pletes from the paging request. A level 6 interrupt 1s set and
a request 1s put on the VMM disk I/O completion queue.
Note that this 1s not a VMM critical section, so therefore, the
VMM critical section 1s restarted where 1t was interrupted.

During period 4, the VMM critical section executes on
level 6, thus preventing other processes from inifiating a
VMM critical section since they cannot be dispatched.
VMM critical sections simulate an interrupt return when
exiting.
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During period 5, the dispatcher attempt to dispatch Pro-
cess A, but since that takes a pending VMM disk I/O
complete level 6 mterrupt, so Process A 1s not dispatched at
that time.

During period 6, the VMM disk I/O completion interrupt
makes the Process B ready.

During period 7, the higher priority process, either A or B,
1s executed.

While the invention has been particularly shown and
described with reference to a particular embodiment, it
should be understood by those persons skilled 1n the art that
various changes and modifications may be made without
departing from the spirit of the disclosed invention and
scope of the following claims.

We claim:

1. In a virtual memory data processing system having a
real memory containing a plurality of addresable locations
cach of which has a different physical address and each of
which 1s capable of storing a page of data, said system
further including a plurality of pageable data structures, each
of which includes a plurality of entries, each entry contain-
ing an address field and a related status field to indicate the
current status of a page of data stored at said location having
the physical address contained in said related address field of
said entry, said status field being updatable by said system
to reflect said current status of said related page whenever
the status of said related page of data 1s changed, a method
to serialize a plurality of different type system events which
operate to change the status of a page of data, and to update
said status field of said corresponding entry of said pageable
data structure to reflect said change in order to insure the
integrity of said data structures, said method comprising the
steps of;

(1) coding a first section of code that is executed in
response to a first page fault to permit an interrupt for
a second page fault and to request an I/O paging
operation, said first section of code including a critical
section,

(2) executing said first section of code to completion prior
to a section of code having a lower priority being
executed by restarting said first section of code at 1its
critical section after said second page fault 1s serviced
in order to service said first page faullt,

(3) coding a second section of code that is executed in
response to the completion of an I/O operation mitiated
In response to a page fault,

(4) enqueueing on a list an indication of said completion
of each said I/O operation, and

(5) executing said second section of code after said first

section completes executing.

2. A method used 1n a virtual memory priority interrupt
data processing system for updating a page status field of a
data structure 1n response to interrupt signals caused by
independent asynchronous system events, comprising the
steps of;

(1) executing a Page Fault Handling (PFH) routine at a
first interrupt level 1n response to a page fault interrupt
signal, said PFH routing having a critical section that 1s
carefully coded and re-started at a predetermined
mstruction and,

(2) executing a page status change type service call
routine at a second priority level 1in response to a
request by a program being executed by said system,
including the step of generating a simulated interrupt
signal to switch the imterrupt level of said system to said
first level.
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3. The method recited 1n claim 2 1n which said step of
generating occurs 1immediately prior to when said service
call routine enters 1ts critical section to thereby serialize
subsequent similar service calls relative to each other and
subsequent to execution of said page fault handling routine.

4. The method recited 1n claim 1, further including the
step of switching said system to a program check interrupt
level 1n response to an interrupt signal and executing a
program check handler routine to determine that said inter-
rupt 1s a page fault interrupt.

5. The method recited 1n claim 4, further including the
step of switching said system to said first level to execute
said PFH routine.

6. The method recited 1n claim 5 further including the step
of assigning said program check interrupt level the highest
priority level of said system.

7. A method used 1n a virtual memory priority interrupt
data processing system for updating a page status field of a
data structure 1n response to interrupt signals caused by
independent asynchronous system events, comprising the
steps of;

(1) executing a Page Fault Handling (PFH) routine at a
first interrupt level 1n response to a page fault interrupt
signal, said PFH routine having a critical section that 1s
carefully coded and restarted at a predetermined
mstruction and,

(2) switching said system to a third interrupt level which
1s higher than said first level in response to an 1nterrupt
signal generating 1n response to completion of an I/O
request operation by said PFH routine and,

(3) executing an I/O completion routine on said third level
which includes the step of generating an interrupt
signal for said first level and subsequently completing
said I/O request operation after all the interrupts on said
first level and above have been serviced by said system.
8. The method recited 1n claim 7 1 which said switching
step 1nterrupts said Page Fault Handler routine 1n a non-
critical section and further includes the step of returning said
system to said first level to permit said Page Fault Handler
routine to complete executing, whereby said Page Fault
Handler routine 1s serialized ahead of said I/O completion
routine.
9. The method recited 1n claim 7 in which said switching
step 1nterrupts a service call routine 1n a non-critical section,
and further returns the system to said first level to permit
said service call routine to complete executing, whereby said
service call routine 1s serialized ahead of an I/O completion
routine, but after a page fault routine.
10. A method for handling page faults In a virtual memory
manager on a computer system utilizing priority interrupis,
comprising the steps of.
defining as critical sections selected code potions of the
virtual memory manager which modify a shared data
structure containing virtual memory mapping
information, wherein each critical section contains two
sections of code for, in sequence, performing the steps
of :
within the first section, ensuring that all necessary
portions of the shared data structure are available
for use by the second section without generafing a
page fault; and

within the second section, updating the shared data
structure; and

executing such defined critical sections as system
interrupts, wherein execution of a defined critical sec-
lion cannot be interrupted except by a higher priority
interrupit.
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11. The method of claim 10, wherein the defined critical
sections execute as system interrupts having the lowest
interrupt priority level,

12. The method of claim 10, wherein a page fault handler
routine within the virtual memory manager executes com-
pletely as a interrupt.

13. The method of claim 12, wherein a page fault is
defined as a higher priority interrupt than the priority of the
defined critical sections, and wherein the page fault handler
lowers its own priority to that of the defined critical sections.

14. The method of claim 10, wherein selected service
calls, which modify the shared data structure, have only
portions thereof defined as critical sections, wherein such
poriions contain those parts of the service calls which
actually modify the shared data structure.

15. The method of claim 10, wherein said ensuring step
comprises reading the necessary portions of the shared data
structure.

16. The method of claim 10, wherein I/O requests and
completions generate interrupts having a higher priority
than the defined critical sections, and wherein, after the 1/0
operation has been completed, such higher level interrupts
generate an interrupt having the same level as the defined
critical sections.

17. A method for handling page faults in a virtual memory
manager on a computer system utilizing priority interrupits,
comprising the steps of:

defining as critical sections selected code portions of the

virtual memory manager which modify a shared data

structure containing virtual memory mapping

information, wherein each critical section contains two

sections of code for, in sequence, performing the steps

of:

within the first section, ensuring that all necessary
portion of the shared data structure are available for
use by the second section without generating a page
fault by reading the necessary portions of the shared
data, structure; and

within the second section, updating the shared data
structure;
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executing such defined critical sections as system
interrupts, wherein execution of a defined critical sec-
lion cannot be interrupted except by a higher priority
interrupi;

on entering a critical section, sefting a backirack point to
the beginning thereof; and

if a page fault occurs during execution of the critical
section, returning to the backtrack point when control
is returned from such page fault.
18. A method for handling page faults in a virtual memory
computer system, comprising the steps of:

defining as critical sections selected code portions of a
virtual memory manager which modify a shared data
structure containing virtual memory mapping informa-
fton;

on entering a critical section during execution, setting a
backtrack point at the beginning thereof;

within the critical section, ensuring that any memory
objects not in main memory may only be accessed when
the shared data structure is in a consistent state; and

if, during execution of a critical section, a memory object
Is accessed which is not currently in main memory,
reading such object into main memory and restarting
execution from the beginning of the critical section.

19. The method of claim 19, wherein the defined critical
sections execute as system interrupls.

20. The method of claim 20, wherein the defined critical
sections execute as system interrupts having the lowest
interrupt priority level.

21. The method of claim 20, wherein a page fault handler
routine within the virtual memory manager executes com-
pletely as a interrupt.

22. The method of claim 20, wherein selected service
calls, which modify the shared data structure, have only
portions thereof defined as critical sections, wherein such
portions contain those parts of the service calls which
actually modify the shared data structure.
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