United States Patent |9

Advani et al.

(11] E

Patent Number:

USOORE3639%4E

[45] Reissued Date of Patent:

Re. 36,394
Nov. 16, 1999

[154] DEVICE DRIVER AND ADAPTER BINDING
TECHNIQUE

|75] Inventors: Hira Advani, Danbury, Conn.; Larry
K. Loucks; Nancy L. Springen, both

of Austin, Tex.

International Business Machines
Corporation, Armonk, N.Y.

| 73] Assignee:

21] Appl. No.: 07/321,439

4,485,439 11/1984 Rothsteincooeeevvveevvvennennnnnee, 364/200
4,493,034 1/1985 Angelle et al.c.cccoeeeeeiiiiinls 364/200
4,494,188 1/1985 Nakane et al. ...cccovvevvnnvvnennnenn, 364/200
4,500,933 2/1985 Chan ...cccooveevevveeveenirvveneennnnnnns 364/900
4,589,063 5/1986 Shah et al. ...ccovvvvvevevrvernnnnnnnnne. 364/200
4,701,848 10/1987 Clyde ...ooeeeeeerevreinevnevnveeveeneeanen 364/300

Primary Fxaminer—Kevin J. Teska

Assistant Examiner—Ayn Mohamed

Attorney, Agent, or Firm—Robert M. Carwell; Kenneth C.
Hill; Andrew J. Dillon

57 ABSTRACT

An operating system 1n a digital computer environment 1s
run as a virtual machine on a virtual resource manager. In
order to provide a more dynamic environment for the
operating system, linkages are made between the operating
system device drivers and the corresponding real and virtual
devices of the virtual resource manager. This 1s accom-
plished by assigning a “token” to the wvirtual resource
manager. A device dependent information file corresponding
to the device 1s created. This file contains adapter dependent
information including a hardward port address for the physi-
cal device. The “token” 1s placed in the operating system
device driver at the time 1t 1s mnitiated. When the operating
system device driver 1s “opened” to drive the device, 1t uses
the “token” to communicate with the virtual resource man-
ager device driver thereby accomplishing driver to driver
binding. This causes the virtual resource manager device
driver to use the adapter dependent information in the
special file corresponding to the “token” and placed 1n the
process stack.

13 Claims, 4 Drawing Sheets

22| Filed: Mar. 9, 1989
Related U.S. Patent Documents
Reissue of:
|64] Patent No.: 4,649,479
Issued: Mar. 10, 1987
Appl. No.: 06/706,642
Filed: Feb. 28, 1985
51] Inmt. CLO e, GO6F 15/177
S52] US.Clo e, 395/653
58] Field of Search 364/200, 300,
364/900; 395/500, 325
[56] References Cited
U.S. PATENT DOCUMENTS
3,828,325 8/1974 Staffoned et al.oeneeee.. 364/200
4,330,822 5/1982 DodsSonccoeevveevveiieiniiirinennnne, 364/200
4,455,619 6/1984 Masui et al.couevvevivvneinnnnnn. 364/900
4,456,954 6/1984 Bullions, III et al. 364/200
4,475,156 10/1984 Federico et al.eevevvvvnnnnnnen.. 364/300
26 8

JETC/MSTR | | /ETC/ SYSTEM
CONFIGURE

VECTOR
TABLE

DEVICE
MANAGER

BINDING
TABLE

UDD (XX.DD

DD (XX.00

READ

PROG.

[/F VRMCONF

24

CONFIG. DD

SYC CALL
DEFINE_DEVICE
DEFINE_CODE
SEND_SVC™

YRM
DEVICE

DRIVER

U.S. Patent Nov. 16, 1999 Sheet 1 of 4 Re. 36,394

FIG.]

10
VIRTUAL
MACHINE
L o
VIRTUAL MACHINE INTERFACE _.-

VIRTUAL
6 INTERRUPT
| DEFINE DEVICE SVC
ATTACH DEVICE SVC
DEVICE TDRIVER - 12
122
INITIALI ZATION

/0 INITIATION

CHECX PARAMETERS

126

SLIH
128

1/0 OPERATION

¥

HAROWARE [INTERFACE

INTERRUPT

ADAPTER 20

U.S. Patent Nov. 16, 1999 Sheet 2 of 4 Re. 36,394

FI16.2

READ

PROG.
VRUCON

26 28

JETC/MSTR | | /ETC/SYSTEM
CONFIGURE

CONF C 24

BINDING
TABLE

yDD {XX.0D CONFIG. DD
VECTOR XX. TABLES
TABLE [

SVC CALL
DEFINE_DEVICE

YRM

DEVICE
MANAGER

DEFINE_CODE
SEND_SVC™

U.S. Patent

USER MODIFIES 40
DEVICE CONFIGURATION
42

PHYSICAL PORT # OF
DEVICE CONNECTION

SPECIFIED IN TABLE OF
ADAPTER CHARACTERISTICS

44 ﬂ
|
Y 46
MODIFY UNIX SYSTEM

CONFIGURATION FILES -
JETC/ MASTER JETC/SYSTEM

48
ASSIGN TOKEN #
[{ODN) TO DEVICE

50
RE-IPL {RE-LOAD)
952

DEFINE - DEVICE TO VRM
WITH MODIFIED ADAPTER
CHARACTERISTICS , INCL. PASSING

TOKEN # (1ODN) FOR DEVICE

UPDATE UNIX DEVICE DRIVER
FOR DEVICE CHARACTERISTICS,

INCLUDING IDENTICAL TOKEN
FOR THE DLVICL

Nov. 16, 1999

Sheet 3 of 4

F16.3

UNIX" APPLICATION “OPENS® UNIX

DEVICE ORIVER , TO USE
DEVICE

J8

UNIX OEVICE ORIVER
PASSES DEVICE

TOKEN TO VRM

60

VRM PASSES REQUEST TO

ASSOCIATED VRM (0D}
DEVICE ORIVER (FOR CORRE-
SPONDING TOKEN # OF COOE }

VAM DD USES ADAPTER
CHARACTERISTICS / PORT #
CORRESPONDING TO DEVICE
TOKEN #, YO DRIVE DEVICE

DEVICE , SET UP BY USER,

DRIVEN BY APPLICATION REQUESTS
VIA UNIX 0D 8 VRM DD

Re. 36,394

Re. 36,394

SY3LNIYd /13 / = 100
XX = X143¥d
TITT "6 = YOrvH
. | \dTA)INJO] N 6ld
_ULYdA| V38V VLYO S53004d HowLy /SIS 10 R34S 2881
NGOL] v
94315 m s S3J1A30 031804dNS TIV SNIVINOD) ¥3LSYR/ILY/
_—-eNgol
= . _1q31s— 1100 XINO INGO] SYIANIYd / 13/ = 100
it HLdN INQOT § IST 1] - PN WX =X1134d
= y184A' INI01 'INGOT AG330 (4 NOOL KON (§3A140 6~ OV
= _ . - ~ 4=1AY/S = INQO] 37130 XINA 34 "3 A
¢ YOOV 14V5 TRIGT 300V 438 L= AN L Y 391A30/ ¥314VOV ¥3d-KUINI INO) RILSAS/ 1Y/
“H1U3XX : AIG0K) T 6315
A G d3l1S INOJRUA RFNOX, ﬁ._._m T 4315 : SNNY “1ddV
- SSIYA0Y 140d J9AL HIINIYd _
< _ (91/8) SLI8 V1V MOTJH3A0 NI
g | "YO0Y AYOW3IN Q¥v) K813 ¥OWMl SEYL ONvdX3 | |
2 | SSI¥00V 9INIT10d 1N0 IAiIL %gw m%uw zwzﬁm _
XSYW INIT0 NO ¥OuH 3 WY .
| TINNVHD YHQ 10001084 ¥NIT SNLY ¥vd | | (1=NIR'6=TYN) 61d1/A0/
_ {04 1) "03¥ 14NYYILINI BYHI/SL1G NIQYVA 1H)I _ (QONJH) £d31S
JNYN 3D1A30 WUA I1V8 0NYE NIOWYW L1471
| 88N | 3113 NOILYRUOIN
| dW===/==] IHVN JT13 WA | N3N0 .
| " InvN 3103 0on | 3T v 913
|

U.S. Patent

Re. 36,394

1

DEVICE DRIVER AND ADAPTER BINDING
TECHNIQUE

Matter enclosed in heavy brackets [] appears in the
original patent but forms no part of this reissue specifi-
cation; matter printed in italics indicates the additions
made by reissue.

TECHNICAL FIELD

The present invention generally relates to computer oper-
ating systems running as Virtual Machines (VM) on a
Virtual Resource Manager (VRM) and, more particularly, to
a technique for binding the device drivers of an operating
system to the corresponding real and virtual devices of the
virtual resource manager.

PRIOR ART

Virtual machine operating systems are known 1n the prior
art which make a single real machine appear to be several
machines. These machines can be very similar to the real
machine on which they are run or they can be very different.
While many virtual machine operating systems have been
developed, perhaps the most widely used 1s VM/370 which
runs on the IBM System/370. The VM/370 operating system
creates the illusion that each of several users operating from
terminals has a complete System/370. Moreover, each user
can use a different operating system running under VM/370.
For further background, the reader 1s referred to the text
book by Harvey M. Deitel entitled An Introduction to
Operating Systems, published by Addison-Wesley (1984),
and 1n particular to Chapter 22 entitled “VM: A Virtual
Machine Operating System”. A more 1n depth discussion
may be had by referring to the text book by Harold Lorin and
Harvey M. Deitel enfitled Operating Systems, published by
Addison-Wesley (1981), and in particular to Chapter 16
entitled “Virtual Machines”.

The mvention to be described hereimnafter is primarily
intended for use with the UNIX operating system but may
have application with other operating systems which have
characteristics similar to the UNIX operating system. UNIX
1s a trademark of Bell Telephone Laboratories, Inc., which
developed the operating system. It was originally developed
for use on a DEC minicomputer but has become a popular
operating system for a wide range of mini- and microcom-
puters. One reason for this popularity 1s that UNIX 1s written
in C language, also developed at Bell Telephone
Laboratories, rather than in assembly language so that it 1s
not processor specific. Thus, compilers written for various
machines to give them C capability make it possible to
transport the UNIX operating system {from one machine to
another. Therefore, application programs written for the
UNIX operating system environment are also portable from
one machine to another. For more information on the UNIX
operating system, the reader 1s referred to UNIX™ System,
User’s Manual, System V, published by Western Electric
Co., January 1983. A good overview of the UNIX operating
system 1s provided by Brian W. Kernighan and Rob Pike in

their book entitled The UNIX Programming Environment,
published by Prentice-Hall (1984).

Physical devices, such as printers, modems and the like,
which are supported by the UNIX operating system appear
as an entry in the /dev (for device) directory. Application
programs running on UNIX handle devices as if they were
files. To send characters to a line printer, for example, the
application program issues a system command to the file
/dev/lp (for device, line printer). While the procedure is

10

15

20

25

30

35

40

45

50

55

60

65

2

convenient for the applications programmer, the UNIX
operating system programmer must write device driver
programs so that the physical devices can communicate with
the operating system.

SUMMARY OF THE INVENTION

In order to support a more dynamic system environment
for UNIX as a Virtual Machine (VM) running on a Virtual
Resource Manager (VRM), certain linkages must be made
between the UNIX device drivers and the corresponding real
and virtual devices in the virtual resource manager. By
virtual resource manager, what 1s meant 1s that part of a
virtual machine operating system which manages the
resources that are connected to the computer, as will be
understood by those skilled 1n the systems programming art.
Again, reference may be had to the text books by Deitel and
Lorin and Deitel mentioned above.

It 1s therefore an object of the present invention to provide
a scheme for dynamically binding the UNIX device drivers
to the virtual resource manager device drivers. This binding
capability enables a programmer writing an mterrupt handler
for a new adapter being installed into the system to utilize
and move devices on an adapter with minimal effort and not
to have devices “wired” to a speciiic port. In the environ-
ment to be described 1n more detail hereinafter, the virtual
resource manager can be thought of as a sophisticated
hardware interface, analogous to the BIOS (Basic Input/
Output System) which is a relatively simple hardware inter-
face.

According to the invention, a “token” (Input/Output)
Device Number (IODN) corresponding to the device 1is
placed 1n the UNIX device driver. At the program 1nitiation
time (Initial Program Load or IPL), this token 1s used to
define to the virtual resource manager the device, with
adapter dependent information which includes a hardware
port address for the physical device. A special file corre-
sponding to the device has been created. When this special
file 1s opened, the UNIX device driver retrieves the token for
the device and “attaches” to the virtual resource manager.
This causes the virtual resource manager device driver to use
the adapter dependent information corresponding to the
token and placed 1n the process stack. Thus, when the UNIX
device driver 1s “opened” to drive a device, 1t uses this token
passed to it to communicate with the virtual resource man-
ager device driver thereby accomplishing driver to driver
binding. As a result, this burden 1s eliminated from the writer
of the device driver programs.

BRIEF DESCRIPTION OF THE DRAWINGS

The foregoing and other objects, aspects and advantages
of the invention will be better understood from the following
detailed description with reference to the drawings, in
which:

FIG. 1 1s a block and flow diagram of the Virtual Resource
Manager (VRM) device driver model;

FIG. 2 1s a block and flow diagram of the relational
structure of the virtual resource manager configuration
VRMCONTF according to the present invention;

FIG. 3 1s a flow diagram showing the device driver and
adapter binding technique according to the invention; and

FIG. 4 1s a block and flow diagram illustrating the
scenario for device/port binding for the specific example of
a printer.

DETAILED DESCRIPTION OF THE
PREFERRED EMBODIMENT OF THE
INVENTION

In the environment in which the mmvention i1s used, the
virtual resource manager consists of two basic types of

Re. 36,394

3

components; processes and 1nterrupt handlers. Processes are
scheduled for execution through a prioritized round-robin

algorithm. Interrupt handlers are divided into two types;
First Level Interrupt Handlers (FLIHs) and Second Level

Interrupt Handlers (SLIHs). There is only one FLIH per
hardware 1nterrupt level, and one SLIH per adapter on each
interrupt level. Both processes and interrupt handlers can be
installed from a virtual machine. Also, processes and 1nter-
rupt handlers can be created by processes within the virtual
resource manager. Basically, anything a virtual machine can
do with Virtual Machine Interface (VMI) Supervisory Calls
(SVCs), a virtual resource manager can do with function
calls to the virtual resource manager nucleus.

When components and devices are installed into the
virtual resource manager from a virtual machine, the virtual
machine supplies i1dentifying Input/Output Code Numbers
(IOCNs) and identifying Input/Output Device Numbers
(IODNs). The virtual resource manager generates IODNSs
for newly created instances of virtual devices. Within the
virtual resource manager, components and devices are
known by encoded identifications (IDs) which are generated
by the virtual resource manager. These IDs are unique and
dynamic; 1.€., each time an IODN 1s defined by a virtual
machine, the internal device 1dentification will be different

even though the IODN 1s static. Only programmers writting
code for 1nside the virtual resource manager need be con-
cerned with the internal i1dentifications since they are not

reflected above the virtual machine interface.

Referring now to FIG. 1 of the drawings, there 1s shown
a model of the virtual resource manager device driver. The
virtual machine 10 1s interfaced with the virtual resource
manager driver 12 through a well defined virtual machine
interface 14. The virtual machine 10 issues calls to define
device supervisory calls (SVCs) and to attach device super-
visory calls as represented by block 16, and 1 response to
those calls, the virtual resource manager device driver 12 1s
initialized at block 122 and provides an virtual interrupt to
the virtual machine 10. The virtual machine 10 also 1ssues a
call to start an mput/output supervisory call as represented
by block 18. This causes the virtual resource manager device
driver 12 to check device parameters m block 126 and
provide a return to the start mput/output supervisory call
block 18 which then causes the virtual resource manager
device driver 12 to mmitiate mput/output 1 block 124 and
provide a virtual interrupt to the virtual machine 10. A
virtual interrupt to the virtual machine 10 1s also provided by
the SLIH 128. The adpater 20 provides interrupts to the
virtual resource manager device driver 12 and responds to
input/output operation commands from the device driver 12
via the hardware interface 22.

A device 1s defined at virtual resource manager initial
program load time for virtual resource manager devices or
when the operating system 1ssues the appropriate “Delfine
Device SVC”. The device driver’s define device routine 1s
called at this time to disable the device’s adapter (interrupts,
DMA, and the like). The data passed to this routine is the
Define Device Structure (DDS) specified with the “Define
Device SVC”. The DDS which 1s passed to the device
driver’s define device routine contains a device dependent
arca that provides the means by which the operating system
can pass conflguration imformation to the device driver. The
define routine 1s responsible for copying this structure into
its static data area and returning its address. Each device
driver will define the parameters that must be contained 1n
the DDS device characteristics section 1n response to a
change characteristics operation.

A device 1s mitialized by the virtual resource manager by
calling the “Start Device” routine. This occurs automatically

10

15

20

25

30

35

40

45

50

55

60

65

4

cach time a virtual machine 10 attaches a device. The device
driver’s 1nifialization routine is called at this time to enable/
initialize the device’s adapter. By not 1nitializing the device
until it 1s attached saves system resources and allows a more
flexible use of hardware resources. For example, two
devices that do not support interrupt sharing could use the
same 1nterrupt level 1f they are not both active. A device 1s
terminated by the virtual resource manager by calling the
“Start Device” routine with the stop option. The device
driver’s termination routine 1s called at this time to disable
the device’s adapter. This allows the device to be allocated
to a co-processor or resources used by the device to be
allocated to other devices.

UNIX device drivers 1n a non-virtual resource manager
environment interface directly to the system hardware. To
support the adding and/or deleting of devices and the
building of a new UNIX kernel, several UNIX system f{iles
exist. These files fall into two categories; those required to
“make” the UNIX kernel (system tables) and those that are
constructed as the result of “making” a new kernel (binding
tables). In order to support a more dynamic system envi-
ronment for UNIX as a virtual machine running on a virtual
resource manager, the present invention provides certain
linkages between the UNIX device drivers and the corre-
sponding real and virtual devices in the virtual resource
manager. This linkage mechanism consists primarily of a
convention by which both real and virtual devices are
identified by a device number referred to as the IODN as
described above. In order to bind the UNIX device drivers
to the corresponding virtual resource manager components,
a mechanism 1s provided to communicate the IODN along,
with other information to the UNIX device driver as part of
the normal UNIX 1nitialization.

The virtual resource manager configuration (VRMCONF)
relational structure for UNIX 1s shown in FIG. 2. The
CONFIG.DD subcomponent 242 of VRMCONTF 1s 1tself a
device driver inside the UNIX kernel 24. As such, 1t 1s the
part of VRMCONF which issues the virtual resource man-
ager supervisory calls. It also 1s the mechanism by which the
IODN and other information gets passed to the respective

kernel device drivers. It passes this information via a kernel
function call. The function call i1s mitiated via the “CFD-
DRU” input/output control issued to the CONFIG.DD. The

internal call, 1.e. CONFIG.DD to kernel, 1s of the following
format:

(Xp-<d__init)(device, 10dn, ilev, ddlen, ddptr),
where the parameters are
device: a dev__with the major/minor device numbers
10dn: the 10dn to use for this device or O if not applicable
ipri: virtual interrupt level
ddlen: the length of the device dependent information or O
if none
ddptr: a pointer to the device dependent information or O 1f
none
There are two key tables used mm “making” the UNIX
kernel. These are /etc/master 26 and /etc/system 28 (alias
fusr/sys/ct/dfile.std). The /etc/master 26 1s an ASCII text file
containing information about every device the system 1s
capable of supporting. There 1s at least one entry 1n this file
for every real device. In the virtual resource manager
environment, the same 1s still true, but 1n addition, there
must be at least one entry for every virtual device (device
manager). The /etc/system file 28 is also an ASCII text file.
It contains information about every device driver on the
UNIX file system. There 1s at least one entry 1n this file for
cach device driver. In the UNIX environment, there are both
real and pseudo device drivers. A pseudo device driver has

Re. 36,394

S

no real or virtual device associated with it. (Pseudo device
drivers 1s one way to gain access to the VMI__SVC_ calls.)
Entries for these pseudo device drivers are required in the
/etc/system file 28 1n the virtual resource manager environ-

ment.

At least two tables are created as part of the UNIX kernel
build operation. One 1s known as “CONF.C” 244 and the
other as interrupt table 246. These are part of the UNIX
kernel 24 and are software vectoring tables. The CONF.C
table 244 1s used by the kernel to locate each device driver
(major number) and the routines that driver supports. It is a
binding table which i1dentifies each major device number and
relates that driver to a set of system calls. For example, the
UNIX system call OPEN /dev/devicel would be indexed
through the CONF.C table to find the UNIX device driver to
pass the call to as well as the specific routine to run as the
result of the OPEN system call. This continues to be true in
the virtual resource manager environment. In addition, the
normal use of this table 1s extended to contain pointers to the
UNIX Device Driver (UDD) tables, contained within the
device drivers, in which the IODN and device dependent
information are written during UNIX imitialization as indi-
cated 1 FIG. 2. The UNIX device driver table structure 1s
shown below:

Status Flags

[ODN INT_LEV/SUB_LEV LL

Device Dep. Info.

Status-one entry per major/minor table entry
[ODN-2-byte integer; tag by which the UDD knows its corresponding VRM

component, one entry per major/minor combination
INT_LEV-value 0-15 of virtual interrupt level

SUB__LEV-value 0-255 interrupt sub-level values (assigned at “ATTACH*
time)
LI-2-yte integer; length of the device dependent information

Thus, the type of information in CONF.C does not change.
Additional binding information 1s added to provide pointers
into UDD data areas.

The interrupt table 246 1s an interrupt vectoring table
“made” with the kernel 24 1n normal UNIX operation. The
Virtual Interrupt Vector Table 1s shown below and represents
information contained in the routine table:

INT_LEV/SUB__LEV MAJ/MIN # PNTR (UNIX DD

INTR ROUTINE)

INT_LEV/SUB__LEV-Virtual Interrupt Identifier from VRM
MAIJ/MIN #-Identifier of UDD owning interrupt
PNTR-Pointer to UDD 1interrupt handling routine

This table 1s not “static” built as part of the kernel build but
1s dynamically built at run-time. Each UNIX device driver
must call the kernel function call to receive interrupt sub-
level information while passing 1ts major and minor number

as well as a pointer to the interrupt handler routine.

There 1s generally one table 30 similar to the UNIX
system tables per device type (/etc/ddi). These tables contain
device or device type specific information, while etc/master
26 and etc/system 28 contain information common to all
devices. The files containing device-dependent information
(the descriptive data that is associated with a particular
device) are as follows:

fetc/disk etc/display
fetc/diskette etc/tape
fetc/printer etc/keyboard
fetc/async etc/locator

Every UNIX device driver follows certain conventions.
While there 1s the concept of a predefined IODN, for some

10

15

20

25

30

35

40

45

50

55

60

65

6

of the nucleus components of a virtual resource manager, the
majority of the device/device manager tags (IODNs) will
vary 1n assignment. Only the nucleus virtual resource man-
ager components are allowed to default always to a specific
[ODN. Therefore, UNIX device drivers are not allowed to
have “hardcode” device dependent information. Each UDD
writer will have a table entry for each IODN 1t controls. If
the UDD 1s a multiplexing device driver, 1.e. deals with more
than one IODN, the table must reflect this situation. An
example of this 1s a UDD for controlling printers. This UDD
perhaps might control multiple printers. The defined mecha-
nism for handling this 1s the UNIX major device number
which reflects the Printer UDD and the minor number which
reflects the specific printer. Therefore, the size of the UDD
table 1s directly proportional to the number of minor devices.
Using CONEF.C, this major/minor number combination 1s the
mechanism by which the correct table entry 1n the associated
UDD 1s updated.

Turning now to FIG. 3, the flow chart for the device driver
and adapter binding according to the mnvention 1s shown. In
block 40, 1t 1s assumed that the user modifies the device
coniliguration. To do this, the physical port number of the
device connection must be specified 1n the table of adapter
characteristics as indicated in block 42. Then, 1f the device
1s a new device, the flow progresses to block 46; otherwise,
the flow progresses to block 54 as indicated by the decision
block 44. In block 46, the UNIX system configuration files
/etc/master 26 and etc/system 28 are modified. Then 1n block
48, a token (IODN) is assigned to the device. This is
followed 1n block 50 with a re-load operation, and then in
block 5§52, the device 1s defined to the wvirtual resource
manager with modified adapter characteristics, mcluding
passing the token number for the device. Going now to block
54, the UNIX device driver 1s updated for device
characteristics, including an identical token number for the
device. The UNIX application “OPENS” the UNIX device
driver to use the device 1n block §6. This 1s followed 1n block
58 by the UNIX device driver passing the device token
number to the virtual resource manager. When the virtual
resource manager receives the token number, 1t passes a
request to the associated virtual resource manager device
driver for the corresponding token number as indicated 1n
block 60. In block 62, the virtual resource manager device
driver uses adapter characteristics and port number corre-
sponding to the device token number to drive the device thus
completing the device driver and and adpater binding. Then,
when the device 1s to be driven by an application, the device
which has been set up by the user i1s requested via the UNIX
device driver and the virtual resource manager device driver
as 1dicated 1n block 64.

To provide a more concrete example for those skilled 1n
the art of system programming and familiar with the UNIX
operating system, reference 1s now made to FIG. 4. In this
example, a line printer 70 1dentified as LPTY 1s to be

attached to an RS232 serial adapter 72 having four ports
identified by the tokens IODNI, IODN2, IODNJ3, and

IODN4. The first step 1s to modity the /etc/system file 28 and
the /etc/master file 26. In these tables, the parameters for the
LPT9 printer are entered as major number=9, prefix=XX,
and DDI=/etc/printers. The /etc/master file 26 contains all
supported devices, rrrespective of their configuration. In the
ctc/system flile 28, there 1s one entry per adapter/device, 1.¢.
per UNIX device driver.

In step 2, the DDI (device dependent information) file
may be modified for device or adpater parameters. Then, 1n
step 3, the character special file 1s created for the line printer
LPT9. This is followed, in step 4, with the 1nitial program

Re. 36,394

7

load (IPL) sequence to execute the VRMCONFIG program.
In step 5, the VRMCONEFIG program passes device depen-
dent information to the configuration (CONFIG) pseudo
device driver. In step 6, the CONFIG device driver makes
known the virtual resource manager device driver code to
the virtual resource manager, along with the token (IODN).
In step 7, the CONFIG device driver passes some device
information to the UNIX device driver, along with the same

token (IODN), which is stored in the table area of the UNIX
device driver. At this point, an application program can

“OPEN” the special file /dev/Ipt9 created i step 3 as
indicated 1n FIG. 4 at step 8. This causes, 1in step 9, the UNIX
device driver to use the IODN (passed in step 7) to go to the
virtual resource manager to “bind” to the virtual resource
manager device driver corresponding to the same token and
associated with the adapter port.

Other specific examples will readily suggest themselves
to those skilled in the art, and although the preferred
embodiment of the invention has been described as using the
UNIX operating system, other operating systems having
similar characteristics could be adapted for use 1n accor-
dance with the teachings of the mvention. Therefore, 1t will
be understood by those skilled in the systems programming,
art that while the 1nvention has been particularly shown and
described with respect to a single preferred embodiment,
changes 1n form and detail may be made therein without
departing from the spirit and scope of the invention.

Having thus describe our invention, what we claim as
new, and desire to secure by Letters Patent 1s:

1. A device driver and adapter binding technique 1n which
an operating system having device drivers 1s run as a virtual
machine on a virtual resource manager having device drivers
of real and virtual devices comprising the steps of in a
computer system:

assigning a “token” to the wvirtual resource manager’s
device driver for the device to be bound to a device
driver of said operating system;

creating a device dependent information file 1n said oper-
ating system corresponding to said device to be bound,
said file including adapter dependent information for
said device;

placing said “token” 1n a device driver of said operating
system [at the time] when said operating system is
initiated; and
using said “token” placed in said device driver of said
operating system to communicate with the correspond-
ing virtual resource manager device driver when said
device driver of said operating system 1s opened to
drive said device, thereby binding the two drivers and
using the device dependent information 1n said device
dependent information file to drive the physical device.
2. A device driver and adaptive binding technique as
recited m claim 1 wherein a user may modify a device

configuration, said technique further comprising the steps
of:

specifying [the] a port number of the device connection in
a table of adapter characteristics; and

updating the device driver of said operating system for
device characteristics including said “token” for the
device i1f the device 1s not a new device before using
said “token” when said device driver of said operating
system 1s opened;
otherwise, repeating said steps of assigning, creating and
placing if the device 1s a new device.
3. A device driver and adaptive binding technique as
recited 1n claim 1 wherein the step of using said “token” 1s
performed with the following steps:

10

15

20

25

30

35

40

45

50

55

60

65

3

passing said “token” from said operating system device
driver to said virtual resource manager;

retrieving device dependent information from the associ-
ated virtual resource manager device driver corre-
sponding to said “token”; and

using said device dependent information to drive the

device.

4. A method of linking device drivers of an operating,
system run as a virtual machine on a virtual resource
manager with the device drivers of said virtual resource
manager comprising the steps of in a computer system:

specifying [the] a port number of a device connection in
a table of adapter characteristics;

modifying the operating system configuration files and
assigning a token number to said device;

reloading said operating system to define said device to
said virtual resource manager with adapter character-
istics and passing said token number to an associated
device driver of said virtual resource manager;

opening the device driver of said operating system to use
sald device;

passing said token number from said device driver to said
virtual resource manager;

retrieving [the] device dependent information from the
assoclated virtual resource manager device driver cor-
responding to said token number; and

using said device dependent information to drive said
device, thereby linking the device drivers of said oper-
ating system and said virtual resource manager.

5. The method recited 1n claim 4 wherein a user may
modify a device configuration further comprising the steps
of updating the device driver of said operating system for the
device characteristics including the identical token number
for the device 1t the device 1s not a new device.

6. A method of linking device drivers of an operating
system, run as a virtual machine on a virtual resource
manager, with the device drivers of said virtual resource
manager, COmprising the steps of in a computer system.

providing an tntermediate layer operating as the virtual
resource manager and having a plurality of first device
drivers for driving devices within the computer system;

providing a system configuration file which describes a
plurality of corresponding devices accessible by the
operating system through the first device drivers;

loading the operating system inito the computer system,
wherein a plurality of second device drivers for the
plurality of accessible devices are linked to the oper-
ating system, and wherein the second device drivers are
linked to first device drivers from the intermediate
layer;

providing, to the second device drivers, device dependent
information for the plurality of accessible devices;

opening each second device driver to use a particular one
of the plurality of accessible devices, wherein the
device dependent information is accessed by the device
driver to drive one of the plurality of accessible devices
through a corresponding first device driver; and

using the device dependent information to drive the
plurality of accessible devices through the first device
drivers.

7. A method for linking device drivers in a computer
operating system, run as a virtual machine on a virtual
resource manager, with the device drivers of said virtual
resource manager, wherein a user may modify a device
configuration, comprising the steps of.

Re. 36,394

9

providing an intermediate layer operating as the virtual
resource manager and having a plurality of first device
drivers for driving devices within the computer system;

creating a device dependent information file in the oper-
aring system corresponding fto a physical device to be
bound, such file including device dependent informa-
fion for such device;

specifying a port number of the device connection in a
table of adapter characteristics;

updating a second device driver of the operating system
with device characteristics if the device is not a new
device when the device driver of the operating system
IS opened;

otherwise, repeating said creating step if the device is a
new device; and

using, within the second device driver, the device depen-
dent information in the device dependent information
file to drive a first device driver within the intermediate
laver, which in turn drives the physical device.

8. A reconfigurable computer system having an operating
system run as a virtual machine on a virtual resource
manager, COmprising.:

an operaring system;

a plurality of devices aitached to the computer system;

an intermediate layer operating as the virtual resource
manager and having a plurality of first device drivers
for driving the devices;

a plurality of second device drivers coupled to the oper-
ating system and directly callable therefrom, wherein
the operating system communicates with the interme-
diate laver through the second device drivers, and
wherein said devices communicate with said interme-
diate layer through said first device drivers; and

means, connected to said operating system, for commii-
nicating stored device dependent information describ-
ing said devices to said second device drivers when
said operating system is initialized, wherein said sec-
ond device drivers drive said first device drivers using
the device dependent informartion.

9. The system of claim 8, wherein said communicafting
means includes, for each attached device, a device depen-
dent information file describing characteristics of such
device.

10. A reconfigurable computer system having an operai-
ing system run as a virtual machine on a virtual resource
managey, COMprising.

an operating system;

a plurality of devices attached to the computer system;

an ntermediate layer operating as a virtual resource
manager and having a plurality of first device drivers
for driving the devices;

a plurality of second device drivers coupled to the oper-
ating system and directly callable therefrom, wherein

10

15

20

25

30

35

40

45

50

10

the operating system communicates with the interme-
diate layer through the second device drivers, and
wherein satd devices communicate with said interme-
diate layer through said first device drivers;

means, connected to said operating system, for commii-
nicating stored device dependent information describ-
ing said devices to said second device drivers when
said operating system is initialized, wherein said sec-
ond device drivers drive said first device drivers using
the device dependent information; and

a system file, in the computer system, describing the
attached devices, wherein said operating system reads
said system file when said operating system 1is
initialized, and wherein the second device drivers are
coupled to said operating system according to the
system file descriptions.

11. A reconfigurable computer system having an operai-
ing system run as a virtual machine on a virtual resource
manageyr, Comprising:

an operating system;

a plurality of devices attached to the computer system;

an intermediate layer operating as a virtual resource
manager and having a plurality of first device drivers
for driving the devices,

a plurality of second device drivers coupled to the oper-
ating system and directly callable therefrom, wherein
the operating system communicates with the interme-
diate layer through the second device drivers, and
wherein satd devices communicate with said interme-
diate layer through said first device drivers;

means, connected to said operating system, for commii-
nicating stored device dependent information describ-
ing said devices to said second device drivers when
said operating system is initialized, wherein said sec-
ond device drivers drive said first device drivers using
the device dependent tnformation; and

wherein said device drivers have empty tables when they
are coupled to said operating system, and wherein the
device dependent information is placed into the empty
tables when said operating system is initialized.

12. The system of claim 11, wherein at least one second
device driver has more than one table containing device
dependent information, whereby one such second device
driver communicates with more than one device through a
first device driver:

13. The system of claim 10, further comprising:

a master file, in the computer system, containing template
descriptions of devices which can communicate with
said operating system through the first device drivers,
wherein entries in said system file are copied from said
master file when new devices are attached to the
system.

UNITED STATES PATENT AND TRADEMARK OFFICE
CERTIFICATE OF CORRECTION

PATENTNO. : he- 36,394
DATED : November 16, 1999

INVENTOR(S) : Advani et al.

it is certified that error appears in the above-identified patent and that said Letters Patent is
hereby corrected as shown below:

Column 5, line 33, please change "LL-2-yte integer" to -LL-2-byte integer-.

Signed and Sealed this
Nineteenth Day of December, 2000

Q. TODD DICKINSON

,fi—ftesting Officer Commissioner of Parents and Trademarks

	Front Page
	Drawings
	Specification
	Claims
	Corrections/Annotated Pages

