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SYSTEM FOR MANAGING TILED IMAGES
USING MULTIPLE RESOLUTIONS

Matter enclosed in heavy brackets [ ] appears in the
original patent but forms no part of this reissue specifi-
cation; matter printed in italics indicates the additions
made by reissue.

MICROFICHE APPENDIX

A microfiche appendix containing computer source code
is attached. The microfiche appendix comprises one (1)
sheet of microfiche having 74 frames.

BACKGROUND OF THE INVENTION

1. Field of the Invention

The present invention relates to memory management
systems and. more particularly, to the memory management
of large digital images.

2. Description of the Prior Art

The present invention comprises a memory management
system for large digital images. These digital, or raster,
images are made up of a matrix of individually addressable
pixels, which are ultimately represented inside of a com-
puter as bit-maps. Large digital images, such as those
associated with engineering drawings. topographic maps,
satellite images. and the like, are often manipulated by a
computer for the purpose of viewing or editing by a user.
The size of, such images are often on the order of tens and
even hundreds of Megabytes. Given the current cost of
semiconductor memory it is economically impracticable to
dedicate a random access memory (RAM) to storing even a
single large digital image (hereinafter just referred to as a
“digital image”). Thus, the image is usually stored on a
slower, secondary storage medium such as a magnetic disk,
and only the sections being used are copied into main
memory (also called RAM memory).

However, as is well known by users of computer aided
desien (“CAD”) systems, a simplistic memory transfer
scheme will cause degraded performance during many typi-
cal operations, including zooming or panning. Essentially,
during such operations, the computer cannot transfer data
between disk and main memory fast enough so that the nser
must wait for a video display to be refreshed. Clearly, these
periods of waiting on memory transfers are wasteful of
engineering time.

Presently, to enhance main memory storage of only rel-
evant sections of a digital image, the image is logically
segmented into rectangular regions called “tiles”. Two cur-
rently preferred standards for segmenting an image into tiles
are promulgated by the Computer Aided Logistics Support
(CALS) organization of the United States government
(termed the “CALS standard” herein) and by Aldus Corpo-
ration of Seattle, Washington, as defined in the Tagged
Image Format File (TIFF) definition (e.g.. “TIFF
Specification, Revision 5.0, Appendix L). Among other tile
sizes. both standards define a square tile having dimensions
of 512x512 pixels. Thus. if each pixel requires one byte of
storage, the storage of one such tile would require a mini-
mum of 256 kilobytes of memory.

Others. such as Thayer, et al. (U.S. Pat. No. 4,965,751)
and Sawada. et al. (U.S. Pat. No. 4,920.504) have discussed
tiling or blocking a memory. However, such computer
hardware is generally associated with a graphics board for
improving the speed of pixel transfers between a frame
buffer and a video display by addressing a group of pixels
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simultancously These systems have no relationship to tiling
of the image itself and thus do not require knowledge of

image size. Tiling has also been used to refer to polygon
filling as in Dalrymple, et al. (U.S. Pat. No. 4,951.230),
which is unrelated to the notion of tiling discussed herein.

The patent to Ewart (U.S. Pat. No. 4,878.183) discusses
interlaced cells, each cell containing one or more pixels, for
storing continuous tone images such as photographs. The
variable size cells are used to vary the resolution of an image
according to a distance which is to be perceived by a user.
However, the Ewart disclosure does not discuss rasterized
binary images containing line drawings, nor does Ewart
discuss virtual memory management for modifying or edit-
ing images., as will be more fully discussed below.

Even when stored in a mass storage system, an image
library, containing a number of digital images. will consume
disk space very quickly. Furthermore, “raw” digital images
are generally too large to transfer frorn mass storage to
portable floppy disks., or between computer systems (by
telephone. for example), in a timely and inexpensive manner
unless some means is used to reduce the size of the image.

Hence. users of binary images employ image compression
techniques to improve storage and transfer efficiencies. One
existing compression standard applicable to facsimile
transmission. CCITT Group IV, or T.6 compression, 1S now
being used for digital images. Like many other compression
techniques, however, the CCITT standard uses statistical
techniques to compress data and, hence, it does not always
produce a compressed image that is smaller than the

original, uncompressed image. That means that image librar-
ies will often contain a mix of compressed and uncom-
pressed binary images. Similar compression standards exist
for color and gray-scale images such as those promulgated
by the JPEG (Joint Photog. Exp. Group) Standards Com-
mittee of the CCITT as SGV II Draft Standard.

At the present time, digital images are typically viewed
and modified with an image editor using an off-the-shelf
computer workstation. These workstations usually come
with a sophisticated operating system, such as UNIX, that
employs a virtual memory to effectively manage memory
accesses in secondary and main memories. In an operating
system having virtual memory, the data that represents the
executable instructions for a program or the variables used
by that program do not need to reside entirely in main
memory. Instead, the operating system brings portions of the
program into main memory only as needed. (The data that
is not stored in main memory being stored on magnetic disk
or other like nonvolatile memory.) The address space that is
available to any one application program is generally man-
aged in blocks of convenient sizes called *“pages™ or “seg-
ments”.

In general, a virtual memory system allows application
programs to be written and executed without concern for the
management of virtual memory carried out by the operating
system. Thus. independence of the size of main memory is
achieved by creating a ‘“virtual” address space for the
program. The operating system translates virtual addresses
into physical addresses (in a main or cache memory) with
the aid of an “address translation table”. This table contains
one entry per virtual memory segment of status information.
For instance, segment status will commonly include infor-
mation about whether a segment is currently in main
memory, when a segment was last used. a disk address at
which the disk copy of the segment resides, and a RAM
address at which the segment resides (only valid if the
segment is currently loaded in main memory).

When the program attempts to access data in a segment
that is not currently resident in main memory, the operating
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system reads the segment from disk into main memory. The
operating systern may need to discard another segment to
make room for the new one (by overwriting the area of main
memory occupied by the old segment), so some method of
determining which segment to discard is required. Usually
the method is to discard the least recently used segment. If
the discarded segment was modified then it must be written
back to disk. The operating system completes the “swap”
operation by updating the address translation table entries of
the new and discarded segments.

In summary, the conventional memory management
schemes consider data to be in one of two states: resident or
not resident in main memory. Which segments are stored in
main memaory at any given time is generally determined only
by past usage, with no way of predicting future memory
demands. For instance, just because a segment is the least
recently used does not mean that it will not be used at the
very next memory access.

However., the management of virtual memory for images
departs significantly from conventional virtual memory
schemes because images and computer programs are
accessed in very different ways. Computer programs tend to
access one small neighborhood of virtual address, and then
jump to some distant, essentially random. location.
However, during normal image processing operations an
image is accessed in one of a finite set of predictable
patterns. It is not surprising then that conventional memory
management systems can significantly degrade performance
when used in image processing applications by applying
inappropriate memory management rules. Rules which
should be abided by a memory management system for large
digital images are the following:

1. Image memory must be managed as rectangular image
regions (called “tiles™), not as lincar memory address ranges.

2. An image tile can exist in five forms: uncompressed
memory-resident, compressed memory-resident, uncom-
pressed disk-resident, compressed disk-resident and *‘can be
derived from other available image tiles”. in contrast to the
two basic forms of memory-resident and disk-resident avail-
able in conventional virtual memory schemes.

3. The image region that will be affected by a particular
image processing operation is known before the operation
begins. and that information can be conveyed to the memory
manager.

4. An image memory manager must be tunable to different
system capabilities and image types. For example. many
computers can decompress a tile of binary data much faster
that they can retrieve the uncompressed version of the same
tile from disk. On the other hand. some images cannot be
compressed at all.

5. An image memory management system should support
the capability to “undo” editing operations which is built
tnto the memory manager for optimal performance and ease
of use. Thus. the memory manager could easily save copies
of the compressed tiles in the affected region. and guickly
restore the 1mage to the original state by simply modifying
the tile directory entries to point to the old version.

Reader, et al., (**Address Generation and Memory Man-
agement for Memory Centered Image Processing Systems”,
SPIE, Vol. 757, Methods for Handling and Processing
Imagery. 1987) discuss a primitive memory management
system for images. However. in that system, image tiles are
only stored in memory and not on disk. Furthermore, in the
Reader, et al., system, there is no capability to handle images
in compressed form. nor is there any discussion of “undo-
ing” editing operations.
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Consequently, a need exists for an image memory man-
agement system that provides: linkages with a raster image
editor which includes modify and undo operations, true
virtual memory for large images specifying locations on disk
and in memory, simultaneous handling of compressed and
uncompressed images, and a method for rapidly construct-
ing reduced resolution views of the image for display. The
latter need is particularly important when viewing a large
image reduced to fit on a video display.

SUMMARY OF THE INVENTION

The above-mentioned needs are satisfied by the present
invention which includes a memory management system for
tiled images. The memory management system includes a
tile manager for maintaining a virtual memory comprising a
main memory and a secondary memory such as a disk. The
tiled images may include tiles in compressed or uncom-
pressed form.

The tile manager selects the form of image tile that most
appropriately matches a request. Each tile of an image may
exist in one or more of five different forms, or states, as
follows: uncompressed and resident in the image data cache,
compressed and resident in the image data cache, uncom-
pressed and resident on disk., compressed and resident on
disk and not loaded but re-creatable using data from higher-
resolution image tiles.

An image stack having successively lower-resolution
subimages is constructed from a full resolution source
image. The lower-resolution images in the image stack may
be used to enhance such standard image accesses as zoom-
ing and panning where high speed image reduction is
advantageous.

The image memory management system provides link-
ages with image processing applications that facilitate image
modifications. The tile manager need only store compressed
tiles that relate to so-called undoable operations.

These and other objects and features of the present
invention will become more fully apparent from the follow-
ing description and appended claims taken in conjunction
with the accompanying drawings.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a perspective view of an image stack comprising
full. half, quarter and eighth resolution tiled images;

FIG. 2 is a full resolution image of a mechanical part;

FIG. 3 is a half resolution image of the mechanical part
shown in FIG. 2;

FIG. 4 is a quarter resolution image of the mechanical part
shown in FIG. 2;

FIG. 5 is an eighth resolution image of the mechanical
part shown in FIG. 2;

FIG. 6 is a block diagram showing one preferred embodi-
ment of a computer system that includes the present inven-
tion:

FIG. 7 is a memory map showing the general arrangement
of cache memory according to the present invention;

FIG. 8 is a state diagram defining the flow of tile data
between different storage states according to the present
invention;

FIGS. 9A and B are a diagram of one preferred data

structure defining document information according to the
present invention;

F1G. 10 is a diagram of one preferred data structure
defining a tile header for maintaining the status of com-
pressed or uncompressed tiles;
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F1G. 11 is a diagram of a partial calling hierarchy for the
various functions of the presently preferred embodiment of
the tile manager of the present invention;

FIG. 12 is a flow diagram of one preferred embodiment of
the tile manager;

FIG. 13 is a flow diagram defining the “initialize cache
manager” function referred to in the flow diagram of FIG.
12;

FIG. 14 is a state diagram of the locking and unlocking of
a memory, state, according to the present invention;

FIGS. 15A, 15B, and 15C are a flow diagram defining the
“create image access context” function referred to in FIG.

12:
FIG. 16 is a diagram, of a data structure defining the
access context referred to in FIGS. 15A B:

FIGS. 17A and 17B are a flow diagram defining the “save
region for undo” function referred to in FIG. 15B:

FIG. 18 is a flow diagram defining the “load tiled raster
image” function referred to in FIG. 12;

FIG. 19 is a flow diagram defining the “load TIFF

subimage tile information into tile headers” function

referred to in FIG. 18;

FIG. 20 is a flow diagram defining a “store tile info in tile
headers” function referred to in FIG. 12:

FIG. 21 is a flow diagram defining the “begin undoable
raster operation” function referred to in FIG. 12;

FIGS. 22A and 22B are a flow diagram defining the ‘“read
rows from region” function referred to in FIG. 12;

FIGS. 23A and 23B are a flow diagram defining the “write
rows to region” function referred to in FIG. 12;

FIG. 24 is a flow diagram defining the “close image
access context™ function referred to in FIG. 12;

FIGS. 25A and 25B are a flow diagram defining the “undo
previous raster operations” function referred to in FIG. 12;

FIG. 26 is a flow diagram defining the “quit cache
manager” function referred to in FIG. 12;

FIG. 27 is a flow diagram defining the “lock expanded
image tile group” function referred to in FIG. 22A;

FIG. 28 is a flow diagram defining the “lock expanded
tile” function referred to in FIG. 27;

FIG. 29 is a flow diagram defining the “unlock expanded
image tile group” function referred to in FIG. 27:

FIG. 30 is a flow diagram defining the “unlock expanded

tile” function referred to in FIG. 29:

- FIG. 31 is a flow diagram defining the “create tile from
higher-resolution tiles” function referred to in FIG. 28;

FIG. 32 is a flow diagram defining the “allocate space for
uncompressed version of tile” function referred to in FIG.
28;

FIG. 33 is a flow diagram defining the “create uncom-
pressed version of tile from compressed version” function
referred to in FIG. 28:

FIG. 34 is a flow diagram defining the “create compressed
low resolution tile from compressed higher-resolution tiles”
function referred to in FIG, 31;

FIG. 35 is a flow diagram defining the “copy uncom-
pressed high resolution tile to uncompressed low resolution

tiles” function referred to in FIG. 31;

FIGS. 36A and 36B are a flow diagram defining the
“collect freeable cache memory” function referred to in FIG.
32

FIG. 37 is a flow diagram defining the “free uncom-
pressed version of tile” function referred to in FIGS. 36A B;
and
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FIG. 38 is a flow diagram defining the “create compressed
version of tile from uncompressed version” function referred

to in FIG. 17B.

DETAILED DESCRIPTION OF THE
PREFERRED EMBODIMENTS

Reference is now made to the drawings wherein like parts
are designated with like numerals throughout.

FIG. 1 illustrates an image stack. generally indicated at
100. The design of the image stack 100 is based on the idea
that image memory can be managed as small square regions.
called tiles, that are mostly independent of one another. In
general, a tile may be either uncompressed (also termed
expanded) or compressed. While the basic uncompressed
tile size could be a variable, it is presently preferred to be
fixed at 32 kilobytes, or 512 pixels by 512 pixels to conform
with the Computer Aided Logistics Support (CALS) raster
file format standard for binary images. (Note that the present
invention allows binary and color images to coexist in a
common image memory management system. )

In order to compensate for lower performance expected
with a virtual memory management system for images,
particularly when reducing large portions (by combining
pixels) of the image for display, the present invention
automatically maintains a series of reduced resolution
copies, called subimages, of the full resolution image.
Preferably, the resolution (i.e., pixels per inch) of each
subimage is reduced by exactly half relative to the next
higher-resolution subimage. Thus, the image stack 100 can
be visualizing as an inverted pyramid. wherein the images
can be stacked beginning with a full resolution subimage (or
image) 102 at the top, followed by a half resolution subim-
age 104, then a quarter resolution subimage 106, and an
eighth resolution subimage 108. (In FIG. 1, the subimages
102-108 are outlined by bolded lines.)

The subimages 102, 104, 106. 108 are superimposed on a
set of tiled subimages 110a, 110b, 110c, 1104d. respectively,
defining sets of tiles. The extent of the image stack 100 ends
at the resolution that allows the entire subimage to be stored
within a single tile 108 (preferably 512x512 pixels square).
Each lower-resolution subimage 104-108 is a faithful rep-
resentation of the full resolution subimage 102 at all times,
with the exception of certain times during operations that
modify the appearance of the full resolution subimage 102.

FIG. 2 illustrates an 82"x11", A-size mechanical drawing
(to scale) as the full resolution subimage 102 showing a
mechanical part 120a. Of course, other larger drawings such
as, for example, D-size and E-size may be used by the
present invention. Also, other image processing applications
besides mechanical drawings may be used with the present
invention including electrical schematics, topographical
maps. satellite images, heating/ventilating/air conditioning
(HVAC(C)) drawings. and the like.

FIG. 3 ilustrates the corresponding half resolution sub-
image 104 showing the half resolution part 120b. FIG. 4
illustrates the comresponding quarter resolution subimage
106 showing the quarter resolution part 120c¢. Lastly, FIG. S
illustrates an eighth resolution subimage 108 showing the
eighth resolution part 120d. In the preferred embodiment,
reduced resolution subimages can be used any time that a
reduction factor of 2:1 or higher would be used to scale a
region of interest in the full resolution subimage 102 for
display, plotting or copying.

The subimages 102-108 can be loaded from a source
image file, if they exist. or they can be created on demand
by the image memory management system of the present
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invention. The present invention includes editing capabili-
tics that allow a user to trade off between “quick flash”
pan/zoom performance and file size as measured by the
number of reduced resolution subimages stored with each
image. Depending on the application. the user will normally
opt to store one or more reduced resolution subimages with
cach source image file.

The lower-resolution subimages. for example. subimages

104-108. are utilized by the image memory management
system to produce the illusion of instant access to any region

of the image at any scale factor (not just the scale factor of
the overview subimage). Increasing the number of lower-
resolution subimages gives a higher quality *first flash”
image during panning and zooming and reduces the time to
get the final version of the image to the screen.

FIG. 6 illustrates a computer workstation generally indi-
cated at 150 which is representative of the type of computer
that is used with the present invention. The workstation 150

comprises a computer 152, a color monitor 154, a mouse
156. a keyboard 158, a floppy disk drive 160, a hard disk

drive 162 and an Ethernet communications port 164. The
computer 152 includes a motherboard bus 166 and an I/0
bus 168. The I/O bus 168, in one preferred embodiment, is
an IBM PC/AT® bus. also known as an Industry Standard
Architecture (ISA) bus. The two buses 166. 168 are elec-
trically connected by an IO bus interface and controller 170.

The IO bus 168 provides an electromechanical commu-
nication path for a number of I/O circuits. For example, a

graphics display controller 172 connects the monitor 154 to
the I/0O bus 168. In the presently preferred embodiment, the

monitor 154 is a 19-inch color monitor having a 1,024 X768
pixel resolution. A serial communications controller 174

connects the mouse 156 to the 170 bus 168. The mouse 156
is used to “pick” an image entity displayed on the monitor
154.

The I/O bus 168 also supports the hard disk drive 162, and
the Ethernet communications port 164. A hard disk control-
ler 176 connects the hard disk drive 162 to the I/0 bus 168.
The hard disk drive 162, in one possible configuration of the
workstation generally indicated at 150, stores 60 megabytes
of data. An Ethernet communications controller 178 con-
nects an Ethernet communications port 164 with the I/O bus

168. The Ethernet communications controller 178 supports
the industry standard communications protocol TCP/IP
which includes FTP and Telnet functions. The Ethernet

communications port 164 of the preferred embodiment
allows the Workstation 150 to be connected to a network

which may include, among other things, a document scanner
(not shown) and a print server (not shown).

The motherboard bus 166 also supports certain basic I/0
peripherals. For example, the motherboard bus 166 is con-
nected to a keyboard and floppy disk controller 180 which
supports the keyboard 158 and the floppy disk drive 1640.
The floppy disk drive 160, in one present configuration, can
access floppy disks which store up to 1.2 megabytes of data.

The fundamental processing components of the computer
152 are a microprocessor 182 such as, for example, an 30386
microprocessor manufactured by Intel. a math coprocessor
184 such as. for example. a 80387 math coprocessor also
manufactured by Intel and a main memory generally indi-
cated at 186 comprising. for example, 4 megabytes of
random access memory (RAM). The main memory 186 is
used to store certain computer software including a Unix
compatible operating system 188 such as. for example, SCO
Xenix licensed by Santa Cruz Operation of Santa Cruz.

California. a subsidiary of Microsoft Corporation, an image
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processing application 190, a tile manager 192, and an
image data cache 194. The image processing application 190
includes editing functions such as zoom and pan.

Another presently preferred computer workstation 156
having somewhat different processing components from
those just described is available from Sun Microsystems,
Inc. of Mountain View, California. under the tradename
“SPARCstation 1”. In such an embodiment, the UNIX
compatible operating system would be licensed directly
from Sun.

Although a representative workstation has been shown

and described, one skilled in the applicable technology will
understand that many other computer and workstation con-

figurations are available to support the present invention.

FIG. 7 illustrates a representative configuration of the
image data cache 194 some time after the tile manager 192
(FIG. 6) begins operation. A set of compressed tiles 222 are
kept at the low addresses of the image data cache 194, and
a set of uncompressed (or expanded) tiles 224 at the high
addresses of the image data cache 194. The terms expanded
or uncompressed are used interchangeably. In between the
two sets of tiles 222, 224 is a reserved area 226 (free cache
memory). As the operation of the tile manager 192
continues, the image data cache 194 becomes more unor-
dered. As the cache requirement for compressed or uncom-
pressed tiles increases. each set of tiles 222, 224 approach
the reserve area 226 from each end. In fact, the reserve area

226 can become completely exhausted.

Since the memory management schemes that apply to
compressed data allocation are very different from that of
uncompressed data, it is desirable to keep the two sets of
tiles 222, 224 separate. Compressed tiles are variable sized
tiles (blocks of memory) 222a.b.c.d.e.f whereas the uncom-
pressed tiles are all fixed sized tiles 224a.b.c.d and therefore
the locations of the fixed sized tiles 224 are interchangeable.
Linked lists of allocated memory are kept sorted according
to size and address for compressed tiles. The number of
linked lists is a variable number but presently there are about
64 different size categories for compressed tiles and only one
size category for uncompressed tiles (for binary images).

To use the image data cache 194. the memory manage-
ment functions begin by determining how much fast
memory (RAM) and slow memory (disk or host memory) is
available for image memory uses. When an image is loaded.
the system allocates memory for image information and
related tile directory structures. Cache management param-
eters are modified as necessary to balance the requirements
for expanded tile and compressed tile cache memory. The
expanded tile cache memory pool and the compressed tile
cache memory pool allow tiles from different images to
intermingle. Expanded and compressed tiles are kept in
separate areas as much as possible so that memory allocation
can be optimized for each of two different situations (1.e..
fixed allocation block size versus variable size). However,
the storage ranges of compressed and expanded tiles are
allowed to mingle so as to maximize the flexibility of the
cache usage.

FIG. 8 is a state diagram illustrating the fiow of image
data or tiles between different storage states 250. A tile can
contain data in one or more of five states or forms as
illustrated by ovals in FIG. 8. The possible forms are:
uncompressed and resident in cache memory (state 252),
compressed and resident in cache memory (state 256);
uncompressed and resident on disk (state 268); compressed
and resident on disk (state 262); “not loaded” but
re-creatable using information from higher-resolution image

tiles (state 272).
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For most image access operations, the image data must be
uncompressed and resident in cache memory 252. However,
that form consumes the most cache memory of any of the
five forms. Therefore, a primary function of the tile manager
192 is to transform image tile data between state 252 and the
other states which consume less (in the case of state 256) or
no cache memory whatsoever (in the cases of states 268, 262

and 272).

The eight transformation operations, shown in square
boxes in FIG. 8. constitute the main computational opera-
tions associated with managing image memory. The opera-
tion “load compressed tile image data from disk into cache
memory” 264 is typically the first operation performed on a
tile because most pre-scanned images are stored in com-
pressed form in disk files. (A discussion of this *virtual
loading” is provided hereinbelow.) The load operation 264 is
performed by the Load CompFromDisk function which
simply copies data from the disk into cache memory. The
disk location and number of bytes to read is stored in the tile
header fields 368 and 376 shown in FIG. 10.

The function LoadCompFromDisk is normally used by
the function LockCompHandle when the tile manager 192
needs to access the compressed form of data associated with
a tile. LockCompHandle is analogous to LockExpHandle,
described in FIG. 28. The LockCompHandle function is also
included in source code form in the Microfiche Appendix. in
the file tilealloc.c.

Compressed data in cache 256 can be written back to the
disk by the operation 260. This is the reverse of the Load-
CompFromDisk function. The present embodiment is
capable of writing to disk in a wide variety of file formats.
One skilled in the art can easily create a function to perform
this task.

Compressed data in cache can be uncompressed (also
termed “expanded™) into another region of cache memory by
the expand operation 258. The expand operation 2358 is
controlled by the “Expand Tile” function 440 which is
described with respect to FIG. 33. The method of image
compression varies according to image type (e.g. binary,
8-bit color, 24-bit color). Commonly used compression
techniques include CCITT T.6 for binary images and CCITT
SGVII (draft standard) for color and gray-scale images. The
ExpandTile function 440 selects the appropriate compres-
sion algorithm by referring to field 306 of the Document
Information Structure shown in FIG. 9.

Uncompressed data in cache 252 can be compressed and
wriften to a separate region of cache memory by the com-
press operation 254. The compress operation 254 is con-
trolled by the CompressTile function 450 described with
respect to FIG. 38. Like ExpandTile, the CompressTile
function 450 uses an image compression algorithm appro-
priate to the image type.

Uncompressed data on disk 268 can also be read directly
into cache memory by the load operation 270. The load
operation 270 is performed by the LoadExpFromDisk
function, which appears in source code form in the Micro-
fiche Appendix, in file diskcach.c. The LoadExpFromDisk
function is analogous to LoadCompFromDisk. The Load-
ExpFromDisk function refers to the fields 362 and 374 of the
tile header 350 shown in FIG. 10. for the location and
number of bytes of the expanded file data on the disk.

Uncompressed data in cache 252 can be written back to
the disk by the save to disk operation 266. This operation is
analogous to the save to disk operation 260 which operates
on compressed data. The present embodiment can write
compressed or uncompressed tile data to disk in a variety of
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formats. One skilled in the art can easily implement an
equivalent function.

Image data for tiles in the “not loaded™ state 272 must be
constructed by resampling higher-resolution tiles. (During
normal operation. only lower-resolution tiles can exist in this
state—the full resolution subimage tiles are always
“loaded”.) The present embodiment provides two operations
from the “not loaded” state 272 to the “loaded” state 252,
256. Uncompressed higher-resolution tile data is resampled
to create uncompressed data in cache 252 by the resample
operation 274. Similarly, in the resample operation 276,
compressed data in cache 256 can be created from com-
pressed higher-resolution tile data.

In both resampling operations, extensive advantage is
taken of the fact that the resolutions of adjacent subimages
in the subimage stack are related by a power of 2. This
greatly simplifies and speeds the resampling operation.
Basic resampling techniques are well-known (See. for
example. A. Rosenfeld and A. C. Kab, Digital Picture
Processing. Academic Press, 1976). The resampling opera-
tion 274 and 276 are controlled by the function LoadSub-
ImTile 436 described with respect to FIG. 31.

In summary, FIG. 8 shows that a great part of the tie
manager’s utility derives from its ability to coordinate a
variety of forms of image data in the course of complex
image processing operations.

Generally. the way data starts out on the disk 162 is by
loading a tiled image file into an application 190 via the tile
manager 192. An image file, like a Tagged Image File

Format (TIFF) or CALS tiled image file, for example, can be
loaded instantaneously. in a virtual sense. In the tiled
formats, there are tiled image data that is stored in the image
file and at the beginning of the file there is a directory with
entries that locate the tiles (for example. the disk file version
of tile 0 in subimage 0. (0.0). is located at one address in the
file and the disk file version of tile 1. subimage 0 (0,1) is
located at another address in the file). When an image file is
loaded, the tile manager 192 gets the tile offsets and stores
them in the tile directory and does nothing else. Hence, the
image file is basically loaded without copying any data from
the disk 162 into the image data cache 194, and a directory
is created that maps the tiles in the virtual image memory
space onto the disk 162.

FIG. 9A illustrates a document information structure 300.
Each image. or document, in the system 1is associated with
(and described by) a document information structure {called
“docinfo”, defined in FIG. 9). The docinfo structure contains
information about the image as a whole. such as color and
pixel organization. etc. It also contains a list of subimages
contained in the image. Each subimage entry in the docinfo
structure contains information about that subimage. such as
width and height, etc. The intention is to make this data
visible only to cache management functions and low-level
access functions. The overall docinfo data structure 300
contains the following information:

302 Self-reference to document handle. Handle value
assigned to this document by the host procedure which
created the document. This value is unique over the

entire system.

304 “Overviews Invalid” flag. This flag is true if the
document is in the middle of a write operation.

306 Cache image compression algorithm. Compression
algorithm used by the memory manager for this image.

308 Image color type. How the image is displayed.
310 Bits per image pixel. Number of bits per image pixel.
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312 Tile size information. Size of expanded tile in pixels.
The tiles are assumed to be square.

314 Number of subimages in doc. Number of subimages
maintained in this document. The minimum value is
one (the full resolution subimage).

316 Input file info. Input raster file information.
318 Output file info. Output raster file information.

320 List of subimage headers. Array of pointers to sub-
image header structures 321. The first entry in the array
is always the full resolution image. Each position
thereafter corresponds to a 2x resolution reduction
from the previous subimage.

The subimage header structure 321 is illustrated in FIG.

9B. Each subimage has its own entry with each field as

follows:
312 Pointer to tile headers.

314 Pointer to tile directory. Pointer to array of pointers
to tile header records. This two-dimensional table pro-
vides an easy way to access individual tile headers on
a (row.col) basis.

326 Subimage width and height. The width (X extent) and -

height (y extent) of the document measured in pixels.

328 Number of tile rows & cols in subimage. Number of
tile rows in the image and the number of tile columns
(Le.. the number of tiles needed to span the height and
width of the image).

330 Image stack index of this subimage. This is the
position of the subimage in the docinfo structure sub-
image list. It can also be used to determine the factor by
which the subimage resolution is reduced relative to the
full resolution subimage.

332 Pixel resolution of this subimage. Scan resolution in

pixels per millimeter.

FIG. 10 illustrates the tile header 350. The tile manager’s
analog to the conventional address translation table is the tile
directory. The tile directory is a two-dimensional array of
entrics corresponding to the two-dimensional array of tiles
that form the image. Each full and reduced resolution image
has its own tile directory. The tile directory record contains
a list of pointers to lists of individual tile headers. The list in
the tile directory record has one entry for each row of tiles.
Each of those entries points to a tile header record list with
as many clements as tile columns. Thus, there is one tile

directory record per subimage and one tile header record per
tile. The tile header record defines the current state of the tile

- and contains information used by the cache management
functions. The tile header contains the following informa-
tion:

352 Pointer to document containing this tile. Pointer to the
document to which this tile belongs.

354 Index of subimage containing this tile. Index of the
subimage (i.e.. image stack layer) that contains this tile.

356 Row and column indices of tile. Tile row and column
position of this tile within the subimage.

358 Status information. Defines the current state of the
tile. This includes lock counts for expanded and com-
pressed tiles.

360 Preserve count. Value greater than zero means the tile
15 desired for future operation. so the tile should be
preserved 1n cache if possible.

362 Location of uncompressed image data in cache
memory. Location of uncompressed (expanded) image
data for this tile (if it exists). Status flag “ExpCached”
will be true to indicate that the data is currently in
expanded tile cache memory.
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364 Location of compressed image data in cache memory.
Location of compressed image data for this tile (if it
exists). Status flag “CompCached” will be true to
indicate that the data is currently in compressed tile
cache memory.

366 Location of uncompressed image data on disk. Loca-
tion of uncompressed (expanded) image data for this
tile (if it exists). Status flag “ExpOnDisk” will be true
to indicate that the data is currently on disk.

368 Location of compressed image data on disk. Location
of compressed image data for this tile (if it exists).
Status flag “CompOnDisk™ will be true to indicate that
the data is currently on disk.

370 Link to next less recently used tile. Pointer to next
older (less recently used) tile, not necessarily a tile in
this image.

372 Link to next more recently used tile. Pointer to next
newer (more recently used) tile, not necessarily a tile in
this image.

374 Number of bytes of expanded data in tile.

376 Number of bytes of compressed data in tile.

FIG. 11 illustrates a calling hierarchy 400 for the con-
stituent functions. Further discussions relating to flow
diagrams, herein, will include names which correspond to
source code modules written in the “C” programming lan-
guage. The object code is presently generated from the
source code using a “C” compiler licensed by Sun
Microsystems, Inc. However, one skilled in the technology
will recognize that the steps of the accompanying flow
diagrams can be implemented by using a number of different
compilers and/or programming languages.

The top level in the program hierarchy is Main 402. Main
initiates the functions calls to the lower level functions.
Main embeodies the top level control flow of the present
invention.

The first function called by Main is Initialize Cache
Manager 404 (InitCacheManager). InitCacheManager allo-
cates the RAM and disk swap space needed for a particular
raster image. It must be called before attempting to load any
image tiles into memory.

The next function Main may call i1s Load Tiled Raster
Image 408 (LoadTIFF). LoadTIFF manages the loading of
tiled images. This 1s the process where an existing image file
on disk is mapped into memory.

Main will then call the function Begin Undoable Raster
Operation 410 (BeginUndoableRasOp). BeginUndoableRa-
sOp marks the beginning of a distinct. *undoable™ raster
image operation. This function does not save any region of
image memory but only creates a new entry on the undo
stack. The current version of the tiles in the affected region
are saved by InitlmageAccess.

The following function called by Main is Create Image
Access Context 412 (InitImageAccess). InitlmageAccess
prepares the tile cache manager for upcoming accesses to a
particular region of the specified image. This function cre-
ates a data structure called an “access context” (defined in
FI(5. 16) that is used by the sequential access functions.

Main optionally calls the function Read Rows From
Region 414 (ReadRowToRow) next according to the opera-
tion performed by the user. ReadRowToRow causes one
input/output buffer row or strip to be read and transtormed
from tiled image memory as specified in the associated
InitimageAccess call and the resulting access context.

The next optional function called by Main is Write Rows
To Region 416 (WriteRowToRow). again according to the
operation performed by the user. WriteRowToRow causes
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one input/output buffer row or strip to be transformed and
written to tiled image memory as specified in the associated
InitImageAccess call and the resulting access context.

It should be understood that other access functions, such
as random pixel accesses. may optionally be called by Main.

Main then calls the function Close Image Access Context
418 (EndImageAccess). EndImageAccess terminates and
discards an image access context. The memory allocated for
the access context structure is freed. The tile manager is
informed that the specified region of image memory is no
longer needed by this operator.

The next function, Undo Previous Raster Operations 420
(UndoPreviousRasOp), is optionally called by Main.
UndoPreviousRasOp restores the specified region to its
original state using information from the undo stack.

The last function Main calls is Quit Cache Manager 422
(EndCacheManager). EndCacheManager frees the RAM
and disk swap space. This function basically reverses what
InitCacheManager does.

The second level of functions on the calling hierarchy 400
is shown starting with Load TIFF Subimage Tile Informa-
tion into Tile Headers 424 (LoadTiffTilesStd) which is
called by function LoadTIFF 408. LoadTiffTilesStd man-
ages the loading of TIFF images with strip structure.

The LoadTiffTilesStd function 424 calls a function Store
Tile Information in Tile Headers 42§
(LoadSubImDiskCache). LoadSubImDiskCache loads the
tile directory of the specified subimage with information
about the location. size and format of individual image tiles
contained in a disk-resident tiled image file. It is the low-
level interface for the “indirect file load” capability. The tile
headers are assumed to be completely zeroed when this
function is called.

The InitImageAccess function 412 calls a function Save
Region For Undo 426 (SaveRegionForUndo). SaveRegion-
ForUndo saves the specified region on the undo stack. It is
called from within InitImageAccess if the SaveForUndo flag
is true. It can also be used for low level operations that do
not go through InitimageAccess. SaveRegionForUndo can
then be called multiple times for different documents and
different regions within a document so that arbitrarily com-
plex editing operations can be easily undone.

The ReadRowToRow function 414 calls a function Lock
Expanded Image Tile Group 428 (ExpTileLock). ExpTile-
Lock *“locks” memory handles referring to expanded image
tiles. (The notion of locking and unlocking memory blocks
is further discussed below with reference to FIG. 14.) It also
updates the associated tile header structure as appropriate for
the operating system.

The ReadRowToRow function 414 also calls a function
Unlock Expanded Image Tile Group 430 (ExpTileUnlock).
ExpTileUnlock unlocks memory handles referring to
expanded image tiles. It also updates the associated tile
header structure as appropriate for the operating system.

The function ExpTileUnlock 430 calls a function Unlock
Expanded Tile 432 (UnlockExpHandle). UnlockExpHandle
unlocks an individual expanded tile handle. The lock count
is decremented as appropriate. The tile is not actually
swapped out of cache at this point but it becomes a candidate
for swapping.

The function ExpTileLock 428 calls a function Lock
Expanded Tile 434 (LockExpHandle). LockExpHandle
locks an individual expanded tile handle. The lock count is
incremented and the status flags are set as appropriate.

The LockExpHandie function calls a function Create Tile
From Higher-Resolution Tiles 436 (LoadSubImTile). Load-
SubImTile creates a valid expanded version of the specified
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tile by scaling down from the next higher-resolution subim-
age. This function is called recursively as necessary to get to
a higher-resolution subimage where there 1s valid data.
(Note: the tiles in the full-resolution subimage are always
valid and loaded although not necessarily present in the
cache memory.)

The function LockExpHandle 434 next calls a function
Allocate Space for Uncompressed Version of Tile 438
(AllocExpHandle). AllocExpHandle allocates space in
cache memory for a single expanded tile.

The function LockExpHandle 434 also calls a function
Create Uncompressed Version of Tile From Compressed
Version 440 (ExpandTile). ExpandTile uses a tile that exists
in compressed form but not expanded form. allocates space
for an expanded tile and decompresses the image data into
that space.

The function LoadSubImTile 436 calls a function Create
Compressed Lower-Resolution Tile From Compressed
Higher-Resolution Tiles 442 (CompCopyToOview). Comp-
CopyToQOview creates a valid compressed version of the
specified tile by scaling down from compressed or expanded
version of the given higher-resolution subimage tiles. The
function LoadSubImTile 436 also calls a function Copy
Uncompressed High-Resolution Tiles to Uncompressed
Low-Resolution Tie 444 (CopyTileToOview). CopyTile-
ToOview updates the region of the next lower-resolution
overview corresponding to the specified tile.

The Function CompCopyToOview 442 calls a function
Collect Frecable Cache Memory 446 (CollectFreecache).
CollectFreeCache collects freed memory states or enlarges
the cache file and adds the new memory capacity to the
reserve list. This function is called when the cache manager
usage exceeds preset limits. Therefore it makes sense to take
time to free up as much memory as is convenient at this
opportunity.

The function CollectFreeCache calls a function Free
Uncompressed Version of Tile 448 (FrecExpHandle). Free-
ExpHandle frees space used for storage of expanded image
tiles.

The function CollectFreeCache 446 also calls a function
Create Compressed Version of Tile From Uncompressed
Version 450 (CompressTile). CompressTile uses a tile that
exists in expanded form but not compressed form, allocates
space for a compressed tile and compresses the image data
into that space.

FIG. 12 is the top-level control flow for the tile manager
192 (also called “Main”). The tile manager 192 can be
executed on a number of operating systems or without an
operating system. However, the workstation 150 (FIG. 6)
preferably includes the Unix compatible operating system
188. Another preferred operating system is Microsoft
MS-DOS running with or without Microsoft Windows 3.0.

Moving from a start state 470 to an initialization state 404,
the tile manager 192 performs an initialization of the image
data cache 194 to determine the available memory space. or
the amount of physical RAM and disk space available for a
cache “file”. At this point, the cache appears to the tile
manager 192 as one contiguous range of physical addresses
in memory. If the tile cache has already been initialized. this
step 15 skipped. The possibtlity of multiple image access
contexts (discussed below) allows multiple simultaneous
requests.

The tile manager 192 has another parameter which is
called the fast memory portion of the image data cache 194.
This parameter is particularly relevant when working on top
of another virtual operating system such as Unix. The fast
memory limit specifies approximately how much of the



Re. 36.145

15

image cache file is actually kept in RAM memory at any
moment by the native operating system (e.g.. Unix). The
balance of data (the less recently used portion) is likely to
have been swapped out to the disk. The tile manager
attempts to limit the amount of cache space used to store
expanded tiles to less than the fast memory limit, but the
limit can be exceeded if necessary with some degradation in
performance. However, the total cache size limit is never
exceeded. In operating systems without virtual memory
capabilities built in (e.g.. MS-DOS), the fast memory limit
is the same as the total cache size limit.

Then the tile manager 192 moves to a function 472
wherein the tile manager 192 loads a tiled raster image file.
The function 472 (comprising the function 408, for
example) loads any type of image file, and preferably a tiled
image, into the memory address space configured by the tile
manager 192. If the image to be modified is already loaded,
this step is skipped. Then the tile manager 192 moves to a
function 410 where the tile manager 192 marks the begin-
" ning of an undoable raster operation if the tile manager 192
is writing to the image. The function 410 is an optional state
and it is only used if the user wants to be able to undo the
operation that modifies the image.

Any time that a region of the image needs to be accessed
(for reading or writing) an image access context is created.
This image access context is used to define the region for use
by the tile manager. The creation is performed automatically
by the file manager without effort by the user. For example,
an 1mage access context is created when the user draws a
line in a region of the image.

Referring back to FIG. 12, the tile manager 192 transi-
tions to a function 412 to create the 1Image access context.
The 1mage access context contains all of the state informa-
tion about the access operation. It i1s possible to have
multiple access contexts opened simultaneously with each
access having stored state information contained in the
access context. Thus, the tile manager 192 is re-entered and
re-used by interleaved operations without confusion due to
the unique access contexts of each image operation.

The tile manager 192 proceeds to a loop state 474 wherein
the tile manager 192 begins a FOR-loop for all of the rows
or columns in the region. The FOR-loop is executed multiple
times if the operation specified by the user is a row or
column strip oriented access. Strips are composed of one or
more rows or one or more columns of data. For each of the
strips, the tile manager 192 reads or writes the rows or
columns of data in the strip in a function 476. The function
476 actually comprises a set of functions including Read-
RowtoRow 414 (FIG. 11) and WriteRowtoRow 416.

When the tile manager 192 has processed all the row and
columns in the region, the tile manager 192 moves to a
function (EndImageAccess) 418 where the tile manager 192
closes the image access context which frees all of the
temporary buffers that were allocated for the image access
context.

The tile manager 192 transitions to an undo previous
raster operation function (UndoPreviousRasOp) 420. This
causes a modified image to revert to its previous state. The
image tiles that had been modihied are replaced by their
original versions. This again is an optional step that the user
initiates, if a mistake is made.

If the raster image is required for future operations, the
tile manager moves to state 422. Otherwise, moving to a
state 478, the tile manager 192 unloads the raster image.
Unloading the raster image simply frees the memory that
had been associated with that particular raster image. This is
not a save raster image operation which would be slightly
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more complicated, but a save operation could be executed
here. Of course, the image processing application 190 sup-
ports loading and saving raster images.

If more operations will be performed the tile manager
moves to state 480. Otherwise, from state 478. tile manager
192 moves to a quit cache manager function
(EndCacheManager) 422. Herein. the tile manager 192 frees
the image data cache 194 (FIG. 6). Presumably, all of the
images have been unloaded as in the state 478 so that this
operation frees the image data cache memory and prepares
the system for shut down. Lastly, the tile manager 192
terminates at an end state 480.

FIG. 13 illustrates the initializing of the cache manager
function 404. The function 404 is entered by the task
manager 192 at a state 488. Then, moving to a state 490, the
task manager 192 initializes the cache usage variables. Of
course, in the beginning, all of the cache space is available
for use. in what is called the free-memory reserve list. That
is. no cache memory is being used for expanded or com-
pressed 1mage data.

At state 492, the task manager 192 allocates tile cache
memory by requesting a portion of the address space from
the memory space owned by the operating system. In a
virtual memory system such as Unix, the request is handled
by memory mapping a large file. The operating system does
not allocate any memory, but it reserves an address space.
Moving to a state 494, the task manager 192 allocates a
common blank tile. When dealing with binary images. space
is reserved for one blank tile, which is kept around at all
times for common usage by any number of operations, or
access contexts.

At state 496 a compression buffer is allocated to be used
as a scratch buffer when compressing data since. in general,
the size of the resulting compressed data is unknown before
a tile of image data is compressed. Hence, compressed data
blocks will be variable sized. The tile manager 192 then exits
the InitCacheManager function 404 at an end state 498.

FIG. 14 illustrates a general memory state diagram with
reference to a block of memory being “locked” or
“unlocked”. In the diagram, ovals are states and rectangular
blocks are operations.

The state diagram is entered at a start state 502 by a new
memory block. There are three basics states, “FREE” is a
state S04 where there is no memory allocated. Actually, a
block of memory is considered free if it is in one of the
memory free lists, i.e.. the *“reserve free list”, the “com-
pressed free list” or the “expanded tile free list”. It should be
understood that the free list for the compressed tiles are
actually composed of many lists based on the varying sizes
of memory blocks.

Within a tile header (FIG. 10) the tile manager 192
controls a memory handle which is a structure that has a
pointer to (or location of) image data in the cache and a lock
count (not shown) for both compressed and expanded ver-
sions of a tile.

A memory block transitions from the free state to
unlocked. but allocated is through a state 506 for allocating
the memory handle, which moves the block out of the free
list and into use by a tile. As opposed to free. unlocked
means that the memory block contains valid data and that it
is associated with a tile but not currently being accessed.
That is. the block is not being read or written at the time.

Now, the tile is unlocked at a state S08 but it contains
valid data. Therefore. the next step is to lock the block. or
lock the memory handle at a state 512 and then it becomes
a locked memory state at a state $14. That means it contains
valid data and it is currently in use. The block can be locked
more than once, each time just incrementing the lock count.
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The lock count may be incremented multiple times, for
example, when two access contexts (operations) are access-
ing the same region of memory. Hence, both contexts lock
the block of memory or tile by incrementing the lock count.
When the first access context is done it decrements the lock
count. But the tile manager 192 knows that that tile is still
in use by an access because the locked count is still
non-zero.

The inverse operation is to unlock the handle at a state 516
and as long as the lock count is not decremented to zero at
state 518, it stays locked. Once the lock count is decre-
mented to zero, it becomes unlocked again at the state 508.

An unlocked tile is fair game for the tile manager 192
when the memory manager needs to find some space to lock
a new tile. Therefore, when the tile manager 192 is looking
for space. unlocked memory blocks may be freed and
returned to the free memory lists.

The way to go from the unlocked state 508 to the free state
304 is by freeing the handle in which case the memory block
is moved onto the free memory list.

Referring now to FIG. 15, the flow diagram for the
InitimageAccess function 412 shows the operation where
the tile manager 192 creates the image access context
starting at a state 530. At a state $32 the input parameters are
validated. If there is an error with the input parameters, the
function ends immediately at an end state 534.

Input parameters include a document handle indicating
which image that the user wants to read or write from. Thus.
the document handle must be validated. Another parameter
1s whether the user wants to read or write to the image. A
transformation matrix, also input, basically directs how to
scale, rotate, shear, etc., the image data.

If the input parameters are valid, the tile manager 192
locks the document handle at a state 536. The document
handle locks and unlocks just like other structures and
resources in the tile manager and it prevents one user of a
particular document or image from modifying or deleting
that image while another operation or another access context
is still using that document.

Then. at a state 538, the tile manager 192 tests whether a
non-orthogonal rotation has been specified. For example. a
rotation of 30° causes the tile manager 192 go into a special
operation that initializes the access with rotation. That also
creates an access context but after a more involved process.
Then the tile manager 192 ends the function 412 at a state
5334 with a valid access context for rotations.

If an orthogonal rotation is specified then the tile manager
192, allocates a conventional access context at a state 542.
Then the tile manager 192 continues to a decision state 544
wherein the subimage selection criterion is specified. For
instance, the user may request the “low resolution” option
which selects the lowest resolution subimage in the docu-
ment’s image stack. (In the context of an image editor, this
may be the best solution during zooming or panning.) The
user may also specify “most available”—i.e.. whatever
subimage has tiles currently in cache memory, regardless of
the resolution. In either case, the tile manager 192 proceeds
to a state 546 to select the reduced resolution subimage that
is appropriate to that particular choice, i.e.. either the one
that has the resolution just greater than what was requested
or a subimage whose tiles covering the access region are
currently in cache. Now. at a state 548, the tile manager 192
adjusts the transformation matrix so as to now refer to the
reduced resolution subimage rather than the full resolution
subimage by adjusting scale factors.

Alternatively, if the state 544 determines that the full
resolution subimage is selected then the transformation
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matrix is unchanged. Proceeding to a state 552, the pixel and
tile limits of the affected image region are calculated.
Knowing these limits, in a state 554, the tile manager 192
creates a temporary directory for the tiles in that region. This
directory is a two-dimensional array that references the tiles
that contains the affected pixels. Later on the tile manager
192 refers to the region tile directory because it is specific to
tiles that are inside the affected region.

The tile manager 192 then initializes the image scaling
functions in a state 556. Such scaling functions presently
used are the subject of applicant’s concurrent application
entitled “Process for High Speed Rescaling of Binary
Images” (U.S. Ser. No. 08/014,085. filed Feb. 4, 1993. which
is a continuation of Ser. No. 07/949,761 filed Sep. 23.1992.
now abandoned. which is a continuation of Ser. No. 07/693.
010 filed Apr. 30, 1991 now abandoned.

Moving on. the tile manager 192 tests whether polygonal
clipping is required at a state 558. For example. a request
may be made to only read from within a specific polygonal
region. If that is the case, the tile manager 192 initializes the
polygonal region clipping functions in the tile manager 192
by passing in the boundary lists. The polygonal clipping
function translates the boundary lists into edge lists that are
used to very efficiently read out the rows or columns of data.

For example, suppose a “flood” request is made to turn all
of the pixels black within an octagonal region. One way to
accomplish the operation is to specify the points of the
corners of the octagon in image coordinates and pass that in
with the initialization of access context request, which
would pass those vertices of the polygon into the polygonal
clipping function set up function.

Then the tile manager 192 comes to a state 562. where the
tile manager 192 allocates buffers for scaling. if necessary.
This is the situation where intermediate copies of the rows
or columns of data may need to be kept during the process
of scaling. Then the tile manager 192 tests whether the user
specified that the region needed to be saved for undoing, at
a decision state 564.

An important feature of the present invention is an “undo”
operation that is integrated with the image memory man-
agement so that only compressed tiles need to be saved after
an undoable edit operation. In this way. a user can easily and
quickly retract an edit operation that is no longer desired.
For example, in mapping applications, e.g., USGS Quad-
rangle maps, the impression of a very large map is desired.
but it is really composed of smaller map quadrants that were
separately scanned. trimmed, adjusted and fit together. The
smaller maps can be visually and logically joined into a
single, large image. Using the present invention, a user can
add a feature, such as a new sub-division. town, or road. that
Crosses a map boundary, specifying that the feature is
undoable. Later, the user can remove the feature modifica-
tion to the image by specifying the undo operation.

Now at a decision state 568, the question is whether to
update the subimages during the operation. If this is a write
operation the tile manager 192 always writes into the full
resolution subimage and the changes “trickle down” into the
low resolution subimages. But the tile manager 192 has an
option as to whether the lower-resolution tiles are updated
during the modification operation or later when the tiles are
requested for viewing operations. There are advantages in
doing them both ways.

For example. if the affected region is small. it is more
efficient to update the subimages while progressing through
the operation. In this mode, when the tile is unlocked. the
manager 192 immediately copies the data down into the next
lower subimage tile but only one of the corners of the tile is
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affected. Thus, only portions of the low resolution subimage
tiles need to be modified.

If. however, the subimages are not updated during the
operation. then as soon as the image access context is
created all of the subimage tiles that overlap the affected
region are invalidated (they become “not loaded”). Hence.
when the memory manager goes to access them again at
some later time. it has to reconstruct them from the higher-
resolution tiles. The advantage of that is that the memory
requirement at any one moment is half of that of if the tile
manager 192 was updating all of the tiles simuitaneously. In
this way. the tile manager 192 sets a flag at a state 570.

In state 572 the tile manager 192 “preserves™ the affected
tiles in the affected subimages. Again. it relates to whether
the tile manager 192 is updating subimages or not. If the tile
manager 192 is reading. then it preserves only the tiles in the
region of the subimage that will be accessed.

The ability to “preserve”. or preferentially retain tiles that
will be accessed in the course of the operation, 1s an
important feature of the present invention that can yield
significantly higher performance in certain situations where
memory capacity limitations are encountered. When a tile 1s
“preserved” for a particular access operation, it’s preserve
count 360 is incremented. The cache manager treats tiles
with non-zero preserve counts differently from tiles with
zero preserve count. The cache manager will discard
unlocked unpreserved tiles before discarding older pre-
served tiles. (The cache manager normally discards older or
less recently used tiles before discarding mewer or more
recently used tiles.)

Then. within the creation of the access context, the tile

manager 192 actually locks down the first row or column of
tiles in the region to establish the cache memory requirement
for this operation, at a state 574. If this succeeds, then the
caller is assured that there will be sufficient cache space for
the entire operation.

The tile manager 192 can perform row or column
accesses. However, the following discussion only refers to a
rOW access.

Then. at a decision state 576, if the tile manager 192
cannot satisfy the request to lock down that first row of tiles.
the function 412 terminates at the end state 578. Otherwise.
at state S80 the tile manager 192 initializes the row access
functions.

Now. once the tile manager 192 has initialized the row
access function in state 580 the tile manager 192 invalidates
the affected subimage tiles if the tile manager 192 is writing
to the full resolution subimage at a state 582. Finally, in a
state 584 the tile manager 192 returns the handle or a pointer
to this access context to the user. From then on the user just
uses this pointer to the access context and pointers to input
and output buffers to get the next row or column of data.

FIG. 16 illustrates the access context structure 600. The

structure 600 operates on a high level to hide the low level
operation from the user and contains bookkeeping informa-
tion along with some memory management information.
The access context 600 contains the following information:
602 Pointer to affected doc. Pointer to the document being
accessed.

604 “Subimage Choice” option value. Specifies how to
choose which of the subimages will be read from or
written to.

606 Index of affected subimage. Index of the specific
subimage directly affected by this access context.

608 Access quantum. Specifies “granularity” of image
access.

610 Read/write option. Specifies what type of image
memory accesses to prepare for (e.g.. read or write).
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612 Basic orthogonal rotation value. Specifies the image
rotation in terms of how the bits in each buffer row are
read from or written to the image (e.g.. write butfer row
to image column with increasing “y” coordinate).

614 Pixel combination operation. Specifies the pixel
operation performed when combining the buffer con-
tents and image contents. The results of the operation
are stored in the output buffer when reading. The results
go into image memory when writing.

616 Scaler type operation. Specifies the type of scaler
preferred. In other embodiments. this may include fast
low-accuracy scaling and line width-preserving scal-
ing.

618 “Update overviews” flag. True flag indicates over-
view subimages should be updated in the course of this
modification of the full resolution image. This causes
the overviews to be correct when the access 1s com-
plete.

620 I/O buffer width & height. Width (i.e.. row length).
total number of rows to process and pitch in pixels of
the input/output bitmap.

622 1/O buffer pitch (bytes/row). Pitch of the input/output
buffer in bytes used for multi-row accesses. The input/
output buffer is assumed to be a contiguous memory
bitmap at least as large as the access quanta. It is always
read or written in the natural order (by rows, low
address to high). Flipping and rotation is always done
on the image memory side.

624 I/Q buffer bit offset to start of run. Indicates where the
buffer’s x=0 pixel lies within the first long word of the
buffer’s storage space. It must be between O and 31
inclusive. This parameter allows the caller to match up
with arbitrary bit alignments.

626 Rows per strip (for AQ_STRIP access quantum).
When operating in the AQ__STRIP mode, this specifies
the maximum pumber of rows per input/output strip.
Fewer rows may be written into the last strip if the end
of the access region is hit before the strip is filled.

628 Number of I/O buffer rows yet to be processed. This
variable is used in the access routines to keep track of
the number of input/output rows remaining for the
access operation.

630 Pointer to access function used in “SeqBuflmageA-
ccess”. Pointer to the image access function that is
tailored to the specific access mode requested.

632 Stepping directions for image row and column indi-
ces. The stepping increment each time the input/output
buffer is advanced one row and one pixel. The allowed
values are +1. 0., and -1.

634 Pointer to polygon clipping information. Refers to an
edge table structure for controlling polygonal boundary
clipping.

636 Pointer to raster scaling information. Tile level access
information used by lower level modules in the course
of the operation.

638 Pointer to uncompressed data in currently locked
tiles. Pointer to an array of pointers directly into
expanded tile image data. This list is used to accelerate
sequential access into image memory. As each new tile
row or column is encountered in a sequential access,
this array is set to point directly into the affected tiles.
which have been brought into cache memory and
locked down. In other embodiments this could also be
used to point to compressed tiles.

640 Pointer to region tile directory. Pointer to a
2-dimensional array of pointers to the tiles in the
affected region of the subimage.
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642 Next image row & column to be accessed. The index
of the next image row and column to be accessed in

sequential row and column operations.

644 Terminal row & column of access region. Stopping
values for sequential row and column operations.

646 Unclipped extent of access region. Defines the image
region that will be accessed over the course of the
operation.

648 Clipped extent of access region. Defines the portion
of the requested image region that actually falls within

the boundaries of the image. Pixels outside of this
rectangle are treated as background pixels.

650 Clipped image buffer bit offset and length. These
values specify where, in the intermediate image row or
column buffer, the first bit from the clipped image
region 1s located and how many bits are to be read from
or written to tiled image memory.

652 Number of tile rows & cols in access region. Number
of tile columns and rows in the affected region.

654 Row & column of currently locked tiles. Column
and/or row index of the currently locked tile or tiles.

656 Image row & col at origin of first tile in access region.
Pixel coordinates of the upper-left pixel in the upper-
left tile of the affected region.

658 Number of I/O buffer rows held over for next strip.
Number of rows of output data that did not fit into the
previous row and must be returned in the next and
subsequent rows when expanding while reading image
data.

660 Pointer to image tiling/untiling buffer. Points to a
temporary buffer to hold data extracted from tiled
memory prior to scaling when reading from image
memory.

662 Number of bytes in tiling/untiling buffer. Size of
buffer in bytes.

664 Bit offset for tiling/untiling buffer. Bit offset to the
first valid pixel in tiling/untiling buffer.

666 Access transformation matrix. The transformation
matrix mapping input/output buffer pixels onto the
pixels of this subimage.

FIG. 17 illustrates the flow diagram for the “Save Region
for Undo” function 426 as referenced in FIG. 15. The tile
manager 192 starts at a state 680, moves to 682 where the
tile manager 192 locks the document handle of the affected
document that contains the region to save for undo. The tile
manager 192 can save multiple regions from multiple docu-
ments sequentially and then undo them all in one operation
later. Thus, the application programmer is allowed to easily
undo multiple-region operations with a single undo call at a
later point.

Moving to a state 684, the tile manager 192 clips the
modified region to the image boundaries since there is no
information to save outside of the image. Then the tile
manager 192 moves to a decision state 686 wherein the tile
manager 192 tests whether the affected region overlaps the
image. It there is no overlap, that is to say. there is no image
data to save, then the tile manager 192 moves to a state 688
where the tile manager 192 unlocks the document handle
and terminates the function 426 at an end state 699,

If. however at state 686. the modified region does overlap
the image, the tile manager 192 moves to a state 692 wherein
the tile manager 192 allocate memory for an “undo region
header”. The undo region header is similar to a document
header, but reduced comparatively in the amount of data
conveyed therein. The undo region header will be associated
with tile header information, etc.
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The tile manager 192 then moves to a state 694 where the
tile manager 192 allocates memory for “undo region tile
headers”. These tile headers will be used to store copies of
the original versions of the tiles in the affected region. The
tile manager 192 then proceeds to a state 696 wherein the tile
manager 192 makes an “undo tile directory”.

Then the tile manager 192 moves to a loop state 698
where the tile manager 192 loops for each tile row in the
region. The tile manager 192 then transitions to a loop state
700 wherein the tile manager 192 loops again for each tile
column in the region (Thus, there is a two-dimensional
loop.)

The tile manager 192 moves from the state 700 to a
decision state 702 where the tile manager 192 checks to see
if that particular tile in the document is loaded in the image
cache memory. If the tile is not loaded, the tile manager 192
skips to the next tile in the region by returning to the loop
state 700. OtherWise, if the tile is loaded. the tile manager
192 marks the undo copy of the tile as loaded in a state 704.

Note that there are two tiles. One is the original version
of the tile that is still associated with the document and the
second 1s the copy that the tile manager 192 is going to make
and associate with the undo region header.

At a decision state 706. a test determines whether the
document tile is blank. If the tile is blank (i.e., all back-
ground color), then the tile manager 192 moves to a state 708
and simply marks the undo tile as “blank” and returns to the
FOR-loop at 700. If the document tile is not blank, then the
tile manager 192 moves to a state 710 and the tile manager
192 marks the undo tile as “not blank” and moves to a state
712 Wherein the tile manager 192 tests whether the docu-
ment tile has a valid copy of compressed data on the disk.

If a valid copy of compressed data does reside on disk. the
tile manager 192 moves to a state 714 and simply copies the
compressed tile disk location and size information from the
document tile header to the undo tile header. Note that it is
possible for a particular tile to have multiple representations
of the same data. That is. a compressed version and an
expanded version of the tile may exist in cache simulta-
neously. And a tile may have a compressed version in cache
as well as on the disk. For undo. the strategy is to store the
most compact version possible. The most compact version
with regard to cache memory usage is to have a copy of the

compressed tile on the disk.
If there is no compressed copy of the tile on the disk. the

tile manager 192 proceeds to a decision state 716 wherein
the tile manager 192 determines whether an uncompressed
copy of the document tile resides on the disk. If the test
succeeds. the tile manager 192 enters a state 718 and copies
the uncompressed tile disk location and size information
from the document tile to the undo tile and then returns to
the inner FOR-loop at a loop state 7090.

If. at state 716, there is no uncompressed tile information
on the disk, the tile manager 192 continues execution to a
state 720 in FIG. 17B wherein the tile manager 192 locks the
compressed version of the document tile. This locking of the
compressed version of the document tile may cause an
expanded version of the document tile to be compressed and
a compressed version created. Therefore. there is a possi-
bility of an error and that is checked at the decision state 722.

It there 1s an error than the tile manager 192 unlocks the
document handle at a state 724 and terminates with an error
condition at the end state 726. If there was no error in
locking the compressed version of the tile then the tile
manager 192 moves from the state 722 to a state 728
wherein the tile manager 192 allocates and locks down
cache memory for a copy of the compressed data to be
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associated with the undo header. There is another error
possibility at this point and the tile manager 192 checks for
an error at a decision state 730. If there is an error then the
tile manager 192 returns to a state 724 and thercafter
terminates the function 426.

If there was no error in locking cache memory at the state
730, the tile manager 192 moves to a state 732 and copies
the compressed data from the document tile to the undo tile.
The tile manager 192 actually copies the data that is stored
within the tile—i.e.. the compressed image data is copied
from the document version to the undo version. Then the tile
manager 192 moves to a state 734 and unlocks the com-
pressed version of the document tile. Now, at a state 736, the
tile manager 192 unlocks the compressed version of the
undo tile and the tile manager 192 returns to the inner
FOR-loop at state 700 on FIG. 17A where the tile manager
192 loops back to continue the loop for all of the tiles in the
affected region.

When the tile manager 192 is done with all of the tiles in
the affected region. the tile manager 192 moves to a state 738
where the tile manager 192 links the new undo header into
the undo region list. Thus. multiple regions can be saved in
the undo list and then in one operation. by calling undo
previous raster operation. all of the operations that had been
accumulated, can be undone. Then the tile manager 192
moves to a state 742 wherein the tile manager 192 unlocks
the document handle and terminates the function 426 nor-
mally.

FIG. 18 shows the load tile to raster image function
(LoadTiff). FIG. 18 is a flow diagram for the part of LoadTift
that loads tiled images only. In reference to FIG. 18, the
overall process may be understood whereby an existing file
on the disk, i.e.. an image file on disk, is mapped into
memory. As described below, the overall process permits
loading large images in a short time period relative to how
long it would take to actually copy all of the image data into

the computer’s memory. In accordance with the present
invention, the process shown in FIG. 18 is called the indirect

loading capability. As shown in FIG. 18, the tile manager
192 begins the LoadTIFF function 408 at a start state 750
and moves to a state 752 where the tile manager 192 opens
the input file that is on the disk. If there is an error on the
disk, the tile manager 192 prints an error message at a state
754 and terminates at an end state 756. If no error exists.
then the tile manager 192 moves to a state 758 and checks
for the TIFF header structure that identifies that the input file
is in fact a TIFF file. While the disclosure below discusses
a TIFF file, it is to be understood that the process shown in
FIG. 18 may be performed on all types of tiled files. such as
a MIL-R-28002A Type 11 file or an IBM IOCA tiled file.

Still referring to FIG. 18, if the tile manager 192 finds
something other than TIFF header structure at state 758, the
tile manager 192 moves to state 754 to indicate an error. and
then exits at the end state 756. If the tile manager 192 finds
a TIFF header structure while at state 758, the tile manager
192 move to a state 760, wherein the tile manager 192 counts
the number of subimages in the TIFF file. one or more of
which may exist in a TIFF file.

Next. the tile manager 192 moves to a state 762 and reads
the full resolution subimage information which constitutes
the basic information about the image. e.g.. the image width
and height,. the size of the tiles. the compression format that
is used. and the resolution. If the basic image information is
not present and in proper form. the tile manager 192 moves
to the state 754 to indicate an error. On the other hand, if no
error is indicated at state 762, the tile manager 192 moves to
state 764, wherein the tile manager 192 creates a skeleton
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document and locks that document. The skeleton document
at this point contains no cache memory but only tile direc-
tory and tile headers that represent in a virtual sense the tiles
that compose the image.

The tile manager 192 next moves to a state 766 where the
TIFF full resolution subimage tile information is loaded into
the tile headers for the full resolution subimage, as more
fully disclosed below in reference to FIG. 19. Next, the tile
manager 192 moves to a loop state 768 where there 1s a loop
for each of the remaining lower resolution subimages. While
in this loop. the tile manager 192 accesses a decision state
770, wherein the tile manager 192 determines whether

fr/lr=2" (1)

where

fr is the full resolution subimage resolution in pixels per

inch; and

Ir is the particular low resolution subimage resolution in

pixels per inch.

If the ratio of fr to Ir is a power of two, then a successtul
test is indicated. and the tile manager 192 moves to a
function 424 and loads the TIFF subimage tile information
into the tile headers for that particular subimage level. On
the other hand. if the ratio of fr to Ir is not a power of two.
as indicated at the decision state 770, then the tile manager
192 ignores the particular subimage under test and returns to
the state 768 until all of the subimages in the file are
processed. When all subimages have been processed, the tile
manager 192 moves to a state 772 and unlocks the document

handle of the newly created document and terminates nor-
mally at an end state 756.

Now referring to FIG. 19, the function 424 whereby the
tile manager 192 loads the TIFF subimage tile information
into tile headers is shown. More particularly, the tile man-
ager 192 begins at a start state 780 and moves to a state 782
wherein the tile manager 192 reads the number of tiles in the
subimage. Then the tile manager 192 moves to a state 784
wherein the tile manager 192 allocates temporary buffers for
the tile mode offset and byte count lists. These three lists
have one entry each per tile in the subimage. If the tile
manager 192 cannot properly allocate the temporary buffers,
then the tile manager 192 exits with an error condition at an
end state 786.

Upon successful allocation of the buffers, the tile manager
192 moves to a state 788 where the tile manager 192 reads
the tile offset and byte count information from the disk file
into the allocated buffers. In the TIFF file standard. all tiles
are stored in the same mode (e.g.. compressed). However,

other tiled file formats (e.g.. MIL-R-28002A Type II) specify
the storage mode for each tile. The tile mode simply states
whether a particular tile is stored in compressed form. In
uncompressed form, or whether the tile is all foreground or
background color. The tile manager 192 next moves to a

state 79¢ where the tile manager 192 fills in the tile storage
mode list. At state 790, the tile manager 192 synthesizes the

tile mode information that the TIFF file does not contain

itself. Then the tile manager 192 moves to the function 425
wherein the tile manager 192 stores the information in the

subimage tile headers (FIG. 10). and terminates at an end
state 786.

Now referring to FIG. 20. the function 425 whereby the
tile manager 192 stores file information in tile headers is
shown. The tile manager 192 begins this process at a start
state 800 and moves to a state 802 where the tile manager
192 locks the document handle of the document for which
the tile manager 192 is loading the subimage for. This
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function is performed once per subimage in the file and there
may be multiple subimages in the file. Consequently, the
locking of the document handle function can be performed
several times in the process of loading a single document.

As shown in FIG. 20, in the event that an error occurs in
locking the document handle the tile manager 192 termi-
nates at an end state 804. On the other hand, if the tile
manager 192 successfully locks the document handle at state
802, the tile manager 192 moves to a state 806 where the tile
manager 192 determines whether the number of tiles in the
file matches the number of tiles expected for the particular
subimage in the particular file or document. If a mismatch
exists between the actual and expected number of tiles, the
tile manager 192 moves to a state 808 to print an error
message and then terminates at the end state 864. On the
other hand. in the event that the number of actual tiles
matches the number of expected tiles, the tile manager 192
moves (o a loop state 810 where the tile manager 192 enters
the first part of a FOR-loop for each tile row. Still referring
to FIG. 20, the tile manager 192 moves from state 810 to
state 812 for each tile column. Accordingly, it will be
understood that the tile manager 192 is processing a two-
dimensional array at the states 810, 812.

In accordance with the present invention, the tile manager
192 processes, at states 810, 812, all of the tiles required to
cover the particular subimage. Next, the tile manager 192
moves to a decision state 814 wherein the tile manager
checks the value in the tile mode entry to determine whether
the tile data is compressed. If the tile data is compressed, the
tile manager 192 moves to a state 816 and stores the file
offset and byte count in the compressed tile handle. The
compressed tile handle is a part of the tile header structure,
and the file offset is the location of the compressed data for
the particular tile within the file as measured by a byte offset
from the start of the file. The byte count represents the
number of bytes of compressed data associated with the
particular tile starting at the offset that is provided at the tile.
From state 816, the tile manager moves to state 828, wherein
the tile manager sets a flag to indicate that the particular tile
is not blank.

In the event that the tile manager determines at state 814
that the tile data is not compressed, the tile manager 192
moves to a decision state 818 where the tile manager 192
checks to see if the data is uncompressed. If the data is
uncompressed on the disk, the tile manager 192 stores the
file offset byte count information in the uncompressed tile
handle in state 820. From state 818, the tile manager moves
to state 828, wherein the tile manager sets a flag to indicate
that the particular tile is not blank.

If the tile manager 192 determines at state 818 that the tile
data is not uncompressed, then the tile manager 192 moves
to state 822, wherein the tile manager 192 checks to see
whether the tile is all foreground at a state 822. For example,
in a black and white drawing engineering document, fore-
ground color is black, so the tile manager 192 treats a
foreground as a black tile. If the tile is determined to be a
foreground tile, the tile manager 192 proceeds to state 824,
wherein the tile manager 192 creates an all foreground tile,
and then sets the flag as not blank at state 828. As an
cxample. if the image being processed is a color image, the
tile manager 192 could fill the tile with the foreground color
at the state 824.

On the other hand. if the tile is not all foreground, the tile
manager proceeds to state 826 to determine whether the tile
is all background. As discussed above, binary images usu-
ally have background pixels which are white or zero value.
If a particular tile is blank. the tile manager 192 moves to a
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state 828 where the tile manager 192 sets the blank flag to
indicate that the tile is indeed a blank tile. If at the state 826
the tile manager 192 determines that the tile is not all
background, the tile manager 192 terminates with an error at
an end state 830. In other words. having determined at state
822 that the particular tile was not all foreground. the only
possibility left at state 826 is that the tile is all background.
Consequently, a determination at state 826 that the tile is not
all background indicates an error.

From state 828, the tile manager 192 moves to a state 832
and sets the loaded flag to true indicating that a valid image
information set has been associated with the particular tile.
The tile manager 192 completes the loop described above
for each tile. After having processed each tile in the par-
ticular image, the tile manager 192 exits the two FOR-loops
and moves to a state 834 where the tile manager 192 unlocks
the document handle and then terminates normally at the end
state 830.

Now referring to FIG. 21, the tile manager 192 performs
a function which for purposes of the present invention will
be termed “Undoable Raster Operation”. The function
shown in FIG. 21 is performed by the tile master 192 in the
function “Begin Undoable Ras-Op”, and is a relatively
simple function, the purpose of which is to clear the undo
region list. More particularly. in the process shown in FIG.
21. the tile manager 192 frees all of the undo regions
assoclated with the previous operation to prepare for a new
undo operation. Indeed. the present invention could be
configured to have multiple level undo, i.e., the system of the
present invention could undo two or three or more opera-
tions going into the past and also to be able to redo all of
those operations at the user’s choice. For example, the last
three operations could be undone and then the oldest of those
operations redone.

In specific reference to FIG. 21, the tile manager 192
begins at a start state 840 and then proceeds to loop state
842, in which the tile manager 192 executes a FOR-loop for
each undo region in the current list. The tile manager 192
loops to a state 844 where the tile manager 192 frees all of
the memory associated with that undo region. This may
incinde freeing compressed data that is stored in cache or
expanded data that is stored in cache and associated with the
undo region. When the tile manager 192 finishes all of the
regions, the tile manager 192 terminates at an end state 846.

Now referring to FIGS. 22A and 22B, there is shown the
control flow for the ReadRowToRow function 414 which
produces one or more rows of scaled image data each time
it is performed. It is one of the basic image access functions.
It should be understood that the tile manager 192 can also
read columns of an image, etc.. so as to produce a rotated
output.

The tile manager 192 enters the function 414 by moving
to a start state 850 and proceeds to a decision state 852 where
the tile manager 192 checks for a region overrun. In other
words, when the access context is created, the region that is
going to be read in the course of the overall operation is
specified, and in the event that the read row to row sub-
function is accessed too many times, the region will be
overrun. Any such overrun is detected by the tile manager
192 at state 852 and reported at state 854. In the event of an
overrun, the tile manager 192 terminates at an end state 856.

K. on the other hand. no region overrun has occurred, the
tile manager 192 moves to a decision state 858 where the tile
manager 192 checks to see whether old results are carried
over to the new strip. Such a carryover could occur when. for
example, raster data is being enlarged by expanding one or
more lines from the image. For example. when raster data is
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being enlarged by 4x, cach line of input generates four (4)
lines of output. Accordingly. three (3) output rows could be
carried over for later strips. With this eventuality in mind.,
the tile manager 192 ascertains whether any data is being
carried over and if so. the tile manager 192 uses the
carried-over data before generating a new row.
Consequently. if there is new data carried over, the tile
manager 192 moves to a state 860 where new rows are
generated from the carried over data.

Next, the tile manager 192 moves to a state 862 where the
tile manager 192 checks to see if a particular strip is full. For
purposes of the present invention, a strip is a collection of
rows. i.e.. a set of numbers arranged in rows As indicated at
state 862, if the strip is full. then the tile manager 192 ends
at the end state 856.

If the strip is not full and the tile manager 192 has used
up all the carried over data. then the tile manager 192 moves
to a decision state 864 where the tile manager 192 checks for
ghosting, i.e.. the skipping of some rows of data in order to
produce a low quality image while panning or zooming. If
ghosting is in effect, the tile manager 192 moves to state 866.
wherein the tile manager 192 calculates the number of blank
lines to create. The system then moves to a state 868 where
the tile manager 192 writes the blank lines to the output strip
buffer.

From state 864, if no ghosting was detected, or state 868,
if ghosting is not in effect. the system moves to state 870
where the tile manager 192 again checks to see if the strip
buffer is full. If it is, the tile manager 192 exits at the end
state 856. If it is not, the tile manager 192 checks to see that
there are still input rows to read in a decision state 872. If
there aren’t. the tile manager 192 has reached the end of the
specified image region, and proceeds to state 874 to obtain
another row of output data by flushing the scaler buffers. In
accordance with the present invention, in the state 874 the
tile manager 192 sets a flag that is subsequently passed down
to the scaler functions to flush intermediate results from the
scaler functions. This is the case when for reducing data, 1.e.,
if a plurality of rows is being combined into one output row.
That is how the last output row is produced.

From state 874, the system moves to state 894, shown in
FIG. 22B. On the other hand. in the event that there are no
unread image rows at state 872, the system moves to
decision state 876. where the system determines whether the
row is outside of the valid image boundaries. If yes. the
system moves to a state 878, where the tile manager 192
substitutes blank lines for the input. The tile mapager
proceeds from state 878 to a state 894, shown in FIG. 22B.
If the answer to the decision at state 876 is no, the system
moves to a decision state 880, shown in FIG. 22B, to check
whether the row is contained in the currently locked tile row.

At state 880, the tile manager 192 moves down the image,
and the system sequentially passes through successive tile
rows. Each tile contains, e.g.. 512 rows, so when a particular
tile row is locked it stays locked until all 512 image rows 1
that tile row have been read. Each time the system arrives at
a new row it tests to see that the row is contained in the
currently locked tile row. If it is not, the system moves to the
state 430 (function ExpTileUnlock) to unlock the old tile
row and lock down the new tile row (at state 428). In
addition. the tile manager 192 has to unpreserve the row of
tiles that was just unlocked. Unpreserving them tells the
memory manager that those tiles are no longer needed for
this access operation and it can do what it wishes with them.

Next. the system proceeds to a decision state 882 to
determine whether any tiles are blank. If they are. the tile
manager 192 substitutes a reference to a “common blank
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tile” and that commeon blank tile is used, as indicated at state
884. All tiles that are blank are mapped onto this common
blank tile. Consequently, the tile manager 192 uses less
image memory.

From state 884, 882, or 880. as appropriate, tile manager
192 proceeds to a decision state 886 to check for polygonal
clipping. If the tile manager 192 is doing polygonal clipping
then each input row of data is clipped as appropriate for that
polygon in states 888 and 890. The loop allows multiple
clipped regions within each row. If there is no clipping, then
the tile manager 192 simply copies the entire input row from
the image into the input row buffer in a state 892. Then the
tile manager 192 move to a state 894 where the tile manager
192 passes these input rows through the scaler if the tile
manager 192 is scaling the data. Finally. the tile manager
192 takes the results of the scalers and copies that informa-
tion to the output strip buffer if necessary at a state 896. The
tile manager 192 then returns to the state 870 (shown in FIG.
22A) where the tile manager 192 continues the process of
retrieving input rows and scaling them until the tile manager
192 has filled the output strip buffer. The system then moves
to the termination condition at the end state 856.

Now referring to FIG. 23A. a process which will be
referred to as “Write Rows to Region” will be described. The
tile manager 192 starts at state 900 and moves to state 902
where the tile manager 192 tests for region overrun. Region
overrun can occur when the calling function attempts to
write more rows to the image than was specified when the
access context was created. If the region was overrun, the
tile manager 192 reports an error at state 904 and terminates
with an error at state 906. If there is no region overrun. the
tile manager 192 moves to the FOR-loop in state 908 where
the tile manager 192 loops for each input row in the input
buffer, which is the buffer that is passed in by the calling
function. It contains the data that is to be processed and
written to the image. The loop is executed for each row and
moves to state 910 where the input data is passed through the
scaler functions and put into a temporary buffer. If the scaler
does not always produce an output row, as is the case when
reducing the resolution. a plurality of input rows may have
to be combined to produce a single output row. So, at the
state 912, the tile manager 192 determines whether an output
row was produced after the input row is scaled. If not. the tile
manager 192 goes back to the loop at state 908 and continues
the process as described. On the other hand. when the tile
manager determines at state 912 that an output row was
produced. the tile manager 192 moves to state 914 which 1s
a FOR-loop for each copy of the scale row to write to the
image. It may be the case that more than one copy of the
scaled row needs to be written into image memory. This is
the case when the tile manager 192 is expanding the input
image data. It may be that one input row is replicated four
times to get a 4x expansion factor.

Next, the tile manager 192 moves to state 916 where the
tile manager 192 checks to see if the destination row index
is outside of the image’s clipping boundaries. If so, the tile
manager 192 simply ignores it and moves back to state 914.
If it is within the clip boundaries the tile manager 192 moves
to state 918 where the tile manager 192 determines whether
the destination row is in the currently locked tile row. If it
is not. the tile manager 192 moves to state 920 where the tile
manager 192 unpreserves and unlocks the old tile row that
is currently locked. The tile manager 192 then moves to state
922 to determine whether the update overview flag is true.
This is an option that is specified in the lo access context and
it determines how lower-resolution tiles are updated when
the full resolution subimage is modified. If the update



Re. 36,145

29

overview flag is true, then the tile manager 192 moves to
state 924 where the tile manager 192 unpreserves the low
resolution tiles that will no longer be needed.

After the system has unpreserved the low resolution tiles
that are no longer needed at state 924, the system moves to
statc 926 and locks down the new tile row. Only the full
resolution tile row is locked at this level. The low resolution
tiles are actually updated when the call to unlock the old tile
row is made.

Next, the tile manager 192 moves to state 928 to deter-
mine whether an error was detected when the new tile row
was locked. If so, the system terminates with an error
condition at state 906. If there is no error or if in state 918
the tile manager 192 finds that the destination row is
currently in the locked tile row. the tile manager 192 moves
to state 930 in FIG. 23B. At state 930, the tile manager 192
determines whether polygonal clipping is activated. If it is.
the tile manager 192 computes the clip points for the current
image row, as indicated at state 932, which results in a list
of clip point pairs.

The tile manager 192 then moves to state 934, wherein the
tile manager 192 conducts a FOR-loop for each of the clip
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point pairs that the tile manager 192 computed in state 930, -

As shown in FIG. 23B, the tile manager 192 loops to state
936 where the tile manager 192 copies pixels from a scaler
output buffer to the image row between each pair of clip
points. When that loop terminates, the tile manager 192
returns to state 914 in FIG. 22A. On the other hand, if the
tile manager determines at state 930 that polygonal clipping
is not active, the tile manager 192 moves to state 938
wherein the tile manager 192 copies the scaler output buffer
pixels to the image row without clipping. The tile manager
192 then proceeds to state 914.

Now referring to FIG. 24, the tile manager starts at state
950 in the end access function shown in FIG. 24 and
proceeds to state 952. At state 952, the system cleans up after
row or column access functions by freeing buffers used by
the row or column access functions.

Next, at state 954, the tile manager 192 unlocks the last
row or column of tiles accessed. Then, the system moves to
state 956 where the tile manager 192 unpreserves any tiles
in the region that are still preserved. The system may
perform the functions at states 954, 956 when an operation
was aborted in mid-progress and it cleans up after those
partially completed operations.

At state 958. the tile manager 192 cleans up after the
polygonal clipping function. If there was polygonal clipping
- involved in this access context the tile manager 192 has to
free the buffers that contain the polygon edge information.

Next, the system moves to state 960. where the tile
manager 192 frees scaler buffers. the temporary tile
directory, etc.. From state 960, the system moves to state
962. wherein the tile manager 192 unlocks the document
handle to indicate to the memory manager that the access
context no longer is referring to the particular document
associated with the document handle.

The tile manager 192 next moves to state 964 where the
memory that was used to store the data for the access context
is freed. Then. the system ends the clean up function at state
966.

Referring now to FIGS. 25A.B. a function is shown
which, for purposes of the present invention. will be termed
the “Undo Previous Raster Operations”. The tile manager
192 starts at state 970 and moves to state 972, wherein the
tile manager determines whether any undo regions exist in
the list or if the list is empty. If no regions exist then the tile
manager 192 moves to end state 974 and terminates nor-
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If the tile manager 192 determines at state 972 that “undo”
regions do exist, the tile manager 192 moves to state 976.
where the tile manager 192 enters a loop for each undo
region in the list. In this loop, the tile manager 192 moves
to state 978 where the tile manager 192 locks the affected
document handle. The document handle that is locked is the
one that was stored in the undo region header that tells where
that particular undo region came from. The tile manager 192
moves from state 978 to state 980 where the tile manager
192 saves the current document region to support redo (i.e.
an "undo” operation following by another “undo”
operation). Then the tile manager 192 moves to state 982 to
invalidate the affected tiles in the lower-resolution subim-
ages. The strategy represented by states 980, 982 in FIG.
25A is to save the minimum amount of information that is
needed to reconstruct the image, which means the tile
manager 192 saves only the affected tiles in the full res
subimage.

Next, the system moves to a loop indicated by the states
984, 986. In this loop, for each tile, the tile manager 192
moves to state 988, discarding the document tile image data.
Then the tile manager 192 moves to state 990 to determine
whether the undo tile is loaded. If it is not loaded. the tile
manager 192 moves to state 992 where the tile manager 192
marks the document tile as “not loaded”. If the tile is
determined to be loaded at state 999, the tile manager 192
moves to state 994 to mark the document tile as “loaded”.
From state 994, the system moves to state 996 in FIG. 25B.

At state 996, shown in FIG. 25B, the tile manager 192
determines whether the undo tile is marked as blank. If it is.
the tile manager 192 moves to state 998, wherein the tile
manager marks the document tile as blank, and then the
system loops back to state 986. If the undo tile is determined
to be not blank at state 996, the tile manager 192 move to
state 1000. At state 1000, the tile manager 192 checks to see
if the undo tile points to compressed data on the disk. If it
does. the tile manager 192 moves to state 1002 and copies
the disk location and size information about the compressed
data into the document tile header and loops back around. If
there is no compressed data on the disk, then the tile
manager 192 moves from state 1000 to state 1004, wherein
the tile manager 192 determines whether uncompressed data
exists on the disk associated with the undo tile.

If so.the tile manager 192 moves to state 1006, wherein
the file manager 192 copies the disk location and size
information about the uncompressed data into the document
tile header and loops back to state 986. If the system
determines at state 1004 that there is no uncompressed data
on the disk, the tile manager 192 proceeds to state 1008,
wherein the tile manager 192 determines whether the undo
tile “points” to uncompressed data in cache memory. If it
does, the tile manager 192 moves to state 1010, wherein the
tile manager 192 copies the pointer to the uncompressed
data from the undo header to the document tile header.

From state 1010. the system returns to state 986. If no
uncompressed data exists in the cache, however. as deter-
mined in state 1008, the tile manager 192 stores a pointer to
the compressed data in cache in the document tile header and
returns to state 986.

Referring back to FIG. 25A. when the tile manager 192
has completed the loop described above, the system moves
to state 1014, unlocking the document handle. From state
1014, the tile manager 192 proceeds to state 1016, wherein
the tile manager 192 frees the memory associated with the
undo header. The tile manager 192 then moves to state 976.
Thus, the system returns to state 976 for each undo region
in the list. As intended by the present invention. the tile
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manager 192 continues the loop for all of the regions in the
list. The undo regions are restored in “last-in-first-out” order.
At the completion of the looping process described above,
the system moves to state 974.

Now referring to FIG. 26, when the tile manager 192 ends
the cache management, the tile manager 192 starts the
process shown in FIG. 26 at state 1020 and proceeds to state
1022 wherein the system frees the compression buffer. From
state 1022, the system proceeds to state 1024. wherein the
system frees the common blank tile. Next, the system moves
to state 1026 to free the tile cache memory. The system then
ends the process shown in FIG. 26 at state 1028.

FIG. 27 provides an explanation of the function exp tile
lock. The tile manager 192 starts at state 1040 and moves to
state 1042 where the tile manager 192 enters a FOR-loop for
each tile row to be locked. In accordance with the present
invention. the system in the exp tile lock function is capable
of locking down all the tiles in a two dimensional region.

For each tile in the specified region, the system moves 10
state 1046. wherein the tile manager 192 determines whether
the particular tile is blank. To make this determination, the

system examines flags in the tile header itself or checks the
image data for that tile to determine if there are any
non-background pixels. If it is not a blank tile, the tile
manager 192 move to state 434 where the tile manager 192
locks the uncompressed version of the tile. Then the tile
manager 192 proceeds to state 1050, wherein the tile man-
ager 192 determines whether an error had occurred in the
process of creating the uncompressed version of the tile. If
no error is found at state 1050, the tile manager 192
continues to loop to the next tile in the region by returning
to state 1044. If an error did occur, as determined at state
1050, the system proceeds to state 430 to unlock previously
locked tiles. and then ends at state 1056.

In the event that the tile manager 192 at state 1046
detected that the particular tile was a virtual blank tile, i.e.,
a tile that exists only by virtue of the fact that there is a tile
directory entry for that tile, the tile manager 192 take no
action. other than to loop back to state 1044 for further
processing.

FIG. 28 illustrates the control flow for the “lock expanded
tile” function 434 wherein the tile manager 192 takes a
single tile and locks the expanded version of the tile in the
image data cache 194. The tile manager 192 enters the
function 434 at a start state 1060, and proceeds to a decision
state 1062 wherein the tile manager 192 tests whether the tile
is marked as “loaded”. As already mentioned. a loaded tile
is one that either contains or references valid image data. is
either uncompressed or compressed image data, and it either
resides in cache memory or on the disk. If the tile is not
loaded. the tile manager 192 moves to a function 436
wherein the tile must be created from higher resolution tiles
which are loaded. Afterwards, the tile manager 192 deter-
mines if there was an error in a decision state 1066. It there
was an error. the tile manager 192 terminates the function
434 at an end state 1068 and reports the error condition.
Otherwise. if there was no error in creating the tile, the tile
manager 192 continues. moving from the state 1066 to a
decision state 1070.

The tile to be locked is now loaded so the tile manager 192
tests whether the uncompressed version of the tile is in cache
memory. The objective of the function 434 Is to guarantee
that there is an uncompressed version of the tile in cache
memory. Now. if the uncompressed version is not in the
cache. the tile manager 192 proceeds to a decision state 1072
to determine whether the selected tile is a blank tile.

If the tile is blank. the tile manager 192 proceeds to a state
438 to create a blank tile. Note here that the function
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ExpTileLock 428 (FIG. 27) will detect a blank tile before
calling the function 434 if it can take advantage of using a
common blank tile at a higher level. In other words. if the
tiles are locked for reading only, i.e., the image data will not
be modified in any way. then all blank tiles can refer to the
same section of blank memory. However, if the tiles are
locked for writing, all tiles must have their own memory
because different image data can be written to the different
tiles.

At this point. state 438, memory has presumably been
allocated for a blank tile. Moving to a state 1074, the tile
manager 192 tests whether there was an error and moves o
the end state 1068 if there was an error.

Returning in the discussion to the decision state 1072. if
the tile is not blank. then the tile manager 192 transitions to
a decision state 1076 and tests whether there 1s a uncom-
pressed version of that tile on the disk. If the uncompressed
version is on disk. then the tile manager 192 reads that
uncompressed version from the disk into cache memory at
a state 1078. Then the tile manager 192 moves to the state
1074 to test for errors.

If, at the state 1076. there is not an uncompressed version
on the disk. the tile manager 192 moves to the function 440
so as to create the tile from the compressed version. The
compressed version can be either in cache memory or on the
disk, and this is handled by the function 440. Again. the tile
manager 192 checks for an error at the state 1074.

Now. assuming that there was no error found at the state
1074. the result is that the tile manager 192 has an uncom-
pressed version of the tile in cache. Therefore. the tile
manager 192 proceeds to a decision state 1080 to verify that
the uncompressed version is valid. It is sometimes the case
that the uncompressed version of a tile is locked by one
access context and then for come reason it is invalidated by
another access context. This happens when the first access
context is reading an uncompressed version of a tile from a
lower resolution image. and another access context is
actively modifying the full resolution subimage with a
particular setting of parameters. If the tile not valid. the
function 434 is terminated at the end state 1068.

Alternatively, a valid tile that was determined at the state
1080 causes the tile manager 192 to increment the uncom-
pressed data lock count for that tile at a state 1082. The lock
count starts out at zero for an unlocked tile and can incre-
ment as high as necessary. However, the lock count will be
decremented once for each unlocking operation. It is impor-
tant to match the number of times a tile is locked with the
number of times the tile is unlocked. Otherwise. the tile
would end up in a permanently allocated (unfreeable).
locked state.

Proceeding to a decision state 1084, the tile manager 192
tests whether the tile is locked for writing or for reading. It
the tile manager 192 locked the tile for writing. the execu-
tion of the function 434 continues to a state 1086 wherein the
“blank” status flag is invalidated. The blank status flag is
actually a combination of two flags. One that says that the
tile is blank or not blank and the second flag that says if the
first flag is valid or not. The reason for two flags is that the
way to detect that a tile is blank is by searching through all
the pixels in that tile. To do so every time the file is accessed
would be wasteful so occasionally, truly blank tiles won’t be
handled as blank tiles. Hence, there is a second flag that is
set. in the state 1086, when the first flag is invalid. The
second flag indicates that the tile must later be examined to
determine whether it is still blank.

The tile manager 192 next moves to a state 1088 to
invalidate the disk-resident, uncompressed version of the
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tile, if one exists. This is because the tile manager 192 will
modify the cache-resident version of the tile. To synchronize
the cache-resident and disk-resident versions, the disk-
resident version is invalidated. Then, at a state 10990, the tile
manager 192 invalidates and frees the compressed versions
if they exist.

A compressed version of the tile may be in cache or on the
disk and, at the state 1090, the tile manager 192 cleans both
out of memory. Thus, at the end of the “lock for writing”
operation, the only valid version of the tile is the expanded
version in cache, which at this point is locked. Then the tile
manager 192 continues to a state 1092 to move the newly
locked, expanded version of the tile to the front of the “most
recently used (MRU)” list of uncompressed tiles.

The MRU list is a doubly-linked list wherein, starting at
the beginning, the tile is found that was most recently used,
then the next most recently used, and so on, the last tile was
used the longest time ago. That list is used by the cache
manager to determine which tiles are least likely to be used
again as a second level of criteria.

Finally, the tile manager 192 terminates the LockEx-
pHandle at the end state 1068.

FIG. 29 illustrates the control flow for the “unlocking
expanded image tile group” function 439. The function 430
is just the reverse of lock expanded image tile group. In other
words, there 15 a region of locked tiles which must be
unlocked because the access to the tiles is complete.
Generally, the two functions. ExpTileLock and ExpTileUn-
lock are called for a row or column of image data rather than
a region but an entire region lock/unlock is possible.

The tile manager 192 enters the function 430 at a start
state 1110. The loop states 1102 and 1104 represent the
beginning of nested FOR-loops. That is, the outer loop.
beginning at the state 1102, unlocks a row of tiles, and the
inner loop, beginning at the state 1104 unlocks a column of
tiles. Moving from the state 1102, to the state 1104, and then
to the function 432, the tile manager 192 unlocks the
uncompressed version of the tile. When all the tiles in the
region are unlocked, the tile manager 192 terminates the
function 430 at an end state 1108.

Now referring to FIG. 30, the tile manager 192 enters the
UnlockExpHandle function 432, referred to in FIG. 29, at a
start state 1110. The tile manager 192 proceeds to a decision
state 1112 to test whether the uncompressed version of the
currently selected tile is in fact locked, i.e.. whether the lock
count is non-zero. If the tile is not locked. the tile manager
192 exits the function 432 at an end state 1114.

If, at the state 1112, the tile is found to be locked. the tile
manager 192 moves to a state 1116 to decrement the lock
count. Thereafter, the execution continues to a decision state
1118 wherein the tile manager 192 tests whether the “update
overview” flag is set true. If the flag is set, the tile manager
192 moves to a state 1120 to update the corresponding
lower-resolution tiles. In the process of modifying tiles, the
tile manager 192 locks a tile down in the image data cache
to write to it. When the tile is unlocked. that is a signal to the
memory manager to update the lower resolution tiles that
correspond to the higher resolution tile. Thus. the image data
in the high resolution tile being unlocked is copied down
into the lower resolution tiles, all the way down to the
bottom of the image stack.

Once the lower resolution images are modified, or if the
overviews are not being updated. the tile manager 192
proceeds to a decision state 1122 to test whether the lock
count is exactly zero. If the lock count is not zero, the tile
manager 192 terminates the function 432 at the end state
1114.
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Otherwise, the tile manager 192 moves to a state 1124 to
clear the “cache collection delay” flag. The cache collection
delay flag is set by the tile manager after unsuccessfully
trying to reduce the expanded memory usage of the cache
file. It is cleared in the function 432 because there is now the
possibility of freeing the tile that was just unlocked. In other
words, the tile can be removed from the cache to create some
space. This flag prevents the tile manager or the cache
manager from making repeated, unsuccessful attempts to
create space.

After the tile manager 192 clears the flag, execution
proceeds to a decision state 1126 to determine whether the
uncompressed version of the tile is invalid. As explained
hereinabove, it 1s possible for one access context to have the
expanded version of the tile locked down and another access
context to invalidate the data in that tile. The tile must
remain in memory until the first access context unlocks the
tile. Once it is unlocked and the lock count is decremented
to zero, if the tile is invalid. the tile manager 192 moves to
a state 1128 to free the uncompressed tile version. or remove
the tile from the image data cache. In either case, the tile
manager 192 terminates the function 432 at the end state
1114.

FIG. 31 illustrates the control flow for the “create tile
from higher-resolution tiles” function 436 referred to in FIG.
28. The tile manager 192 begins the function 436 at a start
state 1140 and proceeds to a decision state 1142 to determine
whether the tile is in fact already loaded. in which case no
further processing is needed and the tile manager 192
terminates the function 436 at an end state 1144. Assuming
that the tile is not loaded. the tile manager 192 moves to a
decision state 1146 to test whether a higher resolution
subimage exists.

This function is called only for lower resolution subim-
ages where the tile manager 192 can create the lower-
resolution tiles from higher-resolution tiles. Hence, higher-
resolution subimages must exist for the function to succeed.
If no higher-resolution subimages exist. the tile manager 192
reports the error and terminates the function 436 at the end
state 1144.

It the higher-resolution subimage does exist, the tile
manager 192 proceeds to a state 1150 to calculate the indices
of, or locate, the four higher-resolution tiles that reduce to
this tile. There are four tiles involved because the preferred
resolution step between subimage levels is two in the
presently preferred embodiment. Thus, since there are two
dimensions, four higher-resolution tiles are required to pro-
duce each next lower resolution tile.

Thereafter, the tile manager 192 enters a FOR-loop at a
loop state 1152. For each of the four higher-resolution tiles.
the tile manager 192 tests whether the tile is loaded in the
image data cache, at a decision state 1154. Xf the tile is not
loaded. then the tile manager 192 moves to a state 1156
wherein a recursive call is made to the “load subimage tile”
function to create the corresponding higher-resolution tile
from yet higher-resolution tiles. This case occurs if a the tile
is a few layers down in the image stack and the tiles in all
but the full resolution subimage had been invalidated.
Therefore, the function 436 invokes itself to work all the
way back up to the top level. recreate the higher-resolution
tiles and then work back down to the tile of interest. Only
higher-resolution tiles that map to the particular lower-
resolution tile need be loaded

Assuming that all the higher-resolution tiles have been
loaded, the FOR-loop terminates and the tile manager 192
proceeds to test whether all of the higher-resolution tiles are
blank. If all four of the high resolution tiles mapped to this
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low resolution are blank, the tile manager 192 transitions to
a state 1160 to mark the low resolution tile as blank. The tile
manager 192 does not create any image data for the blank.
lower-resolution tile. The tile manager 192 and terminates
the function 436 at the end state 1144.

If, however, one or more of the higher-resolution tiles is
not blank. the tile manager 192 moves to a state 1162 to
make a determination as to whether it is faster to create the
lower-resolution tile by scaling the compressed version of
the higher-resolution tiles or the expanded version of the
higher-resolution tiles. An algorithm is used at the state 1162
to decide which is faster and depends on the machine that the
program is running on. and other considerations. If it is
faster to scale the compressed data the tile manager 192
moves to the function 442 to create the compressed. lower-
resolution tile directly from the compressed higher-
resolution tiles.

Now, if it is determined that it is faster to scale the
expanded version of the data, the tile manager 192 moves
from the state 1162 to a state 1166 to allocate memory for the
uncompressed version of the lower-resolution tile. From the
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state 1166. the tile manager 192 moves to the beginning of -

a FOR-loop at a loop state 1168 wherein for each of the
higher-resolution tiles the tile manager 192 scales the
expanded version of the higher-resolution tile directly into
the proper position in the lower-resolution tile using the
function 444. When the tile manager 192 has scaled each of
the four high resolution tiles, the tile manager 192 has
completed the creation of the expanded version of the low
resolution tile.

The tile manager 192 then proceeds, from either of the
states 1168 or 442 to a decision state 256 wherein the tile
manager 192 determines if an error was incurred 1n that
process. If there was an error. the tile manager 192 moves to
a state 1172 to report the error. From either of the states 1176
(if no error) or 1172, the tile manager terminates the function
436 at the end state 1144.

FIG. 32 contains the flow diagram for the “allocate space
for uncompressed version of tile” function 438 referred to in
FIG. 28. The tile manager 192 enters the function 438 at a
start state 1180 and moves to a decision state 1182 to test
whether the “soft” uncompressed cache usage Limit is
exceeded. The soft uncompressed cache limit is a number
that is cast into the tile manager 192 during initialization and
it basically sets a guideline for how much of the image data

cache is to be devoted to uncompressed image data. If the
. cache manager gets a request for uncompressed cache space

and finds that this soft limit has been exceeded, 1t attempts
to reduce the amount of expanded image data that is held 1n
cache either by compressing expanded tiles or by discarding
expanded tiles that have valid compressed versions or some
other way to recreate them.

If the tile manager 192 finds that the soft limit is exceeded.
the tile manager 192 moves to a state 1184 to first check
whether the “cache collection delay” fiag is set. This flag 1s
set after an unsuccessful attempt to reduce cache memory
usage and prevents repeated unsuccessful calls to collect
free cache at a state 1186.

Thus. the tile manager 192 will not try to reduce the
expanded memory usage until the flag is cleared in the
“unlock expanded tile handle” function 432 (FIG. 30).

If the cache collection delay flag is not set, the tile
manager moves to a state 1186 to collect free cache memory

by freeing uncompressed tiles. After that. the tile manager
192 moves to a decision state 1188 to test whether the soft
uncompressed cache usage limit is still exceeded after an
attempt to reduce the memory usage. If the usage is still
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exceeded, the tile manager 192 prints a warning message on
the video display 154 (FIG. 6) at a state 1190 and then sets
the cache collection delay flag at a state 1192.

Returning in the discussion to the state 1182, if the soft
limit was not exceeded, or if it was not exceeded at the state
1188, the tile manager 192 moves to a decision state 1194 to
determine whether there is memory available in the uncom-
pressed tile free list. If there is not memory available in the
uncompressed tile free list. then the tile manager 192 moves
to a decision state 1196 to determine whether there is
memory available in the cache reserve list. If there 1s no
memory available there. the tile manager 192 moves to a
state 329 wherein the tile manager 192 again tries to collect
free cache space by unlocking or freeing both uncompressed
and compressed tiles. At this point, the tile manager 192
must free space in order to allocate space for this uncom-
pressed tile. The tile manager 192 moves to a state 1200 to
determine whether memory is now available in the cache
reserve list. In the state 1198, when the cache memory space
is freed, it is placed into the cache reserve list. If memory is
not available, then the tile manager 192 moves to a state
1202 and prints a “cache overflow™ error message and
terminates the function 438 with an error condition at the

~ end state 1204,
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Now, taking an alternate path from the states 1194, 1196
and 1209, if the tile manager 192 can successfully get space
for the uncompressed tile data, then the tile manager 192
moves to a state 1206 where the tile manager 192 finds the

free block with the highest memory address. If there is a
choice between two or more free memory blocks, the tile

manager 192 chooses the one with the highest address to try
to keep all of the expanded image data at the high address
end of the cache file. Once the tile manager 192 finds the
highest address block, it moves to a state 1208 to unlink the
free block from the free memory link list.

There are actually two possibilities for the free memory
link list when the tile manager 192 is looking for expanded
memory. One is the uncompressed tile free list and the other
is the cache reserve list. In either case, the tile manager 192
unlinks the block of memory that the tile manager 192 is
interested in from the free list and relinks the remaining
memory blocks of the affected free list.

The tile manager 192 then transitions to a state 1216 to
initialize the newly allocated block to all background color.
Then the tile manager 192 moves to a state 1212 to move the
description of the memory block (a pointer to the tile header)
to the front of the most recently used tile list. Moving to a
statc 1214, the tilec manager 192 updates the soft uncom-
pressed cache memory usage counter that was checked at the
state 1182. The tile manager 192 continues to a state 1216 to

store the memory address in the tile header. The memory
block that the tile manager 192 has just allocated is a pointer
that is stored in the tile header data structure. That is how the
memory block is associated with the tile. Then the tile
manager 192 terminates normally from the function 438 at
the end state 1204.

FIG. 33 jllustrates the process by which the present
invention expands the compressed version of a tile to create
an uncompressed version. Specifically, as shown in FIG. 33,
the tile manager 192 starts at a start state 1220 and moves to
a test function at state 1222. where the tile manager 192
determines whether the compressed version of the tile, or the
compressed tile data, is in cache memory. If it is not, then the
tile manager 192 moves to state 1224, wherein the system
loads the necessary data from the disk. If there is an error
detected at state 1224, the tile manager 192 moves to state
1228 to terminate the process.
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From state 1226, if compressed data was successfully
loaded from the disk or from state 1222 if it was in cache to
begin with, the tile manager 192 moves to state 1230,
wherein the tile manager 192 locks the compressed tile
image data. This step simply increments the lock count on
the compressed memory state. From state 1230, the system
moves to state 1232, wherein the tile manager 192 allocates
and locks the uncompressed tile memory block. The system
then moves to state 1234 to determine whether an error
occurred at state 1232, If so, the tile manager 192 moves to
state 1236 and unlocks the compressed tile data. From state
1236, the system moves to state 1238 to report the error. The
system then terminates at end state 1228.

On the other hand. if no error existed as determined at
state 1234, the system moves to state 1240, wherein the tile
manager 192 uncompresses the compressed data. Next, the
tile manager 192 moves to state 1242 to determine whether
an error occurred at state 1240. If an error occurred at state
1240, the tile manager 192 moves to state 1236 and func-
tions as described previously. Otherwise, the tile manager
192 moves to stat 1244 to unlock the compressed and
uncompressed data, and then terminates at end state 1228.

FIG. 34 illustrates a process for creating compressed low
resolution tiles from compressed higher resolution tiles. The
tile manager 192 starts at start state 1250 and proceeds to
state 1252, wherein the system enters a loop which is
followed by the system for each of the four high resolution
tiles required to produce a single low resolution tile. More
specifically, at state 1252 the tile manager 192 locks the
cornpressed version of the high resolution tile. The system
then proceeds to state 1256, wherein the tile manager 192
determines whether an error occurred at state 1254. In the
event that an error occurred, the tile manager proceeds to
end state 1258 and terminates. If no error occurred, the tile
manager 192 returns to state 1252 and continues the loop
described above for each of the four high resolution tiles.

After processing all four high resolution tiles as
described, the system proceeds to state 1260 where the tile
manager 192 scales the compressed data to half resolution.
The process performed at state 1260 results in a compressed
version of the low resolution tile. Then the tile manager 192
moves to a loop represented by states 1262, 1264, wherein
for each of the high resolution tiles the tile manage 192
unlocks the compressed version of the tile.

Next, the tile manager 192 moves to state 1266 where the
tile manager 192 allocates and locks memory for the com-
pressed version of the low resolution tile. At state 1266. the
tile manager 192 actually puts the compressed version of the
low resolution tile in a general, common buffer that is large
enough to hold the maximum possible size of the com-
pressed results. The actual valid data is uswally much less
than that than the maximum possible size. so the tile
manager 192 only saves the valid amount of data.

From state 1266. the system moves to state 1268 to
determine whether an error occurred at state 1266. If an error
occurred, the system moves to end state 1258 and termi-
nates. Otherwise. the system moves to state 1270 where the
tile manager 192 copies the compressed data out of the
temporary compressed data buffer into the newly allocated
space in the cache. Then the tile manager 192 moves to state
1272 where the tile manager 192 unlocks the compressed
version of the low resolution tile that now contains valid
data. The system then terminates normally at state 1258.

Now referring to FIG. 35, a process is shown whereby the
system resamples uncompressed high resolution tiles to an
uncompressed low resolution tile. The tile manager 192
starts at start state 1280 and moves to state 1282, wherein the
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tile manager 192 locks the uncompressed version of a single
high resolution tile. This function scales a single high
resolution tile to update one quarter of a tile in the half-
resolution subimage. That quarter tile is rescaled to update
one-sixteenth of a tile in the quarter-resolution subimage.
This continues to the lowest resolution subimage. Next, the
tile manager 192 proceeds to state 1284 to determine
whether an error occurred in locking the uncompressed
version of the high resolution tile. If there Was an error. then
the tile manager 192 proceeds to state 1286 and terminates
with an error condition. Otherwise. the tile manager 192
moves to state 1288 where the tile manager 192 determines
how many levels of the subimage are to be updated. This
function can be used to update a subset of subimages or the
entire image stack in the case where a single tile is modified
in the full resolution subimage. It will propagate that change
all the way down to the lowest-resolution subimage in the
image stack.

Next. the tile manager 192 proceeds to state 1290 where
the tile manage 192 determines the tile index that is to be
updated. In accordance with the present invention, when a
change is propagated from the higher resolution down to the
low resolution of tiles, the system calculates which tile
comresponds to the affected area. Then the tile manager 192
moves to state 1290 where the tile manager 192 determines
whether the low resolution tile that the tile manager 192 is
about to update is marked as loaded or not. This step is
intended for the situation in which not all of the low
resolution substates are populated during the loading of a
raster irnage.

If the system determines that one or more low resolution
tiles are not loaded, the system proceeds to state 1294,
wherein the tile manager 192 invalidates all of the low
resolution tiles that would otherwise be affected by the
change. The system then exits normally at end state 1286. If
the low resolution tile is about to be modified is loaded, as
determined at state 1292, the tile manager 192 moves to state
1296, wherein the system locks the uncompressed version of
the low resolution tile. The tile manager 192 then moves to
state 1298 to determine whether an error occurred at state
1296 and, if so, the system moves to end state 1286 to
terminate. Otherwise, the system moves to state 1300.
wherein the tile manager 192 scales the raster data from the
high resolution tile down to the low resolution tile. Then the
tile manager 192 moves to state 1302 where the tile manager
192 unlocks the high resolution tile.

Next, the system moves to state 1304. wherein the tile
manager 192 recursively modifies the loop variables such
that the low resolution tiles that the tile manager 192 just
finished updating become the high resolution tiles for the
next succeeding iteration. Once all the subimages have been
updated as described. the system eXxits at end state 1286.

Now referring to FIGS. 36A and 36B. a process to collect
free cache is shown. This process can be called from several
other processes. The tile manager 192 begins at start state
1310 in FIG. 36A and moves to state 1312 to determine
whether a cache collection operation is in process. If so, the
system eXxits at end state 1314. This prevents recursive calls
to collect free cache which might otherwise occur. If the
system at state 1312 determines that no collection is in
progress. then the tile manager 192 moves to state 1316
where the tile manager 192 sets a flag indicating that a
collection is in progress.

From state 1316. the system moves to state 1320. where
the tile manager 192 estimates the number of memory
blocks to free in this operation. The reason for freeing a
number of blocks instead of just one block is to reduce the
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computational overhead associated with the cache collection
operations. The tile manager 192 typically estimates the
amount of memory required to equal the number of tiles in
a single row of the full resolution subimage of the document
associated with the most recently used tile.

Once this estimate has been made, the system proceeds to
state 1322 wherein the tile manager 192 considers the
options that the tile manager 192 passed into this function.
There are three options. One, as indicated at state 1324, is to
reduce the uncompressed cache usage only while not affect-
ing the compressed data that is currently held in cache. The
second option. indicated at state 1328, is to reduce the
compressed cache memory usage only. The third option,
indicated at state 1326, is to reduce the total cache memory
usage including both compressed and uncompressed data.

From state 1324 or state 1326. the tile manager 192 moves
to state 1330, where the tile manager 192 stores all of the
free states currently in the uncompressed free list into the
cache reserve list. As the tile manager 192 performs the
process in state 1330, the tile manager 192 attempts to
consolidate the memory blocks. That is. if there are two free
blocks that are adjacent to one another, the system auto-
matically turns them into a single, larger contiguous block.
From state 1328. on the other hand. the system moves to
state 1358. shown in FIG. 36B and discussed below.

From state 1330, the tile manager 192 moves to state
1332, wherein the tile manager 192 determines whether the
tile manager 192 has created a memory block large enough
to satisfy the initial request. If so, the tile manager 192
terminates normally at end state 1314. Otherwise, the tile
manager 192 moves to state 1334 where the tile manager
192 frees any unlocked, uncompressed tiles which are blank.
The tile manager 192 then moves to state 1336 where the tile
manager 192 determines whether the tile manager 192 has
free sufficient memory. If so. the tile manager 192 exits at
end state 1314. Otherwise, the tile manager 192 moves to
state 1338 where the tile manager 192 frees unlocked.
unpreserved uncompressed tiles that have valid compressed
versions in cache or are on a disk, or that have valid.
uncompressed versions on the disk beginning with the least
recently used tile. After having freed that particular class of
tiles, if the tile manager 192 determines, at state 1340, that
the memory request has been satisfied. the tile manager 192
moves to state 1314 and terminates. Otherwise, the tile
manager 192 moves to state 1342, shown in FIG. 36B.

Now referring to FIG. 36B. the tile manager 192 begins
at state 1342, wherein the tile manager 192 compresses the
free unlocked, unpreserved uncompressed tiles that don’t
have a valid compressed version or other source from which
the tile can be recreated. To do this the tile manager 192
processes expanded tile data through a compression algo-
rithm. The tile manager 192 then creates a compressed
version of that tile so that the uncompressed version of the
tile can be discarded.

Next. the tile manager 192 moves to state 1344, wherein
the system determines whether the request made at state
1342 has been satisfied. If so, the system terminates at end
state 1346. Otherwise. the system moves to state 1348,
wherein the tile manager 192 frees unlocked, but preserved
uncompressed tiles that have valid compressed or uncom-
pressed copies. The tile manager 192 preferentially frees the
oldest such tiles.

From the state 1348, the tile manager 192 proceeds to a
decision state 1350 to test whether the request made at the
state 1348 was satisfied. If so, the function 446 is terminated
at the end state 1346. Otherwise, the tile manager 192 moves
to a state 1352 to compress and then free unlocked. but
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preserved, uncompressed tiles that do not have valid com-
pressed versions.

~ Next. the tile manager 192 moves to state 1354, wherein
the system determines whether the request made at state
1352 has been satisfied. If so, the system terminates at end
state 1346. Otherwise, the system moves to state 1356.
wherein the tile manager 192 determines whether to free
data memory blocks. If not, the system terminates at state
1346. Otherwise, the system moves to state 1358, to free
unlocked preserved. uncompressed tiles that don’t have
valid compressed versions already.

The system next moves to state 1360 to determine
whether the request has been satisfied. If so., the system
terminates at state 1346. Otherwise, the system moves to
state 1362 to print an error message. and then terminate at
state 1346.

Now referring to FIG. 37. the tile manager 192 starts at
state 1380 and moves to state 1382 where the tile manager
192 determines whether the uncompressed version is in fact
still locked—that is if the lock count for uncompressed
version of that tile is non-zero. If the tile is still locked then
the tile manager 192 moves to state 1384 and prints a
warning message. Then the tile manager 192 terminates at
end state 1386.

If, at state 1382. the system determined that the uncom-
pressed version is not locked. then the tile manager 192
moves to state 1388 where the tile manager 192 determines
whether the uncompressed data has already been freed. If it
has then the tile manager 192 terminates at end state 1386.
Otherwise, the tile manager 192 moves to state 1390 where
the tile manager 192 unlinks the uncompressed memory
state from the most recently used list.

From state 1399, the tile manager 192 moves to state 1392
where the tile manager 192 updates and decrements the total
uncompressed memory usage counter by the appropriate
amount. The tile manager 192 then moves to state 1394
where the tile manager 192 moves the memory block to the
uncompressed memory free list. In accordance with the
present invention, the tile manager 192 keeps the list sorted
by decreasing address. Consequently, when the tile manager
192 allocates expanded memory blocks, the tile manager
192 tends to choose the preferred blocks that have higher
addresses because they are at the front of the free list.

Next, the tile manager 192 moves to state 1396. wherein
the tile manager 192 sets a pointer in the tile header to null
and the tile manager 192 sets the uncompressed tile status
flags. This ensures that the tile header reflects the fact that it
no longer has an uncompressed data associated with it. Then
the tile manager 192 terminates at end state 1386.

Now referring to FIG. 38, a process by which the system
compresses a tile is shown. The system begins at start state
1400, and moves to state 1402, wherein the tile manager 192
determines whether the uncompressed tile data is in cache
memory. If it is not, the tile manager 192 moves to state 1404
and loads the uncompressed data into cache memory from
the disk. The system then moves to state 1406, to determine
whether an error occurred at state 1404. If so. the system
terminates at end state 1408. Otherwise, the system proceeds
to state 1410.

At state 1410, the tile manager 192 locks the uncom-
pressed tile data. and then moves to state 1412, to determine
whether an error occurred at state 1410. If an error occurred,
the system terminates at end state 1408. Otherwise, the
system moves 10 state 1414, wherein the tile manager 192
compresses the image data into a common buffer. For binary
images of text and line drawings. the tile manager 192 uses
a CCITT group 4 encoding.
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From state 1414, the tile manager 192 moves to state 1416
to determine whether an error occurred at state 1414. If an
error indeed occurred, the system moves to state 1418 to
unlock the uncompressed tiles, and then exits at end state
1408. Otherwise, the system proceeds to state 1420, wherein
the tile manager 192 allocates and locks cache memory
space for the compressed tile data.

From state 1420, the system proceeds to state 1422 to
determine whether an error occurred at state 1420. If an error
occurred, the system moves to state 1418 and proceeds as
described above. Otherwise, the system moves to state 1424,
wherein the tile manager 192 copies the compressed data
from the common buffer into the newly allocated cache
memory state. The system moves from state 1424 to state
1426. wherein the tile manager 192 unlocks the compressed
and uncompressed tile data and then terminates at end state
1408.

While the above detailed description has shown.
described and pointed out the fundamental novel features of
the invention as applied to various embodiments. it will be
understood that various omissions and substitutions and
changes in the form and details of the device illustrated may
be made by those skilled in the art. without departing from
the spirit of the invention.

What is claimed is:

1. An image memory management system., comprising:

a computer having a processor and an image memory, the
image memory comprising a main memory and a
secondary memory;

an image stack, located in the image memory, comprising
a plurality of similar digital images, each digital image
having a plurality of pixels grouped into at least one
tile, and each digital image having a resolution different
from the other digital images;

means for accessing a selected one of the tiles in the
itmage stack;

first means for transferring a selected one of the tiles from
the secondary memory to the main memory when the

tile is accessed by the accessing means and the tile is
absent from the main memory; and

second means for transferring a selected one of the tiles
from the main memory to the secondary memory when
the main memory is full.

2. The system defined in claim 1. additionally comprising
means for modifying a selected one of the tiles.

3. The system defined in claim 2, wherein the second
transferring means only transfer tiles that have been modi-
fied by the modifying means.

4. The system defined in claim 1., wherein the
memory is semiconductor memory.

3. The system defined in claim 1. wherein the secondary
memory is a magnetic disk.

6. The system defined in claim 1, wherein each tile js
square. |

7. The system defined in claim 1. wherein a lowest
resolution digital image comprises one tile.

8. The system defined in claim 1. wherein a preselected
digital image in the image stack is resampled to obtain
another digital image in the image stack.

9. The system defined in claim 1. wherein at least one of
the digital images is compressed.

10. The system defined in claim 1. wherein the accessing
means is responsive to an image access operation selected
by a user.

11. The system defined in claim 10. wherein the image
access operation is zooming or panning the image.

main
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12. The system defined in claim 10, wherein the image
access operation is reversible.

13. A method of managing images in a computer system
having a processor and an image memory comprising a
slower access memory and a faster access memory, com-
prising the steps of:

creating a digital image;

resampling the digital image so as to form an image stack

comprising the digital image and one or more lower
resolution digital images:;

dividing each image into equal sized. rectangular tiles;

and

evaluating a location in the image memory of tiles in each
digital image of the image stack in a given region of
interest.

14. The method defined in claim 13. additionally com-
prising updating modified regions of all images when an edit
operation is completed.

15. The method defined in claim 13, wherein the evalu-
ating step includes the following order of decreasing avail-
ability:

exists in the faster access memory in uncompressed form:

exists in the slower access memory in uncompressed
form;
exists in the faster access memory in compressed form;

€xists in the slower access memory in compressed form:
and

must be constructed from higher resolution tiles.

16. The method defined in claim 13, wherein the evalu-
ating step includes the following order of decreasing avail-
ability:

exists in the faster access memory in uncompressed form;

exists in the slower access memory in uncompressed

form:

€xists in the slower access memory in compressed form:

and

must be constructed from higher resolution tiles.

17. The method defined in claim 13. wherein the evalu-
ating step includes selecting the digital image with the
lowest resolution higher than a requested resolution al a

given view scale.
18. The system defined in claim |, wherein the image

memory is located in a network.
19. The system defined in claim I, wherein the image
memory is located in the Internet.
20. The system defined in claim 9, wherein the form of
compression is Joint Photographic Experts Group (JPEG).
21. The method defined in claim 13, wherein at least one
of the digital images is compressed.
22. The method defined in claim 21, wherein the form of
compression is Joint Photographic Experts Group (JPEG).
23. The method defined in claim 13, wherein the computer
system comprises a plurality of computers connected
together in a network.
24. The method defined in claim 23, wherein the network
comprises the Internet.
23. An image memory management system, comprising:
a computer sysiem having a processor, a main memory
and a secondary memory;
an tmage stack, comprising plural digital images, each
digital image divided into at least one region, at least
two of said digital images having different resolutions:

a selector which selects one of said regions:
a list identifying regions in said main memory;
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a sensor determining when said main memory is full;

a data exchanger responsive to said selector, said list and
said sensor to move said one region from the secondary
memory to the main memory when said region is
selected by said selector and said list indicates that the
region is absent from the main memory, and to move
regions from the main memory to the secondary
memory when said sensor indicates that the main
memory is full.

26. The system defined in claim 25, wherein at least one

of the digital images is compressed.

27. The system defined in claim 26, wherein the form of

compression is Joint Photographic Experts Group (JPEG).

28. The method defined in claim 25, wherein the computer

system comprises a plurality of computers connected
together in a network.

29. The method defined in claim 28, wherein the network

comprises the Internet.

30. A method of managing images in a computer system

comprising the steps of:

resampling a digital image to form an image stack com-
prising plural digital images of differing resolutions,
wherein each digital image is displayable independent
of the other images of the image stack;

selecting an image resolution; and

selecting an image from said image stack for display,
based on said selected image resolution.

31. The method defined in claim 30, wherein at least one

of the digital images is compressed.
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32. The method defined in claim 31, wherein the form of
compression is Joint Photographic Experts Group (JPEG).
33. The method defined in claim 30, wherein the compuler
system comprises a plurality of computers connected
together in a neiwork.
34. The method defined in claim 33, wherein the network
comprises the Internet.
35. A method of managing images in a computer system
comprising the steps of:
accessing a digital image;
resampling the digital image so as to form an image stack
comprising the digital image and one or more lower
resolution digital images, wherein each digital image is
displayable independent of the other images of the
image stack; and
selecting a portion of one of the digital images in the
image stack for display.
36. The method defined in claim 35, wherein at least one
of the digital images in the image stack is compressed.
37. The method defined in claim 36, wherein the form of
compression is Joint Photographic Experts Group (JPEG).
38. The method defined in claim 35, wherein the computer
system comprises a plurality of computers connected

together in a network.
39. The method defined in claim 38, wherein the network

comprises the Internet.
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