USOORE3S5881E

United States Patent 9 une Patent Number: Re. 35,881

Barrett et al. [45] Reissued Date of Patent: Aug. 25, 1998

154] METHOD AND SYSTEM FOR TRAVERSING 4584.644 A/1986 LAMIET woeoreorreerreooreereressenrssen 395/733

LINKED LIST RECORD BASED UPON 4,606,002 8/1986 Waisman et al. w...ooveeoeccmsnrens 395/603

WRITE-ONCE PREDETERMINED BIT 14[?033%33 }i};iggg I;Iijlly gggﬁgﬁ;g

104, AY secreaescnrnsnseersesansasserssennressas
VALUE OF SECONDARY POINTERS 4,953,080 8/1990 Dysartet al. ...cocceircvemrernrarenens 395/614
- 4,953,12 1990 WIIHAMS +ecrrerrorecersreerreesosnenens 3

[75] Inventors: Phillip L. Barrett. Redmond; Scott D. 423392%3 111001 Melleader st a 3937705

Quinn, Issaquah; Ralph A. Lipe. 5025367 6/1991 Gurd et 3l cooeoomecrreceeenrannes 395/622

Woodinville, all of Wash. 5060147 1071991 MAattheysesoomererermsersreee 395/898

| ' _ 5115504 5/1992 Belove et al. wooveooeveessrmene. 395/611

[73] Assignee: Microsoft Corporation, Redmond, 5392427 2/1995 Barrett et al. ...oocoorerrevereneeens 395/621
Wash.

OTHER PUBLICATIONS

[21] Appl. No.: 531460
[22] Filed: Sep. 21, 1995

Related U.S. Patent Documents
Reissue of;
[64] Patent No.: 5,247,658

Issued: Sep. 21, 1993
Appl. No.: 430,746
Filed: Oct. 31, 1989
[51] Int. CLS ..o sseseerersanransennee (FOOF 15/40
[52] U.S. Cl .vrreereevrrenerenenennen, T07/1; 707/3; 7077205
[58] Field of Search ... 395/600, 700,
395/601. 603, 621; 707/1, 3. 205
[56] References Cited
U.S. PATENT DOCUMENTS
4408273 10/1983 Plow ...cvovrirmiercnrcerirmesconsesssannens 395/618
4 507,752 3/1985 McKennaet al.cocaunevenannns 395/612

FEFidelnfo

Kruse, “Data Structures & Program Design”. by Prentice-
-Hall 1984, pp. 40-83.
Cooper et al.. “OH! Pascal”, 1982; pp. 475-523.

Primary Examiner—Krisna Lim
Attorney, Agent, or Firm—Seed and Berry LLP

[57] ABSTRACT

A method and apparatus for storing files on a computer file
storage device. The files are organized into an hierarchical
directory structure. The directory structure comprises direc-
tory entrics and file entries. The file entries and directory
each contain a primary and a secondary pointer. The sec-
ondary pointer is initially set to a predefined value. When an
entry is to be updated. the secondary pointer is overridden
with a value that points to the superseding entry. This
directory structure is especially suitable to be used in a
write-once computer memory.

31 Claims, 26 Drawing Sheets

FEFdelnfo

New

D2

Re. 35,881

Q0A°€HILLIT Q20 cHIALLTT J0a°'tH3LLTT 00 t4311317

NG

o

e

-

- VL 84nbi AHVI aIAva IXI'LVWHOA
2

70

o

=2

=

|

T .

o WO AONVYIWNOD 1vg:03X301NV Yeolt
=

e

1004

U.S. Patent

000 €H3LLI 00 ¢H31L L3 Q00" IH3LLAT 000" 1H3LLan
Id bujqis jng Arewnig nd buiqis uu . éﬂ uﬂﬂom

Re. 35,881

e AX3d LVINHO4
S

3

2

r=

75

. WOD ONVYHINOD lv803aX3oLNy QHOM / SOd

N _ nd_Arepuodes _Alepuooes g Arepuooe icf_Arepucoag
— N Ouiqis [nd Arewpy nd Bunqis | nd” Aewng nd Buyqis Ing Arewpd @ ® nd Buyqis fnd Arewip
a

8

=

«

1NOAVYT AHOO3H

oL gl ainbi

U.S. Patent

Re. 35,881

Sheet 3 of 26

Aug. 25, 1998

U.S. Patent

200°eH3aLL3n

WOO ANVIANINOD

904 cH3 L3t

1va 03axX301NV

- i &_-..

Ad DUHGIS| Nd Asunid

Q0a’ -3 LL3

J PUODOS

Ad Dujqis| nd Aeuyig

nd buyqis|nd” Areunig

dHOM

nd Bunqig|ad Arewngy

D1 ainbi

nd_Krewiid e ng Buis|

204" 1431137

DLIOOB

-

id /veijd

Re. 35,881

=

ad Aepuodeg
ng Asung p

Sheet 4 of 26

Aug. 25, 1998

03

Vg 8inbi

U.S. Patent

Re. 35,881

B

& i Wevd |

Sheet 5 of 26

Aug. 25, 1998

ge 8inbi

U.S. Patent

U.S. Patent Aug. 25, 1998 Sheet 6 of 26 Re. 35,881

FEProm Address Space

N

unallocated

<— first_unallocated

allocated

U.S. Patent Aug. 25, 1998 Sheet 7 of 26 Re. 35,881

Add_Directory

Locate directory
set P to address

401

Figure 4

Allocate new 402

FEDirEntry
set C to address

Set 403

C—->name
C—>time

C—>date
C—>attribute

404

Set
P->status

to indicate
a directory

P—>primary ptr
== 41
FNULL J

406
next ptr =

P->primary ptr
P->primary ptr

=C

next ptr=

next_ptr—>sibling
FNULL
?

next_pir->sibling

next_ptr->sibling

=C

|
e b t--l-inllrll-l-“

iAd

[
H
--------- L T T TR R Y T N Y N e e,

: " 1
... A UGS IAd Kiinid g { @ Bg DO

Re. 35,881
-

Sheet 8 of 26

Aug. 25, 1998

G 2.Inbi

U.S. Patent

r‘“\

\ 5
x\\- f

%

U.S. Patent Aug. 25, 1998 Sheet 10 of 26 Re. 35,881

Add File

Locate
parent directory
set P to address

801

Figure 8
802

Allocate new
FEFileEntry

sat C to address

Set 803
C — name

C — time

C — date

C — attribute

805

P->primary_ptr

FNULL
?

810

806
next ptr —.

P->primary ptr P—>primary ptr

=C

next ptr=
next_ptr->sibling

next_ptr->sibling
FNULL
?

809

next ptr->sibling

=C

U.S. Patent

Aug. 25, 1998 Sheet 11 of 26

Add Data
To_New File

extent start=
first_unatlocated

907

202

first unallocated
+=number of bytes
to write

write data at 903
extent start

Locate
FEFileEntry
Set F to address

904

F—>extent location= 905

extent start

F->extent length= | °7°

number of byfes
o write

DONE

Figure 9

Re. 35,881

U.S. Patent

Aug. 25, 1998 Sheet 12 of 26

Extend File

Allocate new
FEFileinfo

Set Fl to address

1001

Set 1002
Fl—>atitribute
Fl->date

Fl->time

1003

extent start=
first_unallocated

1004

first unallocated
+= number of bytes
lOo write

1005

write data at
extent_start

Locate 1006

FEFileEntry
set FE to address

1007
next ptr = FE

Figure10A

Re. 35,881

U.S. Patent Aug. 25, 1998 Sheet 13 of 26 Re. 35,881

Figure10B

1006A

10088

Set next_ptr->status

to indicate superseded
date/time

1011 1009 1010

next _pir->
next_ptr= N/ secondary ptr Y next ptr=
next_ptr-ssecondary ptr FszL [next_ptr->primary ptr
?

prev_ptr—>primary ptr
= F1

Re. 35,881

Sheet 14 of 26

Aug. 25, 1998

d Cujais | nd Arewng

| L 84nbi-

U.S. Patent

U.S. Patent

Aug. 25, 1998

Update File

1207

Allocate
FEFilelnfos
Set R1, R2, and R3

addresses

1202

Set
Ri1—->time
R1—>date
R1—satiribute
R2->status and

R3->status to
superseded

1203
extent start=

first_unallocated

1204
first_unallocated
+= data length

1205

write data to
extent start

1206

A2->extent location
=extent start

1207
R2—>extent length

=data length

Figure12

Sheet 15 of 26

1208

R2->primary ptr=

A3

1209

A3—>extent location=
R->extent location+
offset+data length

1210
A3—>extent length=
R->extent _flength-
offset-data—length-
12711
A3—>primary ptr —
R->primary ptr
1212
R1->extent location=
R->extent location
1213
R1->extent length=
offset
1214
R1->primary ptr=
A2
1215

R->secondary ptr=

R1

Re. 35,881

U.S. Patent Aug. 25, 1998 Sheet 16 of 26 Re. 35,881

Figure 13

data

Re. 35,881

nd weg
nd Aepuooeg

N
|
=
e~
y—
wad
L
L
-
’ Kl

Wﬁ%ﬁ%\&%@
8 \hﬁh\\%\\%ﬁﬁ\&
3
5.-.,
@ |
N
-]
<

ojuje|i434 E:_m__“_,m..n,_

U.S. Patent

U.S. Patent Aug. 25, 1998 Sheet 18 of 26 Re. 35,881

FEFileinfo

Figure 15
New
D1

3
N
N
3
N
3
g

=

|

FEFilelnfo

W AASIES 1T

7
.

Re. 35,881

Sheet 19 of 26

Aug. 25, 1998

U.S. Patent

¢Q
MBN

SYCE]

g mpusoes
g Kmung

ojuie|i4i4

91 einbi

[ed

ojujeli434

Re. 35,881

cQ
MON
e Ad Webg o Ad a3
S
=
—
)
P
)
h w;qﬁ LA 7
- ea
Tt
2
. [zl
'
o)
&
=
<
e Ad webg
Ad ABpuooeg
nd Aewpg
ojuie)434 ojujel434

L1 8inbi

U.S. Patent

U.S. Patent Aug. 25, 1998 Sheet 21 of 26 Re. 35,881

Del Directory

Locate 1801
directory file
set D to address

Set 1802

D—->status to
indicate deleted

Figure 18

U.S. Patent

Aug. 25, 1998

change file name

Locate file

19071

set P to address

P-»sec ondary_ptr
FNULL

Allocate new 1904
FEFileEntry

Set C to address

1905

Set
C—oname

1906
C—:-sibﬁng.-_-
P->sibling

1907

C—sextent location=
P->extent location

1908

C—extent length=
P—extent length

1909
C—>primary ptr=
P->primary ptr

1910

P->secondary ptr
=C

Sheet 22 of 26

Figure 19

P
P->secondary ptr

Re. 35,881

U.S. Patent Aug. 25, 1998 Sheet 23 of 26 Re. 35,881

Figure 20

FEFileinfo ™.

EXTENT_PTR o

FEFilelnfo

U.S. Patent Aug. 25, 1998 Sheet 24 of 26

change_attribute data

2101

Locate file

set P to address

—

[
Y

P->secondary_ptr
FNULL
?

P~>secondary ptr

2104

C=
P->primary ptr

2105
¢ 2106

C—:-seco_{zdary ptr et
FNULL
?

2109

: Set
C—> primary_ptr

FNULL

o Figure 21A

C->status to C=

C->status to C=
indicate superseded C->primary_ptr

Re. 35,881

2107

Indicate superseded C—>secondary_ptr

2110

U.S. Patent

Aug. 25, 1998 Sheet 25 of 26

2111

Allocate new
FEInfoEntry
Set R to address

Set 2112

R—>attributes
H->date
R->time

2113

C—->primﬁary - ptr

DONE

Figure 21B

Re. 35,881

U.S. Patent Aug. 25, 1998 Sheet 26 of 26 Re. 35,881

Figure 22

L
0 e et ol O - -2l sl A s sl N - R - B el A o i

Re. 35.881

1

METHOD AND SYSTEM FOR TRAVERSING
LINKED LIST RECORD BASED UPON
WRITE-ONCE PREDETERMINED BIT

VALUE OF SECONDARY POINTERS

Matter enclosed in heavy brackets [] appears in the
original patent but forms no part of this reissue specifi-
cation; matter printed in italics indicates the additions
made by reissue.

DESCRIPTION
Technical Field

This invention relates generally to a computer system for
managing files and, more specifically, to a method and
system for managing files stored on a FlaSH-erasable,
programmable, read-only memory (FEProm).

Background Art

A computer system generally supports the storage of
information on both volatile and nonvolatile storage devices.
The difference between a volatile and nonvolatile storage
device is that when power is disconnected from a volatile
storage device the information is lost. Conversely, when
power is disconnected from a nonvolatile storage device the
information is not lost. Thus, the storing of information on
a nonvolatile storage device allows a user to enter informa-
tion at one time and retrieve the information at a later time,
even though the computer system may have been powered
down. A user could also disconnect a nonvolatile storage
device from a computer and connect the storage device to a
different computer to allow the different computer to access

the information.

The information stored on nonvolatile storage devices is
generally organized into files. A file is a collection of related
information. Over the course of time. a computer system can
store hundreds and thousands of files on a storage device,
depending upon the capacity of the device. In addition to
storing the information, the computer system will typically
read, modify, and delete the information in the files. It is
important that the computer system organize the files on the
storage device so that the storing, reading, modifying, and
deleting can be accomplished efficiently.

File systems, which are generally part of a computer
operating system, were developed to aid in the management
of the files on storage devices. One such file system was
developed by Microsoft Corporation for its Disk Operating
System (MS-DOS). This file system uses a hierarchical
approach to storing files. FIG. 1A shows a pictorial repre-
sentation of the directory structure for a storage device.
Directories contain a logical group of files. Directories
organize files in a manner that is analogous to the way that
folders in a drawer organize the papers in the drawer. The
blocks labeled DOS. WORD. DAVID., and MARY represent
directories, and the blocks labeled AUTOEXEC.BALT.
COMMAND.COM., FORMAT.EXE. LETTER2.DOC,
LETTER.DOC., and two files named LETTERL.DOC rep-
resent files. The directory structure atlows a user to organize
files by placing related files in their own directories. In this
example, the directory WORD may contain all the files
generated by the word-processing program WORD. Within
directory WORD are two subdirectories DAVID and MARY,
which aid in further organizing the WORD files into those
developed by David and those developed by Mary.

Conventional file systems take advantage of the multiple-
write capability of the nonvolatile store devices. The

10

15

23

30

35

45

50

55

65

2

multiple-write capability allows any bit of information on
the storage device to be changed from a one to zero and from
a zero to one a virtually unlimited number of times. This

capability allows a file to be written to the storage device and
then selectively modified by changing some bits of the file.

The disadvantage of the conventional storage devices
with multiple-write capability, such as a disk. is their slow
speed relative to the speed of the internal computer memory.
Conversely, the advantage of these storage devices over
computer memory include their nonvolatility, low cost. and

high capacity

A storage device known as a FlaSH-EProm (FEProm) has
the speed of internal computer memory combined with the
nonvolatility of a computer disk. This device is an EProm-
type (Erasable, Programmable, Read-Only Memory) device.
The contents of the FEProm can be erased by applying a
certain voltage to an input rather by shining ultraviolet light
on the device like the typical EProm. The erasing sets each
bit in the device to the same value. Like other EProms, the
FEProm is a nonvolatile memory. The FEProms are com-
parable in speed to the internal memory of a computer.
Initially, and after erased, each bit of the FEProm is set to a
1. A characteristic of the FEProm as with other EProms is
that a bit value of 1 can be changed to a (. but a bit value
of O cannot be changed to a 1. Thus, data can be written to
the EProm to effect the changing of a bit from a 1 to a 0.
However. once a bit is changed to a 0, it cannot be changed
back to a 1, that is, unless the entire FEProm is erased to all
ones. Effectively, each bit of the FEProm can only be written
once but read many times between subsequent erasures.

Moreover, each bit of a FEProm can only be erased and set
to O a limited number of times. The limited number of times

defines the effective life of a FEProm.

Because conventional file systems assume that the storage
device has the multiple-write capability, these file systems
are not appropriate for the FEProm. which effectively has
only a single-write capability. It would be desirable to have
a file system that supports a storage device based on the
FEProm. Such a file system would have the speed of
computer memory and the nonvolatility of computer disks.

Conventional storage devices, such as computer disks, are
block addressable, rather than byte addressable. A byte is the
unit of addressability of the internal memory of the
computer, that is, the computer can write or read one byte
(typically, eight bits) at a time, but not less. When the
computer writes to or reads from a disk it must do so in
groups of bytes called a block. Block sizes can vary, but
typically are a power of two (128, 256, 512, etc.). For
example, if only one byte on a disk is to be changed, then the
entire number of bytes in the block size must be written. This
may involve the reading of the entire block from disk into
the computer memory. changing the one byte (the internal
memory is byte addressable), and writing the entire block to
the disk.

Conventional file systems store data in a way that leaves
unused portions of blocks. The file systems store data from
only one file in any given block at a time. The file systems
do not, for example, store data from one file in the first 50
bytes of a block and data from another file the last 78 bytes
of a 128-byte block. If, however. the length of a file is not
an even multiple of the block size, space at the end of a block
is unused. In the example above, the last 78 bytes of the
block would be unused. When a disk uses a large block size
such as 4096, up to 4095 bytes of data can be unused.
Although this used space may be a negligible amount on a
disk drive that has multi-write capability and that can store

Re. 35881

3

millions of bytes. it may be a significant amount on a storage
device without multi-write capability and without the capac-
ity to store millions of bytes of data.

The FEProm., in contrast to typical storage devices, is byte
addressable. rather than block addressable. It would be
desirable to have a file system that would support the byte
addressability of a FEProm.

DISCL.OSURE OF THE INVENTION

It is an object of the present invention to provide a method
of updating data stored on a file storage device.

It is another object of the present invention to provide a
method of storing a file on a file storage device.

It is another object of the present invention to provide a
method of updating directory and file entries of a hierarchi-
cal directory structure on a file storage device.

It is another object of the present invention to provide a
method of updating a file on a file storage device, the file
having a linked list of information entries and the informa-
tion entries having associated extents.

It is another object of the present invention to provide a
method of updating a portion of a file extent stored on a file
storage device.

These and other objects. which will become apparent as
the invention is more fully described below, are obtained by

an improved method and system for storing and updating
files stored on a FlaSH-erasable, programmable, read-only

memory. In a preferred embodiment, the system uses a
secondary pointer to indicate that data stored in a file system
data structure has been superseded. The secondary pointer
points to a record that contains the superseding data.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1A shows a sample hierarchical or tree-structured
organization of directories and files.

FIG. 1B shows a linked-list structure that represents the
same directory structure of FIG. 1A.

FIG. 1C shows an alternate linked-list structure that
represents the same directory structure of FIG. 1A.

FIG. 2A shows a linked-list structure for the file named
“NA\D.DAT™.

FIG. 2B shows an alternate linked-list structure for the file
named “\A\D.DAT™.

FIG. 3 shows the address space of the FEProm in a
preferred embodiment of the present invention.

FIG. 4 shows a flow diagram of the Add__Directory
routine in a in a preferred embodiment of the present
invention.

FIGS. 5 and 6 show before and after pictorials of the
directory structure with a newly added directory in a pre-
ferred embodiment of the present invention.

FIGS. 7A and 7B show a before and after pictorial
representation of the allocation of an FEDirtEntry in a
preferred embodiment of the present invention.

FIG. 8 shows a flow diagram of the Add File routine in a
preferred embodiment of the present invention.

FIG. 9 shows a flow diagram of the Add_ Data_To__
New__File routine in a preferred embodiment of the present
invention.

FIGS. 10A and 10B show a flow diagram of the Extend__

File routine in a preferred embodiment of the present
invention.

FIG. 11 shows a sample directory and file layout using a
preferred embodiment of the present invention.

10

15

23

35

45

55

65

4

FIG. 12 shows a flow diagram of the Update__ File routine
in a preferred embodiment of the present invention.

FIGS. 13 and 14 show a sample portion of a file before
and after it is updated in a preferred embodiment of the
present invention.

FIGS. 15, 16 and 17 show sample portions of a file after

the file is updated in a preferred embodiment of the present
invention.

FIG. 18 shows a flow diagram of the Del_ Directory
routine in a preferred embodiment of the present invention.

FIG. 19 shows a flow diagram of the Change_ File__

Name routine in a preferred embodiment of the present
invention.

FIG. 20 shows the before and after representation of the
directory structure for a file that has had its name changed.

FIGS. 21A and 21B show a flow diagram of the Change__
Attribute__Data routine in a preferred embodiment of the

present invention.

FIG. 22 shows the before and after representation of the
directory structure for a file that has had its attribute date

changed.

DETAILED DESCRIPTION OF THE
INVENTION

TABLE 1
DETAILED DESCRIPTION OF THE INVENTION

typedef boot__record {

word standard__identifier;

dword unque__identifier;

word FS __version__write;

word mun_ FS__version__to__read;

byte pointer__size;

FEptr roof__directory,

char vol__labelf11]

char boot__infof. . .];}

standard _identifier value which indicates that the
media supports this file system

unique__identifier combined with vol__label is a

unigque identifier for the
particular FEProm

version munber m high byte and
revision number m low byte of
file system that 1s required to
write to this volume

version number in high byte and
revision number m low byte of
the earliest version of file
system that directory structure

15 compatible with

min_ FS_ version__io_ read

pointer__size number of bits used m pointers

root__dwrectory poimter to root directory

vol_label eleven character label

boot__info data relating to booting the
operating system

typedef status__type {

unsigned bit__(:1;

unsigned bit__1:1;

unsigned bit__2:1;

unsigned bit__3:1;

unsigned bit_ 4:1;

unsigned bit__5:1;

unsigned bit_6_7:2;}

typedef FEDirEntry {

FEPtr sibling ;

char name[8];

char ext[3];

status__type status;

FEPtr primary__ptr;

FEPtU secondary___ptr;

byte attributes,

short tune,

S

TABLE i-continued

Re. 35.881

DETAILED DESCRIPTION OF THE INVENTION

short
typedef FEFileEntry |
FEPIr

secondary__ptr

atinibutes

time
date

date; };

sibling;
name| 8];
ext|3];

attributes;

tune;

date;

exteni_ location;
extent__length;}

status;
primary__ptr,
secondary__ptr;
extent_ location;
extent__length;
attributes;

time;

date;

pomter to next directory eniry m
sibling chain
directory/file name
file extension

meaning

1; record exists i the directory
structure

0: record has been deleted from the
directory siructure

1: record contains current attributes,
date, and time data

O: record contamns data that has been

superseded or no data

1: FEFileEntry

: FEDirEntry

: siblmg is FNULL

; stbhng 1s not FNULL

: primary__ptr 18 FNULL

: primary__ptr is not FNULL

: secondary_ ptr 1s FNULL

: secondary__ptr is not FNULL
rescrved

FEDurEntry: pomts to the first
FEDirEntry or FEFieEntry on the
next lower level in the directory
hierarchy; only valid if
secondary_ ptr equals FNULL
FEFilcEntry: points to the linked
list of FEFilelnfo entries associated
with the file; only valid if
secondary__ptr equals FNULL
FEFileInfo: poimts to the next
FEFileInfo entry for the file; only
valid if secondary__ptr equals
FNULL

FEDirEntry: pomts to the next
FED1irEntry entry for the directory:;
the last entry in the hnked hist
contains the current information for
the directory; only vahid if not
FNULL

FEFileEntry: pomis to the next
FEFileEntry entry for the file; the
last entry m the linked hist contains
the current mformation for the file;
only valid if not FNULL
FEFileInfo: pomts to the next
FEFilelnfo entry for the file; only
vahid if not FNULL

file attributes such as read-only,
read/write, etc.

time of creation or modification
date of creation or modification

O OmO O

1€

13

20

23

35

45

35

635

6

TABLE 1-continued

DETAILED DESCRIPTION OF THE INVENTION

points to start of extent
length of extent i bytes

extent location
extent__length

The present invention provides a directory-based hierar-
chical file system for a FEProm device. A hierarchical file
system provides a way to store files in logical groupings. A
preferred embodiment uses a lined-list data structure to
implement both the directory hierarchy and the internal file
storage.

FIG. 1A shows a typical hierarchical directory structure.
The MS-DOS operating system. which is available from
Microsoft Corporation of Redmond, Wash., implements a
file system with a hierarchical directory structure. As shown
in FIG. 1A, the ROOT directory contains two subdirectories
(DOS and WORD) and two files (AUTOEXEC.BAT and
COMMAND.COM) at the next lower level. The directory
DOS contains one file (FORMAT.EXE). The directory
WORD contains two subdirectories (DAVID and MARY) at
the next lower level. The directory DAVID contains one file
LETTER1.DOC. The directory MARY contains three files
LETTER1.DOC, LETTER2.DOC, and LETTER3.DOC.

FIG. 1B shows a possible linked list that in a preferred
embodiment implements the directory structure of FIG. 1A.
The ROOT directory record (the terms record and entry are
used interchangeably in this specification) has a pointer
which points to a linked list of subdirectory records and file
records at the next lower level. The subdirectory record DOS
has a pointer to the file record at the next lower level, and
the subdirectory record WORD has a pointer to a linked list
of subdirectory records at the next lower level. The subdi-
rectory record DAVID has a pointer to the file at the next
lower level, and the subdirectory record MARY has a pointer
to a linked list of file records at the next lower level. The
template 10 shows the record layout used throughout the

drawings.

FIG. 1B represents just one possible linked list arrange-
ment that represents FIG. 1A. The arrangement would be
different if files had been added but then deleted or if the
name of a directory was changed. FIG. 1C shows another
possible arrangement. FIG. 1C represents the same directory
hierarchy as FIG. 1A, but the directory BILL existed at one
time but has been deleted.

Because a FEProm device can be written only once, in a
preferred embodiment of the present invention, directory
record BILL. as shown in FIG. 1C, is not physically
removed from the linked list. A directory or file record 1is
deleted from the linked list by logically clearing the exist/
delete bit of the status byte of the directory or file entry. If
the directory or file was stored on a computer disk. then
directory record BILL could be physically removed by
rewriting the pointer in directory record DAVID to point to
directory record MARY.

A preferred embodiment also uses a linked-list data
structure to link the extents that compose a file. Each file has

a file record associated with it that contains, among other

data. the name of the file and that is linked into the directory
hierarchy as described above. An extent is a contiguous area

of memory that contains data for the file. Each file comprises
one or more extents which contain the file data. Each extent
has an extent record associated with it. The extent record
contains. among other data, the start address of the extent

Re. 35.881

7

and the length of the extent. FIG. 2A shows the extents of the
file *“\A\D.DAT™. The file record (R0) also serves as the
extent for the first extent in a file and contains a pointer to
the first extent {(EQ). The extent records (R1, R2, and R3) are
linked and contain a pointer to the corresponding extents
(E1. E2 and E3). The file is the logical concatenation of
extents EQ. E1. E2, and E3.

FIG. 2A represents just one possible linked list arrange-
ment for file ‘\A\D.DAT”. FIG. 2B shows another arrange-
ment that represents the same file. The extent E4 was added
to the file but then deleted. In a preferred embodiment, the
file record R4 is not physically removed from the linked list
of extents that compose the file. Rather, the record R4 is

logically removed by setting the exist/delete bit of the status
byte to indicate the record is deleted.

In a preferred embodiment of the present invention, the
file system adds directory records. file records. extent
records., and extents by allocating space starting from
address zero in the FEProm. The file system treats the
FEProm as a stack-like device. Data is pushed onto the stack
to effect allocation, but data is never popped from the stack
FIG. 3 shows the allocated and unallocated portion of a
FEProm. The variable first__unallocated points to the lowest
address in the unallocated portion. Each byte of the unallo-
cated portion contains FNULLSs, since it has not yet been
written to by the file system. An FNULL 1is a byte that
contains all 1s. When a FEProm is erased each byte contains
an FNULL.

In a preferred embodiment, the first__unallocated pointer
is not stored on the FEProm. When a FEProm is first
connected to the computer (i.e.. put on-line), the file system
searches the FEProm from the highest address location to
the lowest address for the first occurrence of a non-FNULL
byte. The next higher address is the start of the unallocated
area (first__unallocated). The file system should ensure that
the data stored at the end of the allocated portion does not
contain a FNULL. This can be accomplished by adding a
non-FNULL byte to the end of any record or extent that ends
in an FNULL.

Table 1 contains several data structures used in a preferred
embodiment of the present invention. The structures are
shown in C programming language format along with a
description of the structure variables. The first data structure
stored on the FEProm is the boot__record. The boot__record
contains some general information relating to the identifi-
cation of the FEProm., the version number of file system that
can access the FEProm, the pointer__size variable, and the
root directory variable. The pointer__size indicates the byte-
size of the pointers stored in the FEProm. For example, a
pointer size with value of 3 indicates that each pointer is
three bytes. The root__directory is a pointer to the root
directory stored on the FEProm.

The second and third structures are the FEDirEntry and
FEFileEntry structures. One of these structures is allocated
for each directory and file. The structures are identical
except that the FEFileEntry has extent location and extent
length variables. The variable sibling points to the next
sibling in the linked list of FEDirEntry and FEFileEntry
structures at the same level in the directory hierarchy. The

variables primary_ ptr and secondary__ptr are fully
described below.

Described below is a preferred method of a file system for
a FEProm. The file system allows for directories to be added
and deleted. and files to be created, extended, and modified.
FIG. 4 shows a flow diagram for the routine that adds a
directory to a storage device. The input parameters to this

10

15

23

30

35

45

35

65

8

routine are the complete pathname of the new directory and
attribute data for the new directory. The term attribute data
as used below refers to the attribute, date. and time values.
This routine will set the variable P to point to the parent
directory and the variable C to point to the child directory.
For example. the path name “\PAC” means that a directory
“C” is to be created that is a subdirectory of “P.” which is a
subdirectory of the root directory. FIG. shows when “C”
would be the first subdirectory of “P.” and FIG. 6 shows
when “C” would not be the first subdirectory of “P.
Referring to FIGS. § and 6. the solid lines show the directory
structure before “C” is added and the broken lines show the
directory structure after “C” is added.

In block 401 of FIG. 4. the system locates directory *“P”
by following the path from the root directory and setting
variable P to the address of “P” directory. In block 402, the
system allocates a new directory entry of the record type
FEDirEntry for directory “C.” The system sets the variable
C to the variable first_ unallocated and allocates the space
by incrementing the variable first__unallocated by the size of

an FEDirEntry record. FIGS. 7A and 7B show the address
space before allocation and after allocation of the FEDirEn-
try record, respectively. In block 403, the system sets the
variables name, time, date, and attribute in the newly allo-
cated record. In block 404, the system sets the status bit to
indicate that the newly allocated entry is a directory entry,
rather than a file entry.

In blocks 405 through 410. the system links the new
directory entry into the old directory structure. In blocks 406
through 409, the system handles the situation where the new
directory is not the first subdirectory of “P.” In block 410, the
system handles the situation where the new directory is the
first subdirectory of “P.” In block 405, if P—>primary_ ptr
equals FNULL, then the “P” directory has no subdirectory
and the system continues at block 410, else the “P” directory
has or has had a subdirectory (discussed below), and the
system continues at block 406. In block 410, the system sets
P—>primary__pir equal to the variable C, the address of the
newly allocated directory entry to effect the liking to the new
directory and then the routine is done.

In block 406, the system sets the variable next__pir equal
to P—>primary__ptr. The variable next_ ptr contains the
next directory in the chain of sibling subdirectories. In block
407, if next_ ptr—>sibling equals FNULL, then the end of
the chain of siblings has been reached and the system
continues at block 409, else the system continues at block
408. In block 408, the system sets next_ ptr equal to next__
ptr—>sibling, which advances next__ptr to point to the next
directory in the chain, and continues at block 407 to deter-
mine if the end of the chain has been reached. In block 409,
the system sets next__ptr>sibling equal to C, the address of
the newly allocated directory record and then the routine is
done.

FIG. 8 shows a flow diagram of the routine that adds a
record into the file system for a new file. Since FEFileEntry
records are simply leaf nodes of the hierarchical tree-
structured file system, the routine that adds the FEFileEntry
records is very similar to the routine for FEDirEntry records.
which is Add Directory. shown in FIG. 4. The significant
difference is that the status bit that indicates the record is a
directory is not cleared as in block 404 of FIG. 4. Thus. the
status bit indicates the record is a file record.

FIG. 9 shows a flow diagram of the routine that adds data
to a newly created file. The routine is passed the complete
pathname, the data to write, and the number of bytes to

write. The routine allocates space in the FEProm, writes the

Re. 35.881

9

data. and then updates the FEFileEntry record for the file. In
block 901 and 902, the system allocates the space in the
FEProm for the extent. In block 901. the system sets the
pointer extent_start equal to first_ unallocated. In block
902. the system increments first__unailocated by the number
of bytes to write. In block 993. the system writes the data to

the FEProm at the location pointed to by extent__start. In
block 904. the system locates the FEFieEntry record for the
file by tracing down the pathname and sets F to point to that
record. In block 905, the system sets F—>extent__location
equal to extent_start. In block 906. the system sets
F—>cxtent_ length equal to the number of bytes to write
and then the routine is done.

FIGS. 10A and 10B show a flow diagram of the routine
to add data onto the end of a file. This routine is passed the
complete pathname. the data to write, and the number of
bytes to write. FIG. 11 shows a sample layout of the
directory structure that contains the file *\L.dat” that is to be
extended. The solid lines show the structure before the file
is extended and the broken lines show the structure after the
file is extended. Initially, the file “L.DAT™ has a FEFileEntry
record and a FEFilelnfo record associated with it. Each of
these records has a data extent, D1 or D2. The broken lines
represent a FEFileInfo record with the data to be added to
the file in extent D3.

Referring to FIGS. 10A and 10B in block 1001. the
system allocates a new FEFileInfo record in the FEProm and
sets the pointer FI to contain the address of that record. In
block 1002, the system sets FI—>date, FI-—>time, and
FI—>attribute. In blocks 1003 and 1004, the system allo-
cates space in the FEProm for the data that is to extend the
file. In block 1003, the system sets the variable extent_ start
equal to first__unallocated. In block 1004, the system incre-
ments first__unallocated by the number of bytes to write. In
block 1005, the system writes the data to the FEProm
starting at the location pointed to by extent__start. In block
1006. the system locates the FEFileEntry record for the file
to be extended and sets FE to point to that record. In a
preferred embodiment, the system would locate the FEFi-
leEntry record before allocating the new extent and
FEFileInfo record to ensure that the file exists before any
allocation is done.

In blocks 1007 through 1012, the system locates the last
FEFilelnfo record for the file to be extended. The system
follows the primary__ptr or the secondary__ptr of the FEFi-
leEntry record and the FEFilelnfo records. A non-FNULL
value in the secondary_ ptr field indicates that the record
pointed to by the primary__ptr has been superseded by the
data in the record pointed to by the secondary_ ptr. In block
1007. the system sets pointer next__ptr equal to FE. which is
the address of the FEFileEntry record. In block 1008A, the
system sets the pointer prev__ptr equal to next__ptr. When
the last FEFileInfo record in the file is located, the pointer
prev__ptr will contain the address of that record. In block
1008B. the system sets the next_to>indicate that the
attributes, date, and time are superseded. This will ensure
that the newly allocated FEFileInfo record will be the only
record for the file with current attribute, date, and time data.
In block 1009, if next—>secondary_ptr equals FNULL,
then the data in the record pointed to by the primary__ptr has
not been superseded and the system continues at block 10190,
else the system continues at block 1011. In block 10160, the
system sets next_ ptr equal to next_ ptr—>primary_ ptr to
get the address of the next record in the linked list and
continues at block 1012. In block 1011, the system sets next
equal to next_ ptr—>secondary__ptr to get the address of the
next record in the linked list and continues at block 1612. In

10

15

25

30

35

45

30

55

65

10

block 1012, if next_ptr equals FNULL. then the end of the
list has been reached and the system continues at block

1013, else the system continues at 1088A to process the next

record in the list. In block 1013. the system sets prev___ptr—
>primary__ptr equal to FI to effect the extending of the file

and the routine is done.

FIG. 12 shows a flow diagram for the routine that updates
the data in a file. The parameters for this routine are R, the
address of the FEFileEntry or FEFilelnfo block that is to
have its associated extent modified; extent__offset. the offset

into the extent for the new data; new__ data. the new data;
data__length, the length of the new data. Since the FEProm

is effectively a write once device. at least until everything is
crased, an area where data is stored cannot be rewritten
when an update 10 a file occurs. In a preferred embodiment,

the updated data is written to a different area of the FEProm.
as described below.

FIG. 13 shows a typical portion of the linked list of the
FEFileInfo records for a file. The Update__File routine will
replace the data represented by the shaded arca. FIG. 14
shows the structure of the linked list after the modified data
has been written to the FEProm. Three FEFilelnfo records,
R1, R2, and R3. have been inserted into the linked list The
entire extent is not rewritten, rather only the portion that
actually changed is rewritten. The routine divides the extent
into three sections, DI, D2, and D3. Sections D1 and D3
contain data that is not changed by the update. and section
D2 contains the data that will change. Each section will have
a corresponding FEFilelnfo record. The FEFilelnfo records
R1, R2, and R3 are linked through their primary_ ptr. Also.
the extent_location field in R1 and R3 point to their
corresponding extent sections and the extent length fields are
set. However, a new extent has been allocated for the
changed data corresponding to the new D2 section, which is
pointed to by record R2. The secondary__ptr of record R
points to FEFilelnfo R1 to indicate that the primnary__ ptr of
R is suspended. The primary__of FEFilelnfo record RJ is set
to the value contained in the primary_ptr of FEFilelnfo
record R to complete the link.

In block 1201, the system allocates three FEFilelnfo
records and sets the pointers R1, R2, and R3 to contain the
addresses. R1 is allocated with and R2 and R3 are allocated

without the atiribute data. In block 1202, the system sets
Rl—>time., R1—>date, and R1—>attributes and

R2—>status and R3—>status to superseded. In block 1203
and 1204, the system allocates a record of data_ length for
the new data In block 1203, the system sets the variable
extent__start equal to first__unallocated. In block 1204, the
system increments first_ unallocated by data_ length. In
block 1205, the system writes new__data to the FEProm
starting at the address extent__start.

In blocks 1206 through 1208, the system sets the data in

FEFilelnfo record R2. In block 1206, the system sets
R2—>extent_ location equal to extent__start. In block 1207,

the system sets R1—>extent__length equal to data__length.
In block 1208, the system sets R2—>primary__ ptr to R3.

In blocks 1209 through 1211. the system sets the data in
FEFileInfo record R3. In block 1209, the system sets
R3—>extent_location equal to R—>extent_ location plus
extent__offset plus data__length, which is the start address of
section D3. In block 1210, the system sets R3—>exten__
length equal to R—>extent__length. minus R3——>extent
location. In block 1211, the system sets R3—>primry__
pointer equal to R—>primary__ ptr.

In blocks 1212 through 1214. the system sets the data in
FEFileInfo record R1. In block 1212. the system sets

Re. 35.881

11

R1—>extent_ location equal to R—>extent_location. In
block 1213. the system sets R—>extent_length equal to
extent__offset. In block 1214, the system sets (R1-——

>primary__otr to R2.

In block 1215, the system sets R—>secondary__ptr equal
to R1. which indicates that the primary_ pir is superseded,
and then the routine is done.

FIGS. 15 and 16 show the FEFilelnfo list for a couple
special cases of file updates. The routine for processing for
these special cases is a subset of the routine needed for
processing the general case, Update_ File, shown in FIG. 12.
In FIG. 15, data starting at the beginning of an extent is
updated. Section D1 contains the data at the beginning of the
extent to be updated and section D2 contains the data at the
end of the extent that is not updated. Only two new
FEFilelnfo records are needed. The first FEFileInfo record
R1 points to the new data and the second FEFileInfo record
R2 points to the old data. A similar situation occurs when
data that ends on an extent boundary is updated as shown in
FIG. 16.

FIG. 17 shows a linked list for FEFileInfo records when
the updated data spans extent boundaries.

FIG. 18 shows a flow diagram of a routine that deletes a
directory or file from the FEProm. This routine clears the
exist/delete bit in the FEDirEntry. In block 1801, the system
locates the directory or file to be deleted and sets the pointer
D to contain the address of the directory or file. In block
1802, the system sets D—>status to indicate that the direc-
tory or file is deleted and the routine completes.

The name of a directory or file is changed by allocating a
new FEDirEntry or FEFileEntry, respectively, and then
setting the secondary__ptr of the old entry to point the new
entry. FIG. 20 shows the file entry for “D.DAT™ in solid lines
and the changes in broken lines when the name is changed
to “B.DAT.” The new entry points to the linked list of
FEFilelnfo entries, the directory structure, and the extent
associated with the old entry.

FIG. 19 is a flow diagram of a preferred subroutine that
implements the changing of a file name. (The subroutine for
changing a directory is similar, except that there are no
associated extents.) The input parameters to this routine are
the pathname of the file and the new file name. In block
1901, the system searches through the directory structure
and locates the file whose name is to be changed and sets the
variable P to point to the FEFileEntry. In block 1902 and
1903, the system searches for the last FEFileEntry in the
linked list of entries for the file. A file will have an entry for
each name change In block 1902, if P—>secondary_ ptr
equals FNULL.. then P points to the end of the linked list and
the system continues at block 1904, else P does not point to
the end of the linked list and the system continues at block

1963. In block 1903, the system sets P equal to
P—>secondary__otr to walk through the linked list.

In block 1904, the system allocates a new FEFileEntry
and sets the variable C to point to the entry. In block 1905,
the system set C—>name equal to the new file name. In
block 1906. the system sets C—>sibling equal to
P—->sibling to link the entry into the directory hierarchy. In
blocks 1907 and 1908, the system sets C—>extent__location
and C—>extent_ length equal to P—>¢extent_ location and
P—>extent__length, respectively, to link the new entry to the
extent. In block 1909, the system sets C—>primry__ptr
equal to P—>primary__ptr to link the new entry to the list of
extents. In block 1910, the system sets P—>secondary_ ptr
equal to C to complete the replacement of the old entry and
the routine completes.

10

15

20

25

30

35

45

50

55

65

12

The attribute data associated with a file are changed by
adding a new FEFilelnfo entry onto the linked list of
FEFilelnfo entries. All FEFilelnfo entries except the last are
set to indicate that the attribute data have been superseded.
FIG. 22 shows the linked list arrangement before the
attribute data change in solid lines and after the attribute data
the change in broken lines. No extent is associated with the
FEFilelnfo entry that is added as a result of an attribute data
change.

FIGS. 21A and 21B show a flow diagram of a routine that

changes the attribute data of a file. The input parameters are
the pathname and the attribute data. In block 2101. the

system searches through the directory structure to locate the

file and sets the variable P to point to the FEFileEntry. In
block 2162 and 2103. the system scarches for the last

FEFileEntry in the linked list of entries for the file. A file will
have an entry for each name change. In block 2102, if
P—>secondary__ptr equals FNULL, then P points to the end
of the linked list and the system continues at block 2104, else
P does not point to the end of the linked list and the system
continues at block 2103. In block 2103. the system sets P
equal to P—>secondary_ ptr to walk through the linked list.

In block 2104, the system sets the variable C equal to
P—>primary__ptr, which points to the linked list of
FEFileInfo entries for the file. In blocks 2105 through 2110,
the system searches through the FEFilelnfo entries for the
last entry. If a secondary__ptr is set, the system follows that
path, otherwise it follows the primary_ ptr. If both primary__
ptr and secondary__ptr are equal to FNULL, then the system
has located the end of the linked list In block 2105, if
C—>secondary__ptr equals FNULL, then the system con-
tinues at block 2108, clse the system continues at block
2106. In block 2106, the system sets C—>status to indicate
that the attribute data are superseded. The new FEFileInfo
entry will contain the new attribute data. In block 2107, the
system sets C equal C—>secondary__ptr to traverse the
linked list and the system loops to 2105.

In block 2108, if C—>primary__ptr equals FNULL, then
C points to the last FEFileInfo record in the list and the
system continues at block 2111, else the system continues at
block 2109. In block 2109, the system sets C—>status to
indicate that the attribute data are superseded. The new
FEFilelnfo entry will contain the new attribute data. In block
2110, the system sets C equal C—>primary_ ptr to traverse
the linked list and the system loops to 2105.

In block 2111, the system allocates a new FEFileEntry and
sets the variable R to point to the entry. In block 2112, the
systems sets the attribute data for the new file entry. In block
2113, the system sets C—>primary__ptr equals R to link the
new entry with the other FEFilelnfo entries and the routine
completes.

In an alternate preferred embodiment, the FEFileEntry
records and the FEFileInfo records are allocated after the

space for extent is allocated. Storing in this manner has two
advantages. First, it ensures that the allocated space will
never end in an FNULL. Second. several writes can be
combined into one large extent. The combining of the writes
can occur up to the point at which FEDirEntry, FEFileEntry,
or a FEFileInfo (for a different file) are to be added to the
FEProm. At that point, the combined FEFileInfo record
could be written out.

Although the present invention has been described in
terms of preferred embodiment, it is not intended that the
invention be limited to this embodiment. Modifications
within the spirit of the invention will be apparent to those
skilled in the art. The scope of the present invention is

defined by the claims that follow.

Re. 35.881

13

We claim:

1. A method of updating data stored on a computer
memory file storage device with new data, the memory
containing records of data. each record having a primary
pointer and a secondary pointer, the records stored as a
linked list that is linked by the primary pointers. the method
comprising the steps of:

locating a record that contains data to be updated, the

record being contained in the memory comprising a
plurality of bits such that once a bit is changed from a
predefined bit value to another bit value the changed bit
cannot be individually changed back to the predefined
bit value. the data including bits that have been changed
from the predefined bit value to the other bit value. the
secondary pointer of the located record having each bit
set to the predefined bit value;

allocating a record to contain the new data, the record
being allocated in the memory, each bit of the allocated
record being set to the predefined bit value;

writing the new data to the allocated record; and

setting the secondary pointer in the located record to point
to the allocated record to indicate that the new data in
the allocated record is an update of the data in the
located record by changing at least one bit of the
secondary pointer from the predefined bit value to the
other bit value

wherein the step of locating a record includes the steps of:

(a) selecting a record at which to start a traversal of the
linked list;

(b) reading the secondary pointer for the selected record;

(¢) if each bit of the read secondary pointer is set to the
predefined bit value, then selecting the record pointed
to by the primary pointer of the selected record;

(d) if [each] at least one bit of the read secondary pointer
is not set to the predefined bit value, then selecting the
record pointed to by the secondary pointer of the
sclected record; and

(e) repeating steps (b) to (d), until the selected record
contains the data to be updated.

2. The method of claim 1 including the additional step of
setting the primary pointer in the allocated record equal to
the primary pointer of the located record.

3. The method of claim 1 or 2 wherein the file storage

device is a flash, erasable programmable read only memory.
4. The method of claim 1 wherein the file storage device

is logically a stack device, the stack having a top, and the
allocated records are allocated on the top of the stack.

5. A computer file storage system for organizing files
based on a hierarchical directory structure, the directory
structure having a plurality of directory entries, the system
comprising:

a computer having a memory for storing directory entries.
the memory comprising a plurality of bits such that
once a bit is changed from a predefined bit value to
another bit value the changed bit cannot be individually
changed back to the predefined bit value;

means for allocating a portion of the memory for storing
a directory entry. the directory entry having a primary
pointer, a secondary pointer, and a sibling pointer, the
pointers having a plurality of bits initially being set to
the predefined bit value;

means for storing directory data in the directory entry;

means for setting the sibling pointer of the directory entry
to point to another directory entry at the same level in
the directory structure to form a linked list of sibling
directory entries;

10

15

35

45

50

X3

65

14

means for setting the primary pointer of the directory
entry to point to another directory entry at the next level
lower in the directory structure;

means for determining whether each bit of the secondary
pointer of the directory entry is set to the predefined bit
value to indicate that the directory data of the directory
entry has superseded; and

means for setting the secondary pointer of the directory
entry to point to a superseding directory entry. the
superseding directory enfry to contain updated data for
the directory entry by changing at least one bit of the
" secondary pointer from the predefined bit value to the
other bit value.
6. The computer file storage system of claim § further
comprising:
means for setting the primary pointer of the superseding
directory entry equal to the primary pointer of the
directory entry; and
mean for setting the sibling pointer of the superseding
directory entry equal to the sibling pointer of the
directory entry.
7. The computer file storage system of claim 5 further
comprising:
means for allocating a portion of the memory for storing
a file entry, the file entry to contain information relating
to a file; and

means for setting the primary pointer of the directory

entry to point to the file entry.

8. The computer file storage system of claim 7 wherein the
file entry contains a primary pointer, a secondary pointer,
and a sibling pointer. the file entry pointers having a plurality
of bits initially being set to the predefined bit value, includ-
ing:

means for setting the sibling pointer of the file entry to

point to another file entry to form a linked list of file
entries; and

means for setting the secondary pointer of the file entry to

point to a superseding file entry. the superseding file
entry to contain updated data for the file entry.

9. The computer file storage system of claim 8 further
comprising:

means for setting the primary pointer of the superseding

file entry equal to the primary pointer of the file entry;
and

means for setting the sibling pointer of the superseding

file entry equal to the sibling pointer of the file entry.

10. The computer file storage system of claim 7 further
comprising:

means for allocating a portion of the memory for storing

a file information entry, the file information entry to
contain information relating to a file extent; and

means for setting the primary pointer of the file entry to

point to the file information entry.

11. The computer file storage system of claim 10 wherein
the file information entry contains a primary pointer and
secondary pointer, the file information entry pointers having
a plurality of bits initially being set to the predefined bit
value, further comprising:

means for setting the primary pointer of the file informa-

tion entry to point to another file information entry
associated with the same file to form a linked list of file
information entrics for that same file; and

means for setting the secondary pointer of the file infor-
mation entry to point to a superseding file information

entry, the superseding file information entry to contain
updated data for the file information entry.

Re. 35.881

15

12. The computer file storage system of claim 11 further

comprising:

means for setting the primary pointer of the superseding
file information entry equal to the primary pointer of
the file information entry.

13. The computer file storage system of claim 5. 6, 7. 8,

9. 10, 11. or 12 wherein the memory is a flash, erasable,
programmable read-only memory.

14. A computer file storage system for storing files, the

system comprising:

a computer having a memory for storing the files, the
memory comprising a plurality of bits such that once a
bit is changed from a [predetermined] predefined bit
value to another bit value the changed bit cannot be
individually changed back to the predefined bit value;

means for allocating a portion of the memory for storing
a file entry, the file entry to contain information relating
to a file and containing a primary pointer, a secondary
pointer, and a sibling pointer, the information and
pointers having a plurality of bits initially being set to
the predefined bit value;

means for storing information relating to the associated
file in the file entry;

means for setting the sibling pointer of the file entry to
point to another file entry to form a linked list of file
entries;

means for determining whether each bit of the secondary

pointer of the file entry is set to the predefined bit value
to indicate that the information of the file entry has not

been superseded; and

means for setting the secondary pointer of the file entry to
point to a superseding file entry, the superseding file
entry to contain updated information for the file entry
by changing at least one bit of the secondary pointer
from the predefined bit value to the other bit value.

15. The computer file storage system of claim 14 further

comprising:

means for setting the primary pointer of the superseding
file entry equal to the primary pointer of the file entry;
and

means for setting the sibling pointer of the superseding
file entry equal to the sibling pointer of the file entry.
16. The computer file storage system of claim 14 includ-
ing:
means for allocating a portion of the memory for storing
a file information entry, the file information entry to
contain information relating to a file extent of a file, the
file information entry containing a primary pointer and
a secondary pointer, each of the file information entry
pointers having a plurality of bits initially being set to
the predefined bit value;
means for setting the primary pointer of the file entry to
point to the file information entry;

means for setting the primary pointer of a file information
entry to point to another file information entry associ-

ated with the same file to form a linked list of file
information entries for the same file; and

means for setting the secondary pointer of the file infor-
mation entry to point to a superseding file information
entry, the superseding file information entry to contain
updated information for the file information entry.

17. The computer file storage system of claim 16 further

comprising:

means for setting the primary pointer of the superseding
file information entry equal to the primary pointer of
the file information entry.

10

15

25

30

35

45

50

55

63

16

18. The computer file storage system of claim 14, 15, 16,
or 17 wherein the memory is a flash. erasable. program-

mable read-only memory.

19. A method of updating data stored on a computer
memory device with new data. the memory device contain-
ing records of data. each record having a secondary pointer,
the method comprising the steps of:

locating a record that contains data to be updated. the
record being contained in the memory device compris-
ing a plurality of bits such that once a bit is changed
from a predefined bit value to another bit value the
changed bit cannot be individually changed back to the
predefined bit value, the data including bits that have
been changed from the predefined bit value to the other
bit value, the secondary pointer of the located record
having cach bit set to the predefined bit value;

allocating a record to contain the new data, the record
being allocated in the memory. each bit of the allocated
record being set to the predefined bit values;

writing the new data to the allocated record; and

setting the secondary pointer in the located record to point
to the allocated record to indicate that the new data in
the allocated record is an update of the data in the
located record by changing at least onc bit of the
secondary pointer from the predefined bit value to the
other bit value

wherein the step of locating a record includes the steps of:

(a) selecting a record at which to start a traversal of the
linked list:

(b) reading the secondary pointer for the selected
record; ‘

(c) if each bit of the read secondary pointer is set to the
predefined bit value, then selecting the record
pointed to by the primary pointer of the selected
record,

(d) if [each] at least one bit of the read secondary
pointer is not set to the predefined bit value, then
selecting the record pointed to by the secondary
pointer of the selected record; and |

(e) repeating steps (b) to (d). until the selected record
contains the data to be updated.

20. The method of claim 19 wherein the step of setting the
secondary pointer includes setting a flag in the located

record to indicate at the secondary pointer has been changed
from the a predefined bit value.

21. The method of claim 19 or 20 wherein the computer
memory device is a flash, erasable, programmable read-only
memory.

22. The method of claim 19 wherein the step of locating
a record includes determining an address of a first unallo-
cated portion in the memory.

23. The method of claim 22 wherein the device has a
plurality of locations, each location identified by an address,
the addresses being sequential, the device having a begin-
ning location and an ending location, the device having an
allocated portion of contiguous locations and an unallocated
portion of contiguous locations, the allocated portion being
positioned starting at the beginning address, the unallocated
portion being positioned ending at the ending address, each
bit of each location in the allocated portion being set to the
predefined bit value, and wherein the step for determining an
address of a first unallocated location includes the steps of:

(a) setting a secarch pointer equal to the address of the
ending location;

(b) retrieving data stored at the location pointed to by the
search pointer;

Re. 35.881

17

(c) comparing each bit of the retrieved data with the
predefined bit value;

(d) if each bit of the retrieved data is equal to the
predefined bit value, adjusting the search pointer {0
point to the next contiguous location;

(e) repeating steps (b). (¢). and (d) until at least one bit of
the retrieved data is not equal to the predefined bit
value; and

(f) 1f at lcast one bit of the retrieved data is not equal to
the predefined bit value, setting the address of the first

unallocated location equal to the address of the last
location from which each bit of the retrieved data was
equal to the predefined bit value.
24. The method of claim 23 wherein the allocated portion
of contiguous locations has a last location, including the step
of:

ensuring that at least one bit of the last location in the
allocated portion of contiguous locations contains a bit
value other than the predefined bit value.

25. The method of claim 22. 23, or 24 wherein the
memory device is a flash, erasable, programmable read-only
MEmOry.

26. A method for determining an address of a first
unallocated location in a memory device. the device having
a plurality of locations., each location identified by an
associated address, the addresses being sequential. the
device having a beginning location and a ending location,
the device having an allocated portion of contiguous loca-
tions and an unallocated portion of contiguous locations, the
allocated portion being positioned starting at the beginning
address, the unallocated portion being positioned ending at
the ending address, each bit of the unallocated portion being
set to a predefined value, the method comprising the steps
of:

(a) setting a search pointer equal to the address of the
ending location;

(b) retrieving the bits stored at the location pointed to by
the search pointer, the location comprising a plurality
of bits such that once a bit is changed from the
predefined value to another value the changed bit
cannot be individually changed back to the predefined
value;

{c) comparing the retrieved bits with the predefined value;

(d) if each of the retrieved bits is equal to the predefined
value, adjusting the search pointer to point to the next
contiguous location;

(e) repeating steps (b), (¢), and (d) until at lcast one of the
retrieved bits is not equal to the predefined value; and

(f) if at least one of the retrieved bits is not equal to the
predefined value, setting the address of the first unal-

located location equal to the address of the last location

from which each of the retrieved bits was equal to the
predefined value.

27. The method of claim 26, wherein the allocated portion

of contiguous locations has a last location. including the

additional step of:

5

10

13

25

30

35

45

30

55

18

ensuring that at least one bit of the last location in the
allocated portion of the contiguous locations contains a
value other than the predefined value.
28. The method of claim 26 or 27 wherein the memory
device is a flash, erasable, programmabie read-only memory.
29. A method of updating a logically contiguous set of
data with updated data. the data comprising a plurality of
extents, each extent comprising a logically contiguous sub-
set of the set of data, each extent having an associated extent
header, the extent header having a primary pointer, a sec-
ondary pointer, and an extent pointer. the primary pointers
linking the extent headers in a linked list. the extent pointers
pointing to the extent associated with the header, the method
comprising the steps of:
locating an extent header associated with an extent to be
updated. the located extent header comprising a plu-
rality of bits such that once a bit is changed from a
predefined bit value to another bit value the changed bit
cannot be individually changed back to the predefined
bit value, the secondary bit pointer of the located extent
header having each bit set to the predefined bit value;

allocating an extent header, the allocated extent header
comprising a plurality of bits such that once a bit is
changed from the predefined bit value to another bit
value the changed bit cannot be individually changed
back to the predefined bit value. each bit of the allo-
cated extent header being set to the predefined bit
value;

setting the secondary pointer in the located extent header
to point to the allocated extent header by changing at
least one bit of the secondary pointer from the pre-
defined bit value to the other bit value;

sctting the primary pointer in the allocated extent header
equal to the primary pointer of the located extent
header by changing at least one bit of the primary
pointer from the predefined bit value to the other bit
value;

allocating an extent to store the updated data;
storing the updated data in the allocated extent; and

setting the extent pointer in the allocated extent header to
point to the allocated extent by changing at least one bit
of the extent pointer from the predefined bit value to the
other bit value.
30. The method of claim 29 comprising the additional
steps of:

setting the primary pointer in the allocated extent header
to point to another allocated extent header, when updat-
ing only a portion of the data in the extent to be
updated; and

setting the extent pointer in the other allocated extent to
point to a portion of data in the extent to be updated,
wherein the portion of data is not to be updated.

31. The method of claim 29 or 30 wherein the memory
device is a flash, erasable, programmmable read-only memory.

* * % % ¥

	Front Page
	Drawings
	Specification
	Claims

